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In the paper exact solutions for classical problem of a particle in magnetic field

on the background of hyperbolic Lobachevsky H3 and spherical Riemann S3 space

models will be constructed explicitly.

1. These both are extensions for a well-known problem in theoretical physics.

2. They can be used to describe behavior of charged particles in macroscopic magnetic field in

the context of astrophysics.

3. Earlier, the quantum-mechanical variant (Shrödinger equation) of the problem has been solved

as well and generalized formulas for Landau levels in the models H3 and S3 have been

produced:

Bogush A.A., Red’kov V.M., Krylov G.G.. Schrödinger particle in magnetic and

electric fields in Lobachevsky and Riemann spaces. // Nonlinear Phenomena in Complex

Systems. 2008. Vol. 11. no 4, P. 403 – 416.
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Motion of a classical particle in external electromagnetic and gravitational fields is described by

mc2(
d2xα

ds2
+ Γα

βσ

dxβ

ds

dxσ

ds
) = e F αρ Uρ ,

or Lagrangian L = −mc2

√

1 − V 2

c2
+

e

c
Aβ Uβ

Lobachevsky and Riemann models have nontrivial only 3-space structure:

ds2 = (dx0)2 + gjk(x
1,x2,x3) dxjdxk ,
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In the model H3 we have used special cylindric coordinates (ρ is the curvature radius.)

dS2 = c2dt2 −
(

ch2
z

ρ
dr2 + ρ2 ch2

z

ρ
sh2

r

ρ
dφ2 + dz2

)

,

z ∈ (−∞, +∞), r ∈ [0, +∞), φ ∈ [0, 2π] .

Space H3 can be realized as a surface in 4-space (it simplifies symmetry description in H3):

u2
0 − u2

1 − u2
2 − u2

3 = ρ2 , u0 = +
√

ρ2 + ~u 2 ,

u1 = ρ ch
z

ρ
sh

r

ρ
cos φ , u2 = ρ ch

z

ρ
sh

r

ρ
sin φ ,

u3 = ρ sh
z

ρ
, u0 = ρ ch

z

ρ
ch

r

ρ
.

We are to extend the concept of a uniform magnetic field to model H3.

It should be a solution of Maxwell equations in H3, and it is given by

Aφ = −ρ2B ( ch
r

ρ
− 1) , Fφr = Bρ sh

r

ρ
;

correct flat space limit:

(

ρ → ∞ , Aφ = −Br2

2
, Fφr = Br

)

.

Additional arguments for that terminology will be given below
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In the similar manner, for the model S3 we have used special cylindric coordinates

dS2 = c2dt2 −
(

cos2
z

ρ
dr2 + ρ2 cos2

z

ρ
sin2

r

ρ
dφ2 + dz2

)

,

z ∈ [−π/2, +π/2], r ∈ [0, +π], φ ∈ [0,2π] .

Riemann space can be realized as a surface in 4-space (it simplifies symmetry description in S3):

u2
0 + u2

1 + u2
2 + u2

3 = ρ2 ,

u1 = ρ cos
z

ρ
sin

r

ρ
cos φ , u2 = ρ cos

z

ρ
sin

r

ρ
sin φ ,

u3 = ρ sin
z

ρ
, u0 = ρ cos

z

ρ
cos

r

ρ
.

We are to extend the concept of a uniform magnetic field to model S3:

Aφ = ρ2B ( cos
r

ρ
− 1) , Fφr = Bρ sin

r

ρ
;

correct flat space limit:

(

ρ → ∞ , Aφ = −Br2

2
, Fφr = Br

)

.
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In Lobachevsky model H3, Lagrangian of the system is given by

L = −mc2

√

1 − V 2

c2
+

eBρ2

c
( ch

r

ρ
− 1) (

dφ

dt
) ;

V 2 = ch2
z

ρ

[

(
dr

dt
)2 + ρ2sh2

r

ρ
(
dφ

dt
)2

]

+ (
dz

dt
)2 .

Equations of motion look as follows:

d2r

dt2
+ 2 th

z

ρ

dz

dt

dr

dt
− ρ sh

r

ρ

[

ch
r

ρ

dφ

dt
+

ω

ch2(z/ρ)

]

dφ

dt
= 0 ,

d

dt

[

ρ2 sh2
r

ρ
ch2

z

ρ

dφ

dt
+ ωρ2 ( ch

r

ρ
− 1)

]

= 0 ,

d2z

dt2
− 1

ρ
ch

z

ρ
sh

z

ρ

[

(
dr

dt
)2 + ρ2 sh2

r

ρ
(
dφ

dt
)2

]

= 0 .

The squared velocity is conserved quantity: V 2 = const.
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In Riemann model S3, Lagrangian of the system is given by

L = −mc2

√

1 − V 2

c2
− eBρ2

c
( cos

r

ρ
− 1) (

dφ

dt
) ;

V 2 = cos2
z

ρ

[

(
dr

dt
)2 + ρ2 sin2

r

ρ
(
dφ

dt
)2

]

+ (
dz

dt
)2 .

Equations of motion look

d2r

dt2
+ 2 tg

z

ρ

dz

dt

dr

dt
− ρ sin

r

ρ

[

cos
r

ρ

dφ

dt
+

ω

cos2(z/ρ)

]

dφ

dt
= 0 ,

d

dt

[

ρ2 sin2
r

ρ
cos2

z

ρ

dφ

dt
− ωρ2 ( cos

r

ρ
− 1)

]

= 0 ,

d2z

dt2
+

1

ρ
cos

z

ρ
sin

z

ρ

[

(
dr

dt
)2 + ρ2 sin2

r

ρ
(
dφ

dt
)2

]

= 0 .

The squared velocity is conserved quantity: V 2 = const.
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In flat space E3, solutions are well-known:

r = r0 = const , φ(t) = ωt + φ0 ,
d2z

dt2
= 0

x = r cos φ

y = r sin φ

-
x

6

y

"!
#Ã

6
z

¡
¡

¡
¡¡ª
x

-
y

V z = const

There exist many other SHIFTED IN PLANE (x, y) trajectories,

they all are in essence the same.

————————————————————————————————————————————————–

In the first place, the task is to construct their analogues in models H3 and S3.

It is convenient to introduce dimensionless coordinates and parameters:

t ⇐=
ct

ρ
, r ⇐=

r

ρ
, z ⇐=

z

ρ
,

B ⇐=
e

m

ρB

c

√

1 − V 2

c2
,
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then EQUATIONS ARE MUCH SIMPLIFIED (no redundant elements):

In H3 model

d2r

dt2
+ 2 thz

dz

dt

dr

dt
− sh r

[

ch r
dφ

dt
+

B

ch2 z

]

dφ

dt
= 0 ,

d

dt

[

sh2r ch2z
dφ

dt
+ B ( ch r − 1)

]

= 0 , I = const ,

d2z

dt2
− ch z sh z

[

(
dr

dt
)2 + sh2 r (

dφ

dt
)2

]

= 0 .

In S3 model

d2r

dt2
+ 2 tg z

dz

dt

dr

dt
− sin r

[

cos r
dφ

dt
+

B

cos2z

]

dφ

dt
= 0 ,

d

dt

[

sin2r cos2z
dφ

dt
− B ( cos r − 1)

]

= 0 , I = const ,

d2z

dt2
+ cos z sin z

[

(
dr

dt
)2 + sin2r (

dφ

dt
)2

]

= 0 .
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In H3,

let r = r0 = const, then eqs. reduce to

dφ

dt
=

α

ch2z
,

dV z

dt
= A

sh z

ch3z
,

α = − B

ch r0

, A = B2 th2r0 > 0 (1)

There exist effective repulsion to both sides from the center z = 0.

One can simplify (translate 2-nd order to 1-st order) equation the second equation to

A

ch2z
= const − (

dz

dt
)2 .

const must be identified as ǫ = V 2:

A

ch2 z
= ǫ − (

dz

dt
)2 ,

In the limit of flat space A corresponds to a transversal squared velocity V 2

⊥.

In Lobachevsky model transversal motion should vanish (to be frozen) when z → ±∞.
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The signs ± correspond to motion along axis z in opposite directions. Behavior of z(t):

I. ǫ > A , z ∈ (−∞, +∞) ,

sh z(t) = ±
√

1 − A/ǫ sh
√

ǫ t , z0 = 0 ;

Trajectories run through z = 0.

II. ǫ < A , sh2z >
A

ǫ
− 1 ,

sh z(t) = ±
√

A

ǫ
− 1 ch

√
ǫ t .

The particle is rejected at the points t = 0. Such an effect does not exist in flat space model

(For brevity we will omit a very peculiar case at ǫ = A.)

Now we are to find φ(t) (no need to distinguish between I and II)

A 6= ǫ , φ − φ0 =
α√
A

arcth (

√

A

ǫ
th

√
ǫt) .

When t → +∞ we obtain a finite value for total rotation angle (rotation freezing):

(φ − φ0)|t→∞ =
α√
A

arcth

√

A

ǫ
.
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In S3,

let r = r0 = const, then eqs. reduce to

dφ

dt
=

α

cos2 z
,

dV z

dt
= −A

sin z

cos3 z
,

α = − B

cos r0

, A = B2 tg2r0 > 0

There exist effective attraction to the center z = 0.

One can simplify ( 2-nd order to 1-st order) equation the second equation to

A

cos2 z
= const − (

dz

dt
)2 ,

const must be identified as ǫ

ǫ =
A

cos2 z
+ (

dz

dt
)2 ,

In contrast to Lobachevsky model, now only one possibility is realized: ǫ > A): No

rotation freezing effect exist here, instead the motion must be finite, and there

must arise turning points in z variable. Therefore motion must be periodical.
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Analytical formulas are

(signs (±) correspond to motions in opposite direction along z):

r = r0 = const , ǫ > A ,

sin z(t) = ±
√

1 − A

ǫ
sin

√
ǫ t ,

φ − φ0 =
α√
A

arctg (

√

A

ǫ
tg

√
ǫt) . (2)

Distinctive feature of the motion is its periodicity and its closed character.

The period T is determined by

T =
π√
ǫ

(

in usual units T = ρ
π

V

)

.

Special case ǫ = A:

z(t) = 0 , φ(t) = φ0 + α t ,

rotation with constant angular velocity on the circle r = r0 in absence any motion along z.
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Space shifts and gauge symmetry of the uniform magnetic field in H3

Now the question is on the role of the SO(3.1) symmetry in the model H3. In the first place we

are interested in shift transformations.

Let us turn to a pair of coordinate systems in space H3:

u1 = ch z sh r cos φ , u2 = ch z sh r sin φ , u3 = sh z , u0 = ch z ch r ;

u′
1

= ch z′ sh r′ cos φ′ , u′
2

= ch z′ sh r′ sin φ′ , u′
3

= sh z′ , u′
0

= ch z′ ch r′ ,

related by the shift (0 − 1)
∣

∣

∣

∣

∣

∣

u′
0

u′
1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ch β sh β

sh β ch β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u0

u1

∣

∣

∣

∣

∣

∣

, u′
2

= u2 , u′
3

= u3 .

or in cylindric coordinates

0 − 1, z′ = z , sh r′ sin φ′ = sh r sin φ ,

sh r′ cos φ′ = shβ ch r + ch β sh r cos φ ,

ch r′ = ch β ch r + sh β sh r cos φ ;
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With respect to that change (r, φ) =⇒ (r′, φ′) magnetic field transforms according to

Fφ′r′ =
∂xα

∂φ′
∂xβ

∂r′
Fαβ = (

∂φ

∂φ′
∂r

∂r′
− ∂r

∂φ′
∂φ

∂r′
)Fφr , Fφr = B sh r ;

so the magnetic field transforms with the help of Jacobian:

Fφ′r′ = J Fφr , J =

∣

∣

∣

∣

∣

∣

∣

∂r
∂r′

∂r
∂φ′

∂φ
∂r′

∂φ
∂φ′

∣

∣

∣

∣

∣

∣

∣

, Fφr = B sh r .

After calculation, the Jacobian of the shift (0 − 1) reads

J =
sh r′

sh r
;

and therefore this shift (0− 1) leaves invariant the uniform magnetic field under consideration

Fφr = B sh r , Fφ′r′ = B sh r′ .

By symmetry reason we can conclude the same result for shifts of the type (0 − 2). However,

shifts of the type (0− 3) result in different things: the uniform magnetic field in the space H3

is not invariant with respect to the shifts (0 − 3).
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Electromagnetic field in terms of 4-potential in H3

The rule to transform the field with respect to the shift (0 − 1) looks

Aφ = −B (ch r − 1) =⇒ A′
φ′ =

∂φ

∂φ′ Aφ , A′
r′ =

∂φ

∂r′
Aφ ;

In flat space, the shift ~r ′ = ~r +~b generates a definite gauge transformation:

~A(~r ) =
1

2
~B × ~r, ~A ′(~r ′) =

1

2
~B × ~r ′ + ∇~r ′ Λ ,Λ = − bB

2
y′ .

By analogy reason one could expect something similar in Lobachevsky space as well:

A′
φ′ =

∂φ

∂φ′ Aφ = −B (ch r′ − 1) +
∂

∂φ′ Λ ,

A′
r′ =

∂φ

∂r′
Aφ =

∂

∂r′
Λ .

It is indeed so – and the gauge function has been found:

Λ(r′, φ′) = +2B arctg

(

(ch β − 1)(ch r′ − 1) − sh β sh r′ cos φ′

sh β sh r′ sin φ′

)

− 2Bφ′ + λ0 .
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Space shifts and gauge symmetry of the uniform magnetic field in S3

Now the question is on the role of the SO(4) symmetry in the model S3.

Let us turn to a pair of coordinate systems in space S3:

u1 = cos z sin r cos φ , u2 = cos z sin r sin φ , u3 = sin z , u0 = cos z cos r ;

u′
1

= cos z′ sin r′ cos φ′ , u′
2

= cos z′ sin r′ sin φ′ , u′
3

= sin z′ , u′
0

= cos z′ sin r′ ,

related by the shift (0 − 1)
∣

∣

∣

∣

∣

∣

u′
0

u′
1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

cos β sin β

− sin β cos β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u0

u1

∣

∣

∣

∣

∣

∣

, u′
2

= u2 , u′
3

= u3 .

or in cylindric coordinates

0 − 1, z′ = z , sin r′ sin φ′ = sin r sin φ ,

sin r′ cos φ′ = sin β cos r + cos β sin r cos φ ,

cos r′ = cos β cos r − sin β sin r cos φ ;
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With respect to that change (r, φ) =⇒ (r′, φ′) magnetic field transforms according to

Fφ′r′ =
∂xα

∂φ′
∂xβ

∂r′
Fαβ = (

∂φ

∂φ′
∂r

∂r′
− ∂r

∂φ′
∂φ

∂r′
)Fφr , Fφr = B sin r ;

so the magnetic field transforms with the help of Jacobian:

Fφ′r′ = J Fφr , J =

∣

∣

∣

∣

∣

∣

∣

∂r
∂r′

∂r
∂φ′

∂φ
∂r′

∂φ
∂φ′

∣

∣

∣

∣

∣

∣

∣

, Fφr = B sh r .

After calculation, the Jacobian of the shift (0 − 1) reads

J =
sin r′

sin r
;

and therefore this shift (0− 1) leaves invariant the uniform magnetic field under consideration

Fφr = B sin r , Fφ′r′ = B sin r′ .

By symmetry reason we can conclude the same result for shifts of the type (0 − 2). However,

shifts of the type (0 − 3) behave differently: the uniform magnetic field in the space H3 is not

invariant with respect to the shifts (0 − 3).
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Electromagnetic field in terms of 4-potential in S3

, then The rule to transform the field with respect to the shift (0 − 1) looks

Aφ = B (cos r − 1) =⇒ A′
φ′ =

∂φ

∂φ′ Aφ , A′
r′ =

∂φ

∂r′
Aφ ;

In flat space, the shift ~r ′ = ~r +~b generates a definite gauge transformation:

~A(~r ) =
1

2
~B × ~r, ~A ′(~r ′) =

1

2
~B × ~r ′ + ∇~r ′ Λ , Λ = − bB

2
y′ .

By analogy reason one could expect something similar in Lobachevsky space as well:

A′
φ′ =

∂φ

∂φ′ Aφ = B (cos r′ − 1) +
∂

∂φ′ Λ ,

A′
r′ =

∂φ

∂r′
Aφ =

∂

∂r′
Λ .

It is indeed so and the gauge function has been found:

Λ(r′, φ′) = −2B arctg

(

(cos β − 1)(cos r′ − 1) − sin β sin r′ cos φ′

sin β sin r′ sin φ′

)

+ 2Bφ′ + λ0 .



21

Analytical description of the all (shifted) trajectories in H3

-

6

µ´
¶³
µ´
¶³
µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

is given through constructing 3 conserved quantities

ǫ = ch2z

[

(
dr

dt
)2 + sh2r(

dφ

dt
)2

]

+ (
dz

dt
)2 , 0 < ǫ < 1 , ǫ = const ,

I = sh2r ch2z
dφ

dt
+ B( ch r − 1) , I = const ,

A = ch4z

[

(
dr

dt
)2 + sh2r (

dφ

dt
)2

]

, A > 0 , A = const ,

they permit to reduce the task to calculating the integrals (NO MORE DETAILS):

dz

±
√

ǫ − A/ch2z
= dt =⇒ z = z(t) ,

d ch r

±
√

A (ch2r − 1) − [ I − B ( ch r − 1 ) ]2
=

dt

ch2z(t)
=⇒ r = r(t) ,

dφ =
1

ch2z(t)

I − B [ ch r(t) − 1]

ch2r(t) − 1
dt =⇒ φ = φ(t) .
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Trajectory equation F (r, φ) = 0, the role of Lorentz SO(3, 1) shifts in H3

Now, let us consider the trajectory equation F (r, φ)

[ (I + B) − B ch r ] dr

sh r
√

A sh2r − [ (I + B) − B ch r ]2
= dφ =⇒

F(r, φ) = 0 : (I + B) ch r −
√

(I + B)2 + (A − B2) sh r cos φ = B .

This is the most general form of trajectory equation F (r, φ) = 0.

Trajectory equation F (r, φ) = 0 translated to coordinate (r′, φ′) looks

F(r′, φ′) = 0 :
[

ch β (I + B) + shβ
√

(I + B)2 + (A − B2)
]

ch r′ −

−
[

sh β (I + B) + ch β
√

(I + B)2 + (A − B2)
]

sh r′ cos φ′ = B , (3)

They are of the same form if parameters transform according to Lorentz shift

I ′ + B = ch β (I + B) + sh β
√

(I + B)2 + (A − B2) ,
√

(I ′ + B)2 + (A′ − B2) = sh β (I + B) + ch β
√

(I + B)2 + (A − B2) .

(4)
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These Lorentz shifts leave invariant the following combination in parametric space:

inv = (I + B)2 − (
√

(I + B)2 + (A − B2) )2 =⇒ A′ = A . (5)

This means that Lorentz shifts vary only parameter I.

It has sense to introduce new parameters J, C:

J = I + B , C =
√

(I + B)2 + (A − B2) (6)

then (4) read

J ′ = ch β J + sh β C , C ′ = sh β J + ch β C (7)

and invariant form of trajectory equation F (r, φ) = 0 can be presented as

J ch r − C sh r cos φ = B , (8)

in any other shifted reference frame it looks

J′ ch r′ − C′ sh r′ cos φ′ = B .

Correspondingly the main invariant reads

inv = J2 − C2 = J
′2 − C

′2 = B2 − A . (9)
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Depending on the sign of this invariant

we may reach the most simple description by means of an appropriate shift:

1) B2 − A > 0 (finite motion)

J2

0
= B2 − A , C0 = 0 ,

trajectory equation J0 ch r = B ; (10)

2) B2 − A < 0 (infinite motion)

J0 = 0 , C2

0
= A − B2

trajectory equation − C0 sh r cos φ = B . (11)

Special case exists

3)B2 = A (infinite motion)

J = I + B , C = I + B ,

trajectory equation ch r − sh r cos φ =
B

I + B
, (12)

By symmetry reasons, Lorentzian shifts of the type (0− 2) will manifest themselves analogously.
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Tragectory F (r, φ) = 0 in the model S3 and SO(4) symmetry

Now, let us consider tragectory in the form F (r, φ) = 0:
∫

[ I + B(cos r − 1) ] dr

sin r
√

A sin2 r − [ I + B(cos r − 1) ]2
= φ .

After integration, general trajectory equation F (r, φ) = 0 in the model S3 looks

(B − I)cos r +
√

(A + B2) − (I − B)2 sin r cos φ = B .

Let us consider behavior of this equation with respect to ) shifts (0 − 1) in space S3:

[ cos α (B − I) + sin α
√

(A + B2) − (I − B)2 ] cos r′ +

+[ − sin α (B − I) + cos α
√

(A + B2) − (I − B)2 ] sin r′ cos φ′ = B .

we have seen invariance property of the trajectory equation if parameters transform according to

B′ − I′ = cos α (B − I) + sin α
√

(A + B2) − (I − B)2 ,
√

(A′ + B2) − (I′ − B)2 = − sin α (B − I) + cos α
√

(A + B2) − (I − B)2 ;
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With notation

B − I = J , C =
√

(A + B2) − (I − B)2

trajectory equation has the following invariant form

J cos r + C sin r cos φ = B =⇒ J ′ cos r′ + C ′ sin r′ cos φ′ = B ,

with respect to Euclidean shifts (0 − 1) in S3 parameters J, C transform according to

J′ = cos α J + sin α C , C′ = − sin α J + cos α C .

This parametric shift leaves invariant the (Euclidean) combination of two parameters:

inv = J2 + C2 = J
′
2 + C

′
2 = A + B2 =⇒ A = A′ = inv . (13)

By special choice of a shift one can translate the general equation to 2 simple forms:

J0 =
√

A + B2 , C0 = 0 =⇒ J0 cos r0 = B ;

J0 = 0 , C0 =
√

A + B2 =⇒ C0 sin r cos φ = B . (14)
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CLASSICAL PARTICLE IN PRESENCE OF MAGNETIC FIELD,

HYPERBOLIC LOBACHEVSKY AND SPHERICAL RIEMANN MODELS

In the paper an exact solutions for classical problem of a particle in magnetic field on the

background of hyperbolic Lobachevsky H3 and spherical Riemann S3 space models will be

constructed explicitly.
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