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Abstract. Symplectic structures associated to connection forms on certain types of principal
fiber bundles are constructed via analysis of reduced geometric structures on fibered manifolds in-
variant under naturally related symmetry groups. This approach is then applied to nonstandard
Hamiltonian analysis of of dynamical systems of Maxwell and Yang-Mills type. A symplectic
reduction theory of the classical Maxwell equations is formulated so as to naturally include the
Lorentz condition (ensuring the existence of electromagnetic waves), thereby solving the well
known Dirac -Fock - Podolsky problem. Symplectically reduced Poissonian structures and the
related classical minimal interaction principle for the Yang-Mills equations are also considered.

1. Introduction

When investigating dynamical systems, which are invariant under symmetry group actions,
on canonical symplectic manifolds, additional mathematical structures often arise. Analysis of
these structures almost invariably produces important dynamical insights about the systems. For
example, the Cartan connection on an associated principal fiber bundle leads to a more detailed
understanding of the reductions of the dynamical system on invariant submanifolds and quotient
manifolds.

Problems related to the investigation of properties of reduced dynamical systems on symplectic
manifolds were studied, e.g., in [1, 15, 14, 23, 22], where the relationship between a symplectic
structure on the reduced space and the connection on a principal fiber bundle was explicitly formu-
lated. Other aspects of dynamical systems related to properties of reduced symplectic structures
were studied in [16, 17, 18] where, in particular, the reduced symplectic structure was completely
described within the framework of the classical Dirac scheme, and several applications to nonlinear
(including celestial) dynamics were given.

It is well known [5, 3, 9, 12, 13, 11] that the Hamiltonian formulation of Maxwell’s electromag-
netic field equations involves a very important classical problem; namely, to intrinsically introduce
the Lorentz condition, which guarantees the wave structure of propagating quanta and the posi-
tivity of energy. Unfortunately, in spite of extensive classical studies by Dirac, Fock and Podolsky
[10], the problem remains open. Consequently, the Lorentz condition is usually imposed in modern
electrodynamics as an external constraint rather than arising naturally from the Hamiltonian (or
Lagrangian) theory. Moreover, it was shown by Pauli, Dirac, Bogolubov and Shirkov and others
[5, 11, 9, 6] that the quantum Lorentz condition is incompatible with existing quantization ap-
proaches for electromagnetic field theory, except in an average sense. These difficulties stimulated
our study of this problem using symplectic reduction theory, which allows a systematic introduc-
tion of the external charge and current conditions into the Hamiltonian formalism, and actually
leads to the solution to the Lorentz condition problem described herein.

Some applications of the method to Yang-Mills type equations interacting with a point charged
particle are presented. In particular, by analyzing reduced geometric structures on fibered man-
ifolds invariant under the action of a symmetry group, we construct the symplectic structures
associated with connection forms on suitable principal fiber bundles. We begin with a brief descrip-
tion of the mathematical preliminaries of the related Poissonian structures on the corresponding
reduced symplectic manifolds, which are often used [1, 21, 20] in various problems of dynamics
in modern mathematical physics. These methods are then applied to studying the nonstandard
Hamiltonian properties of Maxwell and Yang-Mills type dynamical systems.
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Our main contribution here is a novel formulation of a symplectic reduction theory for the
classical Maxwell electromagnetic field equations that provides a means of naturally including
the Lorentz condition (ensuring [5, 6] the existence of electromagnetic waves) in the associated
Hamiltonian structure - thereby solving the Dirac-Fock-Podolsky [10] problem mentioned above.
In addition, we also use our symplectic reduction theory to investigate the Poissonian structures
and the classical minimal interaction principle related to Yang-Mills equations.

2. Symplectic structures and reduction on manifolds: preliminaries

In this section, we shall outline the basic elements of symplectic structures and reduction on
manifolds employed in the sequel.

2.1. Symplectic reduction on cotangent fiber bundles with symmetry. Consider an n-
dimensional smooth manifold M and the cotangent vector fiber bundle T ∗(M). We equip (see [2],
Chapter VII) the cotangent space T ∗(M) with the canonical Liouville 1-form λ(α(1)) := pr∗Mα(1) ∈
Λ1(T ∗(M)), where prM : T ∗(M) → M is the canonical projection and

(2.1) α(1)(u) =
n∑

j=1

vjduj ,

where (u, v) ∈ T ∗(M) are the corresponding canonical local coordinates on T ∗(M). Thus, any
group of diffeomorphisms of the manifold M naturally lifted to the fiber bundle T ∗(M) preserves
the invariance of the canonical 1-form λ(α(1)) ∈ Λ1(T ∗(M)). In particular, if a smooth action of
a Lie group G is given on the manifold M, then every element a ∈ G, where G is the Lie algebra
of the Lie group G, generates the vector field ka ∈ T (M) in a natural manner. Furthermore, since
the group action on M, i.e.,

(2.2) ϕ : G×M → M,

generates a diffeomorphism ϕg ∈ Diff M for every element g ∈ G, this diffeomorphism lifts
naturally to the corresponding diffeomorphism ϕ∗g ∈ Diff T ∗(M) of the cotangent fiber bundle
T ∗(M), which also leaves the canonical 1-form pr∗Mα(1) ∈ Λ1(T ∗(M)) invariant; namely,

(2.3) ϕ∗gλ(α(1)) = λ(α(1))

holds [1, 2, 15] for every 1-form α(1) ∈ Λ1(M). Thus, we can define on T ∗(M) the corresponding
vector field Ka : T ∗(M) → T (T ∗(M)) for every element a ∈ G. Then condition (2.3) can be
rewritten in the following form for all a ∈ G :

LKa · pr∗Mα(1) = pr∗M · Lkaα(1) = 0,

where LKa and Lka are the ordinary Lie derivatives on Λ1(T ∗(M)) and Λ1(M), respectively.
The canonical symplectic structure on T ∗(M) is defined as

(2.4) ω(2) := dλ(α(1))

and is invariant, i.e., LKaω(2) = 0 for all a ∈ G.
For any smooth function H ∈ D(T ∗(M)), a Hamiltonian vector field KH : T ∗(M) → T (T ∗(M))

such that

(2.5) iKH
ω(2) = −dH

is defined, and vice versa, because the symplectic 2-form (2.4) is nondegenerate. Using (2.5)
and (2.4), we easily establish that the Hamiltonian function H := HK ∈ D(T ∗(M)) is given as
HK = pr∗Mα(1)(KH) = α(1)(pr∗MKH) = α(1)(kH), where kH ∈ T (M) is the corresponding vector
field on the manifold M, whose lift to the fiber bundle T ∗(M) coincides with the vector field
KH : T ∗(M) → T (T ∗(M)). For Ka : T ∗(M) → T (T ∗(M)), where a ∈ G, it is easy to establish
that the corresponding Hamiltonian function Ha = α(1)(ka) = pr∗M α(1)(Ka) for a ∈ G defines
[1, 15, 14] a linear momentum mapping l : T ∗(M) → G∗ according to the rule

(2.6) Ha :=< l, a >,
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where <·,· > is the corresponding convolution on G∗ ×G. By virtue of definition (2.6), the momen-
tum mapping l : T ∗(M) → G∗ is invariant under the action of any invariant Hamiltonian vector
field Kb : T ∗(M) → T (T ∗(M)) for any b ∈ G. Indeed, LKb

< l, a >= LKb
Ha = −LKaHb = 0,

because, by definition, the Hamiltonian function Hb ∈ D(T ∗(M)) is invariant under the action of
any vector field Ka : T ∗(M) → T (T ∗(M)), a ∈ G.

We now fix a regular value of the momentum mapping l(u, v) = ξ ∈ G∗ and consider the
corresponding submanifold Mξ := {(u, v) ∈ T ∗(M) : l(u, v) = ξ ∈ G∗}. Owing to definition (2.1)
and the invariance of the 1-form pr∗M α(1) ∈ Λ1(T ∗(M)) under the action of the Lie group G on
T ∗(M), we have

< l(g ◦ (u, v)), a >= pr∗Mα(1)(Ka)(g ◦ (u, v)) =

= pr∗Mα(1)(KAdg−1a)(u, v) :=(2.7)
= < l(u, v), Adg−1a >=< Ad∗g−1l(u, v), a >

for any g ∈ G and all a ∈ G and (u, v) ∈ T ∗(M). Now it follows from (2.7) that l(g ◦ (u, v)) =
Ad∗g−1 l(u, v) for every g ∈ G and all (u, v) ∈ T ∗(M). This means that the diagram

T ∗(M) l→ G∗
g ↓ ↓ Ad∗g−1

T ∗(M) l→ G∗
is commutative for all elements g ∈ G. The corresponding action g : T ∗(M) → T ∗(M) is called
equivariant [1, 15].

Let Gξ ⊂ G denote the stabilizer of a regular element ξ ∈ G∗ with respect to the related co-
adjoint action. It is obvious in this case that the action of the Lie subgroup Gξ on the submanifold
Mξ ⊂ T ∗(M) is naturally defined; we assume that it is free and proper. Using this action on Mξ,
we can define [1, 17, 18, 19, 20] a so-called reduced space M̄ξ by taking the factor with respect to
the action of the subgroup Gξ on Mξ, i.e.,

(2.8) M̄ξ := Mξ/Gξ.

The quotient space (2.8) induces a symplectic structure ω̄
(2)
ξ ∈ Λ2(M̄ξ) on itself, which is defined

as follows:

(2.9) ω̄
(2)
ξ (η̄1, η̄2) = ω

(2)
ξ (η1, η2),

where η̄1, η̄2 ∈ T (M̄ξ) are arbitrary vectors onto which vectors η1, η2 ∈ T (Mξ) are projected for
at any point (uξ, vξ) ∈ Mξ. It follows from (2.8) that this projection onto the point µ̄ξ ∈ M̄ξ is
unique .

Let πξ : Mξ → T ∗(M) denote the corresponding imbedding mapping into T ∗(M) and let
rξ : Mξ→ M̄ξ be the corresponding reduction to the space M̄ξ. Then relation (2.9) can be
rewritten in the form

(2.10) r∗ξ ω̄
(2)
ξ = π∗ξω

(2),

which is defined on vectors on the cotangent space T ∗(Mξ). To establish the symplecticity of the
2-form ω

(2)
ξ ∈ Λ2(M̄ξ), we use the corresponding non-degeneracy of the Poisson bracket {·,·}r

ξ on
M̄ξ. We use a Dirac type construction for the calculation, defining functions on M̄ξ as certain
Gξ-invariant functions on the submanifold Mξ. Then one can calculate the Poisson bracket {·,·}ξ

of such a function corresponding to the symplectic structure (2.4) as an ordinary Poisson bracket
on T ∗(M), arbitrarily extending these functions from the submanifold Mξ ⊂ T ∗(M) to a neighbor-
hood U(Mξ) ⊂ T ∗(M). It is obvious that two extensions of a given function to the neighborhood
U(Mξ) of this type differ by a function that vanishes on the submanifold Mξ ⊂ T ∗(M). The dif-
ference between the corresponding Hamiltonian fields of these two different extensions to U(Mξ)
is completely controlled by the conditions of the following lemma (see also [1, 15, 18, 17, 23]).

Lemma 2.1. Suppose that a function f : U(Mξ) → R is smooth and vanishes on Mξ ⊂ T ∗(M),
i.e., f |Mξ

= 0. Then, at every point (uξ, vξ) ∈ Mξ the corresponding Hamiltonian vector field
Kf ∈ T (U(Mξ)) is tangent to the orbit Or(G; (uξ, vξ)).
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As a corollary of Lemma 2.1, we obtain an algorithm for computing the reduced Poisson bracket
{·,·}r

ξ on the space M̄ξ according to definition (2.10). Namely, we choose two functions defined
on Mξ and invariant under the action of the subgroup Gξ and arbitrarily smoothly extend them
to a certain open domain U(Mξ) ⊂ T ∗(M). Then we determine the corresponding Hamiltonian
vector fields on T ∗(M) and project them onto the space tangent to Mξ, adding, if necessary, the
corresponding vectors tangent to the orbit Or(G). It is easy to see that the projections obtained
depend on the chosen extensions to the domain U(Mξ) ⊂ T ∗(M). As a result, we establish that the
reduced Poisson bracket {·,·}r

ξ is uniquely defined via the restriction of the initial Poisson bracket
upon Mξ ⊂ T ∗(M), and one can readily verify that the submanifold Mξ ⊂ T ∗(M) is defined by a
collection of relations of the type

(2.11) Has
= ξs, ξs :=< ξ, as >,

where as ∈ G, s = 1, dimG, is a certain basis of the Lie algebra G. By virtue of the nondegeneracy
of the restriction and the functional independence of the basis functions (2.11), it is obvious that
the reduced Poisson bracket {·,·}r

ξ is [1, 15, 17] nondegenerate on M̄ξ. Consequently, we establish
that the dimension of the reduced space M̄ξ is even. Taking into account that the element ξ ∈ G∗
is regular and the dimension of the Lie algebra of the stabilizer Gξ is equal to dim Gξ, we easily
establish that dim M̄ξ = dim T ∗(M) − 2dim Gξ. Since, by construction, dim T ∗(M) = 2n, we
conclude that the dimension of the reduced space M̄ξ is even.

In order completely verify the correctness of the algorithm, it is necessary to establish the
existence of the corresponding projections of Hamiltonian vector fields onto the tangent space
T (Mξ). The following result [22] solves this problem.

Theorem 2.2. At every point (uξ, vξ) ∈ Mξ, one can choose a vector Vf ∈ T (Or(G)) such
that Kf (uξ, vξ) +Vf (uξ, vξ) ∈ T(uξ,vξ)(Mξ). Furthermore, the vector Vf ∈ T (Or(G)) is uniquely
determined up to a vector tangent to the orbit Or(Gξ).

Now assume that two functions f1, f2 ∈ D(Mξ) are Gξ-invariant. Then their reduced Poisson
bracket {f1, f2}r

ξ on M̄ξ is defined according to the rule:

(2.12) {f1, f2}r
ξ := −ω(2)(Kf1 + Vf1 , Kf2 + Vf2) = {f1, f2}+ ω(2)(Vf1 , Vf2),

where we have used the following identities on Mξ ⊂ T ∗(M) :

(2.13) ω(2)(Kf1 + Vf1 , Vf2) = 0 = ω(2)(Kf2 + Vf2 , Vf1),

which follow immediately from

(2.14) ω(2)(Kf + Vf ,Ka) = 0

for all a ∈ Gξ and f ∈ D(Mξ) on Mξ. With regard to (2.13), relation (2.12) takes the form

(2.15) {f1, f2}r
ξ = {f1, f2}+

1
2
(Vf1f2 − Vf2f1),

for arbitrary smooth extensions f1, f2 ∈ D(Mξ) of Gξ-invariant functions, as defined above on the
domain U(Mξ). Thus, as a consequence of (2.2), one has the following [1, 9, 15] theorem of Dirac
type.

Theorem 2.3. The reduced Poisson bracket of two functions on the quotient space M̄ξ = Mξ/Gξ

is determined with the use of arbitrary smooth extensions of them to functions on an open neigh-
borhood U(Mξ) according to the Dirac-type formula (2.15).

2.2. Symplectic reduction on principal fiber bundles with a connection. We begin by
reviewing reduction theory for Hamiltonian systems with symmetry on principle fiber bundles.
As the material is partially available in [4, 16], we shall provide only a sketch here using notation
that is to be employed in the sequel.

Let G denote a Lie group with the unity element e ∈ G and G ' Te(G) be its Lie algebra.
Consider a principal fiber bundle π : (M,ϕ) → N with the structure group G and base manifold
N, on which the Lie group G acts via a mapping ϕ : M ×G → M. In particular, for each g ∈ G
there is a group diffeomorphism ϕg : M → M, generating for any fixed u ∈ M the following
induced mapping: û : G → M, where

(2.16) û(g) = ϕg(u).
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This mapping induces a connection Γ(A) on the principal fiber bundle π : (M, ϕ) → N , where the
morphism A: (T (M), ϕg∗) → (G, Adg−1), such that for each u ∈ M a mapping A(u) : Tu(M) → G
is a left inverse of the mapping û∗(e) : G → Tu(M), that is

(2.17) A(u)û∗(e) = 1.

As usual, we denote by ϕ∗g : T ∗(M) → T ∗(M) the corresponding lift of the mapping ϕg : M → M

at any g ∈ G. If α(1) ∈ Λ1(M) is the canonical G - invariant 1-form on M, the canonical symplectic
structure ω(2) ∈ Λ2(T ∗(M)), given by the expression

(2.18) ω(2) := dλ(α(1)) = d pr∗Mα(1),

generates the corresponding momentum mapping l : T ∗(M) → G∗, where

(2.19) l · α(1)(u) = û∗(e)α(1)(u)

for all u ∈ M. We remark here that the principal fiber bundle structure π : (M, ϕ) → N entails
in part the exactness of the following sequences of mappings:

(2.20) 0 → G û∗(e)→ Tu(M)
π∗(u)→ Tπ(u)(N) → 0,

that is

(2.21) π∗(u)û∗(e) = 0 = û∗(e)π∗(u)

for all u ∈ M. Combining (2.21) with (2.17) and (2.19), one obtains the embedding:

(2.22) [1−A∗(u)û∗(e)]α(1)(u) ∈ range π∗(u)

for the canonical 1-form α(1) ∈ Λ1(M) at u ∈ M. The expression (2.22) means of course, that

(2.23) û∗(e)[1−A∗(u)û∗(e)]α(1)(u) = 0

for all u ∈ M. As the mapping π∗(u) : T ∗(N) → T ∗(M) is injective for each u ∈ M , it has the
unique inverse mapping (p∗(u))−1defined on its image π∗(u)T ∗π(u)(N) ⊂ T ∗u (M). Whence, for
each u ∈ M one can define a morphism πA : (T ∗(M), ϕ∗g) → T ∗(N) as

(2.24) πA(u) : α(1)(u) → (π∗(u))−1[1−A∗(u)û∗(e)]α(1)(u).

It is easy to check using (2.24) that the diagram

(2.25)
T ∗(M) πA→ T ∗(N)
prM↓ ↓prN

M
π→ N

is commutative.
Now suppose an element ξ ∈ G∗ be G-invariant, that is Ad∗g−1ξ = ξ for all g ∈ G. Let πξ

A
denote the restriction of the mapping (2.24) upon the subset Mξ := l−1(ξ) ∈ T ∗(M), that is
πξ
A : Mξ → T ∗(N), where for all u ∈ M

(2.26) πξ
A(u) : l−1(ξ) → (π∗(u))−1[1−A∗(u)û∗(e)]l−1(ξ).

The structure of the reduced phase space M̄ξ :=l−1(ξ)/G can now be characterized by means of
the following lemma.

Lemma 2.4. The mapping πξ
A(u) : Mξ → T ∗(N), where Mξ := l−1(ξ) is a principal fiber G

-bundle with the reduced space M̄ξ, maps M̄ξ diffeomorphically onto T ∗(N).

Denote by < ., . >G the standard Ad-invariant non-degenerate scalar product on G × G. The
following characteristic theorem can be derived directly from Lemma 2.4 .

Theorem 2.5. Given a principal fiber G -bundle with a connection Γ(A) and a G -invariant
element ξ ∈ G∗, then the connection Γ(A) defines a symplectomorphism νξ : M̄ξ → T ∗(N)
between the reduced phase space M̄ξ and cotangent bundle T ∗(N), where l : T ∗(M) → G∗ is
the natural momentum mapping for the group G -action on M. Moreover,

(2.27) (πξ
A)(d pr∗Nβ(1) + pr∗N Ω(2)

ξ ) = d pr∗Mα(1)
∣∣∣
l−1(ξ)

holds for the canonical 1-forms β(1) ∈ Λ1(N) and α(1) ∈ Λ1(M), where Ω(2)
ξ :=< Ω(2), ξ >G

is the ξ -component of the corresponding curvature form Ω(2) ∈ Λ(2)(N)⊗ G.
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Remark 2.6. As the canonical 2-form dλ(α(1)) = d pr∗Mα(1) ∈ Λ(2)(T ∗(M)) is by definition G -
invariant on T ∗(M), it is evident that its restriction to the G -invariant submanifold Mξ⊂ T ∗(M)
will be effectively defined only on the reduced space M̄ξ for which (2.27)is satisfied.

The following results are direct consequences of Theorem 2.5 that are useful for many applica-
tions [22, 16].

Theorem 2.7. Let ξ ∈ G∗ have the isotropy group Gξ acting on the subset Mξ⊂ T ∗(M) freely
and properly, so that the reduced phase space (M̄ξ , σ

(2)
ξ ), where M̄ξ :=l−1(ξ)/Gξ, has symplectic

structure defined by

(2.28) σ
(2)
ξ := d pr∗Mα(1)

∣∣∣
l−1(ξ)

.

If a principal fiber bundle π : (M,ϕ) → N has Gξ as its structure group, then the reduced
symplectic space (M̄ξ, σ

(2)
ξ ) is symplectomorphic to the cotangent space (T ∗(N), ω(2)

ξ ), where

(2.29) ω
(2)
ξ = d pr∗Nβ(1) + pr∗NΩ(2)

ξ ,

and the corresponding symplectomorphism is of the form (2.27).

Theorem 2.8. In order for two symplectic spaces (M̄ξ, σ
(2)
ξ ) and (T ∗(N), dpr∗Nβ(1)) to be sym-

plectomorphic, it is necessary and sufficient that the element ξ ∈ ker h, where for the G-invariant
element ξ ∈ G∗ the mapping h : ξ → [Ω(2)

ξ ] ∈ H2(N ;Z), where H2(N ;Z) is the cohomology class
of 2-forms on the manifold N.

3. Symplectic analysis of Maxwell and Yang-Mills dynamical systems

Here we shall show how are approach can be applied to various dynamical systems of the Maxwell
and Yang-Mills types.

3.1. Hamiltonian analysis of Maxwell’s electromagnetic dynamical systems. We take
the Maxwell electromagnetic equations to be

∂E/∂t = ∇×B − J, ∂B/∂t = −∇× E,(3.1)
< ∇, E >= ρ, < ∇, B >= 0,

on the cotangent phase space T ∗(N), with N ⊂ T (D;E3) - the smooth manifold of smooth vector
fields on an open domain D ⊂ R3 - all expressed in the light speed units. Here (E,B) ∈ T ∗(N),
where the coordinates are the electric and magnetic fields, respectively, and ρ : D → R and
J : D → E3 are, respectively, fixed charge density and current functions on the domain D, satisfying
the equation of continuity

(3.2) ∂ρ/∂t+ < ∇, J >= 0

for all t ∈ R. Here, ∇ is the gradient operator with respect to a variable x ∈ D, × is the usual
vector product in three-dimensional Euclidean space E3 := (R3, < ·, · >), which is real three-space
R3 endowed with the usual scalar product < ·, · >.

With an eye toward framing equations (3.1) in the context of a reduced symplectic space, we
define an appropriate configuration space M ⊂ T (D;E3) with a vector potential field coordinate
A ∈ M. The cotangent space T ∗(M) may be identified with pairs (A; Y ) ∈ T ∗(M), where Y ∈
T ∗(D;E3) is a suitable vector field density in D. There exists the canonical symplectic form ω(2) ∈
Λ2(T ∗(M)) on T ∗(M) , allowing, owing to the definition of the Liouville form

(3.3) λ(α(1))(A; Y ) =
∫

D

d3x(< Y, dA >) := (Y, dA),

the canonical expression

(3.4) ω(2) := dλ(α(1)) = d pr∗Mα(1) = (dY,∧dA),

where ∧ is the usual exterior Product, d3x denotes Lebesgue measure in the domain D, and
prM : T ∗(M) → M is the standard projection upon the base space M. Now we define a Hamiltonian
function H̃ ∈ D(T ∗(M)) as

(3.5) H̃(A, Y ) = 1/2[(Y, Y ) + (∇×A,∇×A) + (< ∇, A >, < ∇, A >)],
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to describe the Maxwell equations in vacuo, if the densities ρ = 0 and J = 0.In fact, owing to (3.4)
one easily obtains from (3.5) that

∂A/∂t : = δH̃/δY = Y,(3.6)

∂Y/∂t : = −δH̃/δA = −∇×B +∇ < ∇, A >,

which are true wave equations in vacuo, where

(3.7) B := ∇×A,

is the corresponding magnetic field. Now defining

(3.8) E := −Y −∇W

for some function W : D → R as the corresponding electric field, the system of equations (3.6)
assumes, owing to definition (3.7), the form

(3.9) ∂B/∂t = −∇× E, ∂E/∂t = ∇×B,

which are precisely the Maxwell equations in vacuo, if the Lorentz condition

(3.10) ∂W/∂t+ < ∇, A >= 0

is imposed.
Since definition (3.8) was essentially imposed rather than arising naturally from the Hamiltonian

approach and our equations are valid only for a vacuum, we shall try to improve upon these matters
by employing the reduction approach devised in Section 2. Namely, we start with the Hamiltonian
(3.5) and observe that it is invariant with respect to the abelian symmetry group G := expG,
where G ' C(1)(D;R), acting on the base manifold M naturally lifted to T ∗(M) : for any ψ ∈ G
and (A, Y ) ∈ T ∗(M)

(3.11) ϕψ(A) := A +∇ψ, ϕψ(Y ) = Y.

The 1-form (3.3) under the transformation (3.11) also is invariant since

(3.12)
ϕ∗ψλ(α(1))(A, Y ) = (Y, dA +∇dψ) =

= (Y, dA)− (< ∇, Y >, dψ) = λ(α(1))(A, Y ),

where we made use of the condition dψ ' 0 in Λ1(T ∗(M)) for any ψ ∈ G. Thus, the corresponding
momentum mapping (2.19) is given as

(3.13) l(A, Y ) = − < ∇, Y >

for all (A, Y ) ∈ T ∗(M). If ρ ∈ G∗ is fixed, one can define the reduced phase space M̄ρ := l−1(ρ)/G
since the isotropy group Gρ = G, owing to its commutativity and the condition (3.11). Now
consider a principal fiber bundle π : M → N with the abelian structure group G and a base
manifold N taken as

(3.14) N := {B ∈ T (D;E3) : < ∇, B >= 0, < ∇, E(S) >= ρ},
where

(3.15) π(A) = B = ∇×A.

We can construct a connection 1-form A ∈ Λ1(M)⊗G on this bundle, such that for all A ∈ M ,

(3.16) A(A) · Â∗(l) = 1, d < A(A), ρ >G= Ω(2)
ρ (A) ∈ H2(M ;Z),

where A(A) ∈ Λ1(M) is a differential 1-form, which we choose as

(3.17) A(A) := −(W,d < ∇, A >),

where W ∈ C(1)(D;R) is a scalar function, as yet not defined. As a result, the Liouville form (3.3)
transforms into

(3.18) λ(α̃(1)
ρ ) := (Y, dA)− (W,d < ∇, A >) = (Y +∇W,dA) := (Ỹ , dA), Ỹ := Y +∇W,

giving rise to the corresponding canonical symplectic structure on T ∗(M) as

(3.19) ω̃(2)
ρ := dλ(α̃(1)

ρ ) = (dỸ ,∧dA).

Accordingly the Hamiltonian function (3.5), as a function on T ∗(M), transforms into

(3.20) H̃ρ(A, Ỹ ) = 1/2[(Ỹ , Ỹ ) + (∇×A,∇×A) + (< ∇, A >, < ∇, A >)],
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coinciding with the well-known Dirac-Fock-Podolsky [5, 10] Hamiltonian expression. The corre-
sponding Hamiltonian equations on the cotangent space T ∗(M), namely

∂A/∂t : = δH̃/δỸ = Ỹ , Ỹ := −E −∇W,

∂Ỹ /∂t : = −δH̃/δA = −∇× (∇×A) +∇ < ∇, A >,

describe true wave processes, related to the Maxwell equations in the vacuo, except for the external
charge and current density conditions. In particular, from (3.20) we obtain

(3.21) ∂2A/∂t2 −∇2A = 0 =⇒ ∂E/∂t +∇(∂W/∂t + < ∇, A >) = −∇×B,

giving rise to the true vector potential wave equation, but the Faraday induction law is satisfies if
one additionally imposes the Lorentz condition (3.10).

To remedy this situation, we will apply to this symplectic space the reduction technique devised
in Section 2. Namely, it follows from Theorem 2.7 that above cotangent manifold T ∗(N) is
symplectomorphic to the corresponding reduced phase space M̄ρ, that is

(3.22) M̄ρ ' {(B;S) ∈ T ∗(N) : < ∇, E(S) >= ρ, < ∇, B >= 0}
with the reduced canonical symplectic 2-form

(3.23) ω(2)
ρ (B, S) = (dB,∧dS) = dλ(α(1)

ρ )(B,S), λ(α(1)
ρ )(B, S) := −(S, dB),

where we define

(3.24) ∇× S + F +∇W = −Ỹ := E +∇W, < ∇, F >:= ρ,

for some fixed vector mapping F ∈ C(1)(D;E3), depending on the imposed external charge and
current density conditions. The result (3.23) follows right away upon substituting the expression
for the electric field E = ∇× S + F into the symplectic structure (3.19), and taking into account
the fact that dF = 0 in Λ1(M).Whence, the Hamiltonian function (3.20) reduces to the symbolic
form

Hρ(B, S) = 1/2[(B,B) + (∇× S + F +∇W,∇× S + F +∇W ) +

+( < ∇, (∇×)−1B >,< ∇, (∇×)−1B >)],(3.25)

where ”(∇×)−1” is the corresponding inverse curl-operation, mapping [21] the divergence-free sub-
space C

(1)
div(D;E3) ⊂ C(1)(D;E3) into itself. Now it follows from (3.25) that the Maxwell equations

(3.1) become a canonical Hamiltonian system on the reduced phase space T ∗(N), endowed with
the canonical symplectic structure (3.23) and the modified Hamiltonian function (3.25). More
precisely, one obtains easily that

∂S/∂t : = δH/δB = B − (∇×)−1∇ < ∇, (∇×)−1B >,(3.26)
∂B/∂t : = −δH/δS = −∇× (∇× S + F +∇W ) = −∇× E,

where we made use of the definition E = ∇×S +F and the elementary identity ∇×∇ = 0. Thus,
the second equation of (3.26) coincides with the second Maxwell equation of (3.1) in the classical
form

∂B/∂t = −∇× E.

Moreover, owing to (3.26), from (3.24) one obtains via the differentiation with respect to t ∈ R
that

∂E/∂t = ∂F/∂t +∇× ∂S/∂t =(3.27)
= ∂F/∂t +∇×B,

as well as, owing to (3.2),

(3.28) < ∇, ∂F/∂t >= ∂ρ/∂t = − < ∇, J > .

Now we can write down from (3.28) that, up to non-essential curl-terms ∇ × (·), the following
relationship

(3.29) ∂F/∂t = −J
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holds. In fact, the current vector J ∈ C(1)(D;E3), owing to the equation of continuity (3.2), is
defined up to curl-terms ∇× (·) which can be included in the definition of the right-hand side of
(3.29). Then upon substitution of (3.29) into (3.27), we obtain the first Maxwell equation of (3.1):

(3.30) ∂E/∂t = ∇×B − J,

which is naturally supplemented with the external charge and current densities conditions

(3.31)
< ∇, B >= 0, < ∇, E >= ρ,

∂ρ/∂t+ < ∇, J >= 0,

in virtue of the equation of continuity (3.2) and definition (3.22).
As for the wave equations related to the Hamiltonian system (3.26), we find that the electric

field E is recovered from the second equation as

(3.32) E := −∂A/∂t−∇W,

where W ∈ C(1)(D;R) is a smooth function that depends on the vector field A ∈ M. To determine
this dependence, we substitute (3.29) into equation (3.30) taking into account that B = ∇ × A,
which yields

(3.33) ∂2A/∂t2 −∇(∂W/∂t+ < ∇, A >) = ∇2A + J.

With the above, if we now impose the Lorentz condition (3.10), we obtain from (3.33) the
corresponding true wave equations in the space-time, taking into account the external charge and
current density conditions (3.31).

Notwithstanding our progress so far, the problem of fulfilling the Lorentz constraint (3.10)
naturally within the canonical Hamiltonian formalism still remains to be completely solved. To
this end, we are compelled to analyze the structure of the Liouville 1-form (3.18) for the Maxwell
equations on a slightly extended functional manifold M×L. As the first step, we rewrite the 1-from
(3.18) as

λ(α̃(1)
ρ ) : = (Ỹ , dA) = (Y +∇W,dA) = (Y, dA) +

+(W,−d < ∇, A >) := (Y, dA) + (W,dη),(3.34)

where

(3.35) η := − < ∇, A > .

Considering now the elements (Y, A; η,W ) ∈ T ∗(M × L) as new independent canonical variables
on the extended cotangent phase space T ∗(M × L), where L := C(1)(D;R), we can rewrite the
symplectic structure (3.19) in the following canonical form

(3.36) ω̃(2)
ρ := dλ(α̃(1)

ρ ) = (dY,∧dA) + (dW,∧dη).

In view of the Hamiltonian function (3.20), we obtain the expression

(3.37) H(A, Y ; η, W ) = 1/2[(Y −∇W,Y −∇W ) + (∇×A,∇×A) + (η, η)],

with respect to which the corresponding Hamiltonian equations take the form

∂A/∂t : = δH/δY = Y −∇W, Y := −E,

∂Y/∂t : = −δH/δA = −∇× (∇×A),
∂η/∂t : = δH/δW =< ∇, Y −∇W >,

∂W/∂t : = −δH/δη = −η.(3.38)

From (3.38), we readily compute that

∂B/∂t +∇× E = 0, ∂2W/∂t2 −∇2W =< ∇, E >,(3.39)

∂E/∂t−∇×B = 0, ∂2A/∂t2 −∇2A = −∇(∂W/∂t+ < ∇, A >).

It is evident that these equations describe Maxwell’s equations in the vacuo, without taking into
account both the external charge and current density relationships (3.31) and the Lorentz condition
(3.10). Our next step is to apply the reduction technique devised in Section 2 to the symplectic
structure (3.36) . Whence we find that under the transformations (3.24), the corresponding reduced
manifold M̄ρ becomes endowed with the symplectic structure

(3.40) ω̄(2)
ρ := (dB,∧dS) + (dW,∧dη),



10 N.N. BOGOLUBOV (JR.), A.K. PRYKARPATSKY, U. TANERI, AND Y.A. PRYKARPATSKY

and the Hamiltonian (3.37) assumes the form

(3.41) H(S, B; η, W ) = 1/2[(∇× S + F +∇W,∇× S + F +∇W ) + (B, B) + (η, η)].

The Hamiltonian equations for H are

∂S/∂t : = δH/δB = B, ∂W/∂t := −δH/δη = −η,(3.42)
∂B/∂t : = −δH/δS = −∇× (∇× S + F +∇W ) = −∇× E,

∂η/∂t : = δH/δW = − < ∇,∇× S + F +∇W >= − < ∇, E > −∆W,

which coincide under the constraint (3.24) completely with Maxwell equations (3.1), describing
true space-time processes and taking into account, a priori, both the imposed external charge
and current density relationships (3.31) and the Lorentz condition (3.10),thus solving the problem
mentioned in [5, 10]. Indeed, it is easy to obtain from (3.42) that

∂2W/∂t2 −∆W = ρ, ∂W/∂t+ < ∇, A >= 0,(3.43)
∇×B = J + ∂E/∂t, ∂B/∂t = −∇× E,

Hence, using (3.43) and (3.31), one can easily calculate [13, 12] the magnetic wave equation

(3.44) ∂2A/∂t2 −∆A = J,

supplementing the suitable wave equation on the scalar potential W ∈ L, thereby completing the
calculations. Thus, we have proved the desired result; namely,

Proposition 3.1. The electromagnetic Maxwell equations (3.1) together with Lorentz condition
(3.10) are equivalent to the Hamiltonian system (3.42) with respect to the canonical symplectic
structure (3.40) and Hamiltonian function (3.41), which, respectively, reduce to the electro-
magnetic equations (3.43) and (3.44) under the external charge and current density relationships
(3.31).

The above result can be used for developing an alternative quantization procedure of Maxwell’s
equations, as it circumvents the related quantum operator compatibility problems discussed in
detail in [5, 6, 10]. We hope to consider this aspect of the quantization problem in a future
investigation.

Remark 3.2. If one to considers the motion of a charged point particle under a Maxwell field, it
is convenient to introduce a trivial fiber bundle structure π: M → N, such that M = N × G,
N := D ⊂ R3 and G := R/{0} is the corresponding (abelian) structure Lie group. An analysis
similar to the above gives rise to the reduced (on the space M̄ξ:= l−1(ξ)/G ' T ∗(N), ξ ∈ G)
symplectic structure

ω(2)(q, p) =< dp,∧dq > +d < A(q, g), ξ >G ,

where A(q, g) :=< A(q), dq > +g−1dg is a suitable connection 1-form on the phase space M,
with (q, p) ∈ T ∗(N) and g ∈ G. The corresponding canonical Poisson brackets on T ∗(N) are easily
found to be

(3.45) {qi, qj} = 0, {pj , q
i} = δi

j , {pi, pj} = Fji(q)

for all (q, p) ∈ T ∗(N). If one introduces a new momentum variable p̃ := p+A(q) on T ∗(N) 3 (q, p),
it is easy to verify that ω

(2)
ξ → ω̃

(2)
ξ :=< dp̃,∧dq >, which gives rise to the following Poisson

brackets [20, 23, 22]:

(3.46) {qi, qj} = 0, {p̃j , q
i} = δi

j , {p̃i, p̃j} = 0,

where i, j = 1, 3, iff for all i, j, k = 1, 3 the standard Maxwell field equations are satisfied on N :

(3.47) ∂Fij/∂qk + ∂Fjk/∂qi + ∂Fki/∂qj = 0

with the curvature tensor Fij(q) := ∂Aj/∂qi − ∂Ai/∂qj , i, j = 1, 3, q ∈ N.

It is not difficult to see that the above approach permits a natural generalization for non-abelian
structure Lie groups, yielding a description of Yang-Mills field equations within our reduction
formulation. We proceed to such an extension in the next subsection.
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3.2. Hamiltonian analysis of Yang-Mills dynamical systems. As above, we start by defining
a phase space M of a particle moving under a Yang-Mills field in a region D ⊂ R3 with M := D×G,
where G is a (not in general semisimple) Lie group, acting on M from the right. Over the space
M one can define quite naturally a connection Γ(A) by consider the trivial principal fiber bundle
π : M → N, where N := D, with the structure group G. Namely, if g ∈ G, q ∈ N, then a
connection 1-form on M 3 (q, g) can be expressed [4, 15, 14, 19] as

(3.48) A(q; g) := g−1(d +
n∑

i=1

aiA
(i)(q))g,

where {ai ∈ G : i = 1, n} is a basis for the Lie algebra G of the Lie group G, and Ai : D → Λ1(D),
i = 1, n, are the Yang-Mills fields on the physical space D ⊂ R3.

Now one defines the natural left invariant Liouville form on M as

(3.49) λ(α(1))(q; g) :=< p, dq > + < y, g−1dg >G ,

where y ∈ T ∗(G) and < ·, · >G denotes as before the usual Ad-invariant nondegenerate bilinear
form on G∗×G, and it is clear that g−1dg ∈ Λ1(G)⊗G. The main assumption we need to proceed
is that the connection 1-form is compatible with the Lie group G action on M. The means that

(3.50) R∗hA(q; g) = Adh−1A(q; g)

is satisfied for all (q, g) ∈ M and h ∈ G, where Rh : G → G is the right translation by an element
h ∈ G on the Lie group G.

Having gathered all preliminary elements needed for the reduction Theorem 2.7 to be applied
to our model, we now suppose that the Lie group G canonical action on M is naturally lifted to
the cotangent space T ∗(M) endowed, owing to (3.3), with the G-invariant canonical symplectic
structure

ω(2)(q, p; g, y) : = d pr∗Mα(1)(q, p; g, y) =< dp,∧dq > +(3.51)
+ < dy,∧g−1dg >G + < ydg−1,∧dg >G

for all (q, p; g, y) ∈ T ∗(M). Choose an element ξ ∈ G∗ and assume that its isotropy subgroup
Gξ = G, that is Ad∗hξ = ξ for all h ∈ G. In the general case such an element ξ ∈ G∗ cannot exist
unless it is trivial, ξ = 0, as it happens, for instance, in the case of the Lie group G = SL2(R). Then
one can construct the reduced phase space l−1(ξ)/G symplectomorphic to (T ∗(N), ω(2)

ξ ), where it
follows from (2.27) that for any (q, p) ∈ T ∗(N),

ω
(2)
ξ (q, p) = < dp,∧dq > + < Ω(2)(q), ξ >G=(3.52)

= < dp,∧dq > +
n∑

s=1

3∑

i,j=1

esF
(s)
ij (q)dqi ∧ dqj .

In the above we have expanded the element ξ =
∑n

i=1 eia
i ∈ G∗ with respect to the bi-orthogonal

basis {ai ∈ G∗, aj ∈ G : < ai, aj >G= δi
j , i, j = 1, n}, with constant coefficients ei ∈ R, i = 1, 3. We

also denoted by F
(s)
ij (q), i, j = 1, 3, s = 1, n, the corresponding curvature 2-form Ω(2) ∈ Λ2(N)⊗G

components, that is

(3.53) Ω(2)(q) :=
n∑

s=1

3∑

i,j=1

as F
(s)
ij (q)dqi ∧ dqj

for any point q ∈ N. Summarizing the calculations above, we have the following result.

Theorem 3.3. Suppose the Yang-Mills field (3.48) on the fiber bundle π : M → N with M =
D × G is invariant with respect to the Lie group G action G × M → M. Suppose also that
an element ξ ∈ G∗ is chosen so that Ad∗Gξ = ξ. Then for the naturally constructed momentum
mapping l : T ∗(M) → G∗ (which is equivariant), the reduced phase space l−1(ξ)/G ' T ∗(N) is
endowed with the symplectic structure (3.52), having the component-wise Poisson brackets form

(3.54) {pi, q
j}ξ = δj

i , {qi, qj}ξ = 0, {pi, pj}ξ =
n∑

s=1

esF
(s)
ji (q)

for all i, j = 1, 3 and (q, p) ∈ T ∗(N).
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The corresponding extended Poisson bracket on the whole cotangent space T ∗(M) comprises,
owing to (3.11), the following set of Poisson relationships:

{ys, yk}ξ =
n∑

r=1

cr
sk yr, {pi, q

j}ξ = δj
i ,(3.55)

{ys, pj}ξ = 0 = {qi, qj}, {pi, pj}ξ =
n∑

s=1

ys F
(s)
ji (q),

where i, j = 1, n, cr
sk ∈ R, s, k, r = 1,m, are the structure constants of the Lie algebra G, and

we made use of the expansion A(s)(q) =
∑n

j=1 A
(s)
j (q) dqj as well as introducing alternative fixed

values ei := yi, i = 1, n. The result (3.55) follows readily by making the shift in the expression
(3.51) defined as σ(2) → σ

(2)
ext, where σ

(2)
ext := σ(2)

∣∣
A0→A , A0(g) := g−1dg, g ∈ G. With this, the

invariance properties of the connection Γ(A) imply that

σ
(2)
ext(q, p; u, y) =< dp,∧dq > +d < y(g), Adg−1A(q; e) >G=

=< dp,∧dq > + < d Ad∗g−1y(g),∧A(q; e) >G=< dp,∧dq > +
m∑

s=1

dys ∧ dus+

+
n∑

j=1

m∑
s=1

A
(s)
j (q)dys ∧ dq− < Ad∗g−1y(g),A(q, e) ∧ A(q, e) >G +

(3.56) +
m∑

k≥s=1

m∑

l=1

yl cl
sk duk ∧ dus +

n∑
s=1

3∑

i≥j=1

ysF
(s)
ij (q)dqi ∧ dqj ,

where the coordinates of (q, p;u, y) ∈ T ∗(M) are defined as follows: A0(e) :=
∑m

s=1 dui ai, and
Ad∗g−1y(g) = y(e) :=

∑m
s=1 ys as for any element g ∈ G. This leads immediately to the Poisson

brackets (2.8) plus additional brackets connected with conjugated sets of variables {us ∈ R :
s = 1,m} ∈ G∗ and {ys ∈ R : s = 1, m} ∈ G :

(3.57) {ys, u
k}ξ = δk

s , {uk, qj}ξ = 0, {pj , u
s}ξ = A

(s)
j (q), {us, uk}ξ = 0,

where j = 1, n, k, s = 1,m, and q ∈ N.
Note here that the transition from the symplectic structure σ(2) on T ∗(N) to its extension

σ
(2)
ext on T ∗(M) suggested above just consists formally in adding an exact part to the symplectic

structure σ(2), which transforms it into equivalent one. Looking now at the expressions (3.56), one
can infer immediately that an element ξ :=

∑m
s=1 esa

s ∈ G∗ will be invariant with respect to the
Ad∗-action of the Lie group G iff

(3.58) {ys, yk}ξ|ys=es
=

m∑
r=1

cr
sk er = 0

identically for all s, k = 1,m, j = 1, n and q ∈ N. In this and only this case does the reduction
scheme elaborated above go through.

Returning our attention to the expression (3.57), one can easily derive the exact shifted expres-
sion

(3.59) ω
(2)
ext(q, p; u, y) = ω(2)(q, p +

n∑
s=1

ys A(s)(q) ; u, y),

on the phase space T ∗(M) 3 (q, p;u, y), where we abbreviated for brevity < A(s)(q), dq > as∑n
j=1 A

(s)
j (q) dqj . Expressions like (3.59) were discussed within a somewhat different context in

[20, 23], which also provide a good background for the infinite-dimensional generalization of the
symplectic structure techniques. Having observed from (3.59) that the simple change of variables

(3.60) p̃ := p +
m∑

s=1

ys A(s)(q)
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in the cotangent space T ∗(N) recasts our symplectic structure (3.56) into the old canonical form
(3.51), one obtains that the following new set of canonical Poisson brackets on T ∗(M) 3 (q, p̃;u, y) :

{ys, yk}ξ =
n∑

r=1

cr
sk yr, {p̃i, p̃j}ξ = 0, {p̃i, q

j} = δj
i ,(3.61)

{ys, q
j}ξ = 0 = {qi, qj}ξ, {us, uk}ξ = 0, {ys, p̃j}ξ = 0,

{us, qi}ξ = 0, {ys, u
k}ξ = δk

s , {us, p̃j}ξ = 0,

where k, s = 1,m and i, j = 1, n, holds iff the nonabelian Yang-Mills field equations

(3.62) ∂F
(s)
ij /∂ql + ∂F

(s)
jl /∂qi + ∂F

(s)
li /∂qj+

+
m∑

k,r=1

cs
kr(F

(k)
ij A

(r)
l + F

(k)
jl A

(r)
i + F

(k)
li A

(r)
j ) = 0

are fulfilled for all s = 1,m and i, j, l = 1, n on the base manifold N. This effect of complete
reduction of gauge Yang-Mills variables from the symplectic structure (3.56) is known in literature
[20] as the principle of minimal interaction and has proven to be quite useful for studying differ-
ent interacting systems as in [21, 24]. We plan to continue the study of the geometric properties
of reduced symplectic structures connected with such interesting infinite-dimensional coupled dy-
namical systems as those of Yang-Mills-Vlasov, Yang-Mills-Bogolubov and Yang-Mills-Josephson
types [21, 24], as well as their relationships with associated principal fiber bundles endowed with
canonical connection structures.
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