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We prove that there exists just one pair of complex four-dimensional Lie algebras such that
a well-defined contraction among them is not equivalent to a generalized IW-contraction
(or to a one-parametric subgroup degeneration in conventional algebraic terms). Over the
field of real numbers, this pair of algebras is split into two pairs with the same contracted
algebra. The example we constructed demonstrates that even in the dimension four gener-
alized IW-contractions are not sufficient for realizing all possible contractions, and this is
the lowest dimension in which generalized IW-contractions are not universal. Moreover, this
is also the first example of nonexistence of generalized IW-contraction for the case when
the contracted algebra is not characteristically nilpotent and, therefore, admits nontrivial
diagonal derivations. The lower bound (equal to three) of nonnegative integer parameter
exponents which are sufficient to realize all generalized IW-contractions of four-dimensional
Lie algebras is found. We also present a simple and rigorous proof of the known claim that
any diagonal contraction (e.g., a generalized IW-contraction) is equivalent to a generalized
IW-contraction with integer parameter powers.

Introduction

The concept of the Lie algebra contraction was introduced by Segal (1951) via
limiting processes of bases. It became well known thanks to the papers by Inönü
and Wigner (1953, 1954) who invented the so-called Inönü–Wigner contractions
(IW-contractions). A rigorous general definition of contraction, based on limiting
processes of Lie brackets, was given by Saletan (1961). He also studied the entire
class of one-parametric contractions whose matrices are first-order polynomials with
respect to contraction parameters. IW-contractions form a special subclass in the
class of Saletan contractions.

Another extension of the class of IW-contractions was introduced by Doebner
and Melsheimer (1967). They used contraction matrices which become diagonal
after choosing suitable bases in the initial and contracted algebras, with diagonal
elements being real powers of the contraction parameters. (In fact, integer exponents
are sufficient.) In the modern physical literature, such contractions are usually
called generalized Inönü–Wigner contractions although a number of other names (p-
contractions, Doebner–Melsheimer contractions and singular IW-contractions) were
previously used. In algebraic papers, similar contractions are called one-parametric
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subgroup degenerations (in a similar fashion, general contractions are extended to
degenerations which are defined for Lie algebras over an arbitrary field in terms
of the orbit closures with respect to the Zariski topology). Note that in fact a
one-parametric subgroup degeneration is associated with a one-parametric matrix
group only upon choosing special bases in the corresponding initial and contracted
algebras. Unfortunately, this fact is often ignored.

Basic notions

The notion of contraction is defined for arbitrary fields in terms of orbit closures in
the variety of Lie algebras. Let V be an n-dimensional vector space over a field F,
n < ∞, and Ln = Ln(F) denote the set of all possible Lie brackets on V . We identify
µ ∈ Ln with the corresponding Lie algebra g = (V, µ). Ln is an algebraic subset of
the variety V ∗ ⊗ V ∗ ⊗ V of bilinear maps from V × V to V . Indeed, under setting
a basis {e1, . . . , en} of V there is the one-to-one correspondence between Ln and

Cn = {(ck
ij) ∈ Fn3 | ck

ij + ck
ji = 0, ci′

ijc
k′

i′k + ci′

kic
k′

i′j + ci′

jkc
k′

i′i = 0},

which is determined for any Lie bracket µ ∈ Ln and any structure constant tuple
(ck

ij) ∈ Cn by the formula µ(ei, ej) = ck
ijek. Throughout the indices i, j, k, i′, j′

and k′ run from 1 to n and the summation convention over repeated indices is used.
Ln is called the variety of n-dimensional Lie algebras (over the field F) or, more
precisely, the variety of possible Lie brackets on V . The group GL(V ) acts on Ln in
the following way:

(U · µ)(x, y) = U−1(µ(Ux, Uy)
)

∀U ∈ GL(V ),∀µ ∈ Ln,∀x, y ∈ V.

(This is the right action conventional for the ‘physical’ contraction theory. In
the algebraic literature, the left action defined by the formula (U · µ)(x, y) =
U

(
µ(U−1x, U−1y)

)
is used that is not of fundamental importance.) Denote the orbit

of µ ∈ Ln under the action of GL(V ) by O(µ) and the closure of it with respect to
the Zariski topology on Ln by O(µ).

Definition 1. The Lie algebra g0 = (V, µ0) is called a contraction (or degeneration)
of the Lie algebra g = (V, µ) if µ0 ∈ O(µ). The contraction is proper if µ0 ∈
O(µ)\O(µ). The contraction is nontrivial if µ0 6≡ 0.

In the case F = C the orbit closures with respect to the Zariski topology coincide
with the orbit closures with respect to the Euclidean topology and Definition 1 is
reduced to the usual definition of contractions which is also suitable for the case
F = R.

Definition 2. Consider a parameterized family of the Lie algebra gε = (V, µε)
isomorphic to g = (V, µ). The family of the new Lie brackets µε, ε ∈ (0, 1], is
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defined via the Lie bracket µ with a continuous function U : (0, 1] → GL(V ) by the
rule µε(x, y) = Uε

−1µ(Uεx, Uεy) ∀ x, y ∈ V . If for any x, y ∈ V there exists the limit

lim
ε→+0

µε(x, y) = lim
ε→+0

Uε
−1µ(Uεx, Uεy) =: µ0(x, y)

then µ0 is a well-defined Lie bracket. The Lie algebra g0 = (V, µ0) is called a one-
parametric continuous contraction (or simply a contraction) of the Lie algebra g.
The procedure g → g0 providing g0 from g is also called a contraction.

If a basis of V is fixed, the operator Uε is defined by the corresponding matrix
Uε ∈ GLn(F) and Definition 2 can be reformulated in terms of structure constants.
Let ck

ij be the structure constants of the algebra g in the fixed basis {e1, . . . , en}.
Then Definition 2 is equivalent to that the limit

lim
ε→+0

(Uε)
i
i′(Uε)

j
j′(Uε

−1)k′

k ck
ij =: ck′

0,i′j′

exists for all values of i′, j′ and k′ and, therefore, ck′

0,i′j′ are components of the well-
defined structure constant tensor of a Lie algebra g0. The parameter ε and the
matrix-function Uε are called a contraction parameter and a contraction matrix,
respectively.

The contraction g → g0 is called trivial if g0 is Abelian and improper if g0 is
isomorphic to g.

Definition 3. The contractions g → g0 and g̃ → g̃0 are called (weakly) equivalent
if the algebras g̃ and g̃0 are isomorphic to g and g0, respectively.

Using the weak equivalence concentrates one’s attention on existence and results
of contractions and neglects differences in ways of contractions.

Generalized IW-contractions

Generalized Inönü–Wigner contractions is defined as a specific way for realizations
of general contractions.

Definition 4. The contraction g → g0 (over C or R) is called a generalized Inönü–
Wigner contraction if its matrix Uε can be represented in the form Uε = AWεP ,
where A and P are constant nonsingular matrices and Wε = diag(εα1, . . . , εαn) for
some α1, . . . , αn ∈ R. The tuple of exponents (α1, . . . , αn) is called the signature of
the generalized IW-contraction g → g0.

In fact, the signature of a generalized IW-contraction C is defined up to a positive
multiplier since the reparametrization ε = ε̃β, where β > 0, leads to a generalized
IW-contraction strongly equivalent to C.

Due to the possibility of changing bases in the initial and contracted algebras,
we can set A and P equal to the unit matrix. This is appropriate for some
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theoretical considerations but not for working with specific Lie algebras. For
Uε = diag(εα1, . . . , εαn) the structure constants of the resulting algebra g0 are calcu-
lated by the formula ck

0,ij = limε→+0 ck
ij εαi+αj−αk with no summation with respect to

the repeated indices. Therefore, the constraints αi +αj > αk if ck
ij 6= 0 are necessary

and sufficient for the existence of the well-defined generalized IW-contraction with
the contraction matrix Uε, and ck

0,ij = ck
ij if αi+αj = αk and ck

0,ij = 0 otherwise. This
obviously implies that the conditions of existence of generalized IW-contractions and
the structure of contracted algebras can be reformulated in the basis-independent
terms of gradings of contracted algebras associated with filtrations on initial alge-
bras. In particular, the contracted algebra g0 has to admit a derivation whose matrix
is diagonalizable to diag(α1, . . . , αn).

Theorem 1. Any generalized IW-contraction is equivalent to a generalized IW-
contraction with an integer signature (and the same associated constant matrices).

The found proof of Theorem 1 gives a constructive way for finding an integer
signature via solving the system S, e.g., by the Gaussian elimination. The similar
remark is true for the proof of Theorem 2.

There exists a class of contractions, which is wider than the class of generalized
IW-contractions and, at the same time, any contraction from this class is equivalent
to a generalized IW-contraction involving only integer parameter powers. Similar to
generalized IW-contractions, this class is singled out by restrictions on contraction
matrices instead of restrictions on algebra structure.

Definition 5. The contraction g → g0 (over F = C or R) is called diagonal if its
matrix Uε can be represented in the form Uε = AWεP , where A and P are constant
nonsingular matrices and Wε = diag(f1(ε), . . . , fn(ε)) for some continuous functions
fi : (0, 1] → F\{0}.

Theorem 2. Any diagonal contraction is equivalent to a generalized IW-contraction
with an integer signature.

In other words, Theorem 2 says that generalized IW-contractions are universal in
the class of diagonal contractions.

Corollary 1. Any diagonal contraction whose matrix possesses a finite limit at ε →
+0 is equivalent to a generalized IW-contraction with nonnegative integer exponents.

Note 1. Other additional restrictions on exponents of generalized IW-contractions
which are equivalent to diagonal contractions with certain properties can be set in a
similar way. In particular, it obviously follows from the proof of Theorem 2 that for
any fixed j the jth exponent can be chosen nonnegative (negative) if there exists a
finite (infinite) limit of fj at ε → +0.
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Lowest dimensional example on non-universality

of generalized IW-contractions

For a long time it was not known whether any continuous one-parametric contraction
can be represented by a generalized IW-contraction. As all continuous contractions
arising in the physical literature enjoy this property, it was even claimed that this
is true for an arbitrary continuous one-parametric contraction.

The first crucial advance in tackling this problem was made by Burde (1999,2005)
where examples of contractions to characteristically nilpotent Lie algebras were con-
structed for all dimensions not less that seven. Since each proper generalized IW-
contraction induces a proper grading for the contracted algebra and each character-
istically nilpotent Lie algebra possesses only nilpotent derivations and hence has no
proper gradings, any contraction to characteristically nilpotent Lie algebras is obvi-
ously inequivalent to a generalized IW-contraction. Unfortunately, these examples
are not yet well-known to the physical community.

Contractions of low-dimensional Lie algebras were studied by a number of sci-
entists (e.g., Agaoka (1999, 2002), Burde (2005), Burde&Steinhoff (1999), Lauret
(2003), Nesterenko&Popovych (2006), Weimar-Woods (1991). Thus, it was shown
by Nesterenko&Popovych (2006) that each contraction of complex three-dimensional
Lie algebras is equivalent to a simple IW-contraction. Any contraction of real three-
dimensional Lie algebras is realized by a generalized IW-contraction with nonnega-
tive powers of the contraction parameter which are not greater than two. Moreover,
only the contraction of so(3) to the Heisenberg algebra is inequivalent to a simple
IW-contraction. The same result for continuous one-parametric contractions of real
three-dimensional Lie algebras was also claimed by Weimar-Woods (1991) but con-
tractions within parameterized series of algebras were not explicitly discussed. All
possible contractions of three-dimensional Lie algebras were realized by generalized
IW-contractions much earlier. Therefore, the problem was to prove that there are
no other contractions of three-dimensional Lie algebras. For the complex case, it
made in a rigorous way in by Burde&Steinhoff (1999).

Almost all contractions of four-dimensional Lie algebras were realized in
Nesterenko&Popovych (2006) via generalized IW-contractions. For the real case,
the exceptions were the contractions

A4.10 → A4.1, 2A2.1 → A4.1, 2A2.1 → A1 ⊕ A3.2, A4.10 → A1 ⊕ A3.2,

where the above Lie algebras have the following nonzero commutation relations:

2A2.1 : [e1, e2] = e1, [e3, e4] = e3;

A1 ⊕ A3.2 : [e2, e4] = e2, [e3, e4] = e2 + e3;

A4.1 : [e2, e4] = e1, [e3, e4] = e2;

A4.10 : [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1.
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Since the complexifications of the algebras 2A2.1 and A4.10 are isomorphic, this gives
only two exceptions for the complex case: 2g2.1 → g4.1 and 2g2.1 → g1 ⊕ g3.2. Here
g... denotes the complexification of the algebra A....

Recently Campoamor-Stursberg (2008) found that in fact both contractions to
A4.1 are equivalent to generalized IW-contractions. As remarked by Nesterenko, the
matrix proposed by Campoamor-Stursberg for the contraction 2A2.1 → A4.1 can be
optimized via lowering the maximal parameter exponent.

We first proved the fact that the contraction 2g2.1 → g1 ⊕ g3.2 is not equivalent
to a generalized IW-contraction. As all other contractions relating complex four-
dimensional Lie algebras were already realized as generalized IW-contractions, we
can state the following results.

Theorem 3. There exists a unique contraction among complex four-dimensional
Lie algebras (namely, 2g2.1 → g1 ⊕ g3.2) which is not equivalent to a generalized
Inönü–Wigner contraction.

Corollary 2. There exist precisely two contractions among real four-dimensional
Lie algebras (namely, 2A2.1 → A1 ⊕ A3.2 and A4.10 → A1 ⊕ A3.2) which cannot be
realized as generalized Inönü–Wigner contractions.

Theorem 4. Any generalized Inönü–Wigner contraction among complex or real
four-dimensional Lie algebras is equivalent to the one including only nonnegative
integer parameter exponents which are not greater than three. This upper bound is
exact, i.e., it cannot be totally decreased for all four-dimensional Lie algebras.

Discussion of technique applied

The proof of Theorem 3 has a number of special features which, when combined,
form a technique applicable to a wide range of similar problems. For this reason we
decided to list them below.

1. All necessary criteria for general contractions do not work for the study of
generalized IW-contractions since the contraction is known to exist and, there-
fore, the necessary criteria are definitely satisfied. The problem is to determine
whether the contraction can be realized in a special way and this requires other
tools.

2. There exists a simple criterion stating that a contraction is not equivalent to a
generalized IW-contraction if the contracted algebra admits improper gradings
only. In contrast with the contractions to characteristically nilpotent Lie alge-
bras, this criterion is not applicable to the algebra g1⊕ g3.2 since the latter has
nontrivial diagonal derivations and therefore possesses proper gradings.
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3. In the canonical basis, the algebra g1 ⊕ g3.2 has a two-dimensional algebra of
diagonal derivations. Therefore, we have to consider a number of different grad-
ings for the contracted algebra. The study of the gradings aims at resolving a
twofold challenge—to obtain possible values of parameter exponents and to un-
derstand the structure of constant components of contraction matrices. Thus,
the structure of derivations of the algebra g1⊕ g3.2 implies that only signatures
of the form (β, α, α, 0) are admissible.

4. Further restrictions on parameter exponents follow from the absence of simple
IW-contractions from 2g2.1 to g1⊕g3.2. Up to positive multipliers, any signature
associated with a simple IW-contraction consists of zeros and units. Hence we
have the condition 0 6= α 6= β 6= 0.

5. The matrix P in the representation Uε = AWεP of the contraction matrix
Uε is determined up to changes of basis within graded components and up to
automorphisms of the contracted algebra. Since in the case under consideration
the matrix P provides an isomorphism among gradings, we can set P equal to
the unit matrix.

6. A significant part of subcases for parameter exponents can be ignored as the
associated systems of equations for entries of the matrix A are extensions of
their counterparts for other subcases and hence the inconsistency of the former
systems is immediate from that of the latter ones.

7. Using the scaling automorphisms of the contracted (or initial) algebra, we set
det A = 1 to simplify the entries of the inverse matrix A−1.

8. We consider each tuple of parameter exponents for which the corresponding
system of algebraic equations for entries of the matrix A is minimal. This non-
linear system is represented in a specific form that allows us to apply methods
of solving linear systems of algebraic equations. In particular, we try, wherever
possible, to avoid writing out the entries of the inverse matrix B = A−1 in
terms of entries of the matrix A.

It is now known that all contractions of three-dimensional complex (resp. real)
Lie algebras can be realized via generalized IW-contractions and that this is not
true for the dimension four and the dimensions greater than six. Similar results for
dimensions one and two are trivial. The problem of universality of generalized IW-
contractions for five- and six-dimensional Lie algebras is still open. It is expected
that for these dimensions the answer and the approach to this problem will be similar
to those used in the dimension four.

Since generalized IW-contractions are not universal in the whole set of Lie al-
gebras, the following question is natural and important: In which classes of Lie
algebras closed under contractions any contraction is equivalent to a generalized
IW-contraction?
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