
Symmetry in Nonlinear Mathematical Physics  2009
Roman Popovych (Institute of Mathematics, Kyiv, Ukraine & University of Vienna, Austria)
Potential conservation laws
Abstract:
We prove that in the case of two independent variables
local conservation laws of potential systems have characteristics depending only
on local variables if and only if they are induced by local conservation laws of
the corresponding initial systems of differential equations.
Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables
that gives a criterion for the selection of such conservation laws.
Moreover, we present extensions to multidimensional standard and gauged potential systems, Abelian and general coverings
and general foliated systems of differential equations.
An example illustrating possible applications of these results is given.
A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed
as new tools for the investigation of potential conservation laws.
Presentation

