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Introduction

Gauge symmetries is the mathematical basis
for fundamental interactions

Gauge theories −→ 1-st class constraints systems
upon gauge fixing −→ 2-nd class constraints systems

Quantum theory:

✦ Operator quantization

✦ Path integral method

✦ ?-product technique known also as the deformation quantization and
quantum dynamics in phase space



Introduction

✦ Operator quantization

CLASSICAL WORLD ←→ QUANTUM WORLD

phase space ←→ Hilbert space

canonical variables ←→ operators of canonical variables

ξi = (q, p) ←→ xi = (q, p)

real functions ←→ Hermitian operators

ξi ∈ T∗R
n ←→ xi ∈ Op(L2(Rn))

{ξi, ξj} = −I ij ←→ [xi, xj] = −i~I ij

f(ξ) ∈ C∞(T∗R
n) ←→ f ∈ Op(L2(Rn))



Introduction

✦ Path integral method

CLASSICAL WORLD ←→ QUANTUM WORLD

phase space ←→ phase space

canonical variables ←→ canonical variables

phase space trajectories ←→ transition amplitudes

< q(t′)|e−iĤ(t′−t)|q(t) >=

∫
∏ dpdq

2π
exp(−i

∫ t′

t

(pq̇ − L)dτ).



Introduction

✦ ?-product technique (Groenewold (1946))

f(ξ) ←→ f

g(ξ) ←→ g

c× f(ξ) ←→ c× f

f(ξ) + g(ξ) ←→ f + g







vector space

f(ξ) ? g(ξ) ←→ fg







algebra

?-PRODUCT

f ? g = f exp(
i~

2
P)g = f ◦ g +

i~

2
f ∧ g

P = −Ikl

←−−
∂

∂ξk

−→
∂

∂ξl
lim
~→0

f ∧ g = {f, g}

Ikl =

∥
∥
∥
∥

0 −En

En 0

∥
∥
∥
∥



Introduction

Brackets govern evolution of systems in phase space

Systems: unconstrained constrained

classical {f, g} {f, g}D
quantum f ∧ g ???

✦ Poisson bracket {f, g} = fPg

✦ Dirac bracket {f, g}D = {f, g}+ {f,Ga}{Ga, g}

✦ Moyal bracket {f, g}
quantum deformation

⇒⇒⇒ f ∧ g = f 2
~
sin(~

2
P)g

✦ Fourth bracket {f, g}D
quantum deformation

⇒⇒⇒ ft ∧ gt = ???

Just making Hamiltonian formalizm complete



Classical second-class constraints systems in phase space

Table 1: Euclidean and symplectic spaces: Similarities and dissimilarities

Euclidean space Symplectic space

x, y ∈ R
n ξ, ζ ∈ R

2n

Metric structure
gij = gji

gijg
jk = δk

i

Symplectic structure
Iij = −Iji

IijI
jk = δk

i

Scalar product
(x, y) = gijx

iyj

Skew− scalar product
(ξ, ζ) = Iijξ

iζj

Distance

L =
√

(x− y, x− y)
Area

A = (ξ, ζ)

Gradient
(5f)i = gij∂f/∂xj

Skew− gradient
(Idf)i ≡ −Iij∂f/∂ξj

= {ξi, f}

Scalar product
of gradients off and g

(5f,5g)

Poisson bracket
of f and g

(Idf, Idg) = {f, g}

Orthogonality
gijx

iyj = 0
Skew− orthogonality

Iijξ
iζj = 0



Classical second-class constraints systems in phase space

Constraints Ga = 0 are non-degenerate (a = 1, ..., 2m, m < n):

det{Ga,Gb} 6= 0.

Locally, in Riemannian space Locally, in symplectic space

Locally, in symplectic space one can always find the Darboux basis

{Ga,Gb} = Iab

where

Iab =

∥
∥
∥
∥

0 Em

−Em 0

∥
∥
∥
∥

,

with Em being identity m×m matrix.



Classical second-class constraints systems in phase space

Skew-gradient projections ξs(ξ)

Expanding in the power series of Ga,

ξs(ξ) = ξ + XaGa +
1

2
XabGaGb + ...,

and requiring

{ξs(ξ),Ga(ξ)} = 0,

one gets:

ξ IdG  (ξ)
a

IdG  (ξ)b

Γ * = {ξ : G  (ξ) = 0}a

ξ  (ξ)
s

ξs(ξ) =
∞∑

k=0

1

k!
{...{{ξ,Ga1},Ga2}, ...Gak}Ga1

Ga2
...Gak

fs(ξ) =

∞∑

k=0

1

k!
{...{{f(ξ),Ga1},Ga2}, ...Gak}Ga1

Ga2
...Gak

= f(ξs(ξ))



Classical second-class constraints systems in phase space

The average of a function f(ξ) is calculated using the probability density
distribution ρ(ξ) and the Liouville measure restricted to the constraint
submanifold:

< f >=

∫
d2nξ

(2π)n
(2π)m

2m∏

a=1

δ(Ga(ξ))f(ξ)ρ(ξ).

On the constraint submanifold f(ξ) and ρ(ξ) can be replaced with fs(ξ) and
ρs(ξ)

Equivalence classes of functions in phase space

f(ξ) ∼ g(ξ)↔ fs(ξ) = gs(ξ)

In particular, f(ξ) ∼ fs(ξ) and Ga ∼ 0.

Evolution of function f

∂

∂t
f = {f ,H}D

On the constraint submanifold

{f ,g}D = {f ,gs} = {fs,g} = {fs,gs}



Classical second-class constraints systems in phase space

Replacing H −→ Hs, one can rewrite the evolution equation in terms of the
Poisson bracket:

∂

∂t
f = {f ,Hs}

IdH(ξ)

IdH (ξ)
s

Γ * = {ξ : G (ξ) = 0}
a

Σ с   IdG (ξ)aa
a=1

2m

ξ physical observables
m

equivalence classes of functions in phase space
m

Poisson algebra
︷ ︸︸ ︷

f + g, c× f,
︸ ︷︷ ︸

vector space

fg,

︸ ︷︷ ︸

algebra

{f, g}D = {fs, gs}



Quantum second-class constraints systems in the Hilbert space

To any function f(ξ) in the unconstrained phase space one may associate an
operator f in the corresponding Hilbert space

H(ξ) ←→ H

Ga(ξ) ←→ Ga

[Ga, Gb] = i~Iab

Projected operator fs

fs =
∞∑

k=0

(−i/~)k

k!
[...[[f, Ga1 ], Ga2 ], ...Gak ]Ga1

Ga2
...Gak

.

One has

[fs, Ga] = 0

(fgs)s = (fsg)s = fsgs

f and g belong to the same equivalence class provided

f ∼ g↔ fs = gs



Quantum second-class constraints systems in the Hilbert space

How to calculate the average value of an operator?

Projection operator:

P =

∫
d2mλ

(2π~)m

2m∏

a=1

exp(
i

~
Gaλa)

Chose basis in the Hilbert space in which the first m constraint operators are
diagonal,

Ga|g,g∗ >= ga|g,g∗ >,

for a = 1, ..., m. Ga might be taken as momentum operators. The last m constraint

operators can be treated as quantal coordinates.

P|g,g∗ >= |0,g∗ >

The average value of an operator f

< f >= Tr[Pfsrs] =

∫
dn−mg∗

(2π~)n−m
< 0,g∗|fsrs|0,g∗ >.

is determined by the physical subspace of the Hilbert space, spanned by |0, g∗ >.



Quantum second-class constraints systems in the Hilbert space

Physical states satisfy

Ga|0,g∗ >= 0

Dirac’s supplementary condition

for an equivalent gauge system, where
Ga with a = 1, ..., m are gauge generators
Ga with a = m + 1, ..., 2m are gauge-fixing operators.

Quantum evolution equation

i~
d

dt
f = [f, Hs]

Evolution does not mix equivalence classes of operators

f(t) ∼ g(t)↔ f(0) ∼ g(0)



Weyl’s association rule and the star-product

physical observables
m

equivalence classes of operators in the Hilbert space
m

Poisson algebra
︷ ︸︸ ︷

f + g, c× f,
︸ ︷︷ ︸

vector space

fg,

︸ ︷︷ ︸

algebra

[f, g]

Vector space? Choose basis! Weyl’s basis:

B(ξ) = (2π~)nδ2n(ξ − x) =

∫
d2nη

(2π~)n
exp(−

i

~
ηk(ξ − x)k).

The Weyl’s association rule

f(ξ) = Tr[B(ξ)f],

f =

∫
d2nξ

(2π~)n
f(ξ)B(ξ).



Weyl’s association rule and the star-product

B(ξ) ∈ Op(L2(Rn)) and projection operators Pi = ei ⊗ ei acting in R
n satisfy

B(ξ)+ = B(ξ) ↔ (Pi)
+ = Pi,

T r[B(ξ)] = 1 ↔ ei · ei = 1,
∫

d2nξ

(2π~)n
B(ξ) = 1 ↔

∑

i

ei ⊗ ei = 1,

∫
d2nξ

(2π~)n
B(ξ)Tr[B(ξ)f] = f↔

∑

i

Pi(Pi(
∑

j

gjPj)) =
∑

j

gjPj ,

T r[B(ξ)B(ξ′)] = (2π~)nδ2n(ξ − ξ′) ↔ ei · ej = δij,

B(ξ) exp(−
i~

2
Pξξ′)B(ξ′) = (2π~)nδ2n(ξ − ξ′)B(ξ′) ↔ ?

and therefore ξ ↔ i.



Quantum second-class constraints systems in phase space

Symplectic basis for constraint functions

Ga(ξ) ∧Gb(ξ) = Iab

Skew-gradient projections for canonical variables and functions in phase space

ξt(ξ) ∧Ga(ξ) = 0 & ft(ξ) ∧Ga(ξ) = 0

Projected canonical variables

ξt(ξ) =
∞∑

k=0

1

k!
(...((ξ ∧Ga1) ∧Ga2)... ∧Gak) ◦Ga1

◦Ga2
... ◦Gak

ft(ξ) =
∞∑

k=0

1

k!
(...((f(ξ) ∧Ga1) ∧Ga2)... ∧Gak) ◦Ga1

◦Ga2
... ◦Gak

Classical limit

lim
~→0

ξt(ξ) = ξs(ξ) & lim
~→0

ft(ξ) = fs(ξ)

.



Quantum second-class constraints systems in phase space

Equivalence relations between functions

f(ξ) ∼ g(ξ)↔ ft(ξ) = gt(ξ)

f(ξ) ∼ ft(ξ) and f(ξ) 6= ft(ξ) for Ga(ξ) = 0,
therefore ∼ and ≈ acquire distinct meaning.

The average value of function

< f >=

∫
d2nξ

(2π~)n
P(ξ) ? ft(ξ) ? Wt(ξ)

where P (ξ) is the symbol of the projection operator P and W (ξ) is the Wigner

function.

EVOLUTION EQUATION:

∂

∂t
f(ξ) = f(ξ) ∧Ht(ξ)



Quantum spherical pendulum in phase space

Mathematical pendulum on Sn−1 sphere of unit radius in n-dimensional Eu-
clidean space with coordinates φα.

The hamiltonian function projected onto the constraint submanifold

Ht =
1

2
(φ2δαβ − φαφβ)παπβ

Constraint functions

G1(ξ) =
1

2
ln φαφα,

G2(ξ) = φαπα,

where ξ = (φα, πα), so that

Ga(ξ) ∧Gb(ξ) = Iab.

the global symplectic basis exists!



Quantum spherical pendulum in phase space

Evolution equation for Wigner function

The power series expansion of the Moyal bracket is truncated at O(~2), since
the Hamiltonian Ht(ξ) is a fourth degree polynomial of canonical variables, so
we obtain

∂

∂t
W = − {W,Hs}+

~
2

8
(

∂3W

∂φα∂φβ∂πγ
(2δαβφγ − δαγφβ − δβγφα)

−
∂3W

∂πα∂πβ∂φγ
(2δαβπγ − δαγπβ − δβγπα)).

The first term in the right side is of the classical origin, while the second term
represents a quantum correction to the classical Liouville equation and there are
no other quantum corrections. Given W (ξ, 0) in the unconstrained phase space,
W (ξ, t) can be found by solving the PDE.



Conclusion

Systems: unconstrained constrained

classical {f, g} {f, g}D
quantum f ∧ g ft ∧ gt

✦ Four types of systems

✦ Four types of brackets which govern evolution of systems

✦ The fourth bracket ft ∧ gt has been constructed
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