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1 Introduction

Let ¢1(y°, 1Y), ..., ou(y’, y!) be n scalar fields arranged in a vector field:

—

(B S Maps (Rl?lagn_l) ) (I)(t7 QIZ’) - (le(t,ﬂf),.. . ¢n(t7x))

O-d=¢i+ ...+ ¢ = R

n

The action governing the dynamics of the model is:

S[P] = / dy’ dy' L (aﬁ,é) -~ / dy’ dy’ {%auq? LMD — V(cﬁ)} (1)

= y07 T = yl ) y,u ) yu = guyyﬂylfv g,ul/ - dl&g(l, _1) ) all@'u — guyaﬂa’/ - 8252 o ag

The potential energy density is very simple, only containing quadratic terms in an anisotropic

way:



V(®)=5 (il +a3di+ ... +al o) 2)

N | —

o >ar> ... >ar >0 (3)

Let us arrange the potential term in such a way that absolute minima (a set, M, of isolated

points) coincide with the zeroes of V.

(a%gb% + okl - OziRQ) (4)

| —

V(1,...,0n) =

M is:

Field equations:



oL oL 2 2. 9
0 (G7) 5, 70 = o=l .

constrained to the S"~!-sphere.

S[o] = / dt{ / dx%atcﬁ 0P — / da Gaﬁ-aﬂhwé))}

Energy Functional:
El¢] = /dt {/dx% 8P - 0, + /dx (% 8, P - 8,P + V(cﬁ))} (7)

El¢] = /dt dx e(x,t) (8)
Simplest solutions of the field equations:

Homogeneous and static solutions (i.e. t-independent and x-independent): Absolute Min-

—

ima of V(®) = M

Solitary Waves (Kinks): Non-singular solutions of the field equations of finite energy such
that their energy density has a space-time dependence of the form e(x, t) = e(x — vt) where

v is some velocity vector.



Lorentz-invariance = It is sufficient to know the t-independent (static) solutions in order

to obtain all the solitary waves of the model.

Reduction to static solutions: ® = ®(z):

Finite Energy = Asymptotic conditions:

dd ,
im — =0 |, lim & € M (10)

r—=100 dgj r—1+00

The configuration space C = {Maps(R,S" 1)/ E < +oo} of solitary waves is the union of

four disconnected sectors

¢ = Cax | JCss | JCns | Con
)



where v = N, v~ = S, and the different sectors are labeled by the element of M reached

by each configuration at the two disconnected components of the boundary of the real line.

Cns and Cgy solitary waves are called Topological Kinks.

Cny and Cgg solitary waves are called Non-Topological Kinks.
The mathematical problem is to solve equations:

d*¢;

2 .
T = ;05 7=1,....,n

constrained to:

and verifying the asymptotic conditions:

, do; .
mEI:EOOE_O , ]—1,...,77,
lim ¢, =0, 1=1,...,n—1. lim ¢, = £R

x—=+00 r—300

(11)

(12)

(13)



2 The nonlinear S*- sigma model

O = (61,00, 03) , &+ + 2 =R’
1
V(g1 d2,03) = 5 (a1 91 + by +a3¢3) , af >y >a520

M: ¢t =8 =0, gbgi = 4R (North and South Poles of S?)

Resolution

Solving ¢3 in favor of ¢ and ¢s:

0 = sa(és)\[ 2 — 67 — &2

(14)

(15)



1

g 5/ dtda {8@18%1 1 O,uhe0 b + (010,01 + $20,02) (910" P1 + 20" $5)

R == &

— Va2(¢n, ¢2)}

)\2 2
Ve (1, o) = % ((a% —a3) @7 + (a5 — a3) ¢35 + const.) ~ ?gb%(t, x) + %(b%(t, x) (16)



Non-dimensionalization: Taking into account that in the natural system of units h = c =1
the dimensions of fields, masses and coupling constants are [¢,] =1 = [R], |[7] = M =[]

Non-dimensional space-time coordinates and masses

I 2 9 2
! — x—,fzféfzgz%, 0<o0*<1,
2 2
o é/ g {(3t¢1)2 (B0 + (Butr)? + (Buhn)? + (910191 + ¢20t¢22) +2(¢13:;¢1 + $20,02) n
2 R — ¢1 — ¢35
+¢i(t,x) +o” ¢y(t, x)} (17)

Thus we can study the equations depending in only one significative constant, o.



Using Spherical coordinates. “Special” solitary waves solutions

Solving the constraint by using spherical coordinates: 6 € [0, x|, ¢ € [0, 27)

2
S = /dtdaj { (0,000 + sin® 00,,p0" p| — % sin” 0(o*

o1(t,x) = Rsinf(t,x)cosp(t, )
do(t,r) = Rsinf(t,z)sinp(t, )
¢s(t,x) = Rcosf(t,x)

2
V(,p) = R%sm 0(c* 4+ 5% cos*p) g=1+1-—o0?

Field equations:

1
16 — 5811’129 (a“gpaﬂgp — cos® p — 0% sin® gp)

1
9" (sin® 69,p) — 552 sin? @ sin 2¢

10

+ &% cos? gp)}

(18)

(19)

(20)

(21)



Static field equations:

1 1
0" — 5 sin 20 (¢')? = 5 <COS2 ¢ + 0% sin® ) sin 26
d 1
@(Sin2 0yp) = 562 sin? @ sin 2¢p
df dy
9/ - / _ I
dr 7T

The energy of the static configurations is:

ElD.0) = A [ do E(0(0). ¢ (2),0la). ()

am

£=7

Topological kinks

Field equation (23)is satisfied for constant values of ¢ if and only if:

37

v
—0. =
SD 72771-72

11

((6")? +sin® 0(")* + sin® 6(0” + 67 cos” p))

(22)

(23)

(24)

(25)



Depending on which pair of yp-constant solution we choose, equation (20) becomes one or

another sine-Gordon equation:

o? 1
DH—I-?SIHQQZO; D0+§sm2820

Thus, sine-Gordon models are embedded in the system on these two orthogonal meridians.

K1 Kinks

K, /K7 kinks. We denote K;/K7 the kink/antikink solutions of the sG model embedded

inside the §* model in the g, (z) = § or px:(z) = 3T two halves of the single meridian

intersecting the ¢ : ¢3 plane,

12



s 37 .
(@) =5, ery(@)=— 1 Ox(2) = Ox;(w) = 2arctan 7700 (26)

The energy of these kinks, which belong to Cyg (kinks) or Cgn (antikinks), is:

Ex, = Exr = 2\R%0

13



K2 Kinks
Ky /K5 kinks. Taking @, () = 0 or ¢g;(x) = 7, we find the sG kinks:
K, () =0, prz(T) =1 ; Ok, (r) = O;(z) = 2arctan etlr=0) (27)

The energy of the Ks/ K3 kinks, which also belong to the Cxg, Csn sectors, is greater than
the energy of the K7 /K7 kinks:

Ex, = Exy = 2AR°

-10 10
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Application

The static field equations of this massive non-linear sigma model can be interpreted as the
static Landau-Lifshitz equations governing the high spin and long wavelength limit of 1D
ferromagnetic materials.

From this perspective, topological kinks can be interpreted respectively as Bloch and Ising

walls that form interfaces between ferromagnetic domains

15



Using Conical Coordinates. “Generic” solitary waves.

1 1
Vsl s ) = & (0368 + aagh + a3) = L (614 0%3) 29
O+ o5+ ¢ = R
(Neumann potential in S?).
Ao
g7 = = A1 A9
Ao, )
ng — 5252 (02 - )‘1)()‘2 - 02) (29>
A
03 = 0—2 (1= A1 = A)
with:
0< M\ <d’<N<1

o2 =1 — 0. These inequalities define the interior of the rectangle Ps.

Constraint-equation for S? reduces to:

¢+ ¢5+¢5 =R = \g= R’

16



M:
Ui = (gblv ¢27 ng) — <07 07 iR) = vi = ()\17 >\2> — (07 6-2)

(only a point in Py).

Ao

Vaa( A1, Ag) = — 5

(M + 20— 07) (30)

1 () 1 fda\? N (A —32) A(he—a?)
EP‘MAQ]—A/CZ% {5911 <E> —|‘5922 (%) +? ( N — + Y
(31)

17



_ —Ao(A1 — )\2) _ —Ao( A2 — )\1)
M= @0 — a7 27 e - )0 — M)

Bogomol'nyi form:

moris [ 2 (S () s far SO

where W is a solution of the PDE:

N (M =362 Aha—3a)\ L[y [OW\ L, [OW°
2( M= w-n ) 2\ e ) T o (33)

i.e. W is the zero-energy reduced-characteristic Hamilton function. (Note that (33) is

nothing but the reduced Hamilton-Jacobi equation (with zero mechanical energy) of the

“repulsive” Neumann problem).

Ansatz: W()\l, )\2) = Wl()q) + WQ()\Q)




W(A1, A2) = Ao

First order equations:
d\
dx
dAo

(=1)
(=1)

dA;

20 (A — VI =N

(A1 — A2)

2 200 (Ao — 62)VT = Ao

(A2 — A1)

dx

(_1)@ 2)\1 ()\1 — 5’2)\/1 - )\1 ()\1 — )\2)

dAg

dx

(=120 M —a)VI—=2Ay (A=)

dA;

dXg

(=1)2X\ ()\1—52)\/1—7)\1+ (—1)2) (A2 — 52)VI — N = 0

19
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(35)

(36)
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d)\l d)\Q

+ = dx 38
(=1)22(A\ —32)V/1 =X (—=1)2(Xs —32)V1 =\ (38)
2
72t 1 [6%42 4+ 402 — dotyty(1 + 02 — otyt
)\1(37):1_ o1 4z 0'1+O' 0'12( + 0 0'12) (39)
21 — otity) 2 (1 — otyty)?
2
72t 1 [o%? + 402 — dotits(1 + 02 — otyt
)\2(33):1_ o 11 4 01+U 0'12( + 0o 0'12) (40)
2(1 — otity) 2 (1 — otity)?
where:

ty = tanh((z + 1)), to = tanh((z +2))

[t is easy to re-define the constants (y1,7v2) — (,7) in such a way that 7 characterizes the

“center” of the energy density, whereas 74 determines the concrete orbit.

Entk = Ek, + Bk,

20
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Kink stability

Small fluctuations on topological kinks, K1 and K2

The analysis of small fluctuations around kinks is determined by the second-order operator:

Agny = — (vag/Kn R0, )0 + VngradV) (41)
where:
0=0"clo,n] , @=0c0,2n) ;  ds*= R*d9'do' + R*sin®0'dH*dp*
1

(42)
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Kink trajectories and small deformations around them:

O(x) = (O(x) = 0,0%(x) = @) i Ox)=0k(x)+nlx) ,  n(x)=0'(2),n ()
Let us consider the following contra-variant vector fields along the kink trajectory, n, 8} €
F(TSQ ‘K)Z

0 0 ~ 0 0
1 2 _
o) = w) o )y L Ol =0
The covariant derivative of n(x) and the action of the curvature tensor on n(x) are:
| o d o o
1 7 k i k pl
Ve}(n - (77/ (ZU) + ijnjg/ ) DY R(Q/KW 77)‘9/[( =0 77] (x)el szkagl

Geodesic deviation operator:

D?n
—— + Bk, n)0k = Vo, Vo0 + RO, )0 -
Hessian of the potential:
[ O*V ovy\ ., 0
av—n (Vo Vy a0
VagradV: =1 (aezaw Zf@@k)g 0!

evaluated at O (). In sum, second-order kink fluctuations are determined by the operator:

Mg = = (Vi Vg + R(Oe, mbic + V,gradV)

23



2

D
Agn = — [%?27 + R(0%,n)0% + VngradV] =

d2 1 B B d 2
(L o 20[@" + 0 + 57 cos® @g|n* — sin 29@’i
dx? dx
o sin20 in 27 0
— [(1 4+ cos20)p'0" + 7 (@" — 628m ('0)]772 o
2 06
_dn! _ 3 d2n?
— (2 cotan 9@’% + (cotan 0" — @'9')771 + d—;—i—
dn? o )
2 cotan 89’% + (cotan 60" — 6% — cos® 9@’2)) % (43)

The spectrum of small fluctuations around K;/K; kinks

Plugging the K solutions into (43), we obtain the differential operator acting on the second-

order fluctuation operator around the Ki/K7 kinks:

d*nt 207 0 d*n? dn? 0

Agn=|——% o H— ——— + 20tanhor—— + &*n* | =

K17 [ 772 + (a cosh%x) 77] By + [ 772 + Zotanhox o +0n BYE
(44)
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Parallel transport along K1 kinks:
V%ﬂv =0

The vector fields v(x) = vl(a:)% + 112(3:)% parallel along the K kink satisfy:

dv’ P
%1 =0 , vl(z) =1
Cﬁl—f + OCOtang:ﬁ;nem)vz =0 , v*x) = coshox
Therefore, vy = % , va(x) = coshox % is a frame {vy, v} in T(T'S?|g,) parallel to the
K kink in which (44) reads:
277! 952 2772 962
Agn =N = | ——5 + (07 — ——— 1] vy + [——+ 1 — —5—)7*| v
K10l ki dx? ( cosh? OSL’)n ! dx? ( cosh? J:C)n ’

where n = fl vy + 1 vy, ' = !, and n? = cosh oz 7.

25



The second-order fluctuation operator is a diagonal matrix of transparent Posch-Teller

Schrodinger operators with very well known spectra.

In the v; = % direction we find the Schrodinger operator governing sG kink fluctuations,
as expected. But finding another Posch-Teller potential of the same type in the vy = %

direction comes out as a surprise because there is no a priori reason for such a behavior in

the orthogonal direction.
vp direction: There is a bound state of zero eigenvalue and a continuous family of positive
eigenfunctions:
mo(z) = sechox | 5(()1) =0
gi(z) = e*(tanhox — ik) , eW(k) = o* (K> +1) .
0

062
positive eigenvalue:

v9 = cosh ox—=25 direction: The spectrum is similar but the bound state corresponds to a

(2)
1—o2
(

72(x) = e**(tanhox — ik) , € 2>(/{) =c’k>+1.

?7%_02(33) —sechox , € 1 _g2>0

Because there are no fluctuations of negative eigenvalue, the K7 /K7 kinks are stable.

26



A similar procedure shows that the K2 kink /antikink are unstable. For the NTK kinks case,
it is a difficult task to solve the spectral problem of the second order fluctuation operator,
but it is possible to construct an alternative way, computing the Jacobi Fields and their

zeroes along the kink solutions, in order to prove that NTK kinks are also unstable. See

References [1] and [2].
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(2008).
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3 The nonlinear S*- sigma model

Vg1, ¢, 03, 01) = = (af ] + a3 &3 + o5 3 + o &7 )

N | —

oz%>oz§>oz§>oziZO

)\2
2

2 2 9 9
a5 — « a5 — «
A= 1/a? —a? ol = 2 4 o2 = 3 4 1>02>02>0
1 4> 2 ol — a2’ 3 ol — a2’ 2 3
1 4 1 4

Vs (@1, 2, 93) = <¢% + 0505 + 0§¢§) + const.

Vgp = = (97 + 03035 + 0363)

DO | —

M = {v" =(0,0,0,R),v” =(0,0,0,—R)}

28
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(“North” and “South” poles of S3).
“Cutting” S? by the hyperplanes ¢; = 0, ¢ = 0, or ¢35 = 0, reduces the S*-model to three
copies of the S?-model.
Note that the ¢4 = 0-case is not relevant from the solitary waves point of view, because M

1s not included in this situation.

There are three “singular” topological kinks and three families of “singular” non-topological
kinks.

¢®s = ¢p3 =0 = K topological kink.

o1 = ¢3 =0 = K, topological kink.

01 = ¢y = 0 = K; topological kink.

¢1 = 0= NTK; tamily of non-topological kinks.
¢o = 0= NTKj; tamily of non-topological kinks.
¢3 =0 = NT K family of non-topological kinks.

To calculate the generic solutions we use the following version of conical coordinates in R*

9 uju2us
¢1 = Ug 5252 (5())
2¥3

29



o (03 —u)(05 — ug) (G5 — u3)
L o
& = (03 — u;);is(;% u2)0;27§ — u3) (52)

with:
0<u <65 <up < a3 <ug <1

These inequalities define the interior of the parallelepiped Ps.

P; - Parallelepiped. Bold lines denote the regions with u; = uy and us = us.

30



Constraint-equation for S? reduces to:
Uy = R2

M:

vj: = (u17u27u3) - (075—57 5—?2))

(only a point in P3).

VS3<’LL1,’LL2,U3> = —%( 1+U2+U3-5‘§—5‘§) (54)
R W U (u1 — 035)(uy — 03) | ug (ug — 03)(ug — 73)  ug (ug — 63)(uz — 3)
Voslun, g, s) 2 ( (u1 — ug)(ur — u3) (ug — up)(ug — us) (ug — uy)(us — uz) )
(55)

Energy functional for static configurations:

31



g (ty — ug)(uy — ug)
g =y ur(ur — 03)(uy — 03)(ur — 1)
Gpy = —20 (ug — ) (uz — us)
4 ug(ug — 73)(uz — 03)(ug — 1)
gzg = —0 (us — w1)(us — up)

4 ug(uz — 03)(us — 03)(us — 1)

Bogomol'nyi form:

3

du; W
Eluy, ug, ug] = / {ng ( i +gzza ) }+)\/de

32

oW du]
Ou; dx

(57)



3 3 2
Ug Uj Uj — 2)(“] - U% l Z gjj A
2 U'(u;) 2 = 0uj

Jj=1

W(U1, U9, U3) = Wl(ul) + WQ(UQ) + Wg(Ug)

W(ul, U9, U,g) = Uy ((_1)a1 vV 1 — Uy + (_1)a2 vV 1 — U + (—1)% \/1 — U3>

ai, az,as3 = 07 L.

Bogomol'nyi arrangement lead to First Order equations :

dup 1 OW duy 59 OW dug 33 0W

dr ouy az 7 Ouy dz 7 Ous
duy _ (—1)m 2uy(uy — 63)(uy — 53)y/1 — uy
dx U'(uy)
duy _ (1) 2ug(uy — 73) (ug — 53) V1 — uy
dx U’(us)
% _ (_1)a3 2u3(u3 — 5‘%)(U3 — 5%)\/1_7713
dx UI(U3>
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(60)
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Or, in differential form:
dv (—1)% du;

U'(u;)  2uj(uj —03)(uj — 63) /T —u;’

=123 (62)

These quadratures can be easily converted to rational ones introducing the variables:

S1 = (_1)a1 \/1—U1, S9 = (_1)a2 \/1—u2, S3 — (_1)a3 \/1—U3

3
de
Z 5 = —ds (63)

j=1 J
3
ds;
Z — _JSQ. = —dx (64)
j=1 72 7
3
ds.
N s = e (65)
=1 937 %
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arctanh s; 4+ arctanh s; + arctanh s1 = —x —
S S S

arccoth —- + arctanh == + arctanh —> = —09 (T + )
09 09 09
S S S

arccoth = + arccoth o2 + arctanh i —o3 (x4 73)
03 03 03

)

Using addition formulas for hyperbolic functions, and defining “Vieta variables”:

A = 814 59+ 83
B = 5189+ s8183 + 5953

C = 515253
the equations reduce to a linear system:
A — uB + C = t

O-%tQA — 09B + t,C = O'g) )
O'?Q)A — o3t3sB + C = 0'33:153

35
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ty = tanh(—(x + ), 1 = tanh(—(x +2)), ¢ = tanh(—(x + 73))

B — A+ Bz—C =0

Three-parameter family of Topological Kinks

uy(x)
us ()

us(z)

A 2
1— (5 + 2v/—q cos%)

1— (? +v—q (—Cosg - \/§Sm§>)2

1— <§ + v—q <—cos§ + V3 sin
P = ~(B(~A) - 3(~C)) — [~ AY
6 27 ’

Thank you very much
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0

3

)

6 = arccos

(73)

(74)
(75)

(76)

—q



N,

J
[ A—

Two kink orbits.
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10+

15

-10

-5 L 10 -10 -5

Kink energy density for different values of the constants.
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