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In 1998 the Adapted Ordering Method (A.O.M.) was devel-

oped, by M. Dörrzapf and B. Gato-Rivera, for the study of the

representation theory of the superconformal algebras in 2-d.

The idea originated, in rudimentary form, from a procedure

due to A. Kent in 1991 to study the analytically continued Vi-

rasoro algebra, yielding ‘generalised’ Verma modules, where he

constructed ‘generalised’ singular vectors in terms of analyti-

cally continued Virasoro operators. This analytical continuation

is not necessary, however, for the A.O.M., nor is it necessary to

construct singular vectors in order to apply it.

Later on, in 2004, B. Gato-Rivera tried to generalize this

method so that it could be applied to other algebras, but only

at the end of 2007 all the details were fixed. As a result, the

present version of the A.O.M. (J. Phys A: Math. Theor., 2008)

can be applied to many Lie algebras and superalgebras and their

generalizations, provided they can be triangulated.
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Motivation

The A.O.M. Allows:

• To determine the maximal dimension for a given
type of space of singular vectors. (Singular vectors
are highest weight null vectors).

• To rule out the existence of possible types of sin-
gular vectors (if the max. dim = 0 for the corre-
sponding spaces).

• To identify all singular vectors by only a few coef-
ficients.
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• To obtain easily product expressions of singular
vector operators to obtain secondary singular vec-
tors.

• To set the basis for constructing embedding dia-
grams.

• To spot subsingular vectors. (Subsingular vectors
are null vectors which become singular after the
quotient of the Verma module by a submodule).
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What is the A.O.M. ?

The underlying idea is the concept of ADAPTED
ORDERINGS for all the possible terms of the ‘would
be’ singular vectors with weights {wi} :

• First, one has to find a suitable total ordering for all the

possible terms of the corresponding weights {wi} . That is,

we need a criterion to decide which of two given terms, with

the same weights, is the bigger one.

Example: For the Virasoro algebra, level 2 (level = confor-

mal weight):

L2 > L1L1 or L1L1 > L2 ?
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• Second, the ordering will be called ADAPTED to a subset of

terms CA
{wi}, that belongs to the total set of terms C{wi} with

weights {wi}, provided some conditions are met (see later).

• Third, the complement of the subset CA
{wi} is the ORDERING

KERNEL, CK
{wi} = C{wi}/C

A
{wi} , which plays a crucial rôle, as

we will see next.
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One needs to find a suitable, clever ordering in order
to obtain the smallest possible kernels CK

{wi} because:

• The sizes of the kernels CK
{wi} put un upper limit on the

dimensions of the corresponding spaces of singular vectors

with weights {wi} .

• The coefficients with respect to the terms of the ordering

kernel CK
{wi} uniquely identify a singular vector Ψ{wi}. Since

the size of the ordering kernels are in general small, it turns

out that just a few coefficients (one, two, ... ) completely

determine a singular vector no matter its size.

• As a consequence, one can find easily product expressions for

descendants singular vectors, setting the basis to construct

embedding diagrams.
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These statements result from the following three
theorems:

• Theorem 1: If the ordering kernel CK
{wi} has n elements,

then there are at most n linearly independent singular vec-

tors Ψ{wi} with weights {wi} .

• Theorem 2: If the ordering kernel CK
{wi} = ∅, then there

are no singular vectors with weights {wi} .

• Theorem 3: If two singular vectors Ψ1
{wi} and Ψ2

{wi} have

the same coefficients with respect to the terms of the order-

ing kernel, then they are identical Ψ1
{wi} = Ψ2

{wi}.
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Some Observations

• The maximal possible dimension n for a given space of sin-

gular vectors does not imply that all the singular vectors of

the corresponding type are n-dimensional.

• If the maximal dimension for a given space of singular vec-

tors is zero, then such ‘would be’ singular vectors do not

exist. This is a very practical result for some algebras since

it allows to discard the existence of many (or most) types of

singular vectors.

• Are there any prescriptions in order to construct the most

suitable orderings with the smallest kernels? No, there are

no general prescriptions or recipes as the orderings depend

entirely on the given algebras.
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• The way to proceed is a matter of trial and error: one con-

structs a total ordering first, then one computes the kernel

and decides whether this kernel is small enough. In the case

it is not, then one constructs a second ordering and repeats

the procedure until one finds a suitable ordering.

• It may also happen, for a given algebra, that this procedure

does not give any useful information because all the total

orderings one can construct are adapted only to the empty

subset, in which case the ordering kernel is the whole set of

terms: CK
{wi} = C{wi}.
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Technical Details

Let A denote a Lie algebra or superalgebra with a triangular

decomposition: A = A−⊕HA⊕A+, where A− is the set of creation

operators, A+ is the set of annihilation operators, and HA is the Cartan

subalgebra. In general, an eigenvector with respect to the Cartan

subalgebra with relative weights given by the set {wi}, in particular

a singular vector Ψ{wi}, can be expressed as a sum of products

of creation operators with total weights {wi} acting on a h.w.

vector with weights {∆i}:

Ψ{wi} =
∑

m1,m2,....∈N0

ka
m1
−1 ,a

m2
−2 ,..... X

a
m1
−1 ,a

m2
−2 ,.....

{wi} |{∆i}〉 (1)

where X
a

m1
−1 ,a

m2
−2 ,.....

{wi} are the products of the creation operators: am1
−1a

m2
−2......,

with total weights {wi}, which will be denoted simply as terms,

and ka
m1
−1 ,a

m2
−2 ,..... are coefficients which depend on the given term.
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Observe that the weights of Ψ{wi} are given by {wi + ∆i}.

Let us define the set C{wi} as the set of all the terms with

weights {wi}:

C{wi} = {Xa
m1
−1 ,a

m2
−2 ,.....

{wi} , m1, m2, ..... ∈ N0} , (2)

and let O denote a total ordering on C{wi}.

We define an Adapted Ordering on C{wi} as follows:

A total ordering O on C{wi} is called adapted to the subset CA
{wi}

in the Verma module V{∆i} if for any element X0 ∈ CA
{wi} at least

one annihilation operator Γ exists for which Γ X0|{∆i}〉 contains

a non-trivial term X̃ : Γ X0|{∆i}〉 = (kX̃X̃ + .......) |{∆i}〉, which is

absent, however, for all Γ X|{∆i}〉, where X is any term X ∈ C{wi}

which is O-larger than X0, that is, such that X > X0.
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Example: Let us consider the Virasoro algebra V :

[Lm, Ln] = (m− n)Lm+n + C
12(m

3 −m)δm+n,0 , [C, Lm] = 0 , m, n ∈ Z ,(3)

where C can be taken to be constant . V can be written in its

triangular decomposition: V = V − ⊕HV ⊕ V +, where:

V − = span {L−m : m ∈ N} is the set of creation operators,

V + =span {Lm : m ∈ N} is the set of annihilation operators,

and the Cartan subalgebra is given by HV =span {L0, C}.

For elements of V that are eigenvectors of L0 with respect to the

adjoint representation the L0-eigenvalue is usually called the level

l. The terms are given by the products of the form L−pI
. . . L−p1

,

pq ∈ N for q = 1, . . . , I, I ∈ N, with level l =
∑I

q=1 pq.
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On can find an adapted ordering such that, at each level l the

ordering kernel is given by the single element CK
l = {Ll

−1}.

Let us consider the set of terms at level 3, C3 = {L3
−1, L−2L−1, L−3}.

One finds the total ordering L3
−1 < L−2L−1 < L−3, which is adapted

to CA
3 = {L−2L−1, L−3} with the ordering kernel CK

3 = {L3
−1}.

To see this one has to compute the action of the annihilation

operators Γ ∈ {L1, L2, L3} on the three terms. In fact, the action

of L1 already reveals the structure of CA
3 , as L1L−2L−1|∆〉 contains

the term L2
−1 that is absent in L1L−3|∆〉. The action of the three

annihilation operators on L3
−1|∆〉, however, produce terms that

are also created by the action of these operators on L−2L−1|∆〉
and/or L−3|∆〉.
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Final Remarks

The Adapted Ordering Method has been applied so far to

some infinite-dimensional algebras: the four N = 2 superconfor-

mal algebras (Neveu-Schwarz, Ramond, topological and twisted),

and the N = 1 Ramond and Virasoro algebras, allowing to prove

several conjectured results as well as to obtain many new re-

sults. For example, this method allowed to discover subsingular

vectors and two-dimensional spaces of singular vectors for the

twisted N = 2 algebra and also for the Ramond N = 1 algebra.

However, the A.O.M. follows only from the definition of Adapted

Ordering plus the three theorems above, which are proven. There

is nothing in the definition of Adapted Ordering, neither in

the theorems, that restricts the application of this method to

infinite-dimensional algebras.
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For the same reason, it seems clear that the Adapted Or-

dering Method should be useful also for generalized Lie alge-

bras and superalgebras such as affine Kac-Moody algebras, non-

linear W-algebras, superconformal W-algebras, loop Lie alge-

bras, Borcherds algebras, F-Lie algebras for F > 2 (F = 1 are Lie

algebras and F = 2 are Lie superalgebras), etc.

I am convinced therefore that this method should be of very

much help for the study of the representation theory of many

algebras, in particular the N > 2 superconformal algebras, and

some (at least) of the generalized Lie algebras and superalgebras

mentioned above.
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