
Invariants of Lie Algebras via Moving Frames
Vyacheslav BOYKO †, Jiri PATERA ‡ and Roman POPOVYCH †

† Institute of Mathematics of NAS of Ukraine,
3 Tereshchenkivs’ka Str., Kyiv-4, 01601 Ukraine
E-mail: boyko@imath.kiev.ua, rop@imath.kiev.ua
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Abstract
A purely algebraic algorithm for computation of invariants (generalized Casimir

operators) of Lie algebras by means of moving frames is discussed. Results on
the application of the method to computation of invariants of low-dimensional Lie
algebras and series of solvable Lie algebras restricted only by a required structure
of the nilradical are reviewed.

1 Introduction

The invariants of Lie algebras are one of their defining characteristics. They have nu-
merous applications in different fields of mathematics and physics, in which Lie algebras
arise (representation theory, integrability of Hamiltonian differential equations, quantum
numbers etc). In particular, the polynomial invariants of a Lie algebra exhaust its set
of Casimir operators, i.e., the center of its universal enveloping algebra. This is why
non-polynomial invariants are also called generalized Casimir operators, and the usual
Casimir operators are seen as ‘specific’ generalized Casimir operators. Since the structure
of invariants strongly depends on the structure of the algebra and the classification of all
(finite-dimensional) Lie algebras is an inherently difficult problem (actually unsolvable1),
it seems to be impossible to elaborate a complete theory for generalized Casimir opera-
tors in the general case. Moreover, if the classification of a class of Lie algebras is known,
then the invariants of such algebras can be described exhaustively. These problems have
already been solved for the semi-simple and low-dimensional Lie algebras, and also for
the physically relevant Lie algebras of fixed dimensions.

The standard method of construction of generalized Casimir operators consists of in-
tegration of overdetermined systems of first-order linear partial differential equations. It
turns out to be rather cumbersome calculations, once the dimension of Lie algebra is not
one of the lowest few. Alternative methods use matrix representations of Lie algebras.
They are not much easier and are valid for a limited class of representations.

In our recent papers [3, 4, 5, 6, 7] we have developed the purely algebraic algorithm for
computation of invariants (generalized Casimir operators) of Lie algebras. The suggested
approach is simpler and generally valid. It extends to our problem the exploitation of the
Cartan’s method of moving frames in Fels–Olver version [9]. (For modern development
of the moving frames method and more references see also [14, 15].)

1The problem of classification of Lie algebras is wild since it includes, as a subproblem, the problem
on reduction of pairs of matrices to a canonical form [10]. For a detailed review on classification of Lie
algebras we refer to [17].
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2 Preliminaries

Consider a Lie algebra g of dimension dim g = n < ∞ over the complex or real field F
(either F = C or F = R) and the corresponding connected Lie group G. Let g∗ be the
dual space of the vector space g. The map Ad∗ : G → GL(g∗) defined for any g ∈ G by
the relation

〈Ad∗gx, u〉 = 〈x, Adg−1u〉 for all x ∈ g∗ and u ∈ g

is called the coadjoint representation of the Lie group G. Here Ad: G → GL(g) is the
usual adjoint representation of G in g, and the image AdG of G under Ad is the inner
automorphism group Int(g) of the Lie algebra g. The image of G under Ad∗ is a subgroup
of GL(g∗) and is denoted by Ad∗G.

The maximal dimension of orbits of Ad∗G is called the rank of the coadjoint represen-
tation of G (and g) and denoted by rankAd∗G. It is a basis independent characteristic of
the algebra g. Orbits of this dimension are called regular ones.

A function F ∈ C∞(Ω), where Ω is a domain in g∗, is called a (global in Ω) invariant
of Ad∗G if F (Ad∗gx) = F (x) for all g ∈ G and x ∈ Ω such that Ad∗gx ∈ Ω. The set
of invariants of Ad∗G on Ω is denoted by Inv(Ad∗G) without an explicit indication of the
domain Ω. Let below Ω is a neighborhood of a point from a regular orbit. It can always be
chosen in such a way that the group Ad∗G acts regularly on Ω. Then the maximal number
Ng of functionally independent invariants in Inv(Ad∗G) coincides with the codimension of
the regular orbits of Ad∗G, i.e., it is given by the difference Ng = dim g− rank Ad∗G.

To calculate the invariants explicitly, one should fix a basis E = {e1, . . . , en} of the
algebra g. It leads to fixing the dual basis E∗ = {e∗1, . . . , e∗n} in the dual space g∗ and to
the identification of Int(g) and Ad∗G with the associated matrix groups. The basis elements
e1, . . . , en satisfy the commutation relations [ei, ej] = ck

ijek, where ck
ij are components of

the tensor of structure constants of g in the basis E . Here and in what follows the indices
i, j and k run from 1 to n and the summation convention over repeated indices is used.
Let x → x̌ = (x1, . . . , xn) be the coordinates in g∗ associated with E∗.

It is well known that there exists a bijection between elements of the universal envelop-
ing algebra (i.e., Casimir operators) of g and polynomial invariants of g (which can be
assumed defined globally on g∗). See, e.g., [1]. Such a bijection is established, e.g., by the
symmetrization operator Sym which acts on monomials by the formula

Sym(ei1 · · · eir) =
1

r!

∑
σ∈Sr

eiσ1
· · · eiσr

,

where i1, . . . , ir take values from 1 to n, r ∈ N. The symbol Sr denotes the permutation
group consisting of r elements. The symmetrization also can be correctly defined for
rational invariants [1]. If Int(Ad∗G) has no a functional basis consisting of only rational
invariants, the correctness of the symmetrization needs an additional investigation for
each fixed algebra g since general results on this subject do not exist. After symmetrized,
elements from Int(Ad∗G) are naturally called invariants or generalized Casimir operators
of g. The set of invariants of g is denoted by Inv(g).

Functionally independent invariants F l(x1, . . . , xn), l = 1, . . . , Ng, forms a functional
basis (fundamental invariant) of Inv(Ad∗G) since any element from Inv(Ad∗G) can be
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(uniquely) represented as a function of these invariants. Accordingly the set of
Sym F l(e1, . . . , en), l = 1, . . . , Ng, is called a basis of Inv(g).

In framework of the infinitesimal approach any invariant F (x1, . . . , xn) of Ad∗G is a
solution of the linear system of first-order partial differential equations [1, 2, 16] XiF = 0,
i.e., ck

ijxkFxj
= 0, where Xi = ck

ijxk∂xj
is the infinitesimal generator of the one-parameter

group {Ad∗G(exp εei)} corresponding to ei. The mapping ei → Xi gives a representation
of the Lie algebra g.

3 The algorithm

Let G = Ad∗G× g∗ denote the trivial left principal Ad∗G-bundle over g∗. The right regular-

ization R̂ of the coadjoint action of G on g∗ is the diagonal action of Ad∗G on G = Ad∗G×g∗.
It is provided by the map

R̂g(Ad∗h, x) = (Ad∗h · Ad∗g−1 , Ad∗gx), g, h ∈ G, x ∈ g∗.

The action R̂ on the bundle G = Ad∗G×g∗ is regular and free. We call R̂ the lifted coadjoint
action of G. It projects back to the coadjoint action on g∗ via the Ad∗G-equivariant
projection πg∗ : G → g∗. Any lifted invariant of Ad∗G is a (locally defined) smooth function
from G to a manifold, which is invariant with respect to the lifted coadjoint action of G.
The function I : G → g∗ given by I = I(Ad∗g, x) = Ad∗gx is the fundamental lifted
invariant of Ad∗G, i.e., I is a lifted invariant and any lifted invariant can be locally
written as a function of I in a unique way. Using an arbitrary function F (x) on g∗,
we can produce the lifted invariant F ◦ I of Ad∗G by replacing x with I = Ad∗gx in
the expression for F . Ordinary invariants are particular cases of lifted invariants, where
one identifies any invariant formed as its composition with the standard projection πg∗ .
Therefore, ordinary invariants are particular functional combinations of lifted ones that
happen to be independent of the group parameters of Ad∗G.

The essence of the normalization procedure by Fels and Olver can be presented in the
form of on the following statement.

Proposition 1. Suppose that I = (I1, . . . , In) is a fundamental lifted invariant, for the
lifted invariants Ij1 , . . . , Ijρ and some constants c1, . . . , cρ the system Ij1 = c1, . . . ,
Ijρ = cρ is solvable with respect to the parameters θk1 , . . . , θkρ and substitution of the
found values of θk1 , . . . , θkρ into the other lifted invariants results in m = n−ρ expressions

Îl, l = 1, . . . ,m, depending only on x’s. Then ρ = rank Ad∗G, m = Ng and Î1, . . . , Îm

form a basis of Inv(Ad∗G).

The algebraic algorithm for finding invariants of the Lie algebra g is briefly formulated
in the following four steps.

1. Construction of the generic matrix B(θ) of Ad∗G. B(θ) is the matrix of an inner
automorphism of the Lie algebra g in the given basis e1, . . . , en, θ = (θ1, . . . , θr) is a com-
plete tuple of group parameters (coordinates) of Int(g), and r = dim Ad∗G = dim Int(g) =
n− dim Z(g), where Z(g) is the center of g.
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2. Representation of the fundamental lifted invariant. The explicit form of the funda-
mental lifted invariant I = (I1, . . . , In) of Ad∗G in the chosen coordinates (θ, x̌) in Ad∗G×g∗

is I = x̌ ·B(θ), i.e.,

(I1, . . . , In) = (x1, . . . , xn) ·B(θ1, . . . , θr).

3. Elimination of parameters by normalization. We choose the maximum possible
number ρ of lifted invariants Ij1 , . . . , Ijρ , constants c1, . . . , cρ and group parameters
θk1 , . . . , θkρ such that the equations Ij1 = c1, . . . , Ijρ = cρ are solvable with respect
to θk1 , . . . , θkρ . After substituting the found values of θk1 , . . . , θkρ into the other lifted
invariants, we obtain Ng = n− ρ expressions F l(x1, . . . , xn) without θ’s.

4. Symmetrization. The functions F l(x1, . . . , xn) necessarily form a basis of Inv(Ad∗G).
They are symmetrized to Sym F l(e1, . . . , en). It is the desired basis of Inv(g).

Our experience on the calculation of invariants of a wide range of Lie algebras shows
that the version of the algebraic method, which is based on Proposition 1, is most effective.
In particular, it provides finding the cardinality of the invariant basis in the process
of construction of the invariants. The algorithm can in fact involve different kinds of
coordinate in the inner automorphism groups (the first canonical, the second canonical
or special one) and different techniques of elimination of parameters (empiric techniques,
with additional combining of lifted invariants, using a floating system of normalization
equations etc).

Let us underline that the search of invariants of a Lie algebra g, which has been done by
solving a linear system of first-order partial differential equations under the conventional
infinitesimal approach, is replaced here by the construction of the matrix B(θ) of inner
automorphisms and by excluding the parameters θ from the fundamental lifted invariant
I = x̌ ·B(θ) in some way.

4 Illustrative example

The four-dimensional solvable Lie algebra gb
4.8 has the following non-zero commutation

relations

[e2, e3] = e1, [e1, e4] = (1 + b)e1, [e2, e4] = e2, [e3, e4] = be3, |b| ≤ 1.

Its nilradical is three-dimensional and isomorphic to the Weil–Heisenberg algebra g3.1.
(Here we use the notations of low-dimensional Lie algebras according to Mubarakzyanov’s
classification [11].)

We construct a presentation of the inner automorphism matrix B(θ) of the Lie al-
gebra g, involving second canonical coordinates on AdG as group parameters θ. The
matrices âdei

, i = 1, . . . , 4, of the adjoint representation of the basis elements e1, e2, e3

4



and e4 respectively have the form
0 0 0 1 + b
0 0 0 0
0 0 0 0
0 0 0 0

,


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,


0 −1 0 0
0 0 0 0
0 0 0 b
0 0 0 0

,


−1− b 0 0 0

0 −1 0 0
0 0 −b 0
0 0 0 0

.

The inner automorphisms of gb
4.8 are then described by the triangular matrix

B(θ) =
3∏

i=1

exp(θiâdei
) · exp(−θ4âde4)

=


e(1+b)θ4 −θ3e

θ4 θ2e
bθ4 bθ2θ3 + (1 + b)θ1

0 eθ4 0 θ2

0 0 ebθ4 bθ3

0 0 0 1

.

Therefore, a functional basis of lifted invariants is formed by

I1 = e(1+b)θ4x1,

I2 = eθ4(−θ3x1 + x2),

I3 = ebθ4(θ2x1 + x3),

I4 = (bθ2θ3 + (1 + b)θ1)x1 + θ2x2 + bθ3x3 + x4.

Further the cases b = −1 and b 6= −1 should be considered separately.
There are no invariants in case b 6= −1 since in view of Proposition 1 the number of

functionally independent invariants is equal to zero. Indeed, the system I1 = 1, I2 =
I3 = I4 = 0 is solvable with respect to the whole set of the parameters θ.

It is obvious that in the case b = −1 the element e1 generating the center Z(g−1
4.8)

is an invariant. (The corresponding lifted invariant I1 = x1 does not depend on the
parameters θ.) Another invariant is easily found via combining the lifted invariants:
I1I4 − I2I3 = x1x4 − x2x3. After the symmetrization procedure we obtain the following
polynomial basis of the invariant set of this algebra

e1, e1e4 −
e2e3 + e3e2

2
.

The second basis invariant can be also constructed by the normalization technique. We
solve the equations I2 = I3 = 0 with respect to the parameters θ2 and θ3 and substitute the
expressions for them into the lifted invariant I4. The obtained expression x4−x2x3/x1 does
not contain the parameters θ and, therefore, is an invariant of the coadjoint representation.
For the basis of invariants to be polynomial, we multiply this invariant by the invariant x1.
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It is the technique that is applied below for the general case of the Lie algebras under
consideration.

Note that in the above example the symmetrization procedure can be assumed trivial
since the symmetrized invariant e1e4 − 1

2
(e2e3 + e3e2) differs from the non-symmetrized

version e1e4 − e2e3 (resp. e1e4 − e3e2) on the invariant 1
2
e1 (resp. −1

2
e1). If we take the

rational invariant e4 − e2e3/e1 (resp. e4 − e3e2/e1), the symmetrization is equivalent to
the addition of the constant 1

2
(resp. −1

2
).

Invariants of gb
4.8 were first described in [16] within the framework of the infinitesimal

approach.

5 Review of obtained results

Using the moving frames approach, we recalculated invariant bases and, in a number of
cases, enhanced their representation for the following Lie algebras (in additional brackets
we cite the papers where invariants bases of the same algebras were computed by the
infinitesimal method):

• the complex and real Lie algebras up to dimension 6 [3] ([8, 12, 16]);

• the complex and real Lie algebras with Abelian nilradicals of codimension one [4]
([18]);

• the complex indecomposable solvable Lie algebras with the nilradicals isomorphic
to Jn

0 , n = 3, 4, . . . (the nonzero commutation relations between the basis elements
e1, . . . , en of Jn

0 are exhausted by [ek, en] = ek−1, k = 2, . . . , n− 1) [4] ([13]);

• the nilpotent Lie algebra t0(n) of n×n strictly upper triangular matrices [4, 5] ([20]);

• the solvable Lie algebra t(n) of n×n upper triangular matrices and the solvable Lie
algebras st(n) of n× n special upper triangular matrices [5, 6, 7] ([20]);

• the solvable Lie algebras with nilradicals isomorphic to t0(n) and diagonal nilinde-
pendent elements [5, 6, 7] ([20]).

Note that earlier only conjectures on invariants of two latter families of Lie algebras
were known. Moreover, for the last family the conjecture was formulated only for the par-
ticular case of a single nilindependent element. Here we present the exhaustive statement
on invariants of this series of Lie algebras, obtained in [7].

Consider the solvable Lie algebra tγ(n) with the nilradical NR(tγ(n)) isomorphic to
t0(n) and s nilindependent element fp, p = 1, . . . , s, which act on elements of the nilradical
in the way as the diagonal matrices Γp = diag(γp1, . . . , γpn) act on strictly triangular
matrices. The matrices Γp, p = 1, . . . , s, and the unity matrix are linear independent
since otherwise NR(tγ(n)) 6= t0(n). The parameter matrix γ = (γpi) is defined up to
nonsingular s × s matrix multiplier and homogeneous shift in rows. In other words, the
algebras tγ(n) and tγ′(n) are isomorphic iff there exist λ ∈ Ms,s(F), det λ 6= 0, and µ ∈ Fs

such that

γ′pi =
s∑

p′=1

λpp′γp′i + µp, p = 1, . . . , s, i = 1, . . . , n.
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The parameter matrix γ and γ′ are assumed equivalent. Up to the equivalence the addi-
tional condition Tr Γp =

∑
i γpi = 0 can be imposed on the algebra parameters. Therefore,

the algebra tγ(n) is naturally embedded into st(n) as a (mega)ideal under identification
of NR(tγ(n)) with t0(n) and of fp with Γp.

We choose the union of the canonical basis of NR(tγ(n)) and the s-element set {fp, p =
1, . . . , s} as the canonical basis of tγ(n). In the basis of NR(tγ(n)) we use ‘matrix’ enu-
meration of basis elements eij, i < j, with the ‘increasing’ pair of indices similarly to the
canonical basis {En

ij, i < j} of the isomorphic matrix algebra t0(n).
Hereafter En

ij (for the fixed values i and j) denotes the n × n matrix (δii′δjj′) with i′

and j′ running the numbers of rows and column correspondingly, i.e., the n × n matrix
with the unit on the cross of the i-th row and the j-th column and the zero otherwise.
The indices i, j, k and l run at most from 1 to n. Only additional constraints on the
indices are indicated. The subscript p runs from 1 to s, the subscript q runs from 1 to s′.
The summation convention over repeated indices p and q is used unless otherwise stated.
The number s is in the range 0, . . . , n − 1. In the case s = 0 we assume γ = 0, and all
terms with the subscript p should be omitted from consideration. The value s′ (s′ < s) is
defined below.

Thus, the basis elements eij ∼ En
ij, i < j, and fp ∼

∑
i γpiE

n
ii satisfy the commutation

relations [eij, ei′j′] = δi′jeij′ − δij′ei′j, [fp, eij] = (γpi − γpj)eij, where δij is the Kronecker
delta.

The Lie algebra tγ(n) can be considered as the Lie algebra of the Lie subgroup Tγ(n) =
{B ∈ T (n) | ∃ εp ∈ F : bii = eγpiεp} of the Lie group T (n) of non-singular upper triangular
n× n matrices.

Below Ai1,i2
j1,j2

, where i1 6 i2, j1 6 j2, denotes the submatrix (aij)
i=i1,...,i2
j=j1,...,j2

of a matrix
A = (aij). The conjugate value of k with respect to n is denoted by κ, i.e., κ = n−k +1.
The standard notation |A| = det A is used.

Proposition 2. Up to the equivalence relation on algebra parameters, the following
conditions can be assumed satisfied for some s′ ∈ {0, . . . , min(s, [n/2])} and kq, q =
1, . . . , s′, 1 6 k1 < k2 < · · · < ks′ 6 [n/2]:

γqk = γqκ, k < kq, γqκq − γqkq = 1, γpkq = γpκq , p 6= q, q = 1, . . . , s′,

γpk = γpκ, p > s′, k = 1, . . . , [n/2].

We will say that the parameter matrix γ has a reduced form if it satisfies the conditions
of Proposition 2.

Theorem 1. Let the parameter matrix γ have a reduced form. A basis of Inv(tγ(n)) is
formed by the expressions

|E1,k
κ,n|

s′∏
q=1

|E1,kq
κq ,n|αqk , k ∈ {1, . . . , [n/2]} \ {k1, . . . , ks′},

fp +

[n
2 ]∑

k=1

(−1)k+1

|E1,k
κ,n|

(γpk − γp,k+1)
∑

k<i<κ

∣∣∣∣∣ E
1,k
i,i E1,k

κ,n

0 E i,i
κ,n

∣∣∣∣∣ , p = s′ + 1, . . . , s,
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where κ := n− k + 1, E i1,i2
j1,j2

, i1 6 i2, j1 6 j2, denotes the matrix (eij)
i=i1,...,i2
j=j1,...,j2

and

αqk := −
k∑

k′=1

(γqκ′− γqk′).

We use the short ‘non-symmetrized’ form for basis invariants, where it is uniformly
assumed that in all monomials elements of E1,k

i,i is placed before (or after) elements of
E i,i

κ,n.

6 Conclusion

The main advantage of the proposed method is in that it is purely algebraic. Unlike
the conventional infinitesimal method, it eliminates the need to solve systems of partial
differential equations, replaced in our approach by the construction of the matrix B(θ)
of inner automorphisms and by excluding the parameters θ from the fundamental lifted
invariant I = x̌ ·B(θ) in some way.

The efficient exploitation of the method imposes certain constraints on the choice of
bases of the Lie algebras. See, e.g., Proposition 2 and Theorem 1. That then automat-
ically yields simpler expressions for the invariants. In some cases the simplification is
considerable.

Possibilities on the usage of the approach and directions for further investigation were
outlined in our previous papers [3, 4, 5, 6, 7]. Recently advantages of the moving frames
approach for computation of generalized Casimir operators were demonstrated in [19]
with a new series of solvable Lie algebras. The problem on optimal ways of applications
of this approach to unsolvable Lie algebras is still open.
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