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Symmetries of differential equations are pivotal to a profound understanding of the physics of 
the underlying  the problems under investigations. Symmetry group analysis of differential 
equations on the basis of Lie (Lie-Backlund) groups unify a wide variety of  ad hoc methods to 
analyze and exactly solve  differential equations. Detailed description of the methods and their 
applications to various problems of mathematical physics, fluid dynamics and others may be 
found  e.g. in [1], [2].  In the context of Symmetry Group Methods an approach to derive 
certain turbulent scaling laws arising in the statistical theory of turbulence was given in [3]. In 
particular, it unifies a large set of scaling laws for the mean velocity of stationary parallel 
turbulent shear flows. The approach is derived from the Reynolds averaged Navier-Stokes 
equations, the fluctuations equations, and the velocity product equations, which are the dyad 
product of the velocity fluctuations with the equations for the velocity fluctuations. From the 
knowledge of the symmetries a broad variety of invariant solutions (scaling laws) were derived 
but these invariant solutions are fixed by using the symmetries of the Euler equations. From a 
physical point of view as the viscosity tends to zero the turbulence becomes highly 
intermittent, and the vorticity is concentrated on sets of a small measure. The use of 
symmetries of the Navier-Stokes equations do not enable us to introduce the Reynolds number 
dependence into scaling laws. The crucial point for understanding of Reynolds umber 
dependence is that viscosity is primarily significant for small scale turbulence at the order of 
the Kolmogorov length scale and, if wall bounded flows are considered, in the inner region 
(viscous sublayer) of a turbulent motion. The so-called outer region of this motion is mainly 
determined by the Euler equations. According to Kolmogorov's sub-range theory there is a 
region in correlation space obeying the limits where viscosity is negligible and large-scale 
influence are also asymptotically small. The eddies have a negligible amount of energy but 
provide the necessary dissipation for the energy balance equation. In contrast the energy 
containing large scale eddies determine the mean velocity, the Reynolds stress tensor and 
similar variables. It is this distinction and the corresponding difference in symmetries which is 
the basis for the understanding of the invariant solutions of turbulent flows. Barenblatt and 
Chorin in a series of papers [4], [5] investigate of the influence of the intermittency 
phenomenon on certain scaling laws presented by the von Karman-Prandtl universal 
logarithmic law of the wall (in the intermediate region of wall-bounded turbulence), and the 
Kolmogorov-Obukhov scaling for the local structure of turbulence. It was shown that when the 
viscosity is small the universal logarithmic law for the intermediate region of wall-bounded 
shear flow must be replaced by a power law. The concept of the so-called incomplete 
similarity and intermediate asymptotics was used to make a correction of the classical scaling 



laws when the Reynolds number is finite but large. The analysis extended the classical form of 
dependency between the velocity gradient and the spatial coordinate, the shear stress at the 
wall, the pipe diameter, the kinematic viscosity and density of a flow without using the Navier-
Stokes equations directly.  

Our aim is to find symmetries which corresponds to the Reynolds number dependence of a 
turbulent motion. As the first step we apply the theory of approximate symmetries developed 
by Fushchich and Shtelen [6], Euler et al. [7], Ibragimov, Bykov [8] and Gazizov [9] for 
studying differential equations with a small parameter and consider the Navier-Stokes 
equations as a perturbation of the Euler equations. We calculate the so-called approximate Lie 
symmetry tangent vector field to the manifold defined by the Navier-Stokes equations which is 
motivated by their application to the theory of turbulence. In particular, we show that the Lie 
symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of 
approximate symmetries. In the framework of the theory of approximate transformation groups 
proposed by Baikov, Gaziziv and Ibragimov, the first-order approximate symmetry operator is 
calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by 
expanding the dependent variables of the Navier-Stokes equations in the perturbation  series 
with respect to a small parameter (viscosity) are used to derive approximate symmetries in the 
sense by Baikov  et  al.  
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