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Chapter 1

Equivalence Groupoids of Classes

of Differential Equations

It is widely known that there is no general theory for integration of nonli-

near partial di�erential equations (PDEs). Nevertheless, many special cases

of complete integration or �nding particular solutions are related to appropri-

ate changes of variables. Nondegenerate point transformations that leave a

di�erential equation invariant and form a connected Lie group are called Lie

symmetries of this equation. Transformations of this kind are ones which are

mostly used. In many cases, the algorithmic Lie reduction method, which

uses known Lie symmetries, results in the construction of group-invariant

solutions for a given PDE. This places the transformation methods among

the most powerful analytic tools currently available in the study of nonlinear

PDEs [273].

Another feature of Lie symmetries is that they reveal equations which

are important for applications among wide set of admissible ones. Indeed,

all basic equations of mathematical physics, e.g., the equations of Newton,

Laplace, Euler�Lagrange, d'Alembert, Lam�e, Hamilton�Jacobi, Maxwell,

Schr�odinger etc., have rich symmetry properties [89]. This property disti-

nguishes these equations from other PDEs. Therefore, an important problem

arises to single out from a given class of PDEs those admitting Lie symmetry

algebra of the maximally possible dimension. This problem is called the group

classi�cation problem and is formulated as follows [131,227]: given a class of

PDEs, to classify all possible cases of extension of Lie invariance algebras of

such equations with respect to the equivalence group of the class.
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Another important task is to study transformational properties of classes

of di�erential equations, i.e. to describe explicitly nondegenerate point

transformations that link members of a given class. Indeed, if two di�erential

equations are connected by such a transformation, then associated objects li-

ke exact solutions, local conservation laws, and di�erent kinds of symmetries

of these equations are also related by this transformation. Such equations are

called equivalent (or similar in terms of [227]). Knowledge of an exact solution

for one of two equivalent equations allows one to construct the correspondi-

ng exact solution for the other equation using the point transformation

connecting them. A number of exact solutions for variable coe�cient PDEs

were constructed using the equivalence method, see, e.g., [175, 251, 300]. At

the same time, nondegenerate point transformations appear to be a useful

tool not only for �nding exact solutions but also for exhaustive solving

group classi�cations problems (see, e.g., [21,175,248] and reference therein),

design of physical parameterization schemes [242], and study of integrabili-

ty [45,114,172,172,304].

We �rstly describe the basic notions on admissible transformations in

classes of di�erential equations in Section 1.1. Then in Section 1.2 we relate

existing notions and results from group analysis of di�erential equations to

the groupoid-relevant terminology. The procedures for classifying admissible

transformations and Lie symmetries for non-normalized classes of di�erenti-

al equations are presented in Section 1.3. The results of this chapter are

published in [4*,13*,27*].

1.1. Preliminaries on Admissible Transformations

The systematic study of transformational properties of classes of nonlinear

PDEs was initiated in 1991 by Kingston and Sophocleous [158, 159, 273].

These authors later named the transformations related two particular equati-

ons in a class of PDEs form-preserving transformations [160], because such

transformations preserve the form of the equation in a class and change only
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its arbitrary elements. Only a year later in 1992 Gazeau and Winternitz

started to investigate such transformations in classes of PDEs calling them

allowed transformations [101,315]. Rigorous de�nitions and developed theory

on the subject was proposed later by Popovych [239, 248]. As formalization

of notion of form-preserving (allowed) transformations the term admissible

transformation was suggested therein. In brief, an admissible transformation

is a triple consisting of two �xed equations from a class and a transformation

that links these equations. The set of admissible transformations considered

with the standard operation of composition of transformations is also called

the equivalence groupoid [242].

Equivalence transformations generate a subset in a set of admissible

transformations. It is important that admissible transformations are not

necessarily related to a group structure, but equivalence transformations

always form a group. An equivalence transformation applied to any equati-

on from the class always maps it to another equation from the same class.

In other words, equivalence transformations preserve di�erential structure of

the whole class. At the same time, an admissible transformation may exi-

st only for a speci�c pair of equations from the class under consideration.

For example, the point transformation t′ = ebt/b, x′ = x, u′ = u − bt links
equations ut = (eu)xx + aeu + b and u′t′ = (eu

′
)x′x′ + aeu

′
, where a and b

are arbitrary constants with b 6= 0 [131]. Both these equations are members

of the class L : ut = (eu)xx + Q(u), where Q is a smooth function of u.

Acting on other equation from this class, e.g., on ut = (eu)xx + e2u + b, this

transformation maps it to the equation u′t′ = (eu
′
)x′x′ + b t′e2u′, that is not

constant coe�cient one and does not belong to the class L.
By Ovsiannikov, the equivalence group consists of the nondegenerate poi-

nt transformations of the independent and dependent variables and of the

arbitrary elements of the class, where transformations for independent and

dependent variables are projectible on the space of these variables [227]. After

appearance of other kinds of equivalence group the one used by Ovsiannikov
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is called now usual equivalence group. If the transformations for independent

and dependent variables involve arbitrary elements, then the correspondi-

ng equivalence group is called the generalized equivalence group [194, 248].

If new arbitrary elements appear to depend on old ones in a nonlocal way

(e.g., new arbitrary elements are expressed via integrals of old ones), then

the corresponding equivalence group is called extended [137, 248]. Extended

generalized equivalence group possesses both the aforementioned properties.

A number of examples of usage of di�erent kinds of equivalence groups are

presented, e.g., in [138,302].

If any admissible transformation in a given class is induced by a

transformation from its equivalence group (usual / generalized / extended /

extended generalized), then this class is called normalized in the correspondi-

ng sense.

In [292] we developed the groupoid theory in classes of di�erential

equations, enhancing the approaches used in previous papers on admissible

transformations in classes of di�erential equations and their group classi�-

cation by the algebraic method, see e.g. [17,21,24,72,96,101,178,222,239,248].

Below we relate existing notions and results from group analysis of di-

�erential equations to the groupoid-relevant terminology and then present

procedures for classifying admissible transformations and Lie symmetries for

non-normalized classes of di�erential equations.

1.2. Equivalence Groupoids and Related Notions

Consider a class L|S = {Lθ | θ ∈ S} of systems of di�erential equati-

ons Lθ for unknown functions u = (u1, . . . , um) of independent variables

x = (x1, . . . , xn) with the arbitrary-element tuple θ = (θ1, . . . , θk) running

through a set S. Here Lθ denotes a system of di�erential equations of the

form L(x, u(r), θ(x, u(r))) = 0 with a �xed tuple L of rth order di�erential

functions in u parameterized by θ. We use the short-hand notation u(r) for
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the tuple of derivatives of u with respect to x up to order r, including u

as the zeroth order derivatives. The set S is the solution set of an auxiliary

system of di�erential equations and inequalities in θ, where rth order jet

variables (x, u(r)) play the role of independent variables, S(x, u(r), θ(q)) = 0

and, e.g., Σ(x, u(r), θ(q)) 6= 0 with the tuple θ(q) constituted by the derivatives

of θ up to order q with respect to (x, u(r)). Up to the gauge equivalence of

systems from L|S [248], which is usually trivial, the correspondence θ 7→ Lθ
between S and L|S is bijective.

The equivalence groupoid G∼ of the class L|S is the small category wi-

th L|S or, equivalently, with S as the set of objects and with the set of point

transformations of (x, u), i.e., of (local) di�eomorphisms in the space with

the coordinates (x, u), between pairs of systems from L|S as the set of arrows.
Speci�cally,

G∼ =
{
T = (θ,Φ, θ̃) | θ, θ̃ ∈ S, Φ ∈ Diff loc

(x,u) : Φ∗Lθ = Lθ̃
}
.

Elements of G∼ are called admissible (point) transformations within the

class L|S . The pushforward of θ by Φ is de�ned by Φ∗θ = θ̃ if Φ∗Lθ = Lθ̃.
The de�nitions of all notions related to groupoids are obvious. Thus, the

source and target maps s, t : G∼ → S are de�ned by s(T ) = θ and t(T ) =

θ̃ for any T = (θ,Φ, θ̃) ∈ G∼, which gives rise to the groupoid notation

G∼ ⇒ S, where the symbol �⇒� denotes the pair of the source and target

maps. Admissible transformations T and T ′ = (θ′,Φ′, θ̃′) are composable if

θ̃ = θ′, and then their composition is T ? T ′ = (θ,Φ′ ◦Φ, θ̃′), which de�nes a

natural partial multiplication on G∼. For any θ ∈ S, the unit at θ is given by

idθ := (θ, id(x,u), θ), where id(x,u) is the identity transformation of (x, u). This

de�nes the object inclusion map S 3 θ 7→ idθ ∈ G∼, i.e., the object set S can

be regarded to coincide with the base groupoid S ⇒ S := {idθ | θ ∈ S}. The
inverse of T is T −1 := (θ̃,Φ−1, θ), where Φ−1 is the inverse of Φ. All required

properties like associativity of the partial multiplication, its consistency with

the source and target maps, natural properties of units and inverses are

obviously satis�ed.
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The s-�bre over θ ∈ S, s−1(θ) ⊆ G∼, is the set of possible admissible

transformations within L|S with source at θ. Similarly, the t-�bre over θ ∈ S,
t−1(θ) ⊆ G∼, is the set of possible admissible transformations within L|S
with target at θ. The subset G(θ, θ̃) := s−1(θ) ∩ t−1(θ̃) of G∼ with θ, θ̃ ∈ S
corresponds to the set of point transformations mapping the system Lθ to
the system Lθ̃. The vertex group Gθ := G(θ, θ) = s−1(θ)∩t−1(θ) is associated

with the point symmetry (pseudo)group Gθ of the system Lθ,

Gθ =
{

Φ ∈ Diff loc
(x,u) | (θ,Φ, θ) ∈ Gθ

}
.

The orbit Oθ := t
(
s−1(θ)

)
of θ is the subset of values of the arbitrary-element

tuple such that the corresponding systems in the class L|S are similar to Lθ
with respect to point transformations.

Denote by $ and $r the projections from the space with the coordinates

(x, u(r), θ) to the spaces with the coordinates (x, u) and (x, u(r)), respectively.

The (usual) equivalence group G∼ of the class L|S is the (pseudo)group

of point transformations, T, in the space with the coordinates (x, u(r), θ) that

are projectable to the spaces with the coordinates (x, u) and (x, u(r)) with

$r
∗T being the standard prolongation of $∗T to rth order jets (x, u(r)) and

that map the class L|S onto itself. The group G∼ can be considered to act

in the space with the coordinates (x, u(r′), θ), where r
′ < r, if the arbitrary-

element tuple depends only on (x, u(r′)). The notion of usual equivalence

group can be generalized in several ways by weakening the speci�c restricti-

ons on equivalence transformations, which are their projectability and their

locality with respect to arbitrary elements. This gives the notions of generali-

zed equivalence group and extended equivalence group, respectively, or the

notions of extended generalized equivalence group if both restrictions are

weakened simultaneously [138,195,222,239,248,294,300].

The action groupoid GG∼of the equivalence group G∼ of the class L|S ,

GG∼:=
{

(θ,$∗T,T∗θ) | θ ∈ S, T ∈ G∼
}
,

is a subgroupoid of the equivalence groupoid G∼ of this class, GG∼⊆ G∼,
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with the same object set S. We say that an admissible transformation T in

the class L|S is generated by an equivalence transformation of this class if

T ∈ GG∼.
The fundamental groupoid Gf of the class L|S is the disjoint union of the

vertex groups Gθ, θ ∈ S, Gf = tθ∈SGθ. Since it has the same object set S
and the same vertex groups as G∼ and T −1Gθ̃T = Gθ for any T ∈ G(θ, θ̃),

it is a normal subgroupoid of the equivalence groupoid G∼, which is also

called the fundamental subgroupoid of G∼. In other words, the groupoid Gf is

constituted by the admissible transformations generated by point symmetry

transformations of systems from L|S , Gf :=
{

(θ,Φ, θ) | θ ∈ S, Φ ∈ Gθ

}
.

The kernel point symmetry group G∩ := ∩θ∈SGθ of systems from the

class L|S , which consists of the common point symmetries of these systems,

can be associated with the normal subgroup G̃∩ of G∼ whose elements are

obtained from elements of G∩ by the standard prolongation to r′th order

jets (x, u(r′)) and the trivial prolongation to the arbitrary-element tuple θ,

G∩ = $∗G̃
∩. Thus, G̃∩ is the unfaithful subgroup of G∼ under the action

on L|S .
The s-, the t- and the conjugation actions ofG∼ on G∼ respectively de�ned

by T = (θ,Φ, θ̃)
T7→ (T∗θ,Φ◦($∗T)−1, θ̃), (θ, ($∗T)◦Φ,T∗θ̃), (T∗θ, ($∗T)◦

Φ ◦ ($∗T)−1,T∗θ̃) for any T ∈ G∼ and for any T = (θ,Φ, θ̃) ∈ G∼, induce
several equivalence relations on G∼ (s-G∼-equivalence, t-G∼-equivalence,G∼-

conjugation and G∼-equivalence).

De�nition 1.1. Admissible transformations T 1 = (θ1,Φ1, θ̃1) and

T 2 = (θ2,Φ2, θ̃2) in the class L|S are called conjugate with respect to the

equivalence group G∼ of this class if there exists T ∈ G∼ such that θ2 = T∗θ
1,

θ̃2 = T∗θ̃
1 and Φ2 = ($∗T)◦Φ1◦($∗T)−1. Admissible transformations T 1 and

T 2 are called G∼-equivalent if there exist T, T̃ ∈ G∼ such that θ2 = T∗θ
1,

θ̃2 = T̃∗θ̃
1 and Φ2 = ($∗T̃) ◦ Φ1 ◦ ($∗T)−1. If additionally T̃ = id(x,u(r),θ)

(resp. T = id(x,u(r),θ)), then the admissible transformations T 1 and T 2 are

called s-G∼-equivalent (resp. t-G∼-equivalent).
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A di�erent terminology was used in [248], where the stronger equi-

valence relation of G∼-conjugation of admissible transformations was called

G∼-equivalence, whereas in the present paper we use a weaker notion of

G∼-equivalence of admissible transformations. An admissible transformation

in L|S belongs to GG∼ if and only if this admissible transformation is G∼-

equivalent in the above sense to the identity admissible transformation with

the same source system.

Since the fundamental groupoid is a normal subgroupoid of G∼, the
Frobenius product Gf ?GG∼=

{
T ?T ′ | T ∈ Gf , T ′ ∈ GG∼, t(T ) = s(T ′)

}
is a

subgroupoid of G∼, which coincides with the image of Gf under the s-action

(resp. the t-action) of G∼ on G∼.
There are several kinds of classes of di�erential equations that are

convenient for group classi�cation by the algebraic method in di�erent ways

[21,178,239,248].

De�nition 1.2. The class L|S is called normalized if GG∼= G∼. It is called
semi-normalized if Gf ? GG∼= G∼. Depending on the kind of the equivalence

group G∼ (the usual, the generalized, the extended or the extended generali-

zed equivalence group of L|S), we distinguish the (semi-)normalization in the
usual, the generalized, the extended or the extended generalized sense.

De�nition 1.3. Let GH be the action groupoid of a subgroup H of G∼.

Suppose that a family NS := {Nθ < Gθ | θ ∈ S} of subgroups of the point
symmetry groups Gθ with the associated subgroups Nθ := {(θ,Φ, θ) | θ ∈
S, Φ ∈ Nθ} of the vertex groups Gθ satis�es the property T Nθ = NT θT for

any θ ∈ S and for any T ∈ GH with s(T ) = θ. Then the Frobenius product

N f ? GH =
{
T ? T ′ | T ∈ N f , T ′ ∈ GH , t(T ) = s(T ′)

}
,

with N f := tθ∈SNθ is a subgroupoid of G∼, which coincides with the image

of N f under the s-action (resp. the t-action) of H on G∼. If N f ? GH = G∼,
we call the class L|S semi-normalized with respect to the subgroup H of G∼

and the family NS of subgroups of the point symmetry groups. If additionally
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GH ∩N f = S ⇒ S, then the class L|S is called disjointedly semi-normalized

with respect to the subgroup H of G∼ and the family NS of subgroups of the

point symmetry groups.

If H = G∼ and Nθ = {id(x,u)} for any θ ∈ S, then a class (disjointedly)

semi-normalized with respect to the group H and the family NS is literally

normalized. If H = G∼ and Nθ = Gθ for any θ ∈ S, then a class semi-

normalized with respect to the group H and the family NS is literally semi-

normalized. It is obvious that a normalized class is semi-normalized.

1.3. Classi�cation of Admissible Transformations and

Group Classi�cation Problems

The most powerful method for describing admissible transformations within

a class of di�erential equations is still the direct method, which is based

on the de�nition of admissible transformations. Applying this method to

the class L|S , we consider an arbitrary pair (θ, θ̃) ∈ S × S and a poi-

nt transformation in the space with coordinates (x, u) of the most general

form Φ: x̃ = X(x, u), ũ = U(x, u) with nonzero Jacobian |∂(X,U)/∂(x, u)|
and assume that Φ∗Lθ = Lθ̃. Expressing the required derivatives of ũ with

respect to x̃ in terms of derivatives of u with respect to x using the chain

rule, we substitute the derived expressions into the system Lθ̃, obtaining
the system (Φ−1)∗Lθ̃, which should be identically satis�ed by solutions of

the system Lθ. To take into account the last condition, we �x a ranking of

derivatives of u that is consistent with the structure of Lθ, substitute the

expressions for the leading derivatives of u in view of the system Lθ and its

di�erential consequences into (Φ−1)∗Lθ̃ and split the resulting system with

respect to the involved parametric derivatives of u. As a result, we obtain a

system that implies both the expression of θ̃ via (θ,X, U) and the system DE

of determining equations for components of Φ. The system DE involves only

the arbitrary-element tuple θ (resp. (Φ−1)∗θ̃).
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Assuming θ varying within S and splitting with respect to derivati-

ves of θ in view of the auxiliary system de�ning the set S,1.1 we get the

system DE∼ of determining equations for the (x, u)-components of usual

equivalence transformations. After �nding the (x, u)-components via the

integration of DE∼, the θ-component of usual equivalence transformations

is obtained from the above expression for θ̃. As a result, we construct the

usual equivalence group G∼ of the class L|S .
If the solution sets of DE and DE∼ coincide, then G∼ = GG∼, i.e., the

class L|S is normalized, which completes the description of the equivalence

groupoid G∼. The �rst example of such description in the literature was

given for the normalized class of generalized Burgers equations of the form

ut + uux + f(t, x)uxx = 0 in [159] although the normalization property was

implicitly used there.

Otherwise, the class L|S is not normalized, and integrating DE, which

can be carried out up to G∼-equivalence of admissible transformations, is a

complicated problem. A number of various techniques can be used to simplify

the solution of this problem. Below we present some of them.

Partition of classes. Let the set S be represented as a disjoint union of its

subsets, S = tγ∈ΓSγ with some index set Γ, where each of the subsets Sγ is
singled out from S by additional constraints, which are di�erential equations

or di�erential inequalities. The partition of S is equivalent to the partition

of the class L|S into the subclasses L|Sγ with γ running through Γ, L|S =

tγ∈ΓL|Sγ . Denote byG∼γ and by G∼γ the equivalence group and the equivalence

groupoid of the subclass L|Sγ , respectively.
If systems from di�erent subclasses of the partition are not related by

point transformations, then the partition of the class L|S induces the parti-
tion G∼ = tγ∈ΓG∼γ of its equivalence groupoid. In general, the structure

1.1This means that we set a ranking among the derivatives of θ that is consistent with structure of the

auxiliary system, solve this system jointly with its di�erential consequences for the leading derivatives of θ,

substitute the derived expressions into DE and split the obtained system with respect to the parametric

derivatives of θ.
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of the groupoid of a subclass may even be more complicated than that of

the entire class. This is why a preliminary analysis of the system DE is

needed for an appropriate partition of the class L|S , where for any γ ∈ Γ the

structure of G∼γ is simpler than the structure of G∼. Then we can �nd the

subgroupoids G∼γ separately and unite them. The best kind of partitions is

given by partitions into normalized subclasses, for which G∼γ = GG∼γ and thus

G∼ = tγ∈ΓGG
∼
γ [239,248].

There are several generalizations of the partition technique.

Disjoint subclasses may be related by point transformations, and thus

the partition of the class L|S into the subclasses L|Sγ does not induce the

partition of the equivalence groupoid G∼ into the equivalence groupoids G∼γ .
Consider a simple situation, where we have a partition of L|S into normalized
subclasses L|Sγ , γ ∈ Γ, and for some �xed γ0 ∈ Γ and for each γ ∈ Γ there

exists a point transformation Φγ that maps L|Sγ onto L|Sγ0 . We can assume

that Φγ0 = id(x,u). In fact, for any γ ∈ Γ the normalization of L|Sγ follows

from the normalization of L|Sγ0 and the existence of Φγ. Then

G∼ =
{(

(Φ−1
γ )∗θ,Φ

−1
γ′ ◦ ($T) ◦ Φγ, (Φγ′)∗(T∗θ)

) ∣∣
θ ∈ Sγ0, T ∈ G∼γ0, γ, γ

′ ∈ Γ
}
.

(1.1)

This structure is admitted by the groupoid of the class (4.46), where the

parameter σ plays the role of γ, see Remark 4.22 below.

The condition that the class L|S is a disjoint union of appropriate

subclasses can be weakened by allowing a proper intersection of subclasses

in the union. Thus, in [294] a class of variable-coe�cient reaction�di�usion

equations with power nonlinearities was represented as a non-disjoint uni-

on of normalized subclasses, and its groupoid was proved to be constituted

by the admissible transformations for the action groupoids of the subclasses

and the compositions of such composable admissible transformations from

the action groupoids of di�erent subclasses with nonempty intersections.

Construction of generalized/extended/extended generalized equivalence
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group. If the class L|S is not normalized in the usual sense, one can try

to describe its equivalence groupoid G∼ via �nding a generalized counterpart

of the usual equivalence group G∼, with respect to which the class L|S is

normalized in the corresponding sense [222,248].

Mappings between classes. Suppose that there are a class L′|S ′ of (systems
of) di�erential equations with the same independent and dependent variables

x and u as systems from the class L|S and a family of point transformations

F = {Ψθ | θ ∈ S} such that Ψθ
∗Lθ ∈ L′|S ′ for any θ ∈ S, and for any

θ′ ∈ S ′ there exists θ ∈ S with Ψθ
∗Lθ = L′θ′. Then we say that the family F

generates the mapping F∗ from the class L|S onto the class L′|S ′, where
F∗Lθ := Ψθ

∗Lθ, or, equivalently, the mapping F∗ : S → S ′ with F∗θ = θ′

if Ψθ
∗Lθ = L′θ′; see [248, 300] for the �rst explicit discussions of mappings

between the classes. Via F∗, the family F also induces the mapping from the

equivalence groupoid G∼ of the class L|S to the equivalence groupoid G∼′ of
the class L′|S ′ that is de�ned by

G∼ 3 T = (θ,Φ, θ̃)
F∗7→
(
(Ψθ)∗θ,Ψ

θ̃ ◦ Φ ◦ (Ψθ)−1, (Ψθ̃)∗θ̃
)
∈ G∼′.

We will denote this mapping by the same symbol as the corresponding

mapping between classes. The mapping F∗ : G∼ → G∼′ is in fact a groupoid

homomorphism since

F∗(T1 ? T2) = (F∗T1) ? (F∗T2), F∗(idθ) = idF∗θ, F∗(T −1) = (F∗T )−1

for any T1, T2 ∈ G∼, any θ ∈ S and any T ∈ G∼. Moreover, this homomorphi-

sm is surjective. Indeed, take any T ′ = (θ′,Φ′, θ̃′) ∈ G∼′. By the choice of

the family F , there exist θ, θ̃ ∈ S such that F∗(θ) = θ′ and F∗(θ̃) = θ̃′. The

triple T = (θ,Φ, θ̃) with Φ = (Ψθ̃)−1 ◦Φ′ ◦Ψθ belongs to G∼, and F∗T = T ′.
Under an appropriate choice of F , the structure of G∼′ is simpler than

the structure of G∼. Then after the study of G∼′, we can pull back obtai-

ned results with respect to F and thus get results on G∼. For example, an
appropriate partition of a class into its subclasses can become evident only
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after a mapping of this class to another class [223]. The complete group classi-

�cation of L|S up to G∼-equivalence can easily be derived from the analogous

classi�cation of L|S ′ using the pullback by F . In this way, the complete group
classi�cations of the classes of (1+1)-dimensional Kolmogorov and Fokker�

Planck equations modulo the general point equivalence were obtained from

the classical group classi�cation of the class of linear heat equations with

potentials, see Corollaries 7 and 17 in [249]. Using mappings between classes

for deriving complete group classi�cations up to G∼-equivalence needs a more

delicate consideration [300].

An important particular case of mappings between classes is given by

mappings of classes to their subclasses that are generated by subgroups of

the corresponding equivalence groups. Let S ′ be a subset of S that is singled

out from S by additional auxiliary di�erential equations or inequalities wi-

th respect to the arbitrary-element tuple θ. Thus, L|S ′ is a subclass of the

class L|S , and its equivalence groupoid G∼′ is a subgroupoid of the equivalence
groupoid G∼ of the class L|S . Suppose that for some subgroup H of G∼ each

orbit of the action groupoid GH intersects S ′ by a single θ′. Denote by Ψθ

the point transformation $∗T with T ∈ H such that T∗θ ∈ S ′. Then the

family F = {Ψθ | θ ∈ S} satis�es the required conditions to generate the

corresponding mapping F∗ : L|S → L|S ′ and the corresponding surjective

homomorphism F∗ : G∼ → G∼′. In practice, such mappings are realized via

gauging arbitrary elements by equivalence transformations.

Conditional equivalence groups. The equivalence group of a subclass of the

class L|S is called a conditional equivalence group of this class. The conditi-

onal equivalence group G∼′ of L|S associated with the subclass L|S ′ is called
maximal if for any subclass of L|S properly containing L|S ′, its equivalence
group does not contain G∼′. The equivalence group G∼ of the entire class L|S
acts on subclasses of L|S simultaneously with their equivalence groups, and

the set of maximal conditional equivalence groups of L|S is closed under this

action. Hence maximal conditional equivalence groups of L|S can be classi�ed
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modulo G∼-equivalence. This classi�cation can be a step in the description

of G∼ [248]. For some classes, this lone step gives the complete descripti-

on of the corresponding equivalence groupoids [221, 222]. The classi�cation

of maximal conditional equivalence groups of the class L|S can be combined

with a partition of L|S into subclasses that is consistent with the structure of
the set of such groups. Generalized versions of conditional equivalence groups

also can be considered [221,306].

Generating set of admissible transformations. A set B = {Tγ ∈ G∼ | γ ∈ Γ},
where Γ is an index set, is called a generating set of admissible transformati-

ons for the class L|S up to G∼-equivalence if any admissible transformation

of this class can be represented as the composition of a �nite number of

elements of the set B ∪ B̂ ∪ GG∼, where B̂ is the set of inverses of admissible

transformations from B, B̂ := {T −1 | T ∈ B}. To make the set B as small

as possible, it is natural to choose B as a subset of G∼ \ GG∼. Moreover, if a

canonical representative in a coset of G∼-equivalent admissible transformati-

ons can be assigned, only this representative should be selected from the

coset for including in B.
We call admissible transformations T1 and T2 for the class L|S composable

up to G∼-equivalence if an admissible transformation that is G∼-equivalent

to T1 is composable with T2 or, equivalently, if T1 is composable with an

admissible transformation that is G∼-equivalent to T2. It happens if and

only if there exists T ∈ G∼ such that T∗
(
t(T1)

)
= s(T2). We call a subset B

of G∼ self-consistent with respect to G∼-equivalence if the composability of

elements of B ∪ B̂ up to G∼-equivalence implies their usual composability.

(The converse implication always holds.) A necessary condition for the self-

consistency of B is the equality(
s(B)× t(B)

)
∩ (s× t)

(
GG∼\ Gf

)
= ∅

meaning that there is no element of the action groupoid GG∼ with di�erent

source and target in s(B)× t(B). If B is a self-consistent generating set of G∼
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with respect to G∼-equivalence, then any element of G∼ is G∼-equivalent to

the composition of a �nite number of elements of B∪B̂. More speci�cally, then

for any T ∈ G∼ there exist n ∈ N∪{0}, T0, Tn+1 ∈ GG
∼
and T1, . . . , Tn ∈ B∪

B̂ such that T = T0 ? T1 ? · · · ? Tn ? Tn+1. If additionally B is minimal

up to G∼-equivalence, then this representation for T is unique up to the

transformations

T̃0 = T0 ? T̆ , T̃n+1 = T −1
n ? · · · ? T −1

1 ? T̆ −1 ? T1 ? · · · ? Tn ? Tn+1

with an arbitrary T̆ ∈ Gt(T0) if n > 0 and under setting Tn+1 = idt(T0) if

n = 0.

Furcate splitting. This technique was suggested in [209] as a re�nement of the

direct method of group classi�cation. Its essence is a special way of handling

the system of determining equations for Lie symmetries of systems from the

class under study depending on the possible number of independent constrai-

nts on values of θ that are induced by this system. This is why it can be

extended to descriptions of other objects that are related to systems from

classes of di�erential equations and are computed via solving certain systems

of determining equations, including conservation laws [25], conditional equi-

valence groups [222] and generating sets of admissible transformations (see

footnote 4.2 below). The method of furcate splitting can further be enhanced

by involving algebraic techniques [23,25].

(Bijective) functors between groupoids. Suppose that we construct an

isomorphism between G∼ and the equivalence groupoid G̃∼ of a class L̃|S̃ ,
and the description of G̃∼ has been known or it is easier or more convenient

to describe the groupoid G̃∼ than the original groupoid G∼. For the latter

option, for example, some computation techniques that are relevant for G̃∼

might be inapplicable to G∼. Here it is not necessary for the classes L|S
and L̃|S̃ to be related by a family of point transformations. Then the descri-

ption of G̃∼ implies the description of G∼.
The technique involving bijective functors is e�ectively applied to the
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study of equivalence groupoids of classes of di�erential equations for the �rst

time in [292].

The in�nitesimal counterparts of the (pseudo)groups Gθ, G∩ and G∼ are

the Lie algebras gθ, g∩ and g∼ that are constituted by the generators of

local one-parameter subgroups of the corresponding groups and which are

called the maximal Lie invariance algebras of the systems Lθ, the kernel

invariance algebra of systems from the class L|S and the equivalence algebra

of the class L|S , respectively. Note that g∩ = ∩θ∈Sgθ.
The (complete) group classi�cation problem for the class L|S up to G∼-

equivalence (resp. up to G∼-equivalence) is to �nd g∩ and an exhaustive

list of G∼-inequivalent (resp. G∼-inequivalent) values of θ jointly with the

corresponding algebras gθ for which gθ 6= g∩. An admissible transformati-

on from G∼ \ GG∼ between systems from the �nal group classi�cation li-

st modulo G∼-equivalence is called an additional equivalence transformati-

on. Supplementing the group classi�cation up to G∼-equivalence with the

complete set of additional equivalence transformations results in the group

classi�cation up to G∼-equivalence.
Any version of the algebraic method of group classi�cation in fact reduces

to the classi�cation, moduloG∼-equivalence, of certain subalgebras contained

by the span g〈 〉 := 〈gθ, θ ∈ S〉. The e�ciency of using the algebraic method

depends on additional conditions satis�ed by the class L|S , in particular, how
consistent the span g〈 〉 is with G

∼-equivalence [21, Section 12].

Normalized classes are the most convenient for group classi�cation by the

algebraic method. If the class L|S is normalized, then g〈 〉 ⊆ $∗g
∼, and the

solution of the complete group classi�cation problem for this class reduces to

the classi�cation of appropriate subalgebras of g∼ whose pushforwards by $

can be quali�ed as the maximal Lie invariance algebras of systems from L|S .
Since then G∼-equivalence coincides with G∼-equivalence, it is obvious that
there are no additional equivalence transformations between Lie-symmetry

extensions classi�ed modulo G∼-equivalence. Moreover, it is inessential which
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of the two equivalences is used in the course of the classi�cation. The above

is also true if the class L|S is semi-normalized with respect to a subgroup

H of G∼ and a family NS of subgroups of the point symmetry groups, and

additionally the subgroup H and the family NS are known. In this case, we

call the class L|S de�nitely semi-normalized, and looking for G∼-inequivalent

subalgebras of g∼ is substituted in the algebraic method by looking for H-

inequivalent subalgebras of the in�nitesimal counterpart h of H [178]. The

pure semi-normalization of L|S at least guarantees that the group classi�-

cation L|S up to G∼-equivalence coincides with that up to G∼-equivalence.
If the class L|S is not normalized, then some Lie-symmetry extensions

within this class are not related to subalgebras of its equivalence algebra g∼.

De�nition 1.4. We call the maximal Lie invariance algebra gθ of a system Lθ
from the class L|S regular in this class if there exists a subalgebra s of g∼

such that gθ = $∗s, and singular in L|S otherwise.

If gθ = g∩, then the maximal Lie invariance algebra gθ is regular in L|S
since g∩ ⊆ $∗g

∼.1.2 If gθ 6= g∩ and gθ is a regular (resp. singular) maximal

Lie invariance algebra in the class L|S , then we say that the pair constituted

by the value of the arbitrary-element tuple and the algebra gθ presents a

regular (resp. singular) Lie-symmetry extension of g∩ in this class.

It is obvious that the sets of regular and singular Lie-symmetry extensions

are separately invariant with respect to the action of G∼ but in general this

is not the case for the action of G∼. In other words, regular Lie-symmetry

extensions are G∼-inequivalent to singular ones but may be G∼-equivalent to
them, see Remark 4.14 as an example on this claim. This also means that the

Lie-symmetry extension for a system Lθ with θ satisfying s−1(θ) 6= s−1(θ) ∩
GG∼ or, equivalently, t−1(θ) 6= t−1(θ) ∩ GG∼ (i.e., for a system being the

source or the target of an admissible transformation that is not generated by

an equivalence transformation in L|S) may also be regular. This is de�nitely

1.2More speci�cally, the kernel invariance algebra g∩ is naturally embedded into g∼ via the standard

prolongation of its elements to u(r) in view of the contact structure and the trivial prolongation to the

arbitrary elements θ [72].



26

the case if the quotient of the set s−1(θ) with respect to t-G∼-equivalence of

admissible transformations is discrete, as it appears for the regular Cases 14d

and 19d of Table 4.6 below.

Using De�nition 1.4, we suggest the following procedure of group classi-

�cation for a non-normalized class L|S of di�erential equations within the

framework of the algebraic method.

1. Describe the equivalence groupoid G∼ of the class L|S up to G∼-

equivalence, e.g., via constructing a generating set B of admissible

transformations. The further consideration simpli�es if the set B is mi-

nimal and self-consistent with respect to G∼-equivalence.

2. Classify, modulo G∼-equivalence, Lie symmetries of systems Lθ with θ
satisfying the condition s−1(θ) 6= s−1(θ)∩GG∼ or, equivalently, t−1(θ) 6=
t−1(θ) ∩ GG∼. This leads to the complete list of G∼-inequivalent Lie-
symmetry extensions within the class L|S that are singular or regular but
related to other Lie-symmetry extensions with elements from G∼ \ GG∼.
Here both the direct and the algebraic methods of group classi�cation

might be applicable.

3. Carry out the (complete) preliminary group classi�cation of the

class L|S . The optimized version of such classi�cation includes the classi-
�cation of candidates for appropriate subalgebras of the equivalence

algebra g∼ up to G∼-equivalence and, whenever it is possible, the

construction of systems from the class L|S that admit the projections

of the above candidates by $∗ as their Lie invariance algebras. For each

obtained system, we select the candidate that is maximal by inclusion;

such a candidate always exists.

4. Merge the lists obtained in steps 2 and 3 and exclude repetitions up

to G∼-equivalence, which leads to the complete list of Lie-symmetry

extensions within the class L|S up to G∼-equivalence.



27

5. Extend the part of the list from step 4 that is related to the cases of step 2

by compositions of admissible transformations from the set B modulo

G∼-equivalence. This gives the complete list of Lie-symmetry extensi-

ons within the class L|S up to G∼-equivalence. All possible additional

equivalence transformations between cases in this list are generated by

elements of B modulo G∼-equivalence.

The order of steps or even single operations may vary depending on the

class of di�erential equations to be studied.

We demonstrate the application of this technique in Section 4.2.
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Chapter 2

Equivalence Groupoids in Group Analysis

of Second-Order Evolution Equations

A number of mathematical models in physics and biology are repre-

sented by (1+1)-dimensional second-order nonlinear evolution equations.

Such models are used in such diverse fields as quantum field theory [78,

pp. 294–341], physics of nanowire semiconductor devices [63], and popula-

tion genetics [203]. Many nonlinear partial differential equations (PDEs)

that are important for applications are parameterized by arbitrary ele-

ments (constants or functions) and constitute classes of PDEs. An im-

portant task is to study transformation properties of such classes. If two

PDEs are connected by such a transformation, then associated objects

like exact solutions, local conservation laws, and various kinds of symme-

tries of these equations are also related by the respective transformation.

Such connected equations are called equivalent or similar [227]. In partic-

ular, the equivalence method allows one to construct exact solutions for

variable coefficient PDEs using known exact solutions for their constant

coefficient counterparts, see, e.g., [289, 290, 293]. At the same time, non-

degenerate point transformations appear to be a useful tool not only for

finding exact solutions but also for exhaustive solving group classifications

problems (see, e.g., [178,224,248,289,290,293]), design of physical param-

eterization schemes [242], and study of integrability [45, 148,172,304].

The core problem of group analysis is the classification of the reduc-

tion operators of differential equations. A reduction operator of a (1+1)-

dimensional partial differential equation (PDE) with independent variables
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t and x and the dependent variable u is a differential operator of the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (τ, ξ) 6= (0, 0), such that the

corresponding invariant surface condition Q[u] := τut + ξux − η = 0 leads

to the construction of ansatz that reduces the number of independent vari-

ables of the respective equation by one. Thus, such operators allows one

to reduce a (1+1)-dimensional PDE to an ordinary differential equation.

The reduction method is an efficient tool for seeking exact solutions of

nonlinear PDEs as the general theory of integration of such equations does

not exist. Among the most known reduction techniques are the prominent

Lie reduction method that originates from works by S. Lie and the nonclas-

sical reduction method suggested by G.W. Bluman in [28] (see also [35]).

The criterion of “nonclassical” invariance was firstly formulated in [93] and

the rigorous theory of the nonclassical reduction method, theory of reduc-

tion modules, was recently developed in [42]. The nonclassical reduction

operators are also called nonclassical symmetries [218], conditional sym-

metries [185] and Q-conditional symmetries [91] (see the related discussion

in [174] and some more research papers of interest [87,88,108,212,219,323]).

There is also a direct reduction method based on substitution of ansatz

into a PDE in question [60,86]. A rigorous definition of reduction of PDEs

was presented in [335]. It was proved therein that the direct approach of

reduction, taken in its full generality, is equivalent to the non-classical (con-

ditional symmetry) approach. The enhanced proof can be found in [42].

Therefore an important problem arises: to classify reduction operators

for those classes of PDEs that are of interest for applications. Classifica-

tion of Lie reduction operators is known as group classification problem and

appears to be the central problem of the group analysis. The main benefit

of Lie method is that the determining system for finding coefficients of Lie

reduction operators consists of linear PDEs. That is why the construction

of Lie symmetry operators for a fixed PDE is a routine task usually which

can be performed using the packages of symbolic computations. See, for
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example, the Maple-based GEM package [57,58]. Unfortunately the group

classification problems can be solved automatically using symbolic com-

putations only for certain classes having simple structures. The majority

of cases requires usage of the modern techniques of the group analysis

such as mapping between classes of PDEs, gauging of arbitrary elements

of the class, application of various types of equivalence groups, etc. (see,

e.g., [245,294,300]).

The nonclassical reduction operators can be of regular and singular

types. The problem of finding singular reduction operators reduces to

solving an initial PDE, therefore this case is called the “no-go” case and

often omitted in consideration (see more about “no-go” case in [42, 92,

173, 240, 241, 333]). But even in the case of regular nonclassical reduction

operators the problem of their classification for classes of PDEs is difficult.

This is due to the fact that finding coefficients of nonclassical reduction

operators one requires to solve a system of nonlinear PDEs. That is why

this method more often results in the complete solution when applied to

a fixed PDE rather than to a class of PDEs. Indeed, there are quite

few examples of successful classification of nonclassical reduction operators

(even regular ones) in the literature. At the best of our knowledge, such

classifications are performed for the class of semilinear diffusion equations

with a source ut = uxx + f(u) [13, 61, 90], the class of nonlinear reaction–

diffusion equations ut = (D(u)ux)x + f(u) for the cases of exponential

and power low diffusivity [12], the class of nonlinear filtration equations

ut = f(ux)uxx [252], the class of variable coefficient Huxley equations ut =

uxx+k(x)u2(1−u) [44,143], and the class of generalized Burgers equations

ut = uux + f(t, x)uxx [233].

In Section 2.1 we study transformation properties of the gen-

eral class of (1+1)-dimensional second-order evolution equations

ut = H(t, x, u, ux, uxx), Huxx 6= 0 and construct a chain of its nested nor-

malized subclasses. A special attention is paid to a class of variable coef-
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ficient equations of reaction-diffusion–convection type. For all the consid-

ered classes of nonlinear evolution equations, we construct their equivalence

groups, which can further be used for group analysis of these classes.

The group classification of a class of variable coefficient reaction–

diffusion equations with exponential nonlinearities f(x)ut = (g(x)enuux)x+

h(x)emu is carried out in Section 2.2. The equivalence groupoid of this

class is exhaustively described via finding the complete family of maximal

normalized subclasses and the associated conditional equivalence groups.

Limit processes between variable coefficient reaction–diffusion equations

with power nonlinearities and those with exponential nonlinearities are si-

multaneously studied with limit processes between objects related to these

equations, including Lie symmetries, exact solutions and conservation laws.

In Section 2.3, we classify conservation laws and potential symmetries

of diffusion equations in a porous medium ut = ((un)x + f(x)um)x, n 6= 0.

The class of generalized Fisher equations with time-dependent coeffi-

cients, ut = b(t)uxx + a(t)u(1 − u), ab 6= 0 is studied from Lie-symmetry

point of view in Section 2.4. We find the equivalence groupoid of this class

and perform its exhaustive group classification. Exact solutions of equa-

tions from this class are constructed using the equivalence method and the

method of mapping between classes.

A class of the Newell–Whitehead–Segel equations ut = a2(t)uxx+b(t)u−
c(t)u3, ac 6= 0, is studied with in Section 2.5. We describe its equivalence

groupoid and classify Lie reduction operators and regular nonclassical re-

duction operators of equations from this class. The criterion of reducibility

of variable coefficient Newell–Whitehead–Segel equations to their constant-

coefficient counterparts is derived. Wide families of exact solutions for

variable coefficient equations from this class are constructed.

In Section 2.6, we study Lie symmetries of generalized Burgers equa-

tions from two classes. At first we carry out the group classification

of a class of generalized Burgers equations with time-dependent viscos-
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ity ut + a(un)x = g(t)uxx, agn 6= 0. Using computed Lie symme-

tries, we solve an associated boundary-value problem. Then the group

classification of the generalized Burgers equations with linear damping

ut + unux + h(t)u = g(t)uxx, ng 6= 0, is derived using the equivalence

method suggested in [289].

In Section 2.7 the complete group classification problem for a class of

(2+1)-dimensional nonlinear Kolmogorov equations of the general form

ut = f(t)uyy − g(t)[K(u)]x , fgKuu 6= 0, is solved via gauging the arbitrary

elements of the class by a family of equivalence transformations parameter-

ized by the arbitrary elements, which reduces their number. Two possible

gaugings are discussed in order to show how equivalence groups serve in

making the optimal choice of gaugings.

The results presented in this chapter are based on publications [1*–

3*,6*,7*,10*,18*,22*,29*].

2.1. Transformation Properties of Nonlinear

Evolution Equations in 1+1 Dimensions

In this section we study transformation properties of the general class of

nonlinear second-order evolution equations of the form

ut = H(t, x, u, ux, uxx), Huxx 6= 0, (2.1)

to construct a chain of its nested normalized subclasses and to find their

equivalence groupoids.

2.1.1. Admissible Transformations of Evolution Equations. Any

nondegenerate point transformation T relating two fixed equations ut = H

and ũt̃ = H̃ from the class (3.67) has the form t̃ = T (t), x̃ = X(t, x, u),

ũ = U(t, x, u) with Tt(XxUu−XuUx) 6= 0 [158,160]. The partial derivatives

are transformed as follows:

ũt̃ =
DtUDxX −DxUDtX

TtDxX
, ũx̃ =

DxU

DxX
, ũx̃x̃ =

1

DxX
Dx

(
DxU

DxX

)
,
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where Dt = ∂t + ut∂u + utt∂ut + utx∂ux + . . . and Dx = ∂x + ux∂u + utx∂ut +

uxx∂ux + . . . are operators of the total differentiation with respect to t

and x. Moreover, it was proved in [250] that class (3.67) is normalized.

For further consideration we use the following statement.

Theorem 2.1 ( [250]). Class (3.67) is normalized in the usual sense. Its

equivalence group is formed by the transformations

t̃ = T (t), x̃ = X(t, x, u), ũ = U(t, x, u), (2.2)

H̃ =
XxUu −XuUx

TtDxX
H +

UtDxX −XtDxU

TtDxX
, (2.3)

where Tt(XxUu −XuUx) 6= 0,

Formula (2.3) implies that the subclass of class (3.67) singled out by the

condition Huxxuxx = 0 has the same equivalence transformation components

for variables. The following statement is true.

Theorem 2.2. The class of quasilinear second-order evolution equations,

ut = G(t, x, u, ux)uxx + F (t, x, u, ux), G 6= 0, (2.4)

is normalized in the usual sense. Its equivalence group is formed by the

transformation components for variables (2.2) and the transformations for

arbitrary elements

G̃ =
(DxX)2

Tt
G, F̃ =

XxUu −XuUx
TtDxX

F +
UtDxX −XtDxU

TtDxX

+
(Xxx + 2Xxuux +Xuuu

2
x)DxU − (Uxx + 2Uxuux + Uuuu

2
x)DxX

TtDxX
G.

The transformation component for G implies that, if G does not depend

on ux, then Xu = 0. We formulate more generally Lemma 1 from [138].

Theorem 2.3. The class

ut = G(t, x, u)uxx + F (t, x, u, ux), G 6= 0, (2.5)
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is normalized in the usual sense. Its equivalence group comprises the trans-

formations

t̃ = T (t), x̃ = X(t, x), ũ = U(t, x, u), G̃ =
X2
x

Tt
G, (2.6)

F̃ =
Uu
Tt
F +

UtXx−XtDxU

TtXx
+
XxxDxU−(Uxx+2Uxuux+Uuuu

2
x)Xx

TtXx
G,

where TtXxUu 6= 0.

Particular important subclass of class (2.5) is one, where the function

F is polynomial in ux and especially when it is quadratic or linear in ux.

We formulate separate statements for each of these cases.

Theorem 2.4. The class

ut = G(t, x, u)uxx +
n∑
k=0

F k(t, x, u)ukx, n ≥ 2, G 6= 0, (2.7)

is normalized in the usual sense. Its equivalence group consists of the trans-

formations (2.6) and the transformation components for the arbitrary el-

ements F k, k = 0, . . . , n, are found as solutions of the algebraic system

resulting from the splitting of the following equation with respect to differ-

ent powers of ux
n∑
k=0

F̃ k

(
Uu
Xx

ux +
Ux
Xx

)k
=

1

TtXx

[
XxUu

n∑
k=0

F kukx + UtXx −XtDxU

+
(
XxxDxU − (Uxx + 2Uxuux + Uuuu

2
x)Xx

)
G
]
.

Theorem 2.5. The class

ut = G(t, x, u)uxx+F 2(t, x, u)u2
x+F 1(t, x, u)ux+F 0(t, x, u), G 6= 0, (2.8)

is normalized in the usual sense. Its equivalence group is formed by the

transformations

t̃ = T (t), x̃ = X(t, x), ũ = U(t, x, u),

G̃ =
X2
x

Tt
G, F̃ 2 =

X2
x

TtU 2
u

(
UuF

2 − UuuG
)
, F̃ 1 =

1

TtUu

[
XxUuF

1
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+ 2
XxUx
Uu

(UuuG− UuF 2)−XtUu + (XxxUu − 2UxuXx)G

]
,

F̃ 0 =
1

Tt

[
U 2
x

Uu
F 2−UxF 1+UuF

0+Ut+

(
2
Ux
Uu
Uxu − Uxx −

U 2
x

U 2
u

Uuu

)
G

]
,

where TtXxUu 6= 0.

If we consider the subclass of class (2.8) singled out by the condition

F 2 = 0, then its equivalence group is a proper subgroup of the equivalence

group of class (2.8). The constraints for the transformations are derived

by setting F̃ 2 = 0 and F 2 = 0 in Theorem 5. This implies that Uuu = 0.

The following statement is true.

Theorem 2.6. The class

ut = G(t, x, u)uxx + F 1(t, x, u)ux + F 0(t, x, u), G 6= 0, (2.9)

is normalized in the usual sense. Its equivalence group comprises the trans-

formations

t̃ = T (t), x̃ = X(t, x), ũ = U 1(t, x)u+ U 0(t, x), TtXxU
1 6= 0, (2.10)

G̃ =
X2
x

Tt
G, F̃ 1 =

1

TtU 1

(
XxU

1F 1 −XtU
1 + (XxxU

1 − 2U 1
xXx)G

)
,

F̃ 0 =
1

Tt

[
U 1F 0 − (U 1

xu+ U 0
x)F 1 + U 1

t u+ U 0
t

+

(
2
U 1
x

U 1
(U 1

xu+ U 0
x)− U 1

xxu− U 0
xx

)
G

]
.

Consider one more subclass of class (2.8) for which the condition Uuu =

0 holds for admissible transformations. This is the subclass singled out by

the condition F 2 = Gu,

ut = (G(t, x, u)ux)x +K(t, x, u)ux + P (t, x, u), G 6= 0. (2.11)

This class can be written in the form

ut = Guxx +Guu
2
x + (Gx +K)ux + P,
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where connections between arbitrary elements of the latter class and

class (2.8) are given by the formulas F 2 = Gu, F
1 = Gx + K, F 0 = P .

It contains derivatives of G and they naturally appear in transformation

components for arbitrary elements of the equivalence group. This group

can be considered as usual one if we extend the tuple of arbitrary elements

by new elements Gu and Gx. Then the transformations of these variables

take the form

G̃x̃ =
Xx

Tt
Gx + 2

Xxx

Tt
G, G̃ũ =

X2
x

TtU 1
Gu.

It is easy to see that the group is really usual one, representing the above

class in the form

ut = Guxx +G1u2
x + (G2 +K)ux + P

with additional arbitrary elements G1 = Gu, and G2 = Gx.

Theorem 2.7. Reparameterized class (2.11) is normalized in the usual

sense. Its equivalence group is formed by the transformations

t̃ = T (t), x̃ = X(t, x), ũ = U 1(t, x)u+ U 0(t, x), TtXxU
1 6= 0,

G̃ =
X2
x

Tt
G, K̃ =

Xx

Tt

[
K −

(
Xxx

Xx
+ 2

U 1
x

U 1

)
G− 2(U 1

xu+ U 0
x)
Gu

U 1
− Xt

Xx

]
,

P̃ =
1

Tt

[
U 1P +

(U 1
xu+U 0

x)2

U 1
Gu − (U 1

xu+ U 0
x)(Gx+K) + U 1

t u+ U 0
t

+

(
2
U 1
x

U 1
(U 1

xu+ U 0
x)− U 1

xxu− U 0
xx

)
G

]
.

The subclass of class (2.11) singled out by the condition K = 0,

ut = (G(t, x, u)ux)x + P (t, x, u), G 6= 0, (2.12)

is not normalized anymore in contrast to its covering classes considered

above.

Constraints for its admissible transformations are derived setting K = 0

and K̃ = 0 in the transformations adduced in the previous theorem, which
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results in the equation

2

(
U 1
x

U 1
u+

U 0
x

U 1

)
Gu +

(
Xxx

Xx
+ 2

U 1
x

U 1

)
G+

Xt

Xx
= 0.

The further constraints on forms of X, U 1 and U 0 depend on values of the

function G. If G does not satisfy the equation of the form (au + b)Gu +

cG + d = 0, where a, b, c and d are functions of t and x, then the point

transformations between equations from this class necessarily satisfy the

conditionsXt = Xxx = U 1
x = U 0

x = 0, and such a subclass of class (2.12) will

be normalized in the usual sense. The whole class (2.12) is not normalized.

We adduce its equivalence group in the following statement.

Theorem 2.8. The equivalence group of class (2.12) is comprised of the

transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = U 1(t)u+ U 0(t), TtU
1δ1 6= 0,

G̃ =
δ2

1

Tt
G, P̃ =

1

Tt

(
U 1P + U 1

t u+ U 0
t

)
.

The description of the entire equivalence groupoid of class (2.12) needs

additional study.

Classes of evolution equations with variable coefficients of ut often ap-

pear in applications. That is why we additionally consider the generaliza-

tion of equations (2.11) of the form

S(t, x)ut = (G(t, x, u)ux)x +K(t, x, u)ux +P (t, x, u), SG 6= 0. (2.13)

In particular, the classes of variable-coefficient diffusion–reaction equa-

tions f(x)ut = (g(x)A(u)ux)x + h(x)B(u) and diffusion–convection equa-

tions f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux (fgA 6= 0) are subclasses of

this class. Though the coefficient S(t, x) can be gauged to one by the

family of point transformation

t̃ = t, x̃ =
∫ x
x0
S(t, y) dy, ũ = u,
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we will consider class (2.13) separately since its transformational properties

become more complicated in comparison with those of class (2.11). The

following statement is true.

Theorem 2.9. Any point transformation between two fixed equations from

class (2.13) has the form (2.10). Then the respective values of the arbitrary

elements are related via the formulas

K̃+G̃x̃

S̃
=
Xx

TtS

[
K+Gx+

(
Xxx

Xx
−2

U 1
x

U 1

)
G−2(U 1

xu+U 0
x)
Gu

U 1
−Xt

Xx
S

]
,

G̃

S̃
=
X2
x

Tt

G

S
,

P̃

S̃
=

1

TtS

[
U 1P +

(U 1
xu+ U 0

x)2

U 1
Gu + (U 1

t u+ U 0
t )S

+

(
2
U 1
x

U 1
(U 1

xu+ U 0
x)− U 1

xxu− U 0
xx

)
G− (U 1

xu+ U 0
x)(K +Gx)

]
.

It is obvious that transformation properties of class (2.13) become more

complicated in comparison with those of class (2.11). Transformations are

defined only for fractions of arbitrary elements. It is explained by the

fact that this class admits peculiar gauge equivalence transformation (an

equivalence transformation for which independent and dependent variables

do not transform but only arbitrary elements). This is the transformation

S̃ = Z(t, x, S), G̃ =
G

S
Z, K̃ =

K

S
Z −G

(
Z

S

)
x

, P̃ =
P

S
Z,

where Z is an arbitrary smooth function of its variables with ZS 6= 0.

Theorem 2.10. The equivalence group of class (2.13) comprises the trans-

formations

t̃ = T (t), x̃ = X(t, x), ũ = U 1(t, x)u+ U 0(t, x), TtXxU
1 6= 0,

S̃ = Z(t, x, S), G̃ =
X2
x

Tt

G

S
Z,

K̃ =
XxZ

TtS

[
K −

(
Xxx

Xx
+ 2

U 1
x

U 1

)
G− 2UGu

U 1
− Xt

Xx
S

]
− Xx

Tt
G

(
Z

S

)
x

,

P̃ =
Z

TtS

[
U 1P +

U2

U 1
Gu − U(K +Gx) + (U 1

t u+ U 0
t )S
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+

(
2
U 1
x

U 1
U − U 1

xxu− U 0
xx

)
G

]
,

where U = U 1
xu+ U 0

x .

Class (2.13) can be regarded as normalized in the usual sense since we

can present it in the form Sut = Guxx +G1u2
x +G2ux + P with additional

arbitrary elements G1 = Gu, and G2 = K +Gx.

We note that the subclass of class (2.13) singled out by the condition

K = 0, i.e. the class

S(t, x)ut = (G(t, x, u)ux)x + P (t, x, u), SG 6= 0, (2.14)

is not normalized. In contrast to the case of class (2.13) the coefficient S is

essential for class (2.14). The gauge equivalence transformations are quite

simple in this case, namely, each coefficient can be multiplied by a nonvan-

ishing smooth function of t. The equivalence group of class (2.14) is wider

than the equivalence group of its subclass with S = 1 (cf. Theorem 8).

The following statement is true.

Theorem 2.11. The equivalence group of class (2.14) consists of the trans-

formations

t̃ = T (t), x̃ = X(x), ũ = U 1(t)u+ U 0(t), TtXxU
1 6= 0,

S̃ = ψ(t)
Tt
Xx

S, G̃ = ψ(t)XxG, P̃ =
ψ(t)

Xx

(
U 1P + (U 1

t u+ U 0
t )S
)
,

where ψ(t) is a nonvanishing smooth function of its variable.

Concluding Remarks. The chain of nested subclasses of the general class

of (1+1)-dimensional second-order nonlinear evolution equations is con-

structed. For those subclasses that are proved to be normalized the found

equivalence groups give the exhaustive description of the respective equiv-

alence groupoids of these classes. So, we firstly proved that classes (2.4),

(2.5), (2.7)–(2.9), (2.11) and (2.13) are normalized and then looked for

their equivalence groups, which lead to the complete description of the

equivalence groupoids of these classes.
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Finding the equivalence groupoids for the non-normalized classes is a

difficult task since the determining equations for components of admissible

transformations are nonlinear ones. That is why for such classes other

techniques are needed like partition of the class into normalized subclasses

and the method of furcate splitting [292]. In future work we plan to use

these methods to find the entire equivalence groupoids of classes (2.12)

and (2.14), that are of special interest for further applications. There are

many models with application in physics and biology which are members

of these classes, e.g. variable coefficient Fisher and Newell–Whitehead–

Segel equations, which are also studied within this chapter. We note that

the group classification for the general class of (1+1)-dimensional second-

order quasilinear evolution equations ut = F (t, x, u, ux)uxx +G(t, x, u, ux),

F 6= 0, that contains classes considred in this chapter as subclasses was

performed in [17]. Nevertheless those results obtained up to a very wide

equivalence group seem to be inconvenient to derive group classification

for its specific subclasses.

2.2. Extended Group Analysis of a Class

of Reaction–Diffusion Equations

with Exponential Nonlinearities

The problem of extended group analysis of variable coefficient reaction–

diffusion equations of the general form

f(x)ut = (g(x)A(u)ux)x + h(x)B(u), (2.15)

where fgA 6= 0, was initiated in [294, 300]. The case of A and B being

power functions, i.e., the class of equations having the form

f(x)ut = (g(x)unux)x + h(x)um, (2.16)

where fg 6= 0 and (n,mh) 6= (0, 0), was successfully investigated therein.

Lie symmetry classifications of certain subclasses of this class were carried
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out in [70,83,225,275]. The most important studies on reduction operators

(called more often nonclassical or Q-conditional symmetries) are presented

in [12,13,61,90,241,299,301]. For many reasons, the natural continuation

of the study in [294, 300] is to consider equations of the form (2.15) with

A and B being exponential functions,

f(x)ut = (g(x)enuux)x + h(x)emu. (2.17)

Here f = f(x), g = g(x) and h = h(x) are arbitrary smooth functions of

the variable x, fg 6= 0 and n and m are arbitrary constants. The linear

case, which is singled out by the condition n = m = 0, is excluded from

consideration as it is well investigated. The semilinear equations of the

form (2.17), which correspond to the constraints n = 0 and m 6= 0, were

already considered in [288, 301]. Moreover, equations of the form (2.17)

with n 6= 0 are not related to linear and semilinear equations of the same

form via point transformations. This is why in the present section we

study only the class of equations of the form (2.17) with fgn 6= 0, which

we briefly call class (2.17). Note that the parameter n can be gauged to 1

by a simple scaling of variables from the very beginning but we will not

use this gauge and will deal with the general form (2.17).

2.2.1. Equivalence Transformations. We make a preliminary study of

admissible transformations for class (2.17) using the direct method [160].

The obtained results are summarized in Theorems 2.12 and 2.13, where we

use the notation Ψ = e−
n
δ3
ψ in order to simplify formulas.

Theorem 2.12. The generalized extended equivalence group Ĝ∼ of

class (2.17) is formed by the transformations

t̃ = δ1t+ δ2, x̃ = ϕ(x), ũ = δ3u+ ψ(x),

f̃ =
δ0δ1

ϕx
Ψf, g̃ = δ0ϕxΨ

2g, h̃ =
δ0δ3

ϕx
e−

m
δ3
ψΨh, ñ =

n

δ3
, m̃ =

m

δ3
,
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where ϕ is an arbitrary smooth function of x, ϕx 6= 0; ψ and Ψ are deter-

mined by the formulas

ψ(x) = −δ3

n
ln |Ψ(x)| , Ψ(x) = δ4

∫
dx

g(x)
+ δ5.

δj, j = 0, . . . , 5, are arbitrary constants, δ0δ1δ3 6= 0 and (δ4, δ5) 6= (0, 0).

Thus, elements of Ĝ∼ are parameterized by five arbitrary constants and

a single arbitrary smooth function of x. The usual equivalence group G∼ of

class (2.17) is the subgroup of the generalized extended equivalence group

Ĝ∼, which is singled out with the condition δ4 = 0.

Theorem 2.13. The generalized extended equivalence group of the class

f(x)ut = (g(x)enuux)x + h(x)enu with nfg 6= 0, (2.18)

coincides with the usual equivalence group G∼m=n of this class and consists

of the transformations

t̃ = δ1t+ δ2, x̃ = ϕ(x), ũ = δ3u+ ψ(x),

f̃ =
δ0δ1

ϕx
Ψf, g̃ = δ0ϕxΨ

2g, h̃ =
δ0δ3

nϕx
[nhΨ + (gΨx)x] Ψ, ñ =

n

δ3
,

where δj, j = 0, 1, 2, 3, are arbitrary constants, δ0δ1δ3 6= 0, ϕ and ψ are

arbitrary smooth functions of x with ϕx 6= 0, Ψ(x) = e−
nψ(x)
δ3 .

Elements of G∼m=n are parameterized by four arbitrary constants and

two arbitrary smooth functions of x. Therefore, the group G∼m=n is really

a nontrivial conditional equivalence group of class (2.17).

In view of Theorem 2.12, the family of equivalence transformations

t̃ = t, x̃ =

∫ x

x0

dy

g(y)
, ũ = u, (2.19)

parameterized by the arbitrary element g maps class (2.17) onto its subclass

consisting of equations of the form f̃ ũt̃ = (eñũũx̃)x̃+ h̃em̃ũ, with g̃ = 1. The

new arbitrary elements are expressed via the old ones in the following way:
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f̃ = fg, h̃ = gh, m̃ = m, ñ = n. Hence, within the framework of symmetry

analysis it suffices, without loss of generality, to investigate the equations

f(x)ut = (enuux)x + h(x)emu with nf 6= 0 (2.20)

instead of class (2.17) because all results on symmetries, solutions and

conservation laws of equations from subclass (2.20) can be extended to

the entire class (2.17) with transformations (2.19). In other words, up to

Ĝ∼-equivalence we can assign the gauge g = 1 for the arbitrary element g.

Instead of g = 1 we can set f = 1, but the gauge g = 1 is more convenient

because it results in simpler group classification of class (2.17). Simultane-

ously, we can assign the value 1 to arbitrary element n, but this gauge is

not essential in the course of group classification and hence it will be used

only in the presentation of the final classification list.

The description of the generalized equivalence group of class (2.20) and

the generalized conditional equivalence group of the same class which is

associated with the condition m = n is deduced from Theorem 2.12 and

Theorem 2.13 by setting g̃ = g = 1.

Theorem 2.14. The generalized equivalence group Ĝ∼1 of class (2.20) is

formed by the transformations

t̃ = δ1t+ δ2, x̃ =
δ6x+ δ7

δ4x+ δ5
, ũ = δ3u−

δ3

n
ln |δ4x+ δ5|,

f̃ =
δ1

∆2
|δ4x+ δ5|3f, h̃ =

δ3

∆2
|δ4x+ δ5|

m
n +3h, ñ =

n

δ3
, m̃ =

m

δ3
,

where δj, j = 1, . . . , 7, are arbitrary constants such that δ1δ3 6= 0,

∆ = δ5δ6 − δ4δ7 6= 0 and the tuple (δ4, δ5, δ6, δ7) is defined up to a nonzero

multiplier; e.g., we can set ∆ = ±1.

Theorem 2.15. The class of equations

f(x)ut = (enuux)x + h(x)enu with nf 6= 0 (2.21)
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admits the generalized equivalence group Ĝ∼1,m=n consisting of the transfor-

mations

t̃ = δ1t+ δ2, x̃ = ϕ(x), ũ = δ3u+
δ3

2n
ln |δ2

0ϕx|, (2.22)

f̃ = δ0δ1|ϕx|−
3
2f, h̃ = δ3ϕ

−2
x h+

δ3

n
|ϕx|−

3
2 (|ϕx|−

1
2 )xx, ñ =

n

δ3
,

where δj, j = 0, . . . , 3, are arbitrary constants with δ0δ1δ3 6= 0 and ϕ = ϕ(x)

is an arbitrary smooth function with ϕx 6= 0.

Class (2.21) can be mapped onto a proper subclass with only one arbi-

trary element depending on x using an appropriate family of point transfor-

mations from the group Ĝ∼1,m=n. The most convenient gauges for arbitrary

elements are the gauges f = 1 and h = 0. The first gauge can be realized

by the transformation

t̃ = sign(f)t, x̃ =

∫ x

x0

f(y)
2
3dy, ũ = u+

1

3n
ln |f |, (2.23)

which maps an equation of the form (2.21) to the equation ũt̃ = (eñũũx̃)x̃+

h̃eñũ, i.e., f̃ = 1. The other arbitrary elements h and n are transformed to

h̃ = f−1
(
f−

1
3h+ n−1(f−

1
3 )xx

)
and ñ = n, respectively.

Theorem 2.16. The generalized equivalence group Ĝ∼f=g=1,m=n of the class

of equations

ut = (enuux)x + h(x)enu with n 6= 0, (2.24)

consists of the transformations

t̃ = δ1t+ δ2, x̃ = δ4x+ δ5, ũ = δ3u+
δ3

n
ln
δ2

4

δ1
, h̃ =

δ3

δ2
4

h, ñ =
n

δ3
,

where δj, j = 1, . . . , 5 are arbitrary constants, δ1δ3δ4 6= 0 with δ1 > 0.

The gauge h = 0 for class (2.21) can be realized by the family of trans-

formations (2.22), where δ1 = δ3 = 1, δ2 = 0 and the function ϕ satisfies

the ODE (|ϕx|−
1
2 )xx + nh|ϕx|−

1
2 = 0.
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Theorem 2.17. The generalized equivalence group Ĝ∼1,h=0 of the class of

equations

f(x)ut = (enuux)x with nf 6= 0, (2.25)

is projection of the group Ĝ∼1 on the space (t, x, u, f, n).

It is possible to carry out the complete group classification of equations

from class (2.21) using either the gauge f = 1 or the gauge h = 0. We use

the first gauge to perform the complete group classification of (2.21).

2.2.2. Lie Symmetries. The group classification of class (2.17) is carried

out within the framework of the classical Lie approach [217, 227]. At the

same time, we additionally apply a number of modern tools of symmetry

analysis. Thus, gauging the arbitrary element g to 1 by equivalence trans-

formations, we in fact classify subclass (2.20) instead of the entire class.

The main equivalence relation involved in the consideration is generated

by the generalized equivalence group Ĝ∼1 of this subclass, which contains

the usual equivalence group of the same subclass as a proper subgroup. In

other words, we use Ĝ∼1 -equivalence, which is stronger than G∼1 -equivalence

prescribed by the classical Lie approach. Moreover, for group classifica-

tion of equations from subclass (2.20) with m = n we involve the equiv-

alence relation which is generated by the conditional generalized equiva-

lence group Ĝ∼1,m=n and is even stronger than Ĝ∼1 -equivalence. In total,

this leads to the reduction of classification cases and lowering the number

of additional equivalence transformations to be constructed. Lie symmetry

extensions are separated using the method of furcate splitting [138,209].

The following statement is true.

Proposition 2.18. The kernel algebra, i.e., the intersection of the

maximal Lie invariance algebras of equations from class (2.20) (resp.

class (2.17)) is the one-dimensional algebra A∩ = 〈∂t〉.
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The following exclusive cases appear during classification:

1) m 6= 0, n; 2) m = 0; 3) m = n.

The case h = 0 is special as the value of m is undefined in this case but it

can be included to the case m = n. This is why in the first two cases we

assume that h 6= 0.

The results of group classification for class (2.17) are collected in Ta-

ble 2.1. There exist additional equivalence transformations between clas-

sification cases presented in Table 2.1. Thus, the point transformation

t′ =
1

εn
eεnt, x′ = x, u′ = u− εt (2.26)

links the equations f(x)ut = (g(x)enuux)x + εf(x) and f(x′)u′t′ =

(g(x′)enu
′
u′x′)x′. This transformation belongs to no equivalence group found

in previous section and reduces Cases 4–6 of Table 2.1 to the set of cases

‘m = n or h = 0’. For the reduction to be precisely to Cases 7–10 of

Table 2.1, for Case 5 transformation (2.26) should be composed with an

appropriate transformation of the form (2.23). Such compositions map

subcases of Case 5 to subcases of Case 8 and 9. The transformations

described exhaust additional equivalence transformations within the clas-

sification list from Table 2.1. It is proved in the next section within the

framework of admissible transformations. The transformation (2.26) can

also be included in the framework of conditional equivalence but the corre-

sponding conditional equivalence group is too complicated. The following

statement is true.

Theorem 2.19. Up to point transformations, a complete list of Lie sym-

metry extensions for equations from class (2.17) is exhausted by Cases 1–3

and 7–10 of Table 2.1.

Corollary 2.20. If an equation from class (2.17) is invariant with respect

to a four-dimensional Lie algebra then it is reduced using point transfor-

mations to the equation ut = (euux)x.
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Table 2.1: Results of group classification of class (2.17) under the gauge g = 1.

no. f(x) h(x) Basis of Amax

General case of m

1 ∀ ∀ ∂t

2 f1(x) h1(x) ∂t, (d+ 2b− pn)t∂t + (nax2 + bx+ c)∂x + (ax+ p)∂u

3 1 ε ∂t, ∂x, 2mt∂t + (m− n)x∂x − 2∂u

m = 0, h 6= 0, (h/f)x = 0

4 ∀ εf(x) ∂t, e
−εnt(∂t + ε∂u)

5 f1(x) εf1(x) ∂t, e
−εnt(∂t + ε∂u), n(nax2 + bx+ c)∂x + (nax+ 2b+ d)∂u

6 1 ε ∂t, e
−εnt(∂t + ε∂u), ∂x, nx∂x + 2∂u

m = n or h = 0

7 ∀ ∀ ∂t, nt∂t − ∂u

8 1 αx−2 ∂t, nt∂t − ∂u, nx∂x + 2∂u

9 1 ε ∂t, nt∂t − ∂u, ∂x

10 1 0 ∂t, nt∂t − ∂u, ∂x, nx∂x + 2∂u

Here n, α and ε are nonzero constants, n = 1 mod Ĝ∼1 , ε = ±1 mod Ĝ∼1 ,

f1(x) = exp
(∫ −3nax+d

nax2+bx+c
dx
)
, h1(x) = ε exp

(
−
∫ (3n+m)ax+2b+(m−n)p

nax2+bx+c
dx
)
,

and up to Ĝ∼1 -equivalence the parameter tuple (a, b, c, d, p) can be assumed to belong to the set

{(0, 1, 0, d̄, (q̄ + 2)/(n−m)), (0, 0, 1, 1, p̌), (0, 0, 1, 0, 1), (1/n, 0, 1, d̂, p̂)},

where (d̄, q̄) 6= (0, 0), (−3,−3−m/n) and modulo Ĝ∼1 we can also set d̄ > −3/2 and, if d̄ = −3/2,

q̄ > −3/2−m/(2n); d̂ > 0 and, if d̂ = 0, p̂ > 0. In Case 5 the parameter p should be neglected.

In Case 7 the arbitrary element f (resp. h) can be additionally gauged by transformations

from Ĝ∼1,m=n. For example, we can set f = 1.

Corollary 2.21. If an equation from class (2.17) with m 6= 0, n possesses

a three-dimensional Lie invariance algebra then it is mapped by a point

transformation to the equation ut = (euux)x ± emu.
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2.2.3. Equivalence Groupoid. To complete the description of the

equivalence groupoid of the class (2.17), that is not normalized, we need

to derive a conditional equivalence group for one more its subclass.

Theorem 2.22. The generalized equivalence group G∼m=0,(h/f)x=0 of the sub-

class of class (2.17), which is singled out by the conditions m = 0 and

(h/f)x = 0, consists of the transformations

t̃ = T (t), x̃ = ϕ(x), ũ = δ3u+ ψ(t, x),

f̃ =
δ0

ϕx
Ψf, g̃ = δ0ϕxΨ

2g, ñ =
n

δ3
,

where the smooth function T = T (t) with Tt 6= 0 is defined by the formulas:

µµ̃ 6= 0:
eñµ̃T−1

ñµ̃
= δ1

enµt−1

nµ
+δ2, µ = 0, µ̃ 6= 0:

eñµ̃T−1

ñµ̃
= δ1t+δ2,

µ 6= 0, µ̃ = 0: T = δ1
enµt−1

nµ
+δ2, µ = µ̃ = 0: T = δ1t+δ2,

where µ = h/f and µ̃ = h̃/f̃ are constants, ϕ is an arbitrary smooth func-

tion of x with ϕx 6= 0, ψ(t, x) = −δ3
n ln |Tt(t)Ψ(x)| , Ψ(x) = δ4

∫
dx
g(x) + δ5,

δj, j = 0, . . . , 5, are arbitrary constants, δ0δ1δ3 6= 0 and (δ4, δ5) 6= (0, 0).

The group G∼m=0,(h/f)x=0 is a generalized equivalence group even if n is

fixed as it contains transformations with respect to t, which depend on

the (constant) ratio of the arbitrary elements h and f . In contrast to

G∼m=n, we do not use G∼m=0,(h/f)x=0 in the course of group classification of

class (2.20) because the application of this conditional equivalence group

does not have a crucial influence on classification, and the corresponding

system m = 0, (h/f)x = 0 for arbitrary elements is less obvious. At

the same time, transformations from G∼m=0,(h/f)x=0 play the role of addi-

tional equivalence transformations after completing the classification (see

the previous section).

We summarize the investigation of admissible transformations in

class (2.17) in the following assertion.
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Theorem 2.23. Let the equations

f(x)ut = (g(x)enuux)x + h(x)emu and f̃(x̃)ut = (g̃(x̃)eñũux)x + h̃(x̃)em̃ũ

be connected via a point transformation T in the variables t, x and u. Then

either
m̃

ñ
=
m

n
or (m, m̃) = (0, ñ) or (m, m̃) = (n, 0).

The transformation T is induced by a transformation from

a) G∼ if either m 6= 0, n or m = 0, (h/f)x 6= 0;

b) G∼m=n if m = n and m̃ 6= 0, then also m̃ = ñ;

c) G∼m=0,(h/f)x=0 if m = m̃ = 0, (h/f)x = 0, then also (h̃/f̃)x = 0.

If m = 0 and m̃ = ñ then (h/f)x = 0 and the transformation T is the

composition of two transformations, from G∼m=0,(h/f)x=0 and G∼m=n, with the

intermediate equation having h = 0.

The case with m = n and m̃ = 0 is similar to the previous one.

Theorem 2.24. Class (2.17) is represented as the union of its

three maximal normalized subclasses separated by the conditions

(h 6= 0, m 6= 0, n) or (m = 0, (h/f)x 6= 0); m = 0, (h/f)x = 0; m = n.

Only the latter two subclasses have a non-empty intersection, and this in-

tersection is the normalized subclass ‘h = 0’.

2.2.4. Contractions. Examples of nontrivial limits between equations

admitting Lie symmetry extensions are known for a long time. For in-

stance, in [39] equations with exponential nonlinearities were excluded from

the group classification list of nonlinear diffusion equations as a separate

case and were just considered as a limiting case of equations with power

nonlinearities. At the same time, it looks more convenient to include such

cases to classification lists and then indicate connections between different

classification cases via limiting processes. Using the analogy with the-

ory of Lie algebras such connections are called contractions. A theoretical
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background on contractions of differential equations, their Lie symmetry

algebras and solutions was first discussed in [139].

In this section we relate, via contractions, the group classification lists

obtained for class (2.17) with the classification list for class (2.16) [294, Ta-

ble 1]. Then contractions are used to construct exact solutions of equations

from class (2.17) using known solutions of equations from class (2.16). We

also demonstrate a similar consideration for conservation laws.

Contractions of Equations and of Lie Invariance Algebras. At first

we apply the transformation

t̃ = δt, x̃ =
√
δx, ũ = δ(u− 1), ñ =

n

δ
, m̃ =

m

δ
(2.27)

parameterized by a positive constant parameter δ to the equation from

class (2.16) with the values arbitrary elements g = 1 and f and h presented

in Case 2 of Table 1 of [294]. The constant parameters a, b, c, d and p are

transformed in the following way

ã = a, b̃ =
b√
δ
, c̃ = c, d̃ =

d√
δ
, p̃ =

√
δp, α̃ = δα (2.28)

wherever this is relevant, i.e., we change parameters if and only if they

appear in the values of arbitrary elements of the initial equation. Then, we

take the imaged equation and proceed to the limit δ → +∞. This results

in the equation from class (2.20) with the values of the arbitrary elements f

and h presented in Case 2 of Table 2.1. The same procedure establishes

a contraction between the associated Lie algebras of vector fields. The

corresponding notation will be 2.2 → 1.2, where II in the first numbers

indicate the Table 1 of [294] and I in the first numbers stands for Table 2.1

and the second numbers indicate the numbers of cases within these tables.

We present the complete list of contractions which replace power nonlin-

earities by exponential ones and, therefore, connect cases of Lie symmetry

extensions for classes (2.17) and (2.16):

II.1→ I.1, II.2→ I.2, II.3→ I.3, II.4→ I.4, II.5→ I.5,
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II.6→ I.6, II.8→ I.7, II.9→ I.8, II.10→ I.9, II.11→ I.10.

Contractions of Lie Reductions and Exact Solutions. In [294] we

carried out Lie reductions and constructed Lie exact solution for equations

from class (2.16) with the values of arbitrary elements presented in Cases 9

and 12 of Table 1 in [294], which admit three-dimensional Lie symmetry

algebras. It is shown in the previous subsection that there is a contraction

of Case 9 of Table 1 in [294] to Case 8 of Table 2.1. The corresponding

equations from classes (2.17) and (2.16) are

ũt̃ =
(
eñũũx̃

)
x̃

+ α̃x̃−2eñũ (2.29)

ut = (unux)x + αx−2un+1, (2.30)

whose maximal Lie invariance algebras g̃ and g are generated by the vector

fields X̃1 = ∂t̃, X̃2 = nt̃∂t̃− ∂ũ, X̃3 = nx̃∂x̃ + 2∂ũ and X1 = ∂t, X2 = nt∂t−
u∂u, X3 = nx∂x + 2u∂u, respectively. The contraction II.9 → I.8 can be

realized using the simpler transformation

t̃ = t, x̃ = x, ũ = δ(u− 1), ñ =
n

δ
, α̃ = δα (2.31)

than transformation (2.27). In the course of this contraction the algebra g

is contracted to the algebra g̃ as a Lie algebra of vector fields in the space

of (t, x, u). Namely, X1 → X̃1, X2 → X̃2 and X3 → X̃3. Let us study the

related contractions of Lie reductions of equation (2.30) to ones of equa-

tion (2.29). Inequivalent Lie reductions of equation (2.29) with respect to

one-dimensional subalgebras of the corresponding maximal Lie invariance

algebras are exhausted by those presented in Table 2.2. For convenience we

omit tildes in Table 2.2. The transformations of the invariant independent

and dependent variables, which are induced by transformation (2.31), take

the form ϕ̃ = δ(ϕ− 1) and ω̃ = ω in all Cases 9.1–9.4 of Table 2 in [294].

Consider Case 9.1 of [294, Table 2] in detail. The transformed version

and the corresponding limit of the ansatz u = |t|− 1+2µ
n ϕ(ω) are(

1+
ũ

δ

)δñ
= |t̃|−(1+2µ)

(
1+

ϕ̃

δ

)δñ
→ eñũ = |t̃|−(1+2µ)eñϕ̃ at δ → +∞.
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Table 2.2: Lie reductions for Case 8 of Table 2.1.

no. X ω u = Reduced ODE

1 X2 − µX3 x|t|µ ϕ(ω)− 1+2µ
n ln |t| (enϕ)ωω − µnεωϕω + (1 + 2µ)ε+ αnω−2enϕ = 0,

ε = sign t

2 X3 t ϕ(ω) + 2
n ln |x| nϕω − (αn+ 2)enϕ = 0

3 X3 ±X1 xe∓t ϕ(ω)± 2
n t (enϕ)ωω ± nωϕω ∓ 2 + αnω−2enϕ = 0

4 X1 x ϕ(ω) (enϕ)ωω + αnω−2enϕ = 0

Therefore, the contracted ansatz is ũ = ϕ̃(ω̃) − 1+2µ
ñ ln |t|. The reduced

equation from Case 9.1 of [294, Table 2] is mapped by transformation (2.31)

to the equation

δñ

δñ+ 1

[(
1 +

ϕ̃

δ

)δñ+1
]
ω̃ω̃

− µñεω̃ϕ̃ω̃

+ (1 + 2µ)ε

(
1 +

ϕ̃

δ

)
+
α̃ñ

ω̃2

(
1 +

ϕ̃

δ

)δñ+1

= 0.

Then the limit process at δ → +∞ leads to the equation(
eñϕ̃
)
ω̃ω̃
− µñεω̃ϕ̃ω̃ + (1 + 2µ)ε+ α̃ñω̃−2eñϕ̃ = 0

which is also obtained from equation (2.29) by the reduction with respect

to the contracted ansatz and presented by Case 1 of Table 2.2. Analogously

we obtain contractions of the other reductions.

For Cases 9.2 and 9.4 of [294, Table 2] exact solutions of reduced equa-

tions were found in [294]. The substitution of these solutions to the re-

spective anzatze results in the following exact solutions of equation (2.30):

u =

∣∣∣∣ x2

C − (αn+ 2 + 4n−1)t

∣∣∣∣ 1n , (2.32)
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u =


∣∣C1

√
x lnx+ C2

√
x
∣∣ 1
n+1 , if α′ = 0,∣∣C1x

κ1 + C2x
κ2
∣∣ 1
n+1 , if α′ > 0,∣∣C1

√
x sin(σ lnx) + C2

√
x cos(σ lnx)

∣∣ 1
n+1 , if α′ < 0,

(2.33)

where α′ = 1 − 4α(n + 1), κ1,2 =
1±
√
α′

2
, σ =

√
−α′
2

. Here and in

what follows C, C1 and C2 are arbitrary constants. Applying transforma-

tion (2.31) to solution (2.32) and proceeding with the limit δ → +∞, we

obtain(
1 +

ũ

δ

)δñ
= x̃2

(
C −

(
α̃ñ+ 2 +

4

ñδ

)
t̃

)−1

→

eñũ = x̃2
(
C − (α̃ñ+ 2) t̃

)−1
.

As a result, we construct the exact solution

ũ =
1

ñ
ln

∣∣∣∣ x̃2

C − (α̃ñ+ 2) t̃

∣∣∣∣
for equation (2.29). Applying the same technique to solutions (3.54) leads

to the steady-state solutions of (2.29):

ũ =


1
ñ ln

∣∣C1

√
x̃ ln x̃+ C2

√
x̃
∣∣, if α̃′ = 0,

1
ñ ln

∣∣C1x̃
κ1 + C2x̃

κ2
∣∣, if α̃′ > 0,

1
ñ ln

∣∣C1

√
x̃ sin(σ ln x̃) + C2

√
x̃ cos(σ ln x̃)

∣∣, if α̃′ < 0,

where α̃′ = 1− 4α̃ñ, κ1,2 =
1±
√
α̃′

2
, σ =

√
−α̃′
2

. Another way for finding

this solution is to integrate the reduced equation of Case 4 from Table 2.2.

By the obvious transformation ϕ̂ = enϕ the reduced equation is mapped to

the Euler equation ω2ϕ̂ωω + αnϕ̂ = 0.

Contractions of Conservation Laws. We use contractions in order to

construct conservation laws of equations from class (2.17) with g = 1 us-

ing results obtained in [294] for equations from class (2.16) with the same



54

gauge of g. Note that the consideration can be easily extended to the en-

tire classes (2.17) and (2.16) using transformations from the corresponding

equivalence groups.

Roughly speaking, a conservation law of a system L of differen-

tial equations is a divergence expression that vanishes on solutions of

this system. Thus, in the case of two independent variables t and x

and one unknown function u the general form of conservation laws is

DtF (t, x, u(r)) +DxG(t, x, u(r)) = 0 whenever u is a solution of L. Here Dt

and Dx are the operators of total differentiation with respect to t and x,

respectively, and u(r) denotes the set of all the derivatives of the functions

u with respect to t and x of order not greater than r, including u as the

derivative of the zero order. The components F and G of the conserved

vector (F,G) are called the density and the flux of the conservation law.

Two conserved vectors (F,G) and (F ′, G′) are equivalent if there exist such

functions F̂ , Ĝ and H of t, x and derivatives of u that F̂ and Ĝ vanish for

all solutions of L and F ′ = F + F̂ +DxH, G′ = G+ Ĝ−DtH. A conserved

vector is called trivial if it is equivalent to the zero conserved vector.

It is found in [294] that there are three subclasses of equations of the

form (2.16) which admit nontrivial conserved vectors. Thus, assuming the

gauge g = 1, each equation from class (2.16) with 1. m = n+ 1, 2. m = 1

and h = µf , and 3. m = 0, admits two linearly independent conservation

laws. They contract to the cases 1. m = n, 2. h = 0, and 3. m = 0 of

class (2.17), respectively.

In order to contract equations from class (2.16) to equations from

class (2.17), we should vary the arbitrary element n. This is why only

the case of general n is appropriate for contractions. There are three dif-

ferent ways in order to perform contractions of conservation laws. We will

contract the equations and the conserved vectors of their conservation laws.

We illustrate this in detail using equations

f(x)ut = (unux)x + αf(x)u (2.34)
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with n 6= −1, whose conserved vectors are given by

n 6= −1:

(
xe−µtfu, e−µt

(
−xunux + un+1

n+1

) )
, λ1 = xe−µt,

( e−µtfu, −e−µtunux ), λ2 = e−µt.
(2.35)

We consider as an example the first conserved vector. At first we apply

equivalence transformation

t̃ = t, x̃ = x, ũ = δ(u− 1), ñ =
n

δ
, µ̃ = δ2µ (2.36)

to equation (2.34) and proceed to the limit δ → +∞. As a result, we

obtain the class of equations (tildes are omitted)

f(x)ut = (enuux)x, (2.37)

i.e., equations from class (2.20) with h = 0.

For the image λ̃1 of the characteristic λ1 = xe−µt with respect to trans-

formation (2.31) we have that λ̃1 → x if δ → +∞. Now we are able to

construct the corresponding conservation law of (2.37) using the charac-

teristic obtained as an integrating factor. After the multiplication by x the

equation (2.37) can be written in divergence form as

Dt (xfu) +Dx

(
−xenuux +

1

n
enu
)

= 0. (2.38)

Therefore, we constructed conservation law (2.38) of equation (2.37) via

carrying out a limiting process of characteristics. Another way is to directly

deal with divergence expressions. Thus the conservation law

Dt

(
xe−µtfu

)
+Dx

(
−e−µtxunux + e−µt

un+1

n+ 1

)
= 0

of (2.34) with n 6= −1 is transformed by (2.31) to

Dt̃

(
x̃e−

µ̃

δ2
t̃f

(
ũ

δ
+ 1

))
+Dx̃

(
−e−

µ̃

δ2
t̃x̃

(
ũ

δ
+ 1

)ñδ
ũx̃
δ

+ e−
µ̃

δ2
t̃ 1

ñδ + 1

(
ũ

δ
+ 1

)ñδ+1
)

= 0.
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Multiplying the obtained expression by δ and adding the term −x̃fδ under

Dt̃, we proceed to the limit δ → +∞. (As the term −x̃fδ depends only on

x̃, it is negligible in view of the differentiation with respect to t̃.) Omitting

tildes, we exactly obtain the conservation law (2.38).

Conserved vectors can be contracted in the same way using the fact that

we can add expression which depends on x̃ only to the density component

up to equivalence of conserved vectors.

Contracting the conservation laws obtained in [294] jointly with the

corresponding equations, we obtain the following assertion.

Theorem 2.25. A complete list of equations from class (2.20) possessing

nontrivial conservation laws is exhausted by the following ones.

1. m = n :
(
ϕifu, −ϕienuux + 1

nϕ
i
xe
nu
)
, ϕi, i = 1, 2.

2. m = 0:
(
xfu, −xenuux + 1

ne
nu −

∫
xhdx

)
, x;

( fu, −enuux −
∫
hdx ), 1.

Here the functions ϕi = ϕi(x), i = 1, 2, form a fundamental set of solutions

of the second-order linear ordinary differential equation ϕxx + nhϕ = 0.

Remark 2.26. The case h = 0:

(xfu, −xenuux +
1

n
enu ), x; ( fu, −enuux ), 1,

appears as a particular subcase of cases 1 and 2 adduced in Theorem 2.25.

Simultaneously with constraints on the arbitrary elements we also

present conserved vectors and characteristics of the basis elements of the

corresponding space of conservation laws.

2.3. Potential Symmetries of a Class of Porous

Medium Equations

Bluman et al. [38,39] introduced a method for finding a new class of sym-

metries (non-Lie ones) for a system of PDEs ∆(x, u), in the case that this
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system has at least one conservation law. If we introduce potential vari-

ables v for the equations written in conserved forms as further unknown

functions, we obtain a system Z(x, u, v). Any Lie symmetry for Z(x, u, v)

induces a symmetry for ∆(x, u). When at least one of the infinitesimals

which correspond to the variables x and u depends explicitly on poten-

tials, then the local symmetry of Z(x, u, v) induces a nonlocal symmetry of

∆(x, u). These nonlocal symmetries are called potential symmetries. More

details about potential symmetries and their applications can be found

in [30, 31, 38]. Potential symmetries were investigated for quite general

classes of differential equations. The problem of finding criteria for the

existence of potential symmetries for classes of differential equations was

posed in [253]. Some useful criteria were derived for PDEs in two indepen-

dent variables. Nonclassical potential symmetries of such equations were

discussed in [261].

In [98] the construction of hidden potential symmetries for some classes

of diffusion equations is claimed. Here we show that these symmetries

are usual potential symmetries that can be derived using the conventional

method by Bluman and collaborators.

A complete classification of potential symmetries can be achieved by

considering all potential systems that correspond to the conservation laws.

It is known [245] that the equivalence group for a class of systems of differ-

ential equations or the symmetry group for a single system can be prolonged

to potential variables. It is natural to use these prolonged equivalence

groups for classification of possible potential symmetries. In view of this

statement we will classify potential symmetries of diffusion equations up to

the (trivial) prolongation of their equivalence groups to the corresponding

potentials.

The first step in the investigation of potential symmetries is to calcu-

late the conservation laws. The conventional symmetry approach for this

is based on Noether’s theorem but it cannot be directly used for evolution
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equations. There exists no Lagrangian for which an evolution equation

is an Euler–Lagrange equation. Hence the application of Noether’s theo-

rem in this case is possible only for particular equations and after special

technical tricks. At the same time, the definition of conservation laws it-

self gives rise to a method of finding conservation laws, which is called

direct and can be applied to any system of differential equations with no

restriction on its structure. The technique of calculations used within the

framework of this method is similar to the classical Lie method yielding

symmetries of differential equations. Four versions of it are distinguished

in the literature depending on the way of taking into account systems un-

der consideration and the usage either the definition of conserved vectors

or the characteristic form of conservation laws. See, e.g., [10,11,247] on de-

tails of the calculation technique. The necessary theoretical background is

given in [217]. In the present work we employ the most direct version [247]

based on immediate solving of determining equations for conserved vectors

of conservations laws on the solution manifolds of investigated systems and

additionally combined with techniques involving symmetry or equivalence

transformations.

In [98] the porous medium equations of the form

ut = ((un)x + f(x)um)x , (2.39)

with n 6= 0 was given without considering its potential symmetries. It was

stated that the complete classification of potential symmetries was carried

out in [97]. There are three remarks on this statement.

1) In [97] the case m = 0 was omitted from the consideration since

another representation for which the value m = 0 is singular was used for

equations from class (2.39). At the same time, the corresponding subclass

of class (2.39) contains well-known equations, e.g., the linearizable equation

ut = (u−2ux)x + 1. Moreover, some equations from the cases m = 0 and

m 6= 0 are connected within both the point and potential frame.

2) The description of potential symmetries in [97] was not a classifica-
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tion since no equivalence relations of equations or symmetries were used.

3) Only simplest potential symmetries arising under the study of the

corresponding “natural” potential systems were found. The problem on

the construction of the other simplest and, moreover, general potential

symmetries of equations from class (2.39) was still open.

We employ class (2.39) in order to give the basic steps for the exhaustive

classification of the simplest potential symmetries. Moreover, in the next

section we completely describe potential symmetries of some equations

from class (2.39).

The equivalence group G∼ of class (2.39) is formed by the transforma-

tions

t̃ = δ1t+ δ2, x̃ = δ3x+ δ4, ũ = δ1
− 1
n−1δ3

2
n−1u,

f̃ = δ1
m−n
n−1 δ3

n−2m+1
n−1 f, ñ = n, m̃ = m,

where δi, i = 1, . . . , 4, are arbitrary constants, δ1δ3 6= 0. Additionally, the

subclass singled out from (2.39) by the condition m = n can be mapped

to the subclass consisting of the equations

e−
n+1
n

∫
f(x)dxũt̃ = (ũn)x̃x̃

by the transformation

t̃ = t, x̃ =
∫
e
∫
f(x)dxdx, ũ = e

1
n

∫
f(x)dxu. (2.40)

We present the conservation laws for (2.39) and the subsequent potential

systems.

Theorem 2.27. Any equation from class (2.39) has the conservation law

of form DtF +DxG = 0, whose density and flux are, respectively,

1. F = u, G = −nun−1ux − fum. (2.41)

A complete list of G∼-inequivalent equations (2.39) having additional (i.e.

linear independent with (2.41)) conservation laws is exhausted by the fol-

lowing ones



60

2. m = n 6= 1 : F = u
∫
e
∫
fdxdx, G = −

∫
e
∫
fdxdx (nun−1ux+fu

n)+e
∫
fdxun,

3. n 6= 1, m = 0 : F = xu, G = −x(nun−1ux + f) + un +
∫
fdx,

4. n 6= 1, m = 1, f = 1 : F = (t+ x)u, G = −(t+ x)(nun−1ux + u) + un,

5. n 6= 1, m = 1, f = εx : F = eεtxu, G = −eεtx(nun−1ux + xu) + eεtun,

6. n = 1, m = 0 : F = αu, G = −α(ux + f) + αxu+
∫
αxfdx,

7. n = 1, m = 1 : F = βu, G = −β(ux+fu)+βxu, where ε = ±1 mod G∼,

α = α(t, x) and β = β(t, x) are arbitrary solutions of the linear equations

αt+αxx = 0 and βt+βxx−fβx = 0, respectively. (Together with restrictions

on values f , n and m we also adduce densities and fluxes of additional

conservation laws.)

These conservation laws can be used for the construction of poten-

tial systems that lead to potential symmetries for the equation (2.39).

The associated characteristics are equal to the coefficients of u in the pre-

sented expressions for F . Here we consider only simplest potential systems

(i.e., potential systems with one potential variable, constructed with usage

of single conserved vectors of basis conservation laws) of equations from

class (2.39), having the form vx = F, vt = −G. Cases 6 and 7 of Theo-

rem 2.27 can be excluded from the investigation since they concern linear

equations studied in [249]. Then, the equations of Case 2 are reducible

to diffusion equations of form (A.52) by transformation (2.40). The equa-

tions of Cases 4 and 5 are reducible to the constant coefficient diffusion

equation ũt̃ = (ũn)x̃x̃ by means of the Galilei transformation

t̃ = t, x̃ = x+ t, ũ = u

and the transformation

t̃ =

 1
ε(n+1)e

ε(n+1)t, n 6= −1,

t, n = −1,
x̃ = eεtx, ũ = e−εtu,

respectively.
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Therefore, we have to investigate only two potential systems

vx = u, vt = nun−1ux + fum, (2.42)

v∗x = xu, v∗t = x(nun−1ux + f)− un −
∫
fdx (2.43)

corresponding to cases 1 and 3 of Theorem 2.27. (To distinguish the po-

tential introduced, we denote the second potential by v∗.)

Lie point symmetries of the potential system (2.42) give nontrivial po-

tential symmetries of equation (2.39) in the following cases:

1. f = x−2, n = −1, m = −2:

〈∂t, ∂v, x∂x − u∂u,
12t∂t + (3 lnx− v)x∂x + (3− 3 lnx+ xu+ v)u∂u + 2(3v − t)∂v〉;

2. f = εx ln |x|, ε = ±1, n = −1, m = 1:

〈∂t, ∂v, e−εt(x∂x − u∂u), e−εt(−εxv∂x + ε(xu2 + uv)∂u + 2∂v)〉;

3. f = x, n = −1, m = 0:

〈∂t, ∂v, ∂x + t∂v, 2t∂t − x∂x + 2u∂u + v∂v,

t2∂t + (v − tx)∂x + (2t− u)u∂u + tv∂v〉;

4. f = 0, n = −1, m = 0:

〈∂t, ∂v, x∂x − u∂u, 2t∂t + u∂u + v∂v, vx∂x − (v + xu)u∂u + 2t∂v,

4t2∂t + (v2 − 2t)x∂x − (v2 + 2vxu− 6t)u∂u + 4tv∂v, β∂x − βvu2∂u〉;

5. f = 1, n = −1, m = 1:

〈∂t, ∂v, (x+ t)∂x − u∂u, 2t∂t + 2x∂x − u∂u + v∂v, β∂x − βvu2∂u,

v(x+ t)∂x − [(x+ t)u+ v]u∂u + 2t∂v,

4t2∂t + [(x+ t)v2 − 2tx− 6t2]∂x − [v2 − 6t+ 2(x+ t)vu]u∂u + 4tv∂v〉;

6. f = εx, ε = ±1, n = −1, m = 1:

〈∂t, ∂v, x∂x − u∂u, 2t∂t − 2εtx∂x + (1 + 2εt)u∂u + v∂v,

4t2∂t +
(
v2 − 2t− 4εt2

)
x∂x −

(
v2 − 6t+ 2xvu− 4εt2

)
u∂u + 4tv∂v,

vx∂x − (xu+ v)u∂u + 2t∂v, e
−εt(β∂x − βvu2∂u)〉;

7. n = −1, m = −1:
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〈∂t, ∂v, ψ∂x − (1− fψ)u∂u, 2t∂t + u∂u + v∂v,

4t2∂t + (v2 − 2t)ψ∂x − [2ψvu+ (v2 − 2t)(1− fψ)− 4t]u∂u + 4tv∂v,

ψv∂x − ((1− fψ)v + ψu)u∂u + 2t∂v, ϕ(β∂x − (βvu
2 − fβu)∂u)〉;

8. f = 1, n = 1, m = 2:

〈∂t, ∂x, ∂v, 2t∂t+x∂x−u∂u, 4t2∂t+4tx∂x−2(2tu+x)∂u− (2t+x2)∂v,

2t∂x − ∂u − x∂v, e−v[(αu− αx)∂u − α∂v]〉.

Here α = α(t, x) and β = β(t, v) run through the solution sets of

the linear heat equation αt − αxx = 0 and backward linear heat equation

βt + βvv = 0, respectively, ϕ(x) = e−
∫
fdx, ψ(x) = e−

∫
fdx
∫
e
∫
fdxdx.

Note 2.28. Equations from class (2.39) with n = −1, m = 0 and

f ∈ {0, 1} are just different representations of the same equation. Potential

systems corresponding to these two cases are connected via the transforma-

tion ṽ = v + t of potential variable v. This transformation maps case 4 to

the case

f = 1, n = −1, m = 0:

〈∂t, ∂ṽ, x∂x − u∂u, 2t∂t + u∂u + (t+ ṽ)∂ṽ,

4t2∂t + [(ṽ − t)2 − 2t]x∂x − [(ṽ − t)2 + 2(ṽ − t)xu− 6t]u∂u + 4tṽ∂ṽ,

(ṽ − t)x∂x − (ṽ − t+ xu)u∂u + 2t∂ṽ, e
t
4−

ṽ
2 [β̃∂x − (β̃ṽ − 1

2 β̃)u2∂u]〉,

where the function β̃ = β̃(t, ṽ) runs through the solution set of the backward

linear heat equation β̃t + β̃ṽṽ = 0.

Note 2.29. Cases 5, 6 and 7 are reduced to case 4 by the point transfor-

mations {x̃ = x+t, ũ = u}, {x̃ = eεtx, ũ = e−εtu} and (2.40), respectively.

The variables t and v are identically transformed.

As mentioned, Lie symmetries of potential system (2.42) were investi-

gated in [97] only for m 6= 0 and hence cases 3 and 4 were omitted there.

It is explained by choice of another representation of equation (2.39). For

all values of m, potential symmetries of equation (2.39) associated with

potential system (2.42) are first classified above.
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There exists only one inequivalent case of potential system (2.43) that

gives nontrivial potential symmetries for equation (2.39), namely, f = x,

n = −1 and m = 0. Lie algebra of potential symmetries in this case is

9. f = x, n = −1, m = 0:

〈∂t, ∂v, 2t∂t − x∂x + 2u∂u, e
−v∗/2(2x∂x + (x2u− 2)u∂u − 4∂v∗)〉.

Here we give only one example on potential symmetries of equations

from class (2.39) with f 6= 0, which involve two potentials. They are easily

constructed via the point transformation (2.40) from potential symmetries

presented in Section A.4. Namely, the equation x−6ut = (u−2/3ux)x from

class (A.52) (case 3.4, f = x−6, n = −2/3) is mapped by the transformation

t̃ = 3
4t, x̃ = |x|−1/2, ũ = |x|−9/2u to the equation

ũt̃ = ((ũ1/3)x̃ − 3x̃−1ũ1/3)x̃ (2.44)

from class (2.39), where ñ = m̃ = 1/3 and f̃ = −3x̃−1. For coefficients to

be simpler, we have additionally combined the corresponding transforma-

tion of form (2.40) with a scaling. The second order potential system for

equation (2.44), which is constructed from (A.54) via the transformation

prolonged to the potentials as ṽ = −v1/2 and w̃ = w/4, is

ṽx̃ = ũ, w̃x̃ = x̃−3ṽ, w̃t̃ = x̃−3ũ1/3.

The associated potential symmetry algebra of (2.44) is (we omit tildes for

convenience)

〈∂t, ∂w, 2∂v − x2∂w, 2t∂t + 3u∂u + 3v∂v + 3w∂w,

x∂x − 3u∂u − 2v∂v − 4w∂w,

x−1∂x + 3x−2u∂u + 2(2w + x−2v)∂v − 2x−2w∂w,

xw∂x − 3(x−2v + w)u∂u − (x−2v + 2w)v∂v − 2w2∂w〉.
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2.4. Group Classification of the Fisher equation

with Time Dependent Coefficients

The classical Fisher equation

ut = buxx + au(1− u), ab 6= 0, (2.45)

first appeared seventy-five years ago in the seminal paper [80]. This equa-

tion was originally derived to model the propagation of a gene in a pop-

ulation. More precisely, the dependent variable, u, stands for the fre-

quency of the mutant gene in a population distributed in a linear habi-

tat, such as a shore line, with uniform density. Theorems on existence

and uniqueness of bounded solutions for equations of the more general

form ut = uxx + F (t, x, u) were proved in [161]. Traveling-wave solutions

of (2.45) were constructed in [5] (see also [52,66,168,208]). In [117,213] it

was proposed to consider generalized Fisher equations with a time depen-

dent diffusion coefficient, b, and a time dependent favorability coefficient, a,

namely the class of equations

ut = b(t)uxx + a(t)u(1− u), (2.46)

where a(t) and b(t) are smooth nonvanishing functions. In practice these

coefficients could represent long term changes in climate or short term

seasonality [117]. Solutions for equations from this class were constructed

in [117, 213]. In this section we study symmetry properties of equations

from class (2.46) and find their exact solutions [291,303].

2.4.1. Admissible Transformations. We search the admissible trans-

formations using the direct method [160]. The following statement is true.

Theorem 2.30. The usual equivalence group G∼ of class (2.46) comprises

the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = εu+
1− ε

2
, ã =

a

Ttε
, b̃ =

δ2
1

Tt
b,
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where T (t) is an arbitrary smooth function with Tt 6= 0, δ1 and δ2 are

arbitrary constants with δ1 6= 0 and ε = ±1.

Remark 2.31. Up to composing to each other and to continuous equiv-

alence transformations, the equivalence group G∼ contains three indepen-

dent discrete transformations

T1 : (t, x, u, a, b) 7→ (−t, x, u,−a,−b),

T2 : (t, x, u, a, b) 7→ (t,−x, u, a, b),

T3 : (t, x, u, a, b) 7→ (t, x, 1− u,−a, b).

Theorem 2.32. Class (2.46) is normalized with respect to its generalized

extended equivalence group Ĝ∼ formed by the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = ω(t)u+ θ(t),

ã =
a

Ttω
, b̃ =

δ1
2

Tt
b,

where T (t) is an arbitrary smooth function with Tt 6= 0, δ1 and δ2 are

arbitrary constants with δ1 6= 0,

ω =
(αe

∫
a dt + β)(γe

∫
a dt + δ)

(αδ − βγ)e
∫
a dt

, θ = −γαe
∫
a dt + β

αδ − βγ
,

the constant pairs (α, β) and (γ, δ) are defined up to nonvanishing mul-

tipliers and αδ − βγ 6= 0. In other words, the equivalence groupoid of

class (2.46) is generated by the generalized extended equivalence group Ĝ∼

of this class.

The proof can be found in [303]. It is obvious that there are equations

in class (2.46) that are Ĝ∼-equivalent but not G∼-equivalent. Therefore the

usage of the group Ĝ∼ strongly simplifies the group analysis of class (2.46).

Corollary 2.33. Equation (2.46) reduces to the classical Fisher equation

ut = uxx + u(1− u) (2.47)
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by a point transformation if and only if for some positive constant λ the

coefficients a and b satisfy the condition

λb2 − 2
btt
b

+ 3
b2
t

b2
= a2 − 2

att
a

+ 3
a2
t

a2
. (2.48)

Remark 2.34. After the exclusion of the constant λ by differentiation

with respect to t, the condition (2.48) reduces to the condition

bttt
b

+ 6
b3
t

b3
− 6

bttbt
b2

=
attt
a
− 4

attat
a2

+ 3
a3
t

a3
− aat − 2

att
a

bt
b

+ 3
a2
t

a2

bt
b

+ a2bt
b
,

which is more convenient for checking using a computer algebra package.

Remark 2.35. The condition (2.48) is satisfied if and only if the function

b is expressed in terms of a as

b =
λ(αδ − βγ)ae

∫
a dt

(αe
∫
a dt + β)(γe

∫
a dt + δ)

,

where λ is a positive constant, the constant pairs (α, β) and (γ, δ) are

defined up to nonvanishing multipliers and αδ − βγ 6= 0.

2.4.2. Gauging of Arbitrary Elements. Equivalence transformations

allow us to simplify the group classification problem by gauging arbitrary

elements. For example, there is one arbitrary parameter-function T (t) in

the equivalence groups G∼ and Ĝ∼ of class (2.46). It means that we can

gauge an arbitrary element, either a or b, to a simple constant value, e.g., to

1. Thus the equivalence transformation t̃ =
∫
b dt, x̃ = x, ũ = u belonging

to the group G∼ maps class (2.46) onto its subclass singled out by the

constraint b = 1. The arbitrary element ã of the mapped class equals a/b.

The gauge a = 1 is realized by the similar point transformation from G∼

t̃ =
∫
a dt, x̃ = x, ũ = u. In the corresponding mapped class we have ã = 1

and b̃ = b/a.

Since class (2.46) is normalized in the generalized sense, it is easy to

find the equivalence group of its subclass with b = 1 (resp. a = 1) by

setting b̃ = b = 1 (resp. ã = a = 1) in the transformations from Ĝ∼. We

obtain the following corollaries of Theorem 2.32.
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Corollary 2.36. The class of equations of the general form

ut = uxx + a(t)u(1− u), (2.49)

where a runs through the set of nonvanishing smooth functions of t, is

normalized in the generalized extended sense. The generalized extended

equivalence group Ĝ∼a of this class consists of the transformations

t̃ = δ2
1t+ δ0, x̃ = δ1x+ δ2, ũ = ω(t)u+ θ(t), ã =

a

δ2
1ω
,

where δi, i = 0, 1, 2, are arbitrary constants with δ1 6= 0,

ω =
(αe

∫
a dt + β)(γe

∫
a dt + δ)

(αδ − βγ)e
∫
a dt

, θ = −γαe
∫
a dt + β

αδ − βγ
,

the constant pairs (α, β) and (γ, δ) are defined up to nonvanishing multi-

pliers and αδ − βγ 6= 0.

Corollary 2.37. The class of equations of the general form

ut = b(t)uxx + u(1− u), (2.50)

where b runs through the set of nonvanishing smooth functions of t, is

normalized in the usual sense. The usual equivalence group G∼b of this

class consists of the transformations

t̃ = ln
αet + β

γet + δ
, x̃ = δ1x+ δ2,

ũ =
(αet + β)(γet + δ)

(αδ − βγ)et
u− γ αe

t + β

αδ − βγ
, b̃ =

δ2
1(αet + β)(γet + δ)

(αδ − βγ)et
b,

where δj, j = 1, 2, are arbitrary constants with δ1 6= 0, the constant quadru-

ple (α, β, γ, δ) is defined up to a nonzero multiplier and αδ − βγ 6= 0.

Remark 2.38. The group G∼b contains two discrete equivalence transfor-

mations

T ′ : (t, x, u, b) 7→ (t,−x, u, b), T ′′ : (t, x, u, b) 7→ (−t, x, 1− u,−b).
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An interesting question is which of the above two gauges is preferable

for further consideration. Class (2.49) is still normalized only in the gen-

eralized extended sense. At the same time class (2.50) is normalized with

respect to its usual equivalence group. This is why we can expect that it

is easier to perform the group classification in class (2.50) rather than in

class (2.49).

Corollary 2.39. Eq. (2.50) reduces to the classical Fisher equation (2.47)

by a point transformation if and only if the coefficient b has the form

b(t) =
λ(αδ − βγ)et

(αet + β)(γet + δ)
,

where λ is a positive constant, the constant quadruple (α, β, γ, δ) is defined

up to a nonzero multiplier and αδ − βγ 6= 0.

2.4.3. Lie Symmetries. We study the Lie symmetries of equations from

class (2.50) using the classical approach [227]. We fix an equation, L, from

class (2.50) and search for vector fields of the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

that generate one-parameter point symmetry groups of L. The determin-

ing equations derived using the the infinitesimal invariance criterion imply

τ = τ(t) and ξ = ξ(t, x). This completely agrees with the general re-

sults on point transformations between evolution equations (see [160] and

Section 1.1). Then the remaining determining equations take the form

ηuu = 0, 2b ξx = (bτ)t, 2b ηxu = bξxx − ξt,

η − ηt + bηxx + (τt − 2η − ηu)u+ (ηu − τt)u2 = 0.

The integration of the first two equations of this system results in

ξ =
(bτ)t

2b
x+ ζ(t) and η = η1(t, x)u+ η0(t, x),
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where ζ, η1 and η0 are arbitrary functions of their arguments. Then the

third equation becomes(
1

2b
(bτ)t

)
t

x+ ζt + 2bη1
x = 0. (2.51)

After substituting the above expression for η into the fourth equation and

splitting this equation with respect to u, we get

η1 = −τt, η0
t − bη0

xx − η0 = 0, 2η0 = τt + bη1
xx − η1

t .

The last system implies that η1 and η0 do not depend upon x and are

expressed via derivatives of the function τ as follows

η1 = −τt, η0 =
1

2
(τt + τtt).

The function τ satisfies the equation τttt − τt = 0, i.e.,

τ = c1e
t + c2e

−t + c3

for some constants c1, c2 and c3. We take into account all the constraints

derived and split Eq. (2.51) with respect to x. As a result we immediately

obtain ζ = c0 = const and the classifying equation ((bτ)t/b)t = 0 which

essentially includes both the residuary uncertainties in the coefficients of

the vector field Q and the arbitrary element b. We integrate the classifying

equation once to obtain

(c1e
t + c2e

−t + c3)bt = (−c1e
t + c2e

−t + c4)b (2.52)

with one more constant, c4. To find the common part of the maximal

Lie invariance algebras (the kernel algebra) of equations from class (2.50),

we split equation (2.52) with respect to b and bt, which gives ci = 0,

i = 1, 2, 3, 4. The only nonzero constant c0 corresponds to the operator ∂x

(Case 0 of Table 2.3).

The set Vb of coefficient tuples of equations of the form (2.52) satis-

fied by a fixed value of the parameter-function b is a linear space. The
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dimension, kb, of this space coincides with the dimension of Lie symmetry

extension for the same value of b. It is easy to prove that kb < 3 and, if

kb = 2, any element of Vb satisfies the equation c2
4 = c2

3 − 4c1c2.

An at least one-dimensional extension of Lie symmetry exists only for

values of b satisfying (2.52) with (c1, c2, c3) 6= (0, 0, 0), i.e., if

b(t) = c5 exp

(∫
−c1e

t + c2e
−t + c4

c1et + c2e−t + c3
dt

)
(2.53)

for some nonzero constant c5. Then an extension operator is of the form

X2 = (c1e
t + c2e

−t + c3)∂t +
c4

2
x∂x +

[
(c2e

−t − c1e
t)u+ c1e

t
]
∂u.

The integration in (2.53) gives the following values of b:

b =
c5

c1et + c2e−t + c3

∣∣∣∣2c1e
t + c3 − ν

2c1et + c3 + ν

∣∣∣∣
c4
ν

if D > 0, c1 6= 0,

b =
c5e

c4
c3
t

(c2e−t + c3)
1− c4c3

if D > 0, c1 = 0,

b =
c5

c1et + c2e−t + c3
exp

(
− 2c4

2c1et + c3

)
if D = 0, c1 6= 0,

b = c5 exp

(
t+

c4

c2
et
)

if D = 0, c1 = 0,

b =
c5

c1et + c2e−t + c3
exp

(
2c4

ν
arctan

2c1e
t + c3

ν

)
if D < 0.

Here D = c2
3 − 4c1c2 and ν =

√
|D|. When one uses the scaling trans-

formation with respect to x, the constant c5 can be set to sign c5, i.e.,

c5 = ±1 mod G∼b .

In fact the above expressions for b can be simplified more by transfor-

mations from the group G∼b . Up to G∼b -equivalence the parameter quadru-

ple (c1, c2, c3, c4) can be assumed to belong to the set

{(0, 0, 1, σ), (0, 1, 0, κ), (1, 1, 0, ρ) | σ > 0, κ = ±1, ρ ∈ R}.
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Indeed, combined with multiplication by a nonzero constant, each trans-

formation from the equivalence group G∼b is extended to the coefficient

quadruple of equation (2.52) in the following way:

c̃1 = c1δ
2 − c3γδ + c2γ

2, c̃2 = c1β
2 − c3αβ + c2α

2,

c̃3 = −2c1βδ + c3(αδ + βγ)− 2c2αγ, c̃4 = (αδ − βγ)c4.

There are three G∼b -inequivalent reduced forms of the triple (c1, c2, c3) de-

pending upon the sign of D,

(0, 0, 1) if D > 0, (0, 1, 0) if D = 0, (1, 1, 0) if D < 0.

So, up to G∼b -equivalence, which coincides with the general point equiva-

lence, there are three types of equations from class (2.46) the maximal Lie

symmetry algebras of which are two-dimensional. They are represented

by Cases 1–3 of Table 2.3. In view of the constraint c2
4 = c2

3 − 4c1c2 any

case of extension of the kernel algebra by two linearly independent opera-

tors reduces by equivalence transformations to Case 4 of Table 2.3, where

b = ±et. Since class (2.50) is normalized, there are no additional equiva-

lence transformations between the cases listed in Table 2.3.

As a result we have proven the following theorem.

Theorem 2.40. The kernel algebra of class (2.50) is A∩ = 〈∂x〉. G∼b -

inequivalent Lie symmetry extensions for class (2.50) are exhausted by

those presented in Table 2.3.

The classification list adduced in Table 2.3 represents by itself the result

of group classification problem for class (2.46) up to Ĝ∼-equivalence.

2.4.4. Exact Solutions. Criterion (2.48) shows that the subclass of equa-

tions (2.46) of the form

ut =
λ∆a(t)h(t)

(αh(t) + β)(γh(t) + δ)
uxx + a(t)u(1− u), (2.54)
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Table 2.3: The group classification of class (2.50).

no. b Basis elements of Amax

0 ∀ ∂x

1 εeσt ∂x, ∂t + σ
2x∂x

2 ε exp(t+ κet) ∂x, e−t∂t + κ
2x∂x + e−tu∂u

3 ε
cosh t exp

(
ρ arctan et

)
∂x, 2 cosh t ∂t + ρ

2x∂x +
(
et − 2 sinh t u

)
∂u

4 εet ∂x, ∂t + 1
2x∂x, e−t(∂t + u∂u)

Here ε, σ, κ, ρ are constants, ε = ±1 mod G∼b , σ > 0 mod G∼b , σ 6= 1 and κ = ±1 mod G∼b .

where h(t) = e
∫
a(t)dt, and ∆ = αδ − βγ 6= 0, reduces by point transforma-

tions to classical Fisher equation (2.47). Using theorem 2.32 we find the

family of transformations that maps equation (2.54) into equation (2.47),

that is of the form

t̃ = ln
αh(t) + β

γh(t) + δ
+ c1, x̃ =

x√
λ

+ c2, (2.55)

ũ =
(αh(t) + β)(γh(t) + δ)

h(t)∆
u− γαh(t) + β

∆
,

where c1 and c2 are arbitrary constants. We apply the found transforma-

tions to known solutions of the classical Fisher equation (2.54) and get the

following family of exact solutions of the equation (2.54):

u =
h∆ exp

(
5
3 t̃+

√
6

3 x̃
)
℘
(

exp
(

5
6 t̃+

√
6

6 x̃
)

+ C̃, 0, Ĉ
)

(αh+ β)(γh+ δ)
+

γh

γh+ δ
,

u =
h∆

(αh+ β)(γh+ δ)

1(
C exp

(√
6

6 x̃−
5
6 t̃
)
± 1
)2 +

γh

γh+ δ
,

Here t̃ and x̃ are defined in (2.55), ℘(z, k1, k2) is Weierstrass elliptic func-

tion, c1, c2, C, C̃, Ĉ are arbitrary constants with C 6= 0.

As Fisher equation admits the discrete symmetry transformation

x 7→ −x, the above solutions with opposite signs of x satisfy respective

equation (2.54).
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The family of point transformations parameterized by the arbitrary

element a(t) of the class (2.46),

t̃ =
∫
a(t)e

∫
a(t)dtdt, x̃ = x, ũ = −e−

∫
a(t)dtu, (2.56)

maps the class (2.46) into the class of quasilinear reaction–diffusion equa-

tions with quadratic nonlinearity and and an arbitrary element depending

on variable t,

ũt̃ = b̃(t̃)ũx̃x̃ + ũ2, b̃ 6= 0, (2.57)

Arbitrary elements of the classes (2.46) and (2.57) are related via the for-

mula

b̃ =
b(t)

a(t)
e−
∫
a(t)dt.

For the equation ut = uxx+u2 several exact solutions are known (see [16,

208] and [237, p. 157]). Using the transformation (2.56), we find new exact

solutions for variable coefficient Fisher equations

ut = a(t)e
∫
a(t)dtuxx + a(t)u(1− u) :

u =
12
(
4±
√

6
)
x(x+ c1) + 120(12± 5

√
6)Θ(t) + 12

(
2±
√

6
)
c2 + 6c2

1

e−
∫
a(t)dt

(
x2 + c1x+ 10(3±

√
6)Θ(t) + c2

)2 ,

u = e
∫
a(t)dt℘

(
x√
6
, 0, Ĉ

)
,

where Θ(t) =
∫
a(t)e

∫
a(t)dtdt, c1, c2, Ĉ are arbitrary constants.

Concluding Remarks. It turns out that class (2.46) has a number

of interesting properties. In particular it possesses a nontrivial general-

ized extended equivalence group and it is normalized with respect to this

group. It is also mapped by proper gauging of arbitrary elements to its

subclass (2.50) that is normalized in the usual sense and the equivalence

algebra of which is finite dimensional.
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When one analyzes results of group classification problems for various

classes of variable-coefficient PDEs (see, e.g., [138, 245, 248, 288, 300]), one

can observe that constant coefficient equations usually admit the widest

Lie symmetry groups within such classes. In other words they repre-

sent the most symmetric cases. We unexpectedly discovered that the

Lie symmetry group of the classical Fisher equation (2.45) is not widest

within class (2.46). This fact can easily be interpreted in terms of map-

pings between classes of differential equations [248, 288, 300]. Namely

class (2.46) is mapped by a family of point transformations to a class

of similar but simpler structure. The mapped class consists of equations

ut = f(t)uxx+g(t)u2, where the arbitrary elements f and g run though the

set of smooth nonvanishing functions of t, and this class is more convenient

for group classification than the initial class (2.46). Under the above map-

ping the classical Fisher equation is transformed to a variable-coefficient

equation and the equation presenting the Lie symmetry extension of high-

est dimension in class (2.46) (Case 4 of Table 2.3) is transformed to a

constant-coefficient equation. Using this fact we have constructed some

exact solutions for variable coefficient Fisher equations.

2.5. Classification of Reduction Operators of

Variable Coefficient Newell–Whitehead–Segel

Equations

In this section we aim to perform exhaustive classifications of Lie and

regular nonclassical reduction operators for the class of equations of the

form

ut = a2(t)uxx + b(t)u− c(t)u3, (2.58)

where a(t), b(t) and c(t) are arbitrary smooth functions, a(t) and c(t) are

nonvanishing. This is a class of variable coefficient Newell–Whitehead–
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Segel equations called also in the literature generalized Fisher equations

and Newell–Whitehead equations.

The classical Newell–Whitehead–Segel equation, ut = uxx +u−u3, was

derived in [206,265] and it is particular case of generalized Fisher equations

ut =
(
umux

)
x

+ up
(
1− uq

)
, (2.59)

which appear as insect and animal dispersal and invasion models in the

mathematical biology (cf. equation (13.40) in [203]). Here t and x are time

and spatial coordinates, respectively, u is a population density, p, q and

m are positive parameters. The equations (2.58) with b(t) = c(t) = 1

were studied in [213] using the truncated Painlevé expansion method in

order to construct their exact solutions. Having the same goal the whole

class (2.58) was considered recently in [285]. It appears that all the found

in [285] “solutions” are stationary ones and moreover do not satisfy the

respective equations due to wrong signs of constants appearing therein. We

aim to construct exact solutions for equations (2.58) and also to present

the complete classifications of not only Lie reduction operators but also

regular nonclassical ones.

2.5.1. Equivalence Groupoid. Using the direct method we deduce that

the equivalence groupoid of class (2.58) is generated by the usual equiva-

lence transformations from this class. The following statement is true.

Theorem 2.41. The equivalence group G∼ of class (2.58) is formed by the

transformations

t̃ = θ(t), x̃ = δ1x+ δ2, ũ = ϕ(t)u,

ã2(t̃) =
δ1

2

θt
a2(t), b̃(t̃) =

1

ϕθt
(ϕb(t) + ϕt), c̃(t̃) =

1

ϕ2θt
c(t), (2.60)

where δ1 and δ2 are arbitrary constants with δ1 6= 0, and the functions θ(t)

and ϕ(t) are arbitrary smooth functions with θtϕ 6= 0.

These transformations generate the equivalence groupoid of class (2.58).
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The proof can be found in [293]. Using Theorem 2.41, we can find

the conditions for arbitrary elements a, b, and c, for which variable coef-

ficient Newell–Whitehead–Segel equations are reducible to constant coef-

ficient equations from the same class. To derive such a condition we set

ã, b̃ and c̃ to be constants in the formulas (2.60) and find compatibility

condition for the obtained system. This results in the statement.

Theorem 2.42. A variable-coefficient equation from class (2.58) is reduced

to a constant-coefficient equation from the same class by a point transfor-

mation if and only if for some constant λ the corresponding coefficients

a(t), b(t) and c(t) satisfy the condition

b

a2
+

1

2

(
c/a2

)
t

c
= λ. (2.61)

The criterion (2.61) is rather useful for checking whether a given Newell–

Whithead–Segel equation with time-dependent coefficients is similar to a

constant coefficient equation from the same class. In [285] “solutions” were

found for equations (2.58) with b(t) = c1k
2a2(t) and c(t) = c2k

2a2(t), where

c1, c2 and k are constants. It is easy to see that for such values of b(t) and

c(t) the condition (2.61) is satisfied. In Section 2.5.4 we show how to

get wide families of non-stationary solutions for the subclass of equations,

whose coefficients satisfy (2.61) using the equivalence method.

Equivalence transformations allow us to simplify the initial class essen-

tially. The arbitrary element b(t) can be set to zero whereas a(t) to a

nonzero constant, for example, to one. Indeed, the transformation

t̃ =
∫
a2(t) dt, x̃ = x, ũ = e−

∫
b(t)dtu (2.62)

maps class (2.58) to its subclass (the tildes in it are omitted)

ut = uxx − c(t)u3. (2.63)

Admissible transformations of the class (2.63) can be easily derived from

Theorem 2.41, where we set ã2 = a2 = 1 and b̃ = b = 0. It guarantees the
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complete result since superclass (2.58) of class (2.63), is normalized. The

result is summarized in the following statement.

Theorem 2.43. Class (2.63) is normalized. The equivalence groupoid

of (2.63) is generated by transformations which form its usual equivalence

group G∼1 :

t̃ = δ1
2t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u, c̃(t̃) =

1

δ1
2δ3

2
c(t),

where δi, i = 0, 1, 2, 3, are arbitrary constants with δ1δ3 6= 0.

Therefore, we reduce the problem of classification of reduction opera-

tors for class (2.58) up to the G∼-equivalence to the similar problem for

class (2.63), that contains only one arbitrary element c(t), up to the G∼1 -

equivalence.

2.5.2. Lie Symmetries. The group classification for the class (2.63) is

performed using the standard technique [217,227]. We omit the details

and summarise the results of the classification in the following theorem.

Theorem 2.44. The kernel of maximal Lie symmetry algebras of equations

from the class (2.63) is the one-dimensional algebra 〈∂x〉. A complete list

of G∼-inequivalent Lie symmetry extensions in class (2.63) is exhausted by

the cases 1–3 given in Table 2.4.

Table 2.4 represents also the group classification results for class (2.58)

up to the G∼-equivalence. We recall that a2(t) = 1 mod G∼, b(t) = 0 mod

G∼ for all the cases of Lie symmetry extension.

For the practical use of the group classification results it is convenient

to have also the list of Lie symmetry extensions which is not simplified

by equivalence transformations. To get such a list we use the algorithm

described in [289]. Firstly we write down the most general forms of the

function c(t) that correspond to equations from class (2.63) with Lie sym-

metry extensions. These are the cases:
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Table 2.4: The group classification of class (2.63) up to the G∼1 -equivalence.

no. c(t) Basis of Amax

0 ∀ ∂x

1 εtρ ∂x, 2t∂t + x∂x − (ρ+ 1)u∂u

2 εe±t ∂x, 2∂t ∓ u∂u

3 ε ∂x, ∂t, 2t∂t + x∂x − u∂u

Here ρ is an arbitrary nonzero constant, ε = ±1 mod G∼1 .

Table 2.5: The group classification of class (2.58) without usage of the equivalence group.

no. c(t) Basis of Amax

0 ∀ ∂x

1 µa2e−2
∫
b dt(γT + δ)ρ ∂x,

2
a2

(γT + δ)∂t + γx∂x +
(

2
a2

(γT + δ)b− (ρ+ 1)γ
)
u∂u

2 µa2eσT−2
∫
b dt ∂x,

2
a2
∂t +

(
2b
a2
− σ

)
u∂u

3 µa2e−2
∫
b dt ∂x,

1
a2

(∂t + bu∂u) , 2
a2
∂t + x∂x +

(
2b
a2
− 1
)
u∂u

Here a = a(t) and b = b(t) are arbitrary nonvanishing smooth functions, T =
∫
a2(t) dt; µ, σ,

δ and ρ are arbitrary constants with µσρ 6= 0.

1) c(t) = µ(γt+ δ)ρ: Amax = 〈∂x, 2(γt+ δ)∂t + γx∂x − γ(ρ+ 1)u∂u〉;

2) c(t) = µeσt: Amax = 〈∂x, 2∂t − σu∂u〉;

3) c(t) = µ: Amax = 〈∂x, ∂t, 2t∂t + x∂x − u∂u〉.

Here µ, γ, ρ and σ are arbitrary nonzero constants and δ is an arbitrary

constant. Using the transformation (2.62) and the latter classification list

it’s easy to obtain the classification list for class (2.58) where arbitrary ele-

ments are not gauged by the equivalence transformations. The results are

summarized in Table 2.5. The latter list reveals the Newell–Whitehead–

Segel equations which are of more interest for applications and for which

the classical Lie reduction method can be utilized. It is also necessary for
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the study of nonclassical reduction operators that we perform in the next

section to get truly nontrivial ones, i.e., those which are not equivalent to

Lie reduction operators.

2.5.3. Nonclassical Method. Given a (1+1)-dimensional evolution

equation with the independent variables t and x and the dependent variable

u, its reduction operators have the general form

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u (2.64)

with (τ, ξ) 6= (0, 0). The reduction operators (2.64) with nonvanishing

coefficients of ∂t are regular, and the other its reduction operators are

singular [173]; see also [42]. The singular case τ = 0 was exhaustively

investigated for general evolution equation in [173,333].

Consider the case τ 6= 0. We can assume τ = 1 up to the usual equiva-

lence of reduction operators. This equivalence relation means that reduc-

tion operators X and X̃ are equivalent if X̃ = Λ(t, x, u)X, where Λ(t, x, u)

is a nonvanishing smooth function of its arguments. Then the nonclassi-

cal invariance criterion implies the following determining equations for the

coefficients ξ and η, and also for the arbitrary element c(t):

ξuu = 0, ηuu = 2(ξxu − ξξu),

ηt − ηxx + 2ξxη + (2ξx − ηu) cu3 + 3ηcu2 + ctu
3 = 0,

ξt − ξxx + 2ξξx − 2ξuη + 2ηxu − 3ξucu
3 = 0.

(2.65)

Integration of the first two equations of system (2.65) gives us the following

expressions for the coefficients ξ and η

ξ = fu+ g, η = −1
3f

2u3 + (fx − fg)u2 + hu+ k,

where f = f(t, x), g = g(t, x), h = h(t, x) and k = k(t, x). We further

substitute the derived forms of ξ and η into the rest two equations of

system (2.65) and split the resulting equations with respect to variable u.

This leads to a system of nine determining equations involving operator



80

coefficients f , g, h, and k as well as the arbitrary element c(t) of class (2.65).

One of the equations is f(9c − 2f 2) = 0. The further consideration splits

into two cases f 6= 0 and f = 0.

I. If f 6= 0, then 9c− 2f 2 = 0, which means fx = 0 and f is a function

of t only. Then the rest of the determining equations imply g = k = 0,

h = α, f = βe2αt, and c = 2
9β

2e4αt, where α and β 6= 0 are constants.

Therefore, the equation

ut = uxx −
2

9
β2e4αtu3 (2.66)

admits the nonclassical reduction operator

X1 = ∂t + βe2αtu∂x +
(
α− 1

3β
2e4αtu2

)
u∂u.

The constants α and β can be additionally gauged by equivalence trans-

formations, see Case 1 of Table 2.6.

II. If f = 0, then k = 0, h = −gx − 1
2
ċ
c and the rest of the determining

equations are

gt + 2ggx − 3gxx = 0, gtx + 2g2
x − gxxx +

ċ

c
gx +

1

2

d

dt

(
ċ

c

)
= 0.

This system of two partial differential equations for the function g(t, x), one

of which involves arbitrary element c(t) of the class. The investigation of

compatibility of this system implies that c(t) can be only a power, exponen-

tial or constant function, otherwise the system is inconsistent. Truly non-

Lie reduction operators arise only if c(t) is either an exponential function

or a constant. The list of the equations admitting nontrivial nonclassical

reduction operators with ξu = 0 is the following:

ut = uxx − µu3 :

X2 = ∂t −
3

x
∂x −

3

x2
u∂u.

ut = uxx − µeσtu3 : (2.67)

X3 = ∂t − 3
2

√
σ tanh

(√
σ

2 x
)
∂x − 3

4σ
(

tanh2
(√

σ
2 x
)
− 1

3

)
u∂u, σ > 0;
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Table 2.6: Nonclassical reduction operators of equations (2.63).

no. c(t) Reduction operators

1a,b e±t ∂t + 3
√
2

2 e±
1
2
tu∂x − 1

2

(
3e±tu2 ∓ 1

2

)
u∂u

1a εet ∂t − 3
2 tanh

(
1
2x
)
∂x − 3

4

(
tanh2

(
1
2x
)
− 1

3

)
u∂u

∂t − 3
2 coth

(
1
2x
)
∂x − 3

4

(
coth2

(
1
2x
)
− 1

3

)
u∂u

1b εe−t ∂t + 3
2 tan

(
1
2x
)
∂x − 3

4

(
tan2

(
1
2x
)

+ 1
3

)
u∂u

2 ε ∂t − 3
x∂x −

3
x2
u∂u

X4 = ∂t − 3
2

√
σ coth

(√
σ

2 x
)
∂x − 3

4σ
(

coth2
(√

σ
2 x
)
− 1

3

)
u∂u, σ > 0;

X5 = ∂t + 3
2

√
−σ tan

(√
−σ
2 x

)
∂x + 3

4σ
(

tan2
(√
−σ
2 x

)
+ 1

3

)
u∂u, σ < 0.

Here µ and σ are arbitrary nonzero constants. Both of them can be gauged

by the equivalence transformations to be equal to 1 or −1 depending on

their signs, namely µ 7→ signµ, and σ 7→ signσ.

We summarize the results on classification of nonclassical reduction

operators of equations (2.63) up to the G∼1 -equivalence in Table 2.6. In all

the cases of Table 2.6 ε = ±1. The same table represents the results on

classification of nonclassical reduction operators of equations (2.58) up to

the G∼-equivalence (a(t) = 1 mod G∼ and b(t) = 0 mod G∼ in this case).

Theorem 2.42 implies that equations (2.66) and (2.67) are reducible to

constant coefficient Newell–Whitehead–Segel equations (2.58) by equiva-

lence transformations from the groupG∼. Indeed, the transformation t̃ = t,

x̃ = x, ũ = e
σ
2 tu maps equation (2.67) to the equation ũt̃ = ũx̃x̃ + σ

2 ũ−µũ
3.

The latter observation means that direct reduction of equations (2.66)

and (2.67) using the nonclassical symmetry operators is not the optimal

way for finding their exact solutions. More convenient way is the reduction

of their constant coefficient counterparts (or immediate usage of exact so-
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lutions of constant coefficient equations, if such solutions are known) and

then derivation of exact solutions by the equivalence method, see the re-

lated discussion in [251]. The next section is devoted to construction of

exact solutions for equations from class (2.58) using the equivalence trans-

formations.

2.5.4. Exact Solutions. Theorem 2.42 implies that equations of the form

ut = a2(t)uxx +

(
λa2(t) +

ȧ(t)

a(t)
− 1

2

ċ(t)

c(t)

)
u− c(t)u3, (2.68)

where a(t) and c(t) are nonvanishing smooth functions and λ is a nonzero

constant, are similar to the constant-coefficient equation

ut = uxx + εu− u3 (2.69)

with ε = signλ. The latter equation is well studied by various techniques

and a number of its exact solutions are known, see, e.g., [237, p. 177]

and [300], and references therein. The similarity is established by the

transformation

t̃ = |λ|
∫
a2(t)dt, x̃ =

√
|λ|x, ũ =

√
c(t)

a(t)
√
|λ|

u. (2.70)

for the case λ 6= 0 and by the transformation

t̃ =
∫
a2(t)dt, x̃ = x, ũ =

√
c(t)

a(t)
u, (2.71)

otherwise. There are obvious restrictions for this transformations to con-

nect two real valued exact solutions for the physical case t > 0. It works

fine for all functions c(t) > 0 when t > 0, for example for power coefficient

c(t) that is used most frequently in applications.
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We illustrate the possibility of generation of solutions for equa-

tions (2.68) by the following example. The transformation (2.70) maps the

known traveling wave solution u = 1
2 −

1
2 tanh

(√
2

4 x−
3
4t
)

of the constant-

coefficient equation (2.69) with ε = 1 [313] to new exact solution

u =
1

2
a(t)

√
λ

c(t)

(
1− tanh

(√
2λ

4
x− 3

4
λ

∫
a2(t)dt

))
of variable-coefficient equation (2.68) with λ > 0 and c(t) > 0 for t > 0.

A number of other exact solutions of the equation (2.69) are collected

in [208, 237, 300]. We consider the exact solutions of the equation (2.69)

collected in [300] and apply to them either transformation (2.70) in the

case λ 6= 0 or transformation (2.71), otherwise. As a result we obtain wide

families of exact solutions of variable coefficient Newell–Whitehead–Segel

equations (2.68).

Hereafter T = |λ|
∫
a2(t)dt; the functions cn(z, k), sn(z, k), and ds(z, k)

are Jacobian elliptic functions [316].

λ > 0:

u = a(t)

√
λ

c(t)

C1 exp
(√

2λ
2 x
)
− C ′1 exp

(
−
√

2λ
2 x
)

C2e
−3

2T + C1 exp
(√

2λ
2 x
)

+ C ′1 exp
(
−
√

2λ
2 x
) ,

u =
C1

√
λa(t)√
c(t)

e
3
2T sinh

(√
2λ
2 x
)

ds

(
C1e

3
2T cosh

(√
2λ
2 x
)

+ C2,
√

2
2

)
,

u =
C1

√
λa(t)√
c(t)

e
3
2T cosh

(√
2λ
2 x
)

ds

(
C1e

3
2T sinh

(√
2λ
2 x
)

+ C2,
√

2
2

)
,

u =
C1

√
λa(t)

2
√
c(t)

e
3
2T sinh

(√
2λ
2 x
) 1 + cn

(
C1e

3
2T cosh

(√
2λ
2 x
)

+ C2,
√

2
2

)
sn

(
C1e

3
2T cosh

(√
2λ
2 x
)

+ C2,
√

2
2

) ,

u =
C1

√
λa(t)

2
√
c(t)

e
3
2T cosh

(√
2λ
2 x
) 1 + cn

(
C1e

3
2T sinh

(√
2λ
2 x
)

+ C2,
√

2
2

)
sn

(
C1e

3
2T sinh

(√
2λ
2 x
)

+ C2,
√

2
2

) .
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λ < 0:

u = a(t)

√
−λ
c(t)

sin
(√
−2λ
2 x

)
C2e

3
2T + cos

(√
−2λ
2 x

) ,
u = a(t)

√
−λ
c(t)

C1e
−3

2T sin
(√
−2λ
2 x

)
ds

(
C1e

−3
2T cos

(√
−2λ
2 x

)
+ C2,

√
2

2

)
,

u =
C1a(t)e−

3
2T

2

√
−λ
c(t)

cos
(√
−2λ
2 x

)1+cn

(
C1e

−3
2T sin

(√
−2λ
2 x

)
+C2,

√
2

2

)
sn

(
C1e

−3
2T sin

(√
−2λx
2

)
+C2,

√
2

2

) .

λ = 0:

u = 2
√

2x
a(t)√
c(t)

ds
(
x2 + 6

∫
a2(t)dt,

√
2

2

)
,

u =
√

2x
a(t)√
c(t)

1 + cn
(
x2 + 6

∫
a2(t)dt,

√
2

2

)
sn
(
x2 + 6

∫
a2(t)dt,

√
2

2

) ,

u =
a(t)√
c(t)

2
√

2x

x2 + 6
∫
a2(t)dt

, u =
a(t)√
c(t)

√
2

x
,

u =
√

2
a(t)√
c(t)

ds
(
x,
√

2
2

)
, u =

√
2

2

a(t)√
c(t)

1 + cn
(
x,
√

2
2

)
sn
(
x,
√

2
2

) .

As equation (2.63) admits the equivalence transformation of the alter-

nating sign u 7→ −u all the above presented solutions can also have the

forms with the opposite sign.

2.6. Lie Symmetries of Generalized Burgers

Equations and their Application to Solving

Boundary Value Problems

Lie symmetry methods play an important role in solving nonlinear PDEs

providing us with the algorithmic method of Lie reduction. There exist sev-
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eral approaches exploiting Lie symmetries in reduction of boundary-value

problems (BVPs) for PDEs to those for ODEs. The classical technique is to

require that both equation and boundary conditions are left invariant un-

der the action of a one-parameter Lie group of transformations. Of course

the infinitesimal approach is usually applied, i.e., a basis of operators of Lie

invariance algebra is used instead of finite transformations from the corre-

sponding Lie symmetry group (see, e.g., [32, Section 4.4]). The first works

in this direction appeared in the late sixties (see, e.g., [29, 35, 201, 202]).

Bluman used the approach [29, 35], that generally can be termed as the

“direct” one, namely firstly the symmetries of a PDE were derived and

then the boundary conditions were checked to determine whether they are

also invariant under the action of the generators of symmetry found. In

the case of a positive answer the BVP for the PDE was reduced to a BVP

for an ODE. Using this technique a number of boundary-value problems

were solved (see, e.g., [48, 214,277,278]).

The method suggested by Moran and Gaggioli in [202] uses specific one-

parameter Lie groups of transformations of the independent and dependent

variables of the PDE system as well as of all arbitrary elements which

appear in the equations under study and in initial and boundary conditions.

Namely, only the groups of scalings and translations are considered which

can lead to self-similar or travelling-wave solutions only. After the admitted

Lie group of scalings and/or translations is specified, the complete set of

absolute invariants has to be found. Then a boundary-value problem for

the PDE system is reduced to similar but simpler problem for the ODE

system. Such an approach was applied to a number of engineering problems

(see, e.g., [1] and references therein).

There is also the approach in which the group classification of a PDE

system and associated boundary conditions is performed simultaneously

(see, e.g., [164, 165]). Lie symmetries can also be used for certain cases

when boundary conditions themselves are not invariant with respect to
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the corresponding Lie group of transformations [102].

2.6.1. A Class of Generalized Burgers Equations. In this section

we demonstrate that the “direct” approach is much easier than that one

suggested in [202] and used, e.g., in [1]. To illustrate this we use an example

of a generalized Burgers equation of the form

ut + a(un)x = g(t)uxx, (2.72)

where a is a nonzero constant, g is an arbitrary smooth nonvanishing func-

tion of t and n 6= 0, 1. If n = 2, a = 1/2, and g = −ν, where ν is a

nonzero constant, equation (2.72) becomes the prominent Burgers equa-

tion, ut + uux + νuxx = 0, that is one of the simplest nonlinear (1 + 1)-

dimensional evolution equations that is exactly solvable. It has a long

history as it was already known to Forsyth [82] and discussed by Bateman

not many years later [19]. However, it was a serious contribution made by

Burgers which led to its present name [49]. Burgers equation has been used

to describe many processes in fluid mechanics and a variety of other fields

which seem to be rather disparate. Its remarkable feature is that it can

be transformed to the standard heat equation by means of the Hopf–Cole

transformation [62,121]. Therefore it is C-integrable [50].

The generalized Burgers equations (2.72) with n = 2 and a nonconstant

function g were derived in [116] and describe the propagation of weakly

nonlinear acoustic waves under the influence of geometrical spreading and

thermoviscous diffusion. Lie symmetries of such equations were studied

in [73, 310]. This and other generalizations of the Burgers equations are

discussed, e.g., in [262,263].

We solve the group classification problem for class (2.72) in the frame-

work of modern group analysis. Then we consider the class of BVPs

and solve successfully a specific BVP satisfying a requirement of invari-

ance with respect to Lie symmetries obtained. In contrast to the work

performed in [1] we use the “direct” approach [32,35] to solve the equation
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with associated boundary conditions and show that it is easier to imple-

ment and more transparent.

Equivalence Groupoid. We study all admissible transformations in

class (2.72). They appear to be exhausted by equivalence once. The results

of the study are summarized in the following statements.

Theorem 2.45. The usual equivalence group G∼ of class (2.72) comprises

the transformations

t̃ = δ1t+ δ2, x̃ = δ3x+ δ4, ũ = δ5u,

ã =
δ3

δ1
δ1−n

5 a, g̃ =
δ3

2

δ1
g, ñ = n,

where δj, j = 1, . . . , 5, are arbitrary constants with δ1δ3δ5 6= 0.

If n = 2, class (2.72) admits a nontrivial conditional equivalence group

which is wider than G∼.

Theorem 2.46. The generalized equivalence group Ĝ∼2 of the class,

ut + a(u2)x = g(t)uxx, (2.73)

consists of the transformations

t̃ =
αt+ β

γt+ δ
, x̃ =

κx+ µ1t+ µ0

γt+ δ
, ã =

a

σ
,

ũ =
σ

2a(αδ − βγ)
(2aκ(γt+ δ)u− κγx+ µ1δ − µ0γ) , g̃ =

κ2

αδ − βγ
g,

where α, β, γ, δ, κ, µ1, µ0, σ are constants defined up to a nonzero multiplier,

αδ − βγ 6= 0 and κσ 6= 0.

Theorem 2.47. Let two equations from class (2.72), ut+a(un)x = g(t)uxx

and ũt̃ + ã(ũñ)x̃ = g̃(t̃)ũx̃x̃, be connected by a point transformation T in

the variables t, x and u. Then the transformation T is the projection on

the space (t, x, u) of a transformation from the group G∼ if n 6= 2, or from

the group Ĝ∼2 , if n = 2.
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Table 2.8: Group classification of the class ut + a(un)x = g(t)uxx, n 6= 0, 1.

no. n g Basis operators of Amax

1 6= 2 ∀ ∂x

2 6= 2 εtρ ∂x, 2t∂t + (ρ+ 1)x∂x +
ρ− 1

n− 1
u∂u

3 6= 2 εet ∂x, 2∂t + x∂x + 1
n−1u∂u

4 6= 2 1 ∂x, ∂t, 2t∂t + x∂x − 1
n−1u∂u

5 2 ∀ ∂x, t∂x + ∂u

6 2 εtρ ∂x, t∂x + ∂u, 2t∂t + (ρ+ 1)x∂x + (ρ− 1)u∂u

7 2 εet ∂x, t∂x + ∂u, 2∂t + x∂x + u∂u

8 2 εe2ρ arctan t ∂x, t∂x + ∂u, (t2 + 1)∂t + (t+ ρ)x∂x + (x+ (ρ− t)u)∂u

9 2 1 ∂x, t∂x + ∂u, ∂t, 2t∂t + x∂x − u∂u, t2∂t + tx∂x + (x− tu)∂u

Here ε = ±1 mod G∼ and ρ is a nonzero constant. In all cases a = 1/n mod G∼. In Case 6 we

can set, modĜ∼2 , either ρ > 0 or ρ < 0.

Lie Symmetries. We perform the group classification of class (2.72)

within the framework of the classical Lie approach [217, 227]. It is con-

venient to perform the group classification for class (2.72) up to G∼-

equivalence and for its subclass (2.73) up to Ĝ∼2 -equivalence.

Theorem 2.48. The kernel of the maximal Lie invariance algebras of equa-

tions from class (2.72) with n 6= 2 coincides with the one-dimensional alge-

bra 〈∂x〉. All possible G∼-non-equivalent cases of extension of the maximal

Lie invariance algebras are exhausted by the cases 2–4 of Table 2.8.

Theorem 2.49. The kernel of the maximal Lie invariance algebras of equa-

tions from class (2.73) coincides with the two-dimensional Abelian algebra

〈∂x, 2at∂x + ∂u〉. All possible Ĝ∼2 -non-equivalent cases of extension of the

maximal Lie invariance algebras are exhausted by the cases 6–9 of Ta-

ble 2.8.

Solution of a Boundary-Value Problem Using Lie Symmetries.
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We consider the class of BVPs

ut + a(un)x = g(t)uxx, x ∈ [0,+∞), t > 0,

lim
t→+∞

u(t, x) = 0, x ∈ (0,+∞), (2.74)

u(t, 0) = q(t), t > 0,

lim
x→+∞

u(t, x) = 0, t > 0,

where a is a nonzero constant, g and q are arbitrary smooth nonvanishing

functions and n 6= 0, 1 and search those for which the “direct” approach

suggested by Bluman [32,35] is applicable.

We have derived the Lie symmetries for the variable coefficient equation

(2.72) and now we examine which of these symmetries leave the initial and

boundary conditions of the problem (2.74) invariant. The procedure starts

by assuming a general symmetry of the form

X =
m∑
i=1

αiXi, (2.75)

where m is the number of basis operators of maximal Lie symmetry algebra

of a given PDE and αi, i = 1, . . . ,m, are constants to be determined.

Lie symmetries for equation (2.72) appear in Table 2.8. In Case 2, for

which g(t) = εtρ, the generator (B.13) takes the form

X = α1∂x + α2

(
2t∂t + (ρ+ 1)x∂x +

ρ− 1

n− 1
u∂u

)
.

Application of X to the first boundary condition which is written as x = 0

and u(t, 0) = q(t) gives

α1 = 0 and α2

(
−2t

dq

dt
+
ρ− 1

n− 1
q

)
= 0.

For nonzero α2 we have

q(t) = γt
ρ−1
2n−2 ,

where γ > 0 is a constant. It can be shown that the symmetry X with

α1 = 0 leaves invariant the other boundary conditions. Hence the admit-

ted Lie symmetry can be used to reduce BVP (2.74) to a problem with
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the governing equation being an ordinary differential equation. In fact

the Lie symmetry 2t∂t + (ρ + 1)x∂x + ((ρ− 1)/(n− 1))u∂u produces the

transformation

u = t
ρ−1
2n−2φ(η), where η = xt−

ρ+1
2 , (2.76)

that reduces (2.74) into the BVP for ODE

2εφ′′ + (ρ+ 1)ηφ′ − 2a(φn)′ − ρ− 1

n− 1
φ = 0, η ∈ [0,+∞), (2.77)

φ(0) = γ, (2.78)

lim
η→+∞

φ(η) = 0. (2.79)

Let ρ = (2 − n)/n. Then (2.77) takes the form εφ′′ + (ηφ′ + φ)/n −
a(φn)′ = 0 and can be integrated once to give εφ′+ηφ/n−aφn+c = 0, where

c is an integration constant. When we set c = 0, this equation becomes

the Bernoulli equation that is linearizable by the substitution φ1−n = z to

the form

ε

1− n
z′ +

1

n
ηz − a = 0.

The general solution of this equation is

z = e−
1−n
2nε η

2

(
C +

a(1− n)

ε

∫ η

0

e
1−n
2nε θ

2

dθ

)
,

where C is an arbitrary constant. If εn(n − 1) > 0, the solution can be

written in terms of the error function as

z = e
η2

σ2

(
C +

a(1− n)
√
π

2εσ
erf(ση)

)
,

where σ =
√

n−1
2εn , erf(θ) = 2√

π

∫ θ
0 e
−s2ds. Therefore a particular solution of

the second-order ODE on the function φ is

φ =

e
− 1

2εnη
2
(
C + a(1−n)

ε

∫ η
0 e

1−n
2nε θ

2

dθ
) 1

1−n
, if εn(n− 1) < 0,

e−
1

2εnη
2
(
C + a(1−n)

√
π

2εσ erf(ση)
) 1

1−n
, if εn(n− 1) > 0,

(2.80)
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Figure 2.1: Solution (2.80) for

ε = 1, γ = 0.5, a = 1 and various

n.

Figure 2.2: Solution (2.82) for

ε = 1, γ = 0.5, a = 1 and n = 3

(evolution in time).

Figure 2.3: Solution (2.82) for

ε = 1, γ = 0.5, a = 1 and n = 8

(evolution in time).

where σ =
√

(n− 1)/(2εn). This is the solution of BVP (2.77)–(2.79) with

ρ = (2− n)/n, when C = γ1−n and εn > 0. Its typical behaviour is shown

on Figure 2.1.

Now we use (2.76) and obtain the solution of the following BVP

ut + a(un)x = εt
2−n
n uxx, x ∈ [0,+∞), t > 0,

lim
t→+∞

u(t, x) = 0, x ∈ (0,+∞), (2.81)

u(t, 0) = γt−
1
n , t > 0,

lim
x→+∞

u(t, x) = 0, t > 0.

For ε > 0 and n > 1 the solution has the form

u = t−
1
n exp

[
− 1

2εn
x2t−

2
n

](
γ1−n +

a(1− n)
√
π

2εσ
erf(σxt−

1
n )

) 1
1−n

, (2.82)

where σ =
√

n−1
2nε . Note that the solution satisfies BVP (2.81) for all values

of positive γ if a < 0. If a > 0, then the parameters have to satisfy the

inequality γ1−n > a(n − 1)
√
π/(2εσ). The typical behaviour of the latter

solution is shown on Figures 2.2 and 2.3 for the values n = 3 and n = 8,

respectively.

The above procedure can be applied to the remaining cases that appear

in Table 2.8. If we omit Case 9 which is the well-known Burgers equation,

and constant coefficient Case 4, only in Case 6 there exists a Lie symmetry
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that leaves the boundary and initial conditions invariant. However, the

results for this case can be obtained from the above by setting n = 2 and

BVP (2.81) reduces to one with a constant coefficient governing equation.

Concluding Remarks. One performing research in the fields of engineer-

ing or physical sciences often encounters the problem of solving boundary-

value problems (BVPs) for nonlinear partial differential equations. It is

important to choose the method for solution which is easier to implement

and which leads to more general results than others. Some of the an-

alytical methods are based on the usage of Lie symmetry groups. We

have applied the classical “direct” technique involving Lie symmetries of

PDEs [32] to the class of BVPs for generalized Burgers equation with time-

dependent viscosity coefficient and have solved the particular subcase. The

used approach is more straightforward than the one suggested in [202]. One

more disadvantage of the latter technique is that it uses only scalings and

translations. Lie symmetry groups of some BVPs are wider and are not

exhausted by scalings and translations only (see, e.g., [165]). So, the “di-

rect” approach is also more general. However, as we have seen, the present

method is applicable only for specific forms of g(t) and q(t) in (14). In

other words, the method has its limitations, but nevertheless is applied to

certain nonlinear problems. Some recent examples of its successful usage

can be found in [175,298].

The list of Lie symmetries derived for the class (2.72) comes to complete

the existing results that appear in the literature [73, 310] and presents all

non-equivalent cases for which the algorithmic Lie reduction method can

be applied.

2.6.2. A Class of Generalized Burgers Equations With Linear

Damping. In this section we shortly adduce the classification results de-

rived in [234] for another class of variable coefficient generalized Burgers
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equations with linear damping of the form

ut + unux + h(t)u = g(t)uxx, ng 6= 0. (2.83)

Here h(t) and g(t) are arbitrary smooth functions with g 6= 0, and n is an

arbitrary nonzero constant.

Theorem 2.50. The generalized equivalence group Ĝ∼ of the class (2.83)

consists of the transformations

t̃ = T (t), x̃ = δ1x+ δ0, ũ =

(
δ1

Tt

) 1
n

u,

h̃ =
1

Tt
h+

Ttt
nT 2

t

, g̃ =
δ1

2

Tt
g, ñ = n,

where δ1 and δ0 are arbitrary constants and T = T (t) is an arbitrary smooth

function with δ1Tt > 0. The equivalence groupoid of the subclass of the

class (2.83) singled out by the condition n 6= 1 is generated by elements

of Ĝ∼, i.e., this subclass is normalized in the generalized sense.

Corollary 2.51. The generalized equivalence group Ĝ∼h=const of the

class (2.83) with h = const consists of the transformations

t̃ = T (t), x̃ = δ1x+ δ0, ũ =

(
δ1

α

) 1
n

eht−h̃Tu,

g̃ =
δ1

2

α
enht−nh̃Tg, ñ = n,

where the function T = T (t) depends on h and h̃ and is defined by the

formulae

hh̃ 6= 0:
e−nh̃T − 1

−nh̃
= α

e−nht − 1

−nh
+ β,

h 6= 0, h̃ = 0: T = α
e−nht − 1

−nh
+ β,

h = 0, h̃ 6= 0:
e−nh̃T − 1

−nh̃
= αt+ β,

h = h̃ = 0: T = αt+ β.

Here α, β, δ0 and δ1 are arbitrary constants with αδ1 > 0.
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Theorem 2.52. The generalized extended equivalence group Ĝ∼n=1 of the

class

ut + uux + h(t)u = g(t)uxx (2.84)

consists of the transformations

t̃ = T (t), x̃ = (x+ δ1)X
1 + δ0, ũ =

X1

Tt

(
u+ (x+ δ1)

X1
t

X1

)
,

h̃ =
1

Tt

(
h+

Ttt
Tt
− 2

X1
t

X1

)
, g̃ =

(
X1
)2

Tt
g.

Here δ0, δ1 are arbitrary constants, T = T (t) is an arbitrary smooth func-

tion with Tt 6= 0, and X1 =
(
γ
∫
e−

∫
h(t) dt dt+ δ

)−1

.

Class (2.84) is normalized in the generalized extended sense.

Therefore, the admissible transformations in the class (2.83) are ex-

haustively described. The following statement is true.

Theorem 2.53. The class (2.83), where the exponent n varies, is not nor-

malized. It can be partitioned into the normalized subclasses each of which

is singled out by fixing a value of n, and these classes are not connected by

point transformations. Each subclass of (2.83) with a specified value of n,

n 6= 1, is normalized in the usual sense, whereas the subclass (2.84) corre-

sponding to the value n = 1 is normalized in the generalized extended sense

only. Every union of any subclasses of (2.83) with n 6= 1 is normalized in

the generalized sense.

The transformations from Ĝ∼ are parameterized by an arbitrary func-

tion T = T (t). This allows us to gauge one of the arbitrary elements, g

or h, to a simple constant value. For example, we can set g to one or

h to zero. The gauging h = 0 looks more convenient since in this case

the class (2.83) reduces to another one, for which the group classification

problem has been solved in the previous section.2.1 This gauging can be
2.1 Group classification problems for certain subclasses of (2.83) with h = 0 were considered in [73,286,

287,310] and the complete group classification of this class was achieved in [307].
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realized with the transformation

T : t̂ =
∫
e−n

∫
h(t) dt dt, x̂ = x, û = e

∫
h(t) dtu (2.85)

from the group Ĝ∼, which links the class (2.83) with the class ût̂ + ûnûx̂ =

ĝ(t̂)ûx̂x̂, where the new arbitrary element ĝ depends on h and g as

ĝ = en
∫
h(t) dtg. (2.86)

Of course the transformation T for this gauging is not unique. If n 6= 1,

then the most general transformation is

t̂ = α
∫
e−n

∫
h(t) dt dt+ β, x̂ = δ1x+ δ0, û =

(
δ1

α

) 1
n

e
∫
h(t) dtu,

where α, β, δ1 and δ0 are arbitrary constants with αδ1 6= 0. In the case

n = 1 the most general transformation takes the form

t̃ =
αt̂+ β

γt̂+ δ
, x̃ =

x+ µ1t̂+ µ0

γt̂+ δ
,

ũ =
(γt̂+ δ)e

∫
h(t) dtu− γx+ µ1δ − µ0γ

αδ − βγ
,

where α, β, γ, δ, µ0, and µ1 are arbitrary constants with αδ−βγ 6= 0, and

t̂ =
∫
e−n

∫
h(t) dt dt.

If h is a nonzero constant, then the transformation T gauging h to zero

has the form

t̂ = − 1

nh
e−nht, x̂ = x, û = ehtu.

Remark 2.54. The alternative gauge g = 1 can be set using a parameter-

ized family of point transformations that are projections of transformations

from Ĝ∼ to the space of independent and dependent variables,

t̂ =
∫
g(t) dt, x̂ = x sgn g(t), û = |g(t)|− 1

nu.

This family of transformations maps the class (2.83) onto the class ût̂ +

ûnûx̂ + ĥ(t̂)û = ûx̂x̂, where the new arbitrary element ĥ depends on h and

g as ĥ = h
g + gt

ng2 .
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Table 2.10: The complete list of Lie symmetry extensions for the class (2.83).

no. g Basis operators of Amax

n 6= 1

1 ∀ ∂x

2 λTt(αT + β)ρ ∂x, 2n(αT + β)T−1t ∂t + αn(ρ+1)x∂x

+
(
α(ρ−1)− 2nh(t)(αT + β)T−1t

)
u∂u

3 λTte
αT ∂x, 2nT−1t ∂t + αnx∂x +

(
α− 2nh(t)T−1t

)
u∂u

4 λTt ∂x, T
−1
t ∂t − h(t)T−1t u∂u,

2nTT−1t ∂t + nx∂x −
(
2nh(t)TT−1t + 1

)
u∂u

n = 1

5 ∀ ∂x, T∂x + Tt∂u

6 λTt

(
αT+β
γT+δ

)ρ
∂x, T∂x + Tt∂u, (αT + β)(γT + δ)T−1t ∂t

+
(
1
2(ρ− 1)∆ + α(γT + δ)

)
x∂x +

(
αγTtx

+
[
−α(γT + δ)− h(t)(αT + β)(γT + δ)T−1t + 1

2(ρ+ 1)∆
]
u
)
∂u

7 λTte
αT+β
γT+δ ∂x, T∂x + Tt∂u,

(γT + δ)2 T−1t ∂t +
(
γ(γT + δ) + 1

2∆
)
x∂x

+
([
−γ(γT + δ)− h(t)(γT + δ)2T−1t + 1

2∆
]
u+ γ2Ttx

)
∂u

8 λTte
2ρ arctan(αT+β) ∂x, T∂x + Tt∂u,(

(αT + β)2 + 1
)
T−1t ∂t + α (αT + ρ+ β)x∂x

+
([
α(−αT + ρ− β)− h(t)

(
(αT + β)2 + 1

)
T−1t

]
u+ α2Ttx

)
∂u

9 λTt ∂x, T∂x + Tt∂u, 2TT−1t ∂t + x∂x −
(
2h(t)TT−1t + 1

)
u∂u,

T−1t ∂t − h(t)T−1t u∂u,
T 2T−1t ∂t + Tx∂x +

(
Ttx−

(
h(t)T 2T−1t + T

)
u
)
∂u

Here T = T (t) =
∫
e−n

∫
h(t) dt dt, and the function h(t) is arbitrary in all cases. Here λ and ρ are

nonzero constants. α = ±1 in Case 2 and α 6= 0 in Cases 3 and 8. In Cases 6 and 7 α, β, γ, and δ

are arbitrary constants defined up to a nonzero multiplier (with additional possibility of scaling in

Case 6) such that ∆ = αδ−βγ 6= 0. In Case 7 we can set (α, β, γ, δ) ∈ {(α′, 0, 0, 1), (0, β′, 1, δ′)}.

Theorems 2.50, 2.52, and 2.53 exhaustively describe the equivalence

groupoid of the class (2.83).

The complete list of Lie symmetry extensions for equations (2.83) are

presented in Table 2.10. We do not present the list of point-inequivalent
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cases of Lie symmetry extensions since it in fact coincides with the cases

presented in Table 2.8. Note that the cases n 6= 2 and n = 2 for equa-

tions (2.72) correspond to the cases n 6= 1 and n = 1 for equations (2.83),

respectively. The classification list adduced in Table 2.10 derived using the

equivalence based approach suggested in [289].

In [307] we also derived solutions of equations from the initial

class (2.83) with arbitrary values of h(t) and specific values of g(t),

(i) ut + unux + h(t)u = εT
1−n
1+ne−n

∫
h(t) dtuxx :

u =
T−

1
n+1 exp

(
−µ
nx

2T−
2

n+1

)
e−

∫
h(t) dt(

c1 − 2µT−
1

n+1

∫
e−µx2T

− 2
n+1 dx

) 1
n

,

(ii) ut + unux + h(t)u = e−n
∫
h(t) dtuxx :

u =

(
a(n+ 1)

1 + c1ean(x−aT )

) 1
n

e−
∫
h(t) dt,

u =

(
n+ 1

c1 − nx

) 1
n

e−
∫
h(t) dt,

(iii) ut + uux + h(t)u = g(t)uxx ∀g :

u =
x+ c0∫

e−
∫
h(t) dt dt+ a

e−
∫
h(t) dt.

Here a and c are arbitrary constants, ε = ±1, µ = n
2ε(n+1) , and the func-

tion T = T (t) is defined as T (t) =
∫
e−n

∫
h(t) dt dt.

The equation (ii) can be rewritten as

ut + unux −
1

n

kt
k
u = kuxx, (2.87)

where the functions k(t) and h(t) are related via the formula k = e−n
∫
h(t) dt.

For n = 1 the equation (2.87) coincides with equation (3.262) in [262,

p. 90], which includes the Burgers model for turbulence but with variable

diffusivity (applicable to modeling of acoustic waves in the atmosphere).

We have derived two families of exact solutions for the equation (ii). The
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behavior of the solution

u =

(
a(n+ 1)

1 + c1ean(x−aT )

) 1
n

e−
∫
h(t) dt (2.88)

for two different values of n and forms of variable diffusivity coefficients h

is illustrated at Fig. 2.4.

a b

c d

Figure 2.4: The behavior of the solution (2.88) for c1 = 1, a = 0.5. Here n = 1, and h = t at

Fig. a, n = 2, and h = t at Fig. b; n = 1, and h = (2t)−1 at Fig. c, n = 2, and h = (2t)−1 at

Fig. d.

We also found that all equations from the class (2.83) that are linearized

to the heat equation

v̂t̂ = λv̂x̂x̂ (2.89)

have the form

ut + uux + h(t)u = λe−
∫
h(t) dtuxx. (2.90)

The corresponding transformation

t̂ =
∫
e−

∫
h(t) dt dt, x̂ = x, −2λ

v̂x̂
v̂

= e
∫
h(t) dtu
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gives the formula for generating solutions of the equation (2.90) from so-

lutions of the heat equation

u(t, x) = −2λe−
∫
h(t) dt v̂x(t̂, x)

v̂(t̂, x)
, where t̂ =

∫
e−

∫
h(t) dt dt.

Consider, for example, the exact solution v̂ = ceax̂+a2λt̂(x̂+ 2aλt̂) of the

heat equation (2.89). Here c and a are arbitrary nonzero constants. Using

the last transformation, we get an exact solution of (2.90),

u(t, x) = −2λ
ax+ 2a2λ

∫
e−

∫
h(t) dt dt+ 1

x+ 2aλ
∫
e−

∫
h(t) dt dt

e−
∫
h(t) dt.

2.7. Group Classification of Variable Coefficient

Nonlinear Kolmogorov Equations

in 2+1 Dimensions

Second-order partial differential equations of the form

ut = Duyy + ν [K(u)]x , (2.91)

where D and ν are nonzero constants, and K is a smooth nonlinear func-

tion of the dependent variable u, appear in various applications. In par-

ticular, they describe diffusion–convection processes [77], model an inter-

action of particles with two kinds of particles on a lattice [8], arise in

mathematical finance, when studying agents’ decisions under risk [59,229].

Equations (2.91) are called in the literature diffusion–advection equations,

nonlinear ultraparabolic equations and nonlinear Kolmogorov equations.

Lie symmetries of equations (2.91) and the corresponding group in-

variant solutions were classified by Demetriou et al [67]. There are

also studies on Lie symmetries of linear Kolmogorov equations [166, 279]

and of constant coefficient nonlinear Kolmogorov equations of the form

ut − uyy − uux = f(u) [268].
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An attempt of group classification of a class of nonlinear Kolmogorov

equations more general than (2.91), namely, such equations with time de-

pendent coefficients,

ut = f(t)uyy − g(t)[K(u)]x , fgKuu 6= 0, (2.92)

was recently made [171]. Here f and g are smooth nonvanishing functions

of the variable t, and K is a smooth nonlinear function of u. Neverthe-

less the complete classification of Lie symmetries of class (2.92) was not

achieved in [171], in particular, the case K = u lnu was missed and di-

mensions of maximal Lie symmetry algebras as well as some of their basis

elements for the other cases of extensions were presented incorrectly. The

case K = u2 that is important for applications was not studied with Lie

symmetry point of view at all.

In this section we perform the complete group classification of equa-

tions (2.92). As class (2.92) is parameterized by three arbitrary elements,

K(u), f(t) and g(t), the group classification problem appears to be too

complicated to be solved completely without modern approaches based on

the usage of point equivalence transformations (see also [296]). One of such

tools is the gauging of arbitrary elements by equivalence transformations

(i.e., reducing of a class to a subclass with fewer number of arbitrary el-

ements). In section 2.7.3 we discuss how to choose an optimal gauging

among possible ones. To illustrate that the chosen gauging is optimal, we

also present results on group classification of class (2.92) carried out for an

alternative gauging.

2.7.1. Admissible Transformations. To find the admissible transfor-

mations we use the direct method [160]. The details of calculations are

skipped for brevity. As it is more convenient for the study of Lie symme-

tries to consider the equivalent form of the above class,

ut = f(t)uyy − g(t)k(u)ux, fgku 6= 0, (2.93)
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we present transformations for both K and k = Ku in the theorems below.

Theorem 2.55. The generalized extended equivalence group Ĝ∼ of

class (2.92) (resp. (2.93)) is formed by the transformations

t̃ = T (t), x̃ = δ1x+ δ2

∫
g(t) dt+ δ3, ỹ = δ4y + δ5,

ũ = δ6u+ δ7, f̃(t̃) =
δ4

2

Tt
f(t), g̃(t̃) =

ε1

Tt
g(t),

K̃(ũ) =
δ6

ε1
(δ1K(u) + δ2u+ ε2) ,

(
resp. k̃(ũ) =

1

ε1
(δ1k(u) + δ2),

)
where δi, i = 1, . . . , 7, ε1 and ε2 are arbitrary constants with δ1δ4δ6ε1 6= 0,

T (t) is an arbitrary smooth function with Tt 6= 0.

The usual equivalence group of class (2.92) (resp. (2.93)) consists of

the above transformations with δ2 = 0.

The group Ĝ∼ contains a subgroup of gauge equivalence transforma-

tions, i.e. the transformations that change only arbitrary elements while

the independent and dependent variables remain unchanged [248]. This

subgroup is formed by the transformations t̃ = t, x̃ = x, ỹ = y, ũ = u,

f̃ = f, g̃ = ε1g, K̃ = (K + ε2)/ε1 (resp. k̃ = k/ε1). It is more convenient

to consider class (2.93) than class (2.92) as in this case the dimension of

the gauge equivalence subgroup reduces.

It appears that the subclass of equations (2.92) with K quadratic in u

(resp. (2.93) with k linear in u) admits a wider equivalence group. Up to

the Ĝ∼-equivalence we can consider the case K = u2 (resp. k = u).

Theorem 2.56. The generalized extended equivalence group Ĝ∼1 of the class

ut = f(t)uyy − g(t)uux, fg 6= 0, (2.94)

comprises the transformations

t̃ = T (t), x̃ = X(t)x+ δ3

∫
g(t)X(t)2dt+ δ4, ỹ = δ1y + δ2,

ũ = δ5

(
u

X(t)
− δ6x+ δ3

)
, f̃(t̃) =

δ2
1

δ5Tt
f(t), g̃(t̃) =

X(t)2

δ5Tt
g(t),
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where X(t) =
(
δ6

∫
g(t) dt+ δ7

)−1
, δi, i = 1, . . . , 7, are arbitrary constants

with δ1δ5(δ
2
6 +δ2

7) 6= 0, and T (t) is an arbitrary smooth function with Tt 6= 0.

The usual equivalence group of class (2.94) consists of the above trans-

formations with δ3 = δ6 = 0.

As there is one arbitrary function, T (t), in the transformations from

the group Ĝ∼, we can set one of the arbitrary elements f or g of the initial

class equals to a nonzero constant value. We choose to perform the gauging

g = 1 by using the transformation t̃ =
∫
g(t) dt, x̃ = x, ũ = u. Then, any

equation from class (2.92) (resp. (2.93)) is mapped to an equation from

its subclass that is singled out by the condition g = 1. Without loss of

generality, we can restrict ourselves to the study of class (2.92) with g = 1

or, what is more convenient, its equivalent form

ut = f(t)uyy − k(u)ux, fku 6= 0. (2.95)

The generalized extended equivalence groups of class (2.95) and its sub-

class with k = u coincide with their usual equivalence groups.

Theorem 2.57. The usual equivalence group G∼ of class (2.95) consists

of the transformations

t̃ = ε1t+ ε0, x̃ = δ1x+ δ2t+ δ3, ỹ = δ4y + δ5, ũ = δ6u+ δ7,

f̃(t̃) =
δ4

2

ε1
f(t), k̃(ũ) =

1

ε1
(δ1k(u) + δ2),

where δi, i = 1, . . . , 7, ε1 and ε0 are arbitrary constants with δ1δ4δ6ε1 6= 0.

Theorem 2.58. The usual equivalence group G∼1 of the class

ut = f(t)uyy − uux, f 6= 0, (2.96)

is formed by the transformations

t̃ =
αt+ β

γt+ δ
, x̃ =

κx+ µt+ ν

γt+ δ
, ỹ = λy + ε,

ũ =
1

∆
(κ(γt+ δ)u− κγx+ δµ− γν) , f̃(t̃) =

λ2

∆
(γt+ δ)2f(t),
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where α, β, γ, δ, κ, µ, and ν are arbitrary constants defined up to a nonzero

multiplier with ∆ = αδ − βγ 6= 0, κ 6= 0; λ and ε are arbitrary constants,

λ 6= 0.

Theorem 2.58 implies that any equation (2.96) with f = a(t + b)−2,

where a 6= 0 and b are constants, is mapped by a point transformation to

a constant-coefficient equation from the same class.

We also present equivalence transformations for the subclass of

class (2.93) singled out by the condition f = 1, which we will use for

the comparison of the cases f = 1 and g = 1 in Section 2.7.3.

Theorem 2.59. The generalized extended equivalence group Ĝ∼2 of the class

ut = uyy − g(t)k(u)ux, gku 6= 0, (2.97)

comprises the transformations

t̃ = δ2
4t+ δ0, x̃ = δ1x+ δ2

∫
g(t) dt+ δ3, ỹ = δ4y + δ5,

ũ = δ6u+ δ7, g̃(t̃) =
ε1

δ2
4

g(t), k̃(ũ) =
1

ε1
(δ1k(u) + δ2) ,

where δi, i = 0, 1, . . . , 7, and ε1 are arbitrary constants with δ1δ4δ6ε1 6= 0.

Theorem 2.60. The generalized extended equivalence group Ĝ∼3 of the class

ut = uyy − g(t)uux, g 6= 0, (2.98)

consists of the transformations

t̃ = δ2
1t+ δ2, x̃ =

1

θ(t)
(x+ δ4) + δ5, ỹ = δ1y + δ3,

ũ = δ6(θ(t)u− γ1(x+ δ4)) , g̃(t̃) =
g(t)

δ2
1δ6θ(t)2

,

where δi, i = 1, . . . , 6, θ(t) = γ1

∫
g(t)dt+ γ2, γ1 and γ2 are arbitrary con-

stants with δ1δ6(γ
2
1 + γ2

2) 6= 0.
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2.7.2. Lie Symmetries. The group classification problem for class (2.93)

up to Ĝ∼-equivalence reduces to the similar problem for class (2.95)

up to G∼-equivalence (resp. the group classification problem for

class (2.94) up to Ĝ∼1 -equivalence reduces to such a problem for

class (2.96) up to G∼1 -equivalence). To solve the group classification

problem for class (2.95) we use the classical approach based on in-

tegration of determining equations implied by the infinitesimal invari-

ance criterion [227]. We search for symmetry operators of the form

Q = τ(t, x, y, u)∂t + ξ(t, x, y, u)∂x + η(t, x, y, u)∂y + θ(t, x, y, u)∂u generat-

ing one-parameter Lie groups of transformations that leave equations (2.95)

invariant [217, 227]. It is required that the action of the second prolonga-

tion Q(2) of the operator Q on (2.95) vanishes identically modulo equa-

tion (2.95),

Q(2){ut − f(t)uyy + k(u)ux}|ut=f(t)uyy−k(u)ux = 0. (2.99)

The infinitesimal invariance criterion (2.99) implies the determining

equations, simplest of which result in

τ = τ(t), ξ = ξ(t, x), η = η1(t)y + η0(t),

θ = ϕ(t, x, y)u+ ψ(t, x, y),

where τ , ξ, η1, η0, ϕ and ψ are arbitrary smooth functions of their variables.

Then the rest of the determining equations are

τft = (2η1 − τt)f, 2fϕy = −η1
t y − η0

t , (2.100)

(ϕu+ ψ)ku + (τt − ξx)k = ξt, (2.101)

(ϕxu+ ψx)k + (ϕt − fϕyy)u+ ψt − fψyy = 0. (2.102)

Firstly we integrate equations (2.101) and (2.102) for k up to the G∼-

equivalence taking into account that ku 6= 0. The method of furcate split-

ting [138,209] is further used. For any operator Q ∈ Amax equation (2.101)

gives equations on k of the general form

(au+ b)ku + ck = d, (2.103)
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where a, b, c, and d are constants. The number s of such independent

equations is not greater than two, otherwise they form incompatible system

for k. If s = 0, then (2.103) is not an equation on k but an identity, this

corresponds to the case of arbitrary k. If s = 1, then the integration

of (2.103) up to the G∼-equivalence gives three different cases: (i) k = un,

n 6= 0, 1; (ii) k = eu; (iii) k = lnu. If s = 2, then the function k is linear in

u, k = u mod G∼.

The determining equation (2.102) implies that there exist two es-

sentially different cases of classification: I. kuu 6= 0, and II. kuu = 0

(k = u mod G∼). Consider firstly the case of arbitrary function k. In this

case equations (2.101) and (2.102) should be split with respect to k and ku.

The splitting results in the equations ϕ = ψ = ξt = τt − ξx = 0. Therefore

τ = c1t + c2, ξ = c1x + c3. As ϕ = 0, the second equation of (2.100)

implies η1
t = η0

t = 0, i.e. η1 = c4, and η0 = c5. Here ci, i = 1, . . . , 5, are

arbitrary constants. Then the general form of the infinitesimal generator is

Q = (c1t+c2)∂t+(c1x+c3)∂x+(c4y+c5)∂y and the first equation of (2.100)

takes the form

(c1t+ c2)ft = (2c4 − c1)f. (2.104)

This is the classifying equation for f. If f is an arbitrary nonvanishing

smooth function, then the latter equation should be split with respect

to f and its derivative, which results in c1 = c2 = c4 = 0. Therefore,

the kernel A∩ of the maximal Lie invariance algebras of equations from

class (2.95) is A∩ = 〈∂x, ∂y〉 (Case 1 of Table 2.11). To perform the fur-

ther classification we integrate equation (2.104) up to the G∼-equivalence.

All G∼-inequivalent values of f that provide Lie symmetry extensions for

equations from class (2.95) with arbitrary k are exhausted by the following

values: f = tρ, ρ 6= 0; f = et; f = 1. The corresponding bases of maximal

Lie invariance algebras are presented by Cases 2–4 of Table 2.11.

If k = un, n 6= 0, 1, then splitting equations (2.101) and (2.102) with

respect to different powers of u leads to the system ξt = ψ = ϕx = 0,
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Table 2.11: The group classification of class (2.95) up to the G∼-equivalence.

no. f(t) Basis of Amax

Arbitrary k

1 ∀ ∂x, ∂y

2 tρ ∂x, ∂y, 2t∂t + 2x∂x + (ρ+ 1)y∂y

3 et ∂x, ∂y, 2∂t + y∂y

4 1 ∂x, ∂y, ∂t, 2t∂t + 2x∂x + y∂y

k = un, n 6= 0, 1

5 ∀ ∂x, ∂y, nx∂x + u∂u

6 tρ ∂x, ∂y, nx∂x + u∂u, 2t∂t + 2x∂x + (ρ+ 1)y∂y

7 et ∂x, ∂y, nx∂x + u∂u, 2∂t + y∂y

8 1 ∂x, ∂y, nx∂x + u∂u, ∂t, 2t∂t + 2x∂x + y∂y

k = eu

9 ∀ ∂x, ∂y, x∂x + ∂u

10 tρ ∂x, ∂y, x∂x + ∂u, 2t∂t + 2x∂x + (ρ+ 1)y∂y

11 et ∂x, ∂y, x∂x + ∂u, 2∂t + y∂y

12 1 ∂x, ∂y, x∂x + ∂u, ∂t, 2t∂t + 2x∂x + y∂y

k = lnu

13 ∀ ∂x, ∂y, t∂x + u∂u

14 tρ ∂x, ∂y, t∂x + u∂u, 2t∂t + 2x∂x + (ρ+ 1)y∂y

15 et ∂x, ∂y, t∂x + u∂u, 2∂t + y∂y

16 1 ∂x, ∂y, t∂x + u∂u, ∂t, 2t∂t + 2x∂x + y∂y

Here n and ρ are arbitrary nonzero constants, and n 6= 1.

ϕt = fϕyy, nϕ+ τt − ξx = 0. These equations together with (2.100) imply

τ = c1t + c2, ξ = (c1 + nc6)x + c3, η = c4y + c5, ϕ = c6, where ci,

i = 1, . . . , 6, are arbitrary constants. The classifying equation for f takes

the form (2.104). Therefore, the cases of Lie symmetry extensions are

given by the same forms of f as in previous case, namely, arbitrary, power,

exponential and constant. See Cases 5–8 of Table 2.11. The dimensions of

the respective Lie symmetry algebras increase by one in comparing with

the case of arbitrary k. The highest dimension is five, not six as it was
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Table 2.12: The group classification of class (2.96) up to the G∼1 -equivalence.

no. f(t) Basis of Amax

1 ∀ ∂x, ∂y, x∂x + u∂u, t∂x + ∂u

2
eσ arctan t

t2 + 1
∂x, ∂y, x∂x + u∂u, t∂x + ∂u, (t2 + 1)∂t + tx∂x + 1

2σy∂y + (x− tu)∂u

3 tρ ∂x, ∂y, x∂x + u∂u, t∂x + ∂u, 2t∂t + (ρ+ 1)y∂y − 2u∂u

4 et ∂x, ∂y, x∂x + u∂u, t∂x + ∂u, 2∂t + y∂y

5 1 ∂x, ∂y, x∂x + u∂u, t∂x + ∂u, ∂t, 2t∂t + y∂y − 2u∂u

Here ρ and σ are arbitrary constants with ρ 6= 0,−2. Moreover ρ ≤ −1 mod G∼1 .

stated in [171].

The consideration of the cases k = eu and k = lnu is rather similar to

the case of k = un with n 6= 0, 1, therefore, we omit the details of calcula-

tions. The classification results are presented in Cases 9–16 of Table 2.11.

Consider the case of linear k, then up to the equivalence we can assume

k = u. We substitute k = u to equations (2.101) and (2.102) and further

split them with respect to different powers of u. This leads to the system

ψ = ξt, τt− ξx +ϕ = 0, ϕx = 0, ψx +ϕt− fϕyy = 0, and ψt− fψyy = 0. We

differentiate the first and the second equation of this system with respect

to the variable y and get the additional conditions ϕy = ψy = 0. Then also

ψt = ψxx = ϕtt = 0 and the second equation of (2.100) gives η1
t = η0

t = 0.

The general form of the infinitesimal operator Q is Q = (c2t
2 +c1t+c0)∂t+

((c2t + c4)x + c3t + c5)∂x + (c6y + c7)∂y + ((c4 − c1 − c2t)u + c2x + c3)∂u,

where ci, i = 0, . . . , 7, are arbitrary constants. The classifying equation is

(c2t
2 + c1t+ c0)ft = (2c6 − c1 − 2c2t)f. (2.105)

If this is not an equation on f but an identity, then c0 = c1 = c2 =

c6 = 0. Therefore, the constants c3, c4, c5, c7 appearing in the infinites-

imal generator Q are arbitrary and the maximal Lie invariance algebra

of the equations (2.96) with arbitrary f is the four-dimensional algebra

〈∂x, ∂y, x∂x + u∂u, t∂x + ∂u〉 (Case 1 of Table 2.12).

The further group classification of equations (2.95) with k = u, i.e.
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equations (2.96), is equivalent to the integration of the equation on f :

(at2 + bt+ c)ft = (d− 2at)f, (2.106)

where a, b, c and d are arbitrary constants with (a, b, c) 6= (0, 0, 0). Up

to G∼1 -equivalence the parameter quadruple (a, b, c, d) can be assumed to

belong to the set {(1, 0, 1, σ), (0, 1, 0, ρ), (0, 0, 1, 1), (0, 0, 1, 0)}, where σ,

ρ are nonzero constants, ρ ≤ −1. The proof is similar to ones presented

in [302,307]. It is based on the fact that transformations from the equiva-

lence group G∼1 can be extended to the coefficients a, b, c and d as follows

ã = µ(aδ2 − bγδ + cγ2), b̃ = µ(−2aβδ + b(αδ + βγ)− 2cαγ),

c̃ = µ(aβ2 − bαβ + cα2), d̃ = µ(d∆ + 2aβδ − 2bβγ + 2cαγ),

where ∆ = αδ − βγ 6= 0 and µ is an arbitrary nonzero constant.

Integration of the equation (2.106) for four inequivalent cases of the

quadruple (a, b, c, d) gives respectively f =
eσ arctan t

t2 + 1
, f = tρ, ρ 6= 0, f = et

and f = 1. We further substitute the obtained inequivalent values of f

into equation (2.105) and find the corresponding values of constants ci and,

therefore, the general forms of the infinitesimal generators. The results of

the group classification of class (2.96) are presented in Table 2.12.

The classification lists presented in Tables 2.11 and 2.12 give the ex-

haustive group classification of the class of variable coefficient nonlinear

Kolmogorov equations (2.93) with nonlinear k and of the class of equa-

tions (2.94) up to the Ĝ∼- and Ĝ∼1 -equivalences, respectively.

2.7.3. Discussion on the Choice of the Optimal Gauging. Appro-

priate choice of gauging of the arbitrary elements is a crucial step in solving

group classification problems. The gauging f = 1 could seem more conve-

nient if one look for the determining equations for finding Lie symmetries.

For class (2.97) they have the form

2ηy = τt, ηyy − ηt = 2ϕy, (ϕu+ ψ)gku + [τgt + (τt − ξx)g]k = ξt,

(ϕxu+ ψx)gk + (ϕt − ϕyy)u+ ψt − ψyy = 0.
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For the case k 6= u the difference in classification is not so crucial (cf.

Table 2.11 with Table 2.13). Though one can see that for k = lnu the

operator t∂x + u∂u appearing in Cases 13–16 of Table 2.11 transforms to

various forms in the respective cases of Table 2.13. For the case k = u

the difficulty of group classification of the class (2.93) with f = 1 increases

essentially in comparison with the gauging g = 1. Solving the determining

equations results in the following form of the infinitesimal generator

Q = (c1t+ c0)∂t + [(c2x+ c3)
∫
g(t)dt+ c4x+ c5]∂x +

(1
2c1y + c6)∂y + [(c7 − c2

∫
g(t)dt)u+ c2x+ c3]∂u,

where ci, i = 0, . . . , 7, are arbitrary constants. The classifying equation for

g is the integro-differential equation

(c1t+ c0)gt +
(
c1 − c4 + c7 − 2c2

∫
g(t) dt

)
g = 0

(cf. with the classifying equation (2.105) for f that is much simpler). The

results of group classification for class (2.98) are presented in Table 2.14.

Comparing Tables 2.12 and 2.14 one can conclude that forms of the basis

operators of the maximal Lie invariance algebras are more cumbersome in

Table 2.14.

The links between equations of the form (2.98) are also more tricky

than those between equations from class (2.96). For example, the equation

ut = uyy −
1

t cosh2(ν ln t)
uux,

where the variable coefficient can be rewritten as
4

t(tν + t−ν)2
, admits the

five-dimensional maximal Lie invariance algebra with the basis operators

∂x, ∂y, tanh(ν ln t)∂x + ν∂u, x∂x +u∂u, and t∂t− νx tanh(ν ln t)∂x + 1
2y∂y−

ν(νx− tanh(ν ln t)u)∂u. The equivalence of this equation and the equation

ũt̃ = ũỹỹ − t̃ 2ν−1ũũx̃
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Table 2.13: The group classification of class (2.97) up to the Ĝ∼2 -equivalence.

no. g(t) Basis of Amax

Arbitrary k

1 ∀ ∂x, ∂y

2 tρ ∂x, ∂y, 2t∂t + 2(ρ+ 1)x∂x + y∂y

3 et ∂x, ∂y, ∂t + x∂x

4 1 ∂x, ∂y, ∂t, 2t∂t + 2x∂x + y∂y

k = un, n 6= 0, 1

5 ∀ ∂x, ∂y, nx∂x + u∂u

6 tρ ∂x, ∂y, nx∂x + u∂u, 2t∂t + 2(ρ+ 1)x∂x + y∂y

7 et ∂x, ∂y, nx∂x + u∂u, ∂t + x∂x

8 1 ∂x, ∂y, nx∂x + u∂u, ∂t, 2t∂t + 2x∂x + y∂y

k = eu

9 ∀ ∂x, ∂y, x∂x + ∂u

10 tρ ∂x, ∂y, x∂x + ∂u, 2t∂t + 2(ρ+ 1)x∂x + y∂y

11 et ∂x, ∂y, x∂x + ∂u, ∂t + x∂x

12 1 ∂x, ∂y, x∂x + ∂u, ∂t, 2t∂t + 2x∂x + y∂y

k = lnu

13 ∀ ∂x, ∂y,
∫
g(t) dt ∂x + u∂u

14a tρ, ρ 6= −1 ∂x, ∂y, t
ρ+1∂x + (ρ+ 1)u∂u, 2t∂t + 2(ρ+ 1)x∂x + y∂y

14b t−1 ∂x, ∂y, ln t ∂x + u∂u, 2t∂t + y∂y

15 et ∂x, ∂y, e
t∂x + u∂u, ∂t + x∂x

16 1 ∂x, ∂y, t∂x + u∂u, 2t∂t + 2x∂x + y∂y, ∂t

Here n and ρ are arbitrary nonzero constants.

from the same class does not seem obvious. Nevertheless, there exists the

transformation from the equivalence group Ĝ∼3 ,

t̃ = t, x̃ =
1

4
x(t2ν + 1), ỹ = y, ũ =

u

t2ν + 1
+
ν

2
x,

that establishes a link between these equations. This shows that the dis-

tinguishing inequivalent cases of Lie symmetry extensions for class (2.98)

is also a more difficult task than for class (2.96).
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Table 2.14: The group classification of class (2.98) up to the Ĝ∼3 -equivalence.

no. g(t) Basis of Amax

1 ∀ ∂x, ∂y, x∂x + u∂u,
∫
g(t) dt ∂x + ∂u

2
1

t cos2(ν ln t)
∂x, ∂y, x∂x + u∂u, tan(ν ln t)∂x + ν∂u,

t∂t + νx tan(ν ln t)∂x + 1
2y∂y + ν(νx− tan(ν ln t)u)∂u

3
1

cos2 t
∂x, ∂y, x∂x + u∂u, tan t∂x + ∂u, ∂t + x tan t∂x + (x− u tan t)∂u

4a tρ ∂x, ∂y, x∂x + u∂u, t
ρ+1∂x + (ρ+ 1)∂u, 2t∂t + 2(ρ+ 1)x∂x + y∂y

4b t−1 ∂x, ∂y, x∂x + u∂u, ln t ∂x + ∂u, 2t∂t + y∂y

5 et ∂x, ∂y, x∂x + u∂u, e
t∂x + ∂u, ∂t + x∂x

6 1 ∂x, ∂y, x∂x + u∂u, t∂x + ∂u, ∂t, 2t∂t + 2x∂x + y∂y

Here ρ and ν are arbitrary constants with ν 6= 0, ρ 6= −2,−1, 0. Moreover ρ < −1 mod Ĝ∼3 .

Therefore, the gauging g = 1 is without a doubt the right choice to

perform a group classification for the class (2.93) and especially for its sub-

class (2.94). So, is there a regular way that can help one to choose a prefer-

able gauging among several possible ones? Equivalence groups appear to

be indicators showing the right choice of gauging. Indeed, the comparison

of the equivalence groups presented in Theorems 3 and 4 with those given

in Theorems 5 and 6 shows that the equivalence groups of class (2.95) and

its subclass (2.96) are usual whereas the equivalence groups of class (2.97)

and its subclass (2.98) remain to be generalized extended as the equivalence

group of the initial class. Transformations from the generalized extended

groups become point only after fixing arbitrary elements and integrals of

g then naturally appear in the forms of Lie symmetry generators and even

in the classifying equation. This of course makes the calculations more

difficult. Therefore, the widest possible equivalence group should be neces-

sarily found even before applying the Lie invariance criterion to equations

under study in order to choose the optimal gauging and to optimize the

entire process of group classification.
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The values of arbitrary element K of class (2.92) can be derived using

the values of arbitrary element k of class (2.93) adduced in Tables 1 and

3, namely: k = un, n 6= 0,−1, ↔ K = un+1; k = u−1 ↔ K = lnu; k = eu

↔ K = eu; k = lnu ↔ K = u lnu.

Application of the widest possible (generalized extended) equivalence

groups allowed us to write down classification lists in the explicit and con-

cise form. We have also shown that the equivalence group is that indicator

that helps one to choose the optimal gauging among several possible ones.
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Chapter 3

Equivalence Groupoids in the Study of

KdV-Like Equations and Related Models

The classical Korteweg-de Vries (KdV) equation and its generalizations

model various physical systems, including gravity waves, plasma waves

and waves in lattices [144]. In particular, the KdV equation arises in the

modeling of one-dimensional plane waves in cold quasi-neutral collision-free

plasma propagating along the x-direction under the presence of a uniform

magnetic field [149].

The KdV equation is widely recognised as a paradigm for the description

of weakly nonlinear long waves in many branches of physics and engineer-

ing. It describes how waves evolve under the competing but comparable

effects of weak nonlinearity and weak dispersion.

In the last decades there is a great interest to variable coefficient models

that in many cases describe the real world phenomena with more accuracy.

Classifications of Lie symmetries are usual tasks in studies of such models.

This is due to the fact that Lie symmetries allows one not only to reduce

a model PDE to a PDE with fewer number of independent variables or to

an ODE but also to derive cases that are potentially more interesting for

applications [89].

In Section 3.1 we completely describe the equivalence groupoid of

the class L of variable coefficient KdV equations ut + f(t, x)uux +

g(t, x)uxxx = 0, fg 6= 0. The class L is partitioned into six disjoint sub-

classes, which induces a partition of the equivalence groupoid of the class L
since equations from different subclasses of the partition are not related by
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point transformations. It is proved that only one of the subclasses is nor-

malized in the usual sense, whereas other subclasses are normalized in the

generalized extended sense. The usual and generalized extended equiva-

lence groups are computed for each of the subclasses, which leads, in view

of their normalization, to the description of their equivalence groupoids

and, therefore, to the description of the equivalence groupoid of the entire

class L. Ways for improvement of transformational properties of the sub-

classes that are not normalized in the usual sense are considered. These

ways involve gaugings of arbitrary elements by families of equivalence trans-

formations and mappings between classes generated by families of equiva-

lence transformations. The group classification of one of the subclasses is

carried out as an illustrative example.

In Section 3.2 we construct a hierarchy of normalized classes of third-

order (1 + 1)-dimensional evolution equations, which is related to the

Korteweg–de Vries equation and their generalizations. This gives the com-

plete description of the equivalence groupoids of the classes from the hierar-

chy. For two wide classes of the variable-coefficient KdV and mKdV equa-

tions, we derive the necessary and sufficient conditions of similarity of such

equations to the standard KdV and mKdV equations, respectively. We

also carry out exhaustive group analysis of a normalized class of variable-

coefficient KdV equations ut + f(t)uux + g(t)uxxx = 0, fg 6= 0.

The exhaustive group classification of variable coefficient generalized

Kawahara equations ut + α(t)unux + β(t)uxxx + σ(t)uxxxxx = 0 is carried

out in Section 3.3. Lie reductions of these equations to ordinary differential

equations are classified. We also present some examples on the construc-

tion of exact and numerical solutions of these equations, in particular, the

solution of a related boundary-value problem modelling the propagation of

long nonlinear waves in the water covered by ice whose thickness grows in

time.

In Section 3.4 we investigate Benjamin–Bona–Mahony (BBM) equa-
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tions that is similarly to KdV equation model the unidirectional

propagation of moderately long waves with small finite amplitude

in systems that manifest nonlinear and dispersive effects. Group

classification of BBM equations with time dependent coefficients

ut + f(t)ux + g(t)uux + h(t)uxxt = 0, gh 6= 0, is carried out using the

method of mapping between classes. As by-product of this approach the

complete group classification of a class of variable-coefficient BBM equa-

tions with forcing term is derived.

In Section 3.5 we discuss how point transformations can be used for the

study of integrability, in particular, for deriving classes of integrable vari-

able coefficient differential equations. The procedure of computing equiv-

alence groupoids is specified for the case of nth-order evolution equations.

A class of fifth-order variable-coefficient KdV-like equations is considered

within the framework suggested.

The results of this chapter are published in [4*,7*,9*,13*,17*,19*,24*,28*].

3.1. Equivalence Groupoid of a Class of Variable

Coefficient Korteweg–de Vries Equations

Notably that one of the first classes whose transformational properties

were investigated was the class of remarkable variable-coefficient Korteweg–

de Vries equations

L : ut + f(t, x)uux + g(t, x)uxxx = 0, fg 6= 0. (3.1)

The classical Korteweg–de Vries equation and its generalizations model

various physical systems, including classical water waves, gravity waves,

plasma waves and waves in lattices [?, 53, 105, 144]. There are a number

of works, where equations from the class L were investigated from various

points of view. We mention only the works most related to our study. In

papers [120, 172] the Painlevé analysis of equations (3.1) was performed.
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It was shown that such equations pass Painlevé test only if the coeffi-

cients f and g satisfy the conditions fx = gx = 0, and (g/f)t/f = const.

These conditions coincide with those of reducibility of variable coefficient

equations (3.1) to the standard Korteweg–de Vries equation, which is fore-

seeable.

Lie symmetries and allowed transformations of equations from the

class L were studied in [101,110,315]. We aim to present enhanced results

on transformational properties of these equations, which will be investi-

gated with modern point of view. It was deduced correctly in [101, 315]

that there are six different subclasses of the class (3.1) which differ by

their transformational properties. There are several reasons to reconsider

the problem of classification of admissible transformations in this class:

• The consideration in [101,315] was restricted to fiber-preserving point

transformations without a proof that transformations of such kind

exhaust all possible admissible point transformations. We aim to show

that not only point but even contact admissible transformations are

exhausted by fiber-preserving ones.

• When six subclasses that differ by their transformational properties

were derived in [101,315] the arbitrary elements were gauged whenever

possible from the very beginning. The admissible transformations

were indicated for the simplified (gauged) forms of equations. Our

strategy is firstly to consider the subclasses without simplification and

only then the gauged ones.

• Only transformation components for independent and dependent vari-

ables were adduced in [101,315] without rules for changing arbitrary el-

ements. We formulate results in terms of equivalence groups of appro-

priate kinds (usual or generalized extended), where transformations

for both independent and dependent variables t, x, u and arbitrary

elements f , g are presented.

• Some admissible transformations were found in [101,315] in an implicit
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form, namely they included functions that satisfy certain ordinary

differential equations. We aim to present all the results explicitly.

The concept of normalized classes allows us to explain why subclasses

with different transformational properties arise in the course of the in-

vestigation. In fact they are maximal normalized subclasses in the class

under study. Therefore, all the consideration within the modern approach

becomes complete and clear.

3.1.1. Classification of Admissible Transformations. Though the

study of transformational properties in classes of PDEs are more often

restricted to point admissible transformations it is possible also to consider

contact admissible transformations and the respective contact equivalence

groupoid. It was shown in [304] that for the normalized class of evolution

equations of the form L̄ : ut = F (t, x, u, ux)un +G(t, x, u, u1, . . . , un−1) for

n ≥ 3 its contact equivalence groupoid coincides with the respective point

one, i.e., any contact admissible transformation between two equations

from the class L̄ is the first prolongation of a point transformation between

these equations. Therefore, for subclass (3.1) of the class L̄ it suffices to

investigate only point admissible transformations.

It is well known that any point transformation T relating two fixed evo-

lution equations in 1+1 dimensions has the form t̃ = T (t), x̃ = X(t, x, u),

ũ = U(t, x, u) with Tt(XxUu−XuUx) 6= 0. The partial derivatives involved

in equations (3.1) are transformed as follows:

ũt̃ =
1

Tt

(
DtU −

DtX

DxX
DxU

)
, ũx̃ =

DxU

DxX
,

ũx̃x̃x̃ =
1

DxX
Dx

(
1

DxX
Dx

(
DxU

DxX

))
,

where Dt = ∂t + ut∂u + utt∂ut + utx∂ux + . . . and Dx = ∂x + ux∂u + utx∂ut +

uxx∂ux + . . . are operators of the total differentiation with respect to t

and x, restectively. Here and below subscripts of functions indicate partial

derivatives with respect to the corresponding variables.
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We substitute these expressions into the equation ũt̃ + f̃(t̃, x̃)ũũx̃ +

g̃(t̃, x̃)ũx̃x̃x̃ = 0 and obtain an equation in terms of the untilded vari-

ables. In order to confine this equation to the manifold defined by (3.1)

in the third-order jet space with the independent variables (t, x) and

the dependent variable u we further substitute into it the expression

ut = −f(t, x)uux − g(t, x)uxxx. Splitting the obtained identity with re-

spect to the derivatives of u leads to the determining equations on

the functions T , X, and U . In particular, the coefficient of uxxx is

(g̃Tt − g(Xx + Xuux)
3)(XxUu − XuUx). Setting it to zero and taking

into account the nondegeneracy condition Tt(XxUu − XuUx) 6= 0 we get

g̃Tt− g(Xx +Xuux)
3 = 0. Further splitting with respect to ux leads to the

conditions Xu = 0 and g̃Tt = gX3
x. Therefore, X = X(t, x) and it means

that there are no other admissible transformations except fiber-preserving

ones. This agrees with the results of papers [160, 304], derived for more

general classes of evolution equations. The condition Xu = 0 leads to es-

sential simplification of the determining equations, thus we get additional

constraints for the coefficients X and U : Uuu = Uxu = Xxx = 0. Therefore,

the transformation components for independent and dependent variables

of admissible transformations have the form

t̃ = θ(t), x̃ = α(t)x+ β(t), ũ = ϕ(t)u+ ψ(t, x), (3.2)

where θ, α, β, ϕ and ψ are arbitrary smooth functions of their variables

with θ̇αϕ 6= 0. The formulas

f̃ =
α

θ̇ϕ
f, g̃ =

α3

θ̇
g (3.3)

establish the connection between values of arbitrary elements of the ini-

tial equation and the target equation. We denote by overdots ordinary

derivatives with respect to the variable t.

The classifying equations involving θ, α, β, ϕ and ψ and the arbitrary

functions f and g are of the form

fψx + ϕ̇ = 0, (3.4)
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fαψ = ϕ(α̇x+ β̇), (3.5)

ψt + gψxxx = 0. (3.6)

To deduce the equivalence group of the class (3.1) equations (3.4)–(3.6)

should be split with respect to arbitrary elements f and g. This results in

the equations α̇ = β̇ = ϕ̇ = ψ = 0. The following statement is true.

Theorem 3.1. The class L of equations (3.1) admits the usual equivalence

group G∼ consisting of the transformations

t̃ = θ(t), x̃ = δ1x+ δ2, ũ = δ3u,

f̃(t̃, x̃) =
δ1

δ3θ̇(t)
f(t, x), g̃(t̃, x̃) =

δ1
3

θ̇(t)
g(t, x),

where θ is an arbitrary function of t with θ̇ 6= 0, δj (j = 1, 2, 3) are arbitrary

constants with δ1δ3 6= 0.

The class L is not normalized in any sense, there exist subclasses of

this class singled out by setting restrictions on values of arbitrary ele-

ments f and g which possess wider equivalence groups than the group G∼.

These subclasses and the corresponding maximal conditional equivalence

groups [248, Definition 7] can be found investigating the system (3.4)–(3.6).

Equation (3.4) results in ψ =
1

f

ϕ

α

(
α̇x+ β̇

)
, then equation (3.5) takes

the form(
α̇

α
x+

β̇

α

)
fx =

(
ϕ̇

ϕ
+
α̇

α

)
f.

There are only three possibilities for the nonvanishing function f(t, x) to

satisfy this equation: I. f = f(t) 6= 0; II. f = p(t)eq(t)x, pq 6= 0, and III.

f = p(t)(x+ q(t))r(t), pr 6= 0. Further we consider each case separately.

I. f = f(t) 6= 0. We substitute this form of f into the equations (3.4)–

(3.6). This results in the conditions ψt = ψxx = 0 and therefore ψ = c1x+

c2, where c1 and c2 are arbitrary constants. Equation (3.6) becomes an
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identity, hence there is no restriction on the form of the function g and

it remains arbitrary. Equations (3.4), (3.5) imply the system of equations

for α, β an ϕ of the form: ϕ̇ = −c1f, ϕα̇ = c1fα, and ϕβ̇ = c2fα. The

general solution of this system and formulas (3.3) give the full description

of admissible transformations of the subclass of class (3.1) with fx = 0.

After redenotion of constants c1 = −δ3, c2 = −δ2δ3/δ1 we get the following

assertion.

Theorem 3.2. The generalized extended equivalence group Ĝ∼1 of the class

L1 : ut + f(t)uux + g(t, x)uxxx = 0, (3.7)

consists of the transformations

t̃ = θ(t), x̃ =
δ1x+ δ2

δ3

∫
f(t) dt+ δ4

+ δ5,

ũ =
(
δ3

∫
f(t) dt+ δ4

)
u− δ3x− δ2δ3δ

−1
1 ,

f̃(t̃) =
δ1f(t)

θ̇(t)(δ3

∫
f(t) dt+ δ4)2

, g̃(t̃, x̃) =
δ1

3g(t, x)

θ̇(t)(δ3

∫
f(t) dt+ δ4)3

,

where θ is an arbitrary function of t with θ̇ 6= 0, and δj (j = 1, 2, 3, 4, 5)

are arbitrary constants with δ1(δ3
2 + δ4

2) 6= 0.

The usual equivalence group of the class (3.7) coincides with the equiv-

alence group G∼ of its superclass (3.1).

II. f = p(t)eq(t)x, where pq 6= 0. In this case we have in fact

reparametrization of the class, thus instead of arbitrary element f(t, x)

there are two arbitrary elements p(t) and q(t). The equivalence relations

for them are given by q̃ =
q

α
, and p̃ =

pα

ϕθ̇
exp(−qβ/α). Equations (3.4)–

(3.6) lead to the conditions ψ =
ϕ̇

pq
e−qx, α̇ = 0, β̇ =

ϕ̇α

ϕq
. The function g

has the form g =
s(t)− q̇x

q3
with the additional constraint s =

ϕ̈

ϕ̇
− ṗ

p
− q̇

q
.

The function g is also reparameterized now and the function s can be re-

garded as another arbitrary element. The admissible transformations in

the deduced subclass are described by the following statement.
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Theorem 3.3. The class of equations

L2 : ut + p(t)e q(t)xuux +
s(t)− q̇(t)x

q(t)3
uxxx = 0 (3.8)

admits the generalized extended equivalence group Ĝ∼2 consisting of the

transformations

t̃ = θ(t), x̃ = δ1x+ β(t), ũ = ϕ(t)u+
ϕ̇(t)

p(t)q(t)
e−q(t)x,

p̃(t̃) =
δ1p(t)

θ̇(t)ϕ(t)
e−

1
δ1
β(t)q(t), q̃(t̃) =

q(t)

δ1
, s̃(t̃) =

δ1s(t) + q̇(t)β(t)

δ1θ̇(t)
,

where θ is an arbitrary function of t with θ̇ 6= 0,

β(t) = δ1δ3

∫
p(t)e

∫
s(t) dt

ϕ(t)
dt+ δ2, ϕ(t) = δ3

∫
p(t)q(t)e

∫
s(t) dtdt+ δ4.

Here δj (j = 1, 2, 3, 4) are arbitrary constants with δ1(δ3
2 + δ4

2) 6= 0.

III. f = p(t)(x + q(t))r(t) with pr 6= 0. In this case equation (3.5)

implies ψ =
ϕ(α̇x+ β̇)

αp(x+ q)r
, then (3.4) leads to the conditions

ϕ̇

ϕ
= (r −

1)
α̇

α
and β̇ = qα̇. In view of the latter condition the function ψ can be

rewritten as ψ =
ϕ

p

α̇

α
(x + q)1−r. Then the equation (3.6) containing g

takes the form r(r2 − 1)g = (x + q)3

(
s− ṙ ln(x+ q) +

(1− r)q̇
x+ q

)
, where

the function s, that can be regarded as new arbitrary element, satisfies the

equation s
ϕ

p

α̇

α
=

d

dt

(
ϕ

p

α̇

α

)
. It is easy to see that in two special cases,

namely, when r = 1 or r = −1, the function g remains arbitrary. We

consider the cases r 6= ±1, r = 1 and r = −1 separately. The general

solution of the determining equations gives in each of these three cases full

description of admissible transformations in the corresponding subclass of

the class (3.1). The results are collected in Theorems 3.4, 3.5 and 3.6. We

note that in the case r = −1 the nontrivial equivalence group which is

wider than G∼ exists only if the functions q(t) = c, where c is an arbitrary
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constant. In this case we use one more reparameterization introducing the

new function k = 1/p, so f takes the form f = k(t)/(x+ c).

Theorem 3.4. The generalized extended equivalence group Ĝ∼3 of the class

L3 : ut + p(t)(x+ q(t))r(t)uux +

(x+ q(t))3

r(t)(r(t)2 − 1)

(
s(t)− ṙ(t) ln(x+ q(t)) +

(1− r(t))q̇(t)
x+ q(t)

)
uxxx = 0,

r 6= 0,±1, consists of the transformations

t̃ = θ(t), x̃ = α(t)x+ β(t), ũ = ϕ(t)u+ δ1e
∫
s(t) dt(x+ q(t))1−r(t),

p̃(t̃) =
α(t)1−r(t)

φ(t)θ̇(t)
p(t), q̃(t̃) = q(t)α(t)− β(t),

s̃(t̃) =
1

θ̇(t)
(s(t) + ṙ(t) lnα(t)) , r̃(t̃) = r(t),

where θ is an arbitrary nonvanishing function of t, θ̇ 6= 0,

ϕ(t) = δ1

∫
p(t)(r(t)− 1) e

∫
s(t) dtdt+ δ2,

α(t) = δ3 exp

[
δ1

∫
p(t)

ϕ(t)
e
∫
s(t) dtdt

]
, β(t) =

∫
q(t)α̇(t)dt+ δ4.

Here δj (j = 1, 2, 3, 4) are arbitrary constants with (δ1
2 + δ2

2)δ3 6= 0.

Note, that if r 6= 0,±1 is a constant, then the coefficient α can be

simplified as follows α(t) = δ3ϕ(t)
1
r−1 .

Theorem 3.5. The class of equations of the form

L4 : ut + (p(t)x+ q(t))uux + g(t, x)uxxx = 0 (3.9)

admits the generalized extended equivalence group Ĝ∼4 consisting of the

transformations

t̃ = θ(t), x̃ = α(t)x+ β(t), ũ = δ1(u+ δ2), p̃(t̃) =
p(t)

δ1θ̇(t)
,

q̃(t̃) =
1

δ1θ̇(t)
(α(t)q(t)− β(t)p(t)), g̃(t̃, x̃) =

α(t)3

θ̇(t)
g(t, x),
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where θ is an arbitrary function of t with θ̇ 6= 0,

α(t) = δ3e
δ2
∫
p(t) dt, β(t) = δ2δ3

∫
q(t)e δ2

∫
p(t) dt dt+ δ4.

Here δj (j = 1, 2, 3, 4) are arbitrary constants with δ1δ3 6= 0.

Theorem 3.6. The generalized extended equivalence group Ĝ∼5 of the class

L5 : ut +
k(t)

x+ c
uux + g(t, x)uxxx = 0 (3.10)

comprises the transformations

t̃ = θ(t), x̃ = α(t)(x+ c) + δ2, ũ =
δ1

α(t)2
u− 1

2
δ1δ3(x+ c)2,

k̃(t̃) =
α(t)4

δ1θ̇(t)
k(t), c̃ = −δ2, g̃(t̃, x̃) =

α(t)3

θ̇(t)
g(t, x),

where θ is an arbitrary function of t with θ̇ 6= 0,

α(t) = ±
(
δ3

∫
k(t) dt+ δ4

)− 1
2 ,

and δj (j = 1, 2, 3, 4) are arbitrary constants with δ1(δ3
2 + δ4

2) 6= 0.

Theorem 3.7. Classes L1, L2, L3, L4, and L5 are normalized in the gen-

eralized extended sense, their equivalence groupoids are induced by trans-

formations from the corresponding generalized extended equivalence groups

Ĝ∼i , i = 1, . . . , 5.

Theorem 3.8. The subclass L0 = L \
⋃5
i=1Li that is the complement of

the union of the subclasses Li, i = 1, . . . , 5, in the class L is normalized in

the usual sense. Its equivalence group coincides with the usual equivalence

group G∼ of the whole class L.

There are no point transformations between any two equations from

different subclasses Li, i = 0, . . . , 5, of the class (3.1).
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3.1.2. Equivalence Groups of the Gauged Subclasses L1, . . . ,L5.

Using equivalence transformations we can perform the gauging of the arbi-

trary elements depending on t in each subclass L1, . . . ,L5 of the class L and

therefore, to reduce the number of their arbitrary elements. We consider

each subclass separately.

L1. The equivalence transformations with t̃ =
∫
f(t)dt, x̃ = x, and

ũ = u, which belong the group Ĝ∼1 , reduces each equation from class (3.7)

to the equation from the same class with f̃ = 1. Therefore, without loss of

generality the gauged subclass

Ľ1 : ut + uux + g(t, x)uxxx = 0

can be investigated instead of L1. As L1 is normalized it is easy to deduce

the equivalence group of its subclass Ľ1. We put f̃ = f = 1 in transfor-

mations from the group Ĝ∼1 and get the equation on θ, θ̇ = δ1/(δ3t+ δ4)
2.

In order to write the obtained transformations in the unified form, which

include both cases δ3 = 0 and δ3 6= 0, we redenote the constants involved

in transformations and get the following assertion (the corollary of Theo-

rem 3.2).

Corollary 3.9. The generalized extended equivalence group of the class Ľ1

is trivial. It coincides with the usual equivalence group of this class, which

is comprised of transformations

t̃ =
αt+ β

γt+ δ
, x̃ =

κx+ µ1t+ µ0

γt+ δ
,

ũ =
κ(γt+ δ)− κγx+ µ1δ − µ0γ

αδ − βγ
, g̃(t̃, x̃) =

κ3

αδ − βγ
g(t, x)

γt+ δ
,

α, β, γ, δ, κ, µ1, µ0 are constants defined up to a nonzero multiplier, κ(αδ−
βγ) 6= 0, and without loss of generality we can assume that αδ− βγ = ±1.

This group is in fact coincides with the equivalence group of subclass of

class Ľ1, singled out by the condition gx = 0, which was derived in [251].

L2 –L4. Each equation from the classes L2, L3, and L4, is reducible

to an equation from the respective class with p̃ = 1 by the equivalence
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transformation with t̃ =
∫
p(t) dt, x̃ = x, and ũ = u. The equivalence

groups of the gauged classes directly follow from Theorems 3.3, 3.4 and 3.5

if we put p̃ = 1 and p = 1 in the transformations therein. The respective

Corollaries 3.10, 3.11 and 3.12 are adduced in the following assertions.

Corollary 3.10. The generalized extended equivalence group of the class

Ľ2 : ut + e q(t)xuux +
s(t)− q̇(t)x

q(t)3
uxxx = 0

consists of the transformations

t̃ = δ1

∫
1

ϕ(t)
e−

1
δ1
β(t)q(t)dt+ δ0, x̃ = δ1x+ β(t),

ũ = ϕ(t)u+ δ3e
−q(t)x+

∫
s(t) dt,

q̃(t̃) =
q(t)

δ1
, s̃(t̃) =

1

δ1
2ϕ(t)e

1
δ1
β(t)q(t) (δ1s(t) + q̇(t)β(t)) ,

where δj (j = 0, 1, 2, 3, 4) are arbitrary constants, δ1(δ3
2 + δ4

2) 6= 0,

β(t) = δ1δ3

∫
e
∫
s(t) dt

ϕ(t)
dt+ δ2, ϕ(t) = δ3

∫
q(t)e

∫
s(t) dtdt+ δ4.

Corollary 3.11. The generalized extended equivalence group of the class

Ľ3 : ut + (x+ q(t))r(t)uux +

(x+ q(t))3

r(t)(r(t)2 − 1)

(
s(t)− ṙ(t) ln(x+ q(t)) +

(1− r(t))q̇(t)
x+ q(t)

)
uxxx = 0,

consists of the transformations

t̃ = θ(t), x̃ = α(t)x+ β(t), ũ = ϕ(t)u+ δ1e
∫
s(t) dt(x+ q(t))1−r(t),

q̃(t̃) = q(t)α(t)− β(t), s̃(t̃) = α(t)r(t)−1ϕ(t) (s(t) + ṙ(t) lnα(t)) ,

r̃(t̃) = r(t),

where θ is an arbitrary nonvanishing function of t, θ̇ 6= 0,

ϕ(t) = δ1

∫
(r(t)− 1) e

∫
s(t)dtdt+ δ2,

α(t) = δ3 exp

[
δ1

∫
e
∫
s(t)dt

ϕ(t)
dt

]
, β(t) =

∫
q(t)α̇(t)dt+ δ4.

Here δj (j = 1, 2, 3, 4) are arbitrary constants with (δ1
2 + δ2

2)δ3 6= 0.
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Corollary 3.12. The generalized extended equivalence group Ǧ∼4 of the

class

Ľ4 : ut + (x+ q(t))uux + g(t, x)uxxx = 0 (3.11)

is formed by of the transformations

t̃ = 1
δ1
t+ δ0, x̃ = δ3e

δ2tx+ δ2δ3

∫
q(t)e δ2t dt+ δ4, ũ = δ1(u+ δ2),

q̃(t̃) = δ3e
δ2tq(t)− δ2δ3

∫
q(t)e δ2t dt− δ4, g̃(t̃, x̃) = δ1δ3

3e 3δ2tg(t, x),

where δj (j = 0, 1, 2, 3, 4) are arbitrary constants with δ1δ3 6= 0.

L5. In the case of subclass L5 of class (3.1) two arbitrary elements can

be gauged: the function k(t) can be set to one, and the constant c to zero.

This gauge is realized by the equivalence transformation with t̃ =
∫
k(t) dt,

x̃ = x+ c, and ũ = u. The equivalence group of the gauged class

Ľ5 : ut +
1

x
uux + g(t, x)uxxx = 0

is presented in the following statement.

Corollary 3.13. The generalized extended equivalence group of the class

Ľ5 is trivial. It coincides with the usual equivalence group of the class

comprised of the transformations

t̃ =
αt+ β

γt+ δ
, x̃ = (γt+ δ)−

1
2x, ũ =

1

αδ − βγ

(
(γt+ δ)u− 1

2
γx2

)
,

g̃(t̃, x̃) =
(γt+ δ)

1
2

αδ − βγ
g(t, x),

where α, β, γ, and δ are constants defined up to a nonzero multiplier with

αδ− βγ 6= 0, without loss of generality we can assume that αδ− βγ = ±1.

All the gauged subclasses remain normalized, their equivalence

groupoids are generated by the respective equivalence groups presented

in Corollaries 3.9–3.13. The following statement is true.



127

Theorem 3.14. The classes Ľ1 and Ľ5 are normalized in the usual sense.

The classes Ľ2, Ľ3, and Ľ4 are normalized in the generalized extended

sense.

This theorem implies that the transformational properties of classes Ľ1

and Ľ5 are nicer than such properties of their superclasses L1 and L5. These

classes are quite convenient already to investigate them with Lie symmetry

or other points of view. The classes Ľ2, Ľ3, and Ľ4 are still normalized only

in the generalized extended sense, therefore, the links between equations

in each of them are quite complicated and this courses difficulties in their

investigation. In the next section we propose a way of improvement of the

transformational properties of the class Ľ4.

3.1.3. Possible Improvement of Transformational Properties via

Mappings Between Classes. Classes of differential equations that pos-

sess generalized extended equivalence groups are more complicated for in-

vestigation than those whose equivalence groups are usual ones. To deal

with such classes the method based on mappings between classes was pro-

posed in [300]. This method appears to be very efficient, in particular, for

solving the group classification problems. We will illustrate the method

using the example of the class Ľ4. This class can be mapped to the related

class of KdV-like equations

ut + xuux + h(t)ux + g(t, x)uxxx = 0 (3.12)

by the family of point transformation

t̂ = t, x̂ = x+ q(t), û = u, (3.13)

parameterized by the arbitrary element q of the class. The element h in the

imaged class is connected with the arbitrary element q in the initial class

via the formula h(t) = q̇(t). Therefore, the case q = const corresponds

to the case h = 0. In contrast to the class Ľ4 that is normalized in the
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Table 3.1: The group classification of the class ut+xuux+h(t)ux+g(t, x)uxxx=0, hg 6= 0.

no. Equation Constraints Basis of Amax

1 ut + xuux + tm−1ux + t3m−1Φ(x/tm)uxxx = 0 Φ(z) 6= λz2 t∂t +mx∂x − u∂u
if m = 1

2 ut + xuux + e
ε
2
t2ux + e

3ε
2
t2Φ

(
xe−

ε
2
t2
)
uxxx = 0 ∂t + εtx∂x + ε∂u

3 ut + xuux + ux + Φ(x)uxxx = 0 Φ(x) 6= λx2 ∂t

4 ut + xuux + ux + λx2uxxx = 0 ∂t, t∂t + x∂x − u∂u

Here ε = ±1 mod G∼4 , λ and m are arbitrary constants, λ 6= 0.

generalized extended sense, class (3.12) is normalized in the usual sense.

The equivalence groupoid of class (3.12) is induced by the transformations

from its usual equivalence group G∼4 :

t̃ = δ1t+ δ2, x̃ = δ3e
δ4tx, ũ =

1

δ1
(u+ δ4),

h̃(t̃) =
δ3

δ1
eδ4th(t), g̃(t̃, x̃) =

δ 3
3

δ1
e3δ4tg(t, x),

where δj (j = 1, 2, 3, 4) are arbitrary constants, δ1δ3 6= 0.

The group classification of class (3.12) can be performed using the stan-

dard method [227] based on integration of the determining equations up

to the G∼4 -equivalence. The results of the group classification of equa-

tions (3.12) with h 6= 0 (resp. h = 0) are presented in Table 3.1 (resp.

Table 3.2). The group classification list for equations (3.11) with q = const

coincides with such a list for equations (3.12) with h = 0 and, therefore,

it is presented by the list given in Table 3.2. The group classification of

equations (3.11) with q 6= const can be recovered from the classification

results obtained for equations (3.12) with h 6= 0 by using the transforma-

tion (3.13). The results are presented in Table 3.3.

Note that in [109] the group classification for more general class of

KdV-like equations that includes classes (3.11), (3.12) was carried out.

However those results obtained up to very wide equivalence group seem to



129

Table 3.2: The group classification of the class ut + xuux + g(t, x)uxxx = 0, g 6= 0.

no. Equation Constraints Basis of Amax

1 ut + xuux + Φ(x)uxxx = 0 Φ(x) 6= λxm ∂t

2 ut + xuux + t3m−1Φ(x/tm)uxxx = 0 Φ(z) 6= λz3, λz
3m−1
m t∂t +mx∂x − u∂u

3 ut + xuux + e
3ε
2
t2Φ

(
xe−

ε
2
t2
)
uxxx = 0 Φ(z) 6= λz3 ∂t + εtx∂x + ε∂u

4 ut + xuux + xmuxxx = 0 m 6= 3 ∂t, t∂t + 1
3−mx∂x − u∂u

5 ut + xuux + Φ(t)x3uxxx = 0 Φ(t) 6= λ,
1

λt+ ν
x∂x, tx∂x + ∂u

6 ut + xuux + x3uxxx = 0 ∂t, x∂x, tx∂x + ∂u

7 ut + xuux + λ
x3

t
uxxx = 0 x∂x, t∂t − u∂u,

tx∂x + ∂u

Here ε = ±1 mod G∼4 , m, λ and ν are arbitrary constants, λ 6= 0.

Table 3.3: The group classification of the class ut+(x+ q(t))uux+g(t, x)uxxx = 0, q̇g 6= 0.

no. Equation Basis of Amax

1 ut + (x+ tm)uux + t3m−1Φ
(
x
tm

)
uxxx = 0 t∂t +mx∂x − u∂u

2 ut + (x+ ln t)uux + t−1Φ (x+ ln t)uxxx = 0 t∂t − ∂x − u∂u

3 ut + ωuux + e
3ε
2
t2Φ

(
ωe−

ε
2
t2
)
uxxx = 0 ∂t +

(
εtω − e

ε
2
t2
)
∂x + ε∂u

4 ut + (x+ t)uux + Φ(x+ t)uxxx = 0 ∂t − ∂x

5 ut + (x+ t)uux + λ(x+ t)2uxxx = 0 ∂t − ∂x, t∂t + x∂x − u∂u

Here ω = x +
∫
e
ε
2
t2dt, ε = ±1 mod Ǧ∼4 , λ and m are arbitrary nonzero constants.

In Case 1 Φ(z) 6= λ(z + 1)2 if m = 1. In Case 4 Φ(z) 6= λz2.

be inconvenient to derive group classifications for classes (3.11) and (3.12).

Concluding Remarks. We have shown that the class (3.1) is not nor-

malized. Its equivalence groupoid has a complicated structure, namely, the

class (3.1) can be partitioned into the six disjoint normalized subclasses:

• the subclass L0 = L\
⋃5
i=1Li is normalized in the usual sense, the set

of its admissible transformations is generated by point transformations

from the usual equivalence group G∼ of the entire class (3.1) adduced
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in Theorem 3.1;

• the subclasses Li, i = 1, . . . , 5, which are normalized in the generalized

extended sense, the sets of their admissible transformations are gener-

ated by transformations from the corresponding generalized extended

groups Ĝ∼i presented in Theorems 3.2–3.6.

3.2. Group Analysis of Korteweg–de Vries

Equations with Time Dependent Coefficients

3.2.1. Admissible Point Transformations in Classes of Generalized

KdV Equations. Following [248], we start from the general class of third

order evolution equations and construct a hierarchy of nested normalized

subclasses of this class, which consist of different generalizations of the

Korteweg–de Vries (KdV) and Korteweg–de Vries (mKdV) equations. In

this way we describe the entire sets of admissible point transformations

(equivalence groupoids) of these subclasses.

Consider the general class E3 of third order evolution equations. They

have the form

ut = H(t, x, u, ux, uxx, uxxx),

where Huxxx 6= 0. To find the set of admissible transformations of the

class E3 and its complete equivalence group including both discrete and

continuous equivalence transformations, we apply the direct method. The

calculations are simplified with taking into account the well-known fact

that the expression for t in any point (and, even, contact) transformation

connecting two (1 + 1)-dimensional evolution equations depends only on t

[160, 192]. Thus, a point transformation maps an equation from E3 to an

equation from the same class if and only if it has the form

t̃ = T (t), x̃ = X(t, x, u), ũ = U(t, x, u). (3.14)
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The functions T , X and U have to satisfy the nondegeneracy assumption

Tt∆ 6= 0, where ∆ = XxUu − XuUx. The equivalence group G∼0 of E3

consists of the transformations

t̃ = T (t), x̃ = X(t, x, u), ũ = U(t, x, u),

H̃ =
∆

TtDxX
H +

UtDxX −XtDxU

TtDxX
,

(3.15)

where T , X and U run through the corresponding sets of smooth func-

tions satisfying the above nondegeneracy assumption and Dx denotes

the operator of total differentiation with respect to the variable x,

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · . Therefore, the class E3 is nor-

malized.

The subclass E3
0.1 singled out from E3 by the constraint Huxxxuxxx = 0 has

the same equivalence group G∼0 and, therefore, is normalized. The same

claim is true for the subclass E3
0.2 of E3

0.1, associated with the additional

constraint Huxxxuxx = 0.

Setting one more constraint Huxxxux = 0 leads to the normalized sub-

class E3
1.1 of E3

0.2 whose equivalence group G∼1 is a proper subgroup of G∼0

consisting of the transformations (3.15) with Xu = 0. The normalized sub-

class E3
1.2 singled out from E3

1.1 by the constraint Huxxxu = 0 has the same

equivalence group G∼1 .

The equivalence group G∼2 of the normalized subclass E3
2 nested in E3

1.2

and associated with the additional constraint Huxxxx = 0 is properly con-

tained in G∼1 . Its elements additionally satisfy the condition Xxx = 0.

Another possibility is to impose the constraint Huxx = 0 within the

subclass E3
0.1. The corresponding subclass E3

3 is normalized and possesses

the equivalence group G∼3 formed by the transformations (3.15) for which

Xu = 0, Uuu = 0 and 2UuxXx = UuXxx.

Then the subclass E3
4 = E3

2 ∩E3
3 is normalized and its equivalence group

is G∼4 = G∼2 ∩G∼3 . Integrating the total set of the constraints imposed on

the arbitrary element H and the conditions obtained for elements of G∼4
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gives that the equations from the class E3
4 have the form

ut + g(t)uxxx = F (t, x, u, ux),

where g 6= 0. The equivalence group G∼4 consists of the transformations

(we present only components corresponding to the equation variables)

t̃ = α(t), x̃ = β(t)x+ γ(t), ũ = θ(t)u+ Φ(t, x), (3.16)

where α, β, γ, θ and Φ are arbitrary smooth functions of their arguments,

αtβθ 6= 0.

Further we consider two more special subclasses of E3
4 . The first subclass

is formed by the variable-coefficient KdV equations

ut + f(t)uux + g(t)uxxx

+ h(t)u+ (p(t) + q(t)x)ux + k(t)x+ l(t) = 0,
(3.17)

where all the parameters are arbitrary smooth functions of t, fg 6= 0. This

subclass is normalized. Its equivalence group (in terms of the arbitrary

element H) is singled out from G∼4 by the condition Φxx = 0. Hence

the components of transformations corresponding to the equation variables

have the simple general form

t̃ = α(t), x̃ = β(t)x+ γ(t), ũ = θ(t)u+ ϕ(t)x+ ψ(t), (3.18)

where α, β, γ, θ, ϕ and ψ run through the set of smooth functions of t,

αtβθ 6= 0. The arbitrary elements of (3.17) are transformed as follows

f̃ =
β

αtθ
f, g̃ =

β3

αt
g, h̃ =

1

αt

(
h− ϕ

θ
f − θt

θ

)
,

q̃ =
1

αt

(
q − ϕ

θ
f +

βt
β

)
, p̃ =

1

αt

(
βp− γq +

γϕ− βψ
θ

f + γt − γ
βt
β

)
,

k̃ =
1

αtβ

(
θk − ϕ(h+ q) +

ϕ2

θ
f − ϕt + ϕ

θt
θ

)
, l̃ = −ϕp+ ψt

αt

+
1

αt

(
θl − γ

β

(
θk − ϕ(h+q)+

ϕ2

θ
f − ϕt+ϕ

θt
θ

)
− ψ

(
h− ϕ

θ
f − θt

θ

))
.
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Any equation from class (3.17) can be reduced by point transformations to

the form (3.23) with g = 1 and forms (3.25) and (3.28). The necessary and

sufficient condition of similarity of such equations to the standard KdV

equation is

st = 2gs2 − 3qs+
f

g
k, where s :=

2q − h
g

+
ftg − fgt
fg2

. (3.19)

The second subclass consists of the variable-coefficient mKdV equations

ut + f(t)u2ux + g(t)uxxx + h(t)u

+ (p(t) + q(t)x)ux + k(t)uux + l(t) = 0, (3.20)

where all the parameters are arbitrary smooth functions of t, fg 6= 0.

This subclass is also normalized. Its equivalence group (in terms of the

arbitrary element H) is singled out from G∼4 by the condition Φx = 0, i.e.,

the components of transformations corresponding to the equation variables

are of the form (3.18) with ϕ = 0, where α, β, γ, θ and ψ run through the

set of smooth functions of t, αβθ 6= 0. The arbitrary elements of (3.20) are

transformed by the formulas

f̃ =
β

αtθ2
f, g̃ =

β3

αt
g, h̃ =

1

αt

(
h− θt

θ

)
, q̃ =

1

αt

(
q +

βt
β

)
,

p̃ =
1

αt

(
βp− γq + β

ψ2

θ2
f − βψ

θ
k + γt − γ

βt
β

)
, (3.21)

k̃ =
β

αtθ

(
k − 2

ψ

θ
f

)
, l̃ =

1

αt

(
θl − ψh− ψt + ψ

θt
θ

)
.

Five of the arbitrary elements can be gauged to simple constant values.

For example, it is possible to set g = 1 and h = p = q = l = 0.

Proposition 3.15. An equation of form (3.20) is similar to the standard

(constant coefficient) mKdV equation if and only if its coefficients satisfy

the conditions

2h− 2q =
ft
f
− gt
g
, 2lf = kt + kh− kft

f
. (3.22)
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In the next section we present examples on similarity of equations from

classes (3.17) and (3.20) to the standard KdV and mKdV equations. We

also solve several classification problems for classes of KdV-like equations.

3.2.2. Group Analysis of a Class of KdV Equations. Firstly we

study a class of variable-coefficient KdV equations

ut + f(t)uux + g(t)uxxx = 0, (3.23)

where f and g are arbitrary (smooth) functions of t, fg 6= 0.

As shown in Section 3.2.1, for the general values of the parameter-

functions (arbitrary elements) f and g equation (3.23) is not equivalent to

the standard KdV equation up to point transformations but at least one of

the parameters (f or g) can be set equal to 1 using a point transformation.

(The equations of the form (3.23) with g = 1 are called the transitional

KdV equations [51].) Thus, after the transformation

t̃ =
∫
f(t) dt, x̃ = x, ũ = u (3.24)

equation (3.23) takes the same form with f̃(t̃) = 1 and g̃(t̃) = g(t)/f(t).

Therefore, without lost of generality we can consider the class of equations

ut + uux + g(t)uxxx = 0, (3.25)

where g is an arbitrary (smooth) nonvanishing function of t, since this class

is the image of class (3.23) under the mapping generated by the family of

point transformations (3.24). (See [248,300] for related definitions.)

We carry out the exhaustive group classification of class (3.25).

The separate consideration of subclass (3.25) is justified by the fact that

it has nicer transformational properties than the superclasses (3.23) and,

especially, (3.1).

The equivalence group G∼ of class (3.25) consists of the transformations

t̃ =
at+ b

ct+ d
, x̃ =

e2x+ e1t+ e0

ct+ d
,

ũ =
e2(ct+ d)u− e2cx− e0c+ e1d

ε
, g̃ =

e2
3

ct+ d

g

ε
,

(3.26)
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where a, b, c, d, e0, e1 and e2 are arbitrary constants with ε = ad− bc 6= 0

and e2 6= 0, the tuple (a, b, c, d, e0, e1, e2) is defined up to nonzero multiplier

and hence without loss of generality we can assume that ε = ±1.

Equations from class (3.25) are similar only if they are G∼-equivalent.

Moreover, all admissible transformations in this class are generated by

transformations from G∼, i.e., the class (3.25) is normalized in the usual

sense. (The initial class (3.23) is normalized only with respect to the ex-

tended generalized equivalence group and its superclass class (3.1) possesses

no normalization properties.) This implies the following claim: An equa-

tion of form (3.25) is similar to the KdV equation if and only if gtt = 0.

Any transformation realizing the similarity belongs to G∼. Therefore, an

equation of form (3.23) is reduced to the KdV equation by a point trans-

formation if and only if

g(t) = f(t)
(
c1

∫
f(t) dt+ c0

)
, (3.27)

where c0 and c1 are constants, (c0, c1) 6= (0, 0) [105], that well agrees with

Theorem 3 of [315] (cf. also equation (3.19)). Equation (3.27) coincides

with the constraint on arbitrary elements of the equations from class (3.23)

which have the Painlevé property [148].

The kernel A∩ = ∩g 6=0A
g of the maximal Lie invariance algebras of

equations from class (3.25) is A∩ = 〈∂x, t∂x+∂u〉. All G∼-inequivalent cases

of Lie symmetry extension are exhausted by the Cases 1–4 of Table 3.4

The presented group classification gives all inequivalent values of g for

which the classical method of Lie reduction can be effectively used.

The class (3.23) can be also mapped to the class

ũt̃ + ũũx̃ + ũx̃x̃x̃ + h(t̃)ũ = 0 (3.28)

by the family of point transformations t̃ =
∫
g(t) dt, x̃ = x, ũ =

f

g
u.

The arbitrary element h of the mapped class is expressed via the arbitrary
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Table 3.4: The group classification of the class ut + uux + g uxxx = 0, g 6= 0.

no. g(t) Basis of Amax

0 ∀ ∂x, t∂x + ∂u

1 tn ∂x, t∂x + ∂u, 3t∂t + (n+ 1)x∂x + (n− 2)u∂u

2 et ∂x, t∂x + ∂u, 3∂t + x∂x + u∂u

3 eδ arctan t
√
t2 + 1 ∂x, t∂x + ∂u, 3(t2 + 1)∂t + (3t+ δ)x∂x + ((−3t+ δ)u+ 3x)∂u

4 1 ∂x, t∂x + ∂u, 3t∂t + x∂x − 2u∂u, ∂t

Here n, δ are arbitrary constants, n ≥ 1/2, n 6= 1, δ ≥ 0 mod G∼0 .

elements f and g in the following way:

h(t̃) =
f(t)gt(t)− ft(t)g(t)

f(t)(g(t))2
.

Thus, the equation (3.25) with g = t is then mapped to the cylindrical KdV

equation (h = (2t)−1) whose similarity to the standard KdV equation is

known for a long time [191]. Analogously, the value g = et corresponds to

the spherical KdV equation (h = t−1) which is not integrable.

Below we adduce several examples on similarity of KdV equations.

Example 3.16. Some traveling wave solutions of the “compound/combined

KdV–mKdV equation”

ut + (α + βu)uux + γuxxx = 0, (3.29)

where α, β and γ are real constants, βγ 6= 0, were constructed in [76,135,

271,317,325,330,332]. In fact, this equation is called the Gardner equation

(α should be scaled to a standard value) and is obviously similar to the

mKdV equation ũt̃ + εũ2ũx̃ + ũx̃x̃x̃ = 0, where ε = sign(βγ), with respect

to the point transformation

t̃ = γt, x̃ = x+
α2

4β
t, ũ =

√∣∣∣∣βγ
∣∣∣∣ (u+

α

2β

)



137

which is well known for a long time [197]. Therefore, each solution of

equation (3.29) is represented in the form

u(t, x) =

√∣∣∣∣γβ
∣∣∣∣ ũ(γt, x+

α2

4β
t

)
− α

2β
,

where ũ is a solution of the mKdV equation, and for any solution ũ of the

mKdV equation this representation gives a solution of (3.29).

Other close class of the equations

ut + ux + αu2ux + uxxx = 0, (3.30)

where α runs through the set of real nonvanishing constants, was considered

in [328]. Only specific traveling wave solutions were found using the so-

called “Exp-function method”. Any equation of form (3.30) is reduced by

the trivial point transformation

t̃ = t, x̃ = x− t, ũ =
√
|α|u

to the mKdV equation ũt̃ + εũ2ũx̃ + ũx̃x̃x̃ = 0, where ε = signα. Equa-

tion (3.30) with α = 1 was also investigated using “extended F-expansion

method” in [190].

Example 3.17. The authors of [260] apply “generalized expansion

method” to find exact solutions of generalized KdV equations with variable

coefficients, which have the form

ut + g(t)(6uux + uxxx) + 6f(t)g(t)u

= x(ft(t) + 12g(t)f 2(t)) +M(t)
(3.31)

with g 6= 0. The whole class (3.31) is mapped to the KdV equation ũt̃ +

6ũũx̃ + ũx̃x̃x̃ = 0 by the family of point transformations

t̃ =
∫
gγ3 dt, x̃ = γx− 6

∫
g γ3β dt, ũ =

u− fx
γ2

− β,

where γ = e−6
∫
fg dt and β =

∫
Mγ−2 dt. This means that the function

u = u(t, x) satisfies an equation of form (3.31) if and only if it is represented
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via a is a solution ũ of the KdV equation by the expression

u = γ2 ũ
(∫

gγ3 dt, γx− 6
∫
g γ3β dt

)
+ fx+ γ2β.

The subclass of the equations (3.31) with g = 1 and M = 0 arose

in [283], where symmetry properties of such equations were studied. It

was also mentioned in [283] that obtained results can be extended to the

equations of the more general form

ut + 6uux + uxxx + 6f(t)u = x(ft(t)+12f 2(t)) + ht(t) + 12f(t)h(t).

The family of point transformations mapping the latter class to the KdV

equation consists of the transformations

t̃ =
∫
γ3 dt, x̃ = γx− 6

∫
hγ dt, ũ =

u− fx− h
γ2

,

where γ = e−6
∫
f dt.

The similarity can be applied not only for generating new solutions from

known ones and simplifying calculations. The similarity approach is eas-

ily extended to different local objects and properties related to differential

equations, e.g., Lie and point symmetries [227,248,300], conservation laws

and potential symmetries [246,247,249], reduction operators (i.e., nonclas-

sical symmetries) [252,300], Bäcklund transformations, etc.

3.2.3. Group Analysis of a Class of KdV-Like Equations via

Equivalence Method. We perform the group classification of a class

of variable coefficient KdV equations using equivalence based approach.

Namely, we investigate Lie symmetry properties and exact solutions of

variable coefficient KdV equations of the form

ut + uux + g(t)uxxx + h(t)u = 0, (3.32)

where g and h are arbitrary smooth functions of the variable t, g 6= 0.

The group classification of class (3.32) with h = 0 is carried out in the
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previous section. So, using the known classification list and equivalence

transformations we present group classification of the initial class (3.32)

without direct calculations.

Class (3.32) is normalized, therefore, there are no additional equiva-

lence transformations between cases of the classification list, which is con-

structed using the equivalence relations associated with the corresponding

equivalence group. In other words, the same list represents the group clas-

sification result for the corresponding class up to the general equivalence

with respect to point transformations. Recently the authors of [145] ob-

tained a partial group classification of class (3.32) (the notation a and b

was used there instead of h and g, respectively). The reason of failure was

neglecting an opportunity to use equivalence transformations. This is why

only some cases of Lie symmetry extensions were found, namely the cases

with h = const, h = 1/t and h = 2/t.

In fact the group classification problem for class (3.32) up to its equiva-

lence group is already solved since this class is reducible to class (3.32) with

h = 0 (class (3.25)) whose group classification is carried out in [251]. Us-

ing the known classification list and equivalence transformations we present

group classifications of class (3.32) without the simplification of both equa-

tions admitting extensions of Lie symmetry algebras and these algebras

themselves by equivalence transformations. The extended classification

list can be useful for applications and convenient to be compared with the

results of [145].

Class (3.32) is a subclass of class (3.17) singled out by the conditions

f = 1 and p = q = k = l = 0. Substituting these values of the functions

f, p, q, k and l to (3.19) we obtain the following assertion.

Corollary 3.18. An equation from class (3.32) is reduced to the standard

KdV equation by a point transformation if and only if there exist a constant

c0 and ε ∈ {0, 1} such that

h =
ε

2

g∫
g dt+ c0

− gt
g
. (3.33)
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Class (3.32) admits generalized extended equivalence group and it is

normalized in generalized sense only. The following statement is true.

Theorem 3.19. The generalized extended equivalence group Ĝ∼1 of

class (3.32) consists of the transformations

t̃ = α, x̃ = βx+ γ, ũ = λ(βu+ βtx+ γt),

h̃ = λh− 2λ
βt
β
− λt, g̃ = β3λ g,

where β = (δ1

∫
e−

∫
hdtdt + δ2)

−1, γ = δ3

∫
β2e−

∫
hdtdt + δ4, δ1, . . . , δ4 are

arbitrary constants with (δ1, δ2) 6= (0, 0); α is an arbitrary smooth function

of t with αt 6= 0, and λ = 1/αt.

The usual equivalence group G∼1 of class (3.32) is the subgroup of the

generalized extended equivalence group Ĝ∼1 , which is singled out with the

condition δ1 = δ3 = 0.

The gauge h = 0 in class (3.32) can be made by the equivalence trans-

formation

t̂ =
∫
e−

∫
h(t) dtdt, x̂ = x, û = e

∫
h(t) dtu, (3.34)

that connects equation (3.32) with the equation ût̂ + ûûx̂ + ĝ(t̂)ûx̂x̂x̂ = 0.

The new arbitrary element ĝ is expressed via g and h in the following way:

ĝ(t̂) = e
∫
h(t) dtg(t).

For any equation from class (3.32) there exists an imaged equation in

class (3.25) with respect to transformation (3.34). The equivalence group

G∼ of class (3.25) given by (3.47) is induced by the equivalence group Ĝ∼1 of

class (3.32) which, in turn, is induced by the equivalence group of their su-

perclass (3.17). These guarantee that Table 3.4 presents also the group clas-

sification list for class (3.32) up to Ĝ∼1 -equivalence (resp. for the class (3.17)

up to its equivalence group). As all of the above classes are normalized,

we can state that we obtain Lie symmetry classifications of these classes

up to general point equivalence. This leads to the following assertion.



141

Proposition 3.20. An equation from class (3.32) (resp. (3.17)) admits a

four-dimensional Lie invariance algebra if and only if it is reduced by a

point transformation to constant coefficient KdV equation, i.e., if and only

if condition (3.33) (resp. (3.19)) holds.

To derive the group classification of class (3.32) which is not simplified

by equivalence transformations we use the algorithm for construction of

the complete list of Lie symmetry extensions from the list of inequivalent

ones suggested in [289]. We first apply transformations from the group G∼

to the classification list presented in Table 3.4 and obtain the following

extended list:

0. arbitrary ĝ : 〈∂x̂, t̂∂x̂ + ∂û〉;

1. ĝ = c0(a t̂ + b)n(c t̂ + d)1−n, n 6= 0, 1: 〈∂x̂, t̂∂x̂ + ∂û, X3〉,
where X3 = 3(a t̂ + b)(c t̂ + d)∂t̂ +

(
3act̂+ ad(n+ 1) + bc(2− n)

)
x̂∂x̂ +[

3acx̂− (3act̂+ ad(2− n) + bc(n+ 1))û
]
∂û;

2. ĝ = c0(c t̂+ d) exp

(
a t̂+ b

c t̂+ d

)
: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3(c t̂+d)2∂t̂+
(
3c(ct̂+ d) + ε

)
x̂∂x̂+

[
3c2x̂+ (ε− 3c(ct̂+ d))û

]
∂û;

3. ĝ = c0e
δ arctan(a t̂+bc t̂+d)

√
(a t̂+ b)2 + (c t̂+ d)2: 〈∂x̂, t̂∂x̂ + ∂û, X3〉,

whereX3 = 3
(
(a t̂+ b)2 + (c t̂+ d)2

)
∂t̂+
(
3a(at̂+ b) + 3c(ct̂+ d) + εδ

)
x̂∂x̂+(

3(a2 + c2)x̂− (3a(at̂+ b) + 3c(ct̂+ d)− εδ)û
)
∂û;

4a. ĝ = c0: 〈∂x̂, t̂∂x̂ + ∂û, ∂t̂, 3t̂∂t̂ + x̂∂x̂ − 2û∂û〉;

4b. ĝ = ct̂+ d, c 6= 0: 〈∂x̂, t̂∂x̂ + ∂û, 3(ct̂+ d)∂t̂ + 2cx̂∂x̂− cû∂û, X4〉,
where X4 = (ct̂+d)2∂t̂ + c(ct̂+d)x̂∂x̂ + c(cx̂− (ct̂+d)û)∂û. Here c0, a, b, c,

d and δ are arbitrary constants, (a2 + b2)(c2 + d2) 6= 0, ε = ad− bc, c0 6= 0.

Then we find preimages of equations from the class ût̂ + ûûx̂ +

ĝ(t̂)ûx̂x̂x̂ = 0 with arbitrary elements collected in the above list with respect

to transformation (3.34). The last step is to transform basis operators of

the corresponding Lie symmetry algebras. The results are presented in

Table 3.5.

Generation of Exact Solutions. The N -soliton solution of the KdV
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Table 3.5: The group classification of the class ut + uux + guxxx + hu = 0, g 6= 0.

no. g(t) Basis of Amax

0 ∀ ∂x, T∂x + Tt∂u

1 c0Tt(aT + b)n(cT + d)1−n ∂x, T∂x + Tt∂u, 3T−1t (aT + b)(cT + d)∂t +
[
3acT

+ ad(n+ 1) + bc(2− n)
]
x∂x +

(
3acxTt −

[
3acT

+ 3hT−1t (aT + b)(cT + d) + bc(n+ 1) + ad(2− n)
]
u
)
∂u

2 c0Tt(cT + d) exp
(
aT+b
cT+d

)
∂x, T∂x + Tt∂u, 3T−1t (cT + d)2∂t + (3c(cT + d) + ε)x∂x

+
[
3c2xTt +

(
ε− 3(cT + d)(c+ h(cT + d)T−1t )

)
u
]
∂u

3 c0Tte
δ arctan(aT+b

cT+d)G(t) ∂x, T∂x + Tt∂u, 3T−1t G2∂t

+
[
3a(aT + b) + 3c(cT + d) + εδ

]
x∂x +

[
3(a2 + c2)xTt

−
(
3a(aT + b) + 3c(cT + d)− εδ + 3hT−1t G2

)
u
]
∂u

4a c0Tt ∂x, T∂x + Tt∂u, T
−1
t (∂t − hu∂u),

3TT−1t ∂t + x∂x − (2 + 3TT−1t h)u∂u

4b (cT + d)Tt ∂x, T∂x + Tt∂u, T
−1
t (cT + d)2∂t + c(cT + d)x∂x

+ [c2xTt − (cT + d)(c+ T−1t (cT + d)h)u]∂u,

3T−1t (cT + d)∂t + 2cx∂x − (c+ 3T−1t (cT + d)h)u∂u

Here T =
∫
e−

∫
h(t) dtdt, Tt = e−

∫
h(t) dt, G =

√
(aT + b)2 + (cT + d)2; n c0, a, b, c, d and δ are

arbitrary constants, (a2 + b2)(c2 + d2) 6= 0, ε = ad− bc, c0 6= 0, n 6= 0, 1. In the case (4b) c 6= 0.

The function h ia arbitrary in all cases.

equation in the canonical form

Ut − 6UUx + Uxxx = 0 (3.35)

was constructed as early as in the seventies by Hirota [238]. The two-soliton

solution of equation (3.35) has the form

U = −2
∂2

∂x2
ln
(
1 + b1e

θ1 + b2e
θ2 + Ab1b2e

θ1+θ2
)
, (3.36)

where ai, bi are arbitrary constants, θi = aix− a3
i t, i = 1, 2; A =

(
a1−a2
a1+a2

)2

.
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Combining the simple transformation û = −6U that connects (3.35)

with the KdV equation of the form

ût̂ + ûûx̂ + ûx̂x̂x̂ = 0 (3.37)

and transformation (3.34), we obtain the formula

u = −6e−
∫
h(t)dt U

(∫
e−

∫
h(t) dtdt, x

)
for generation of exact solutions for the equations of the general form

ut + uux + e−
∫
h(t) dtuxxx + h(t)u = 0. (3.38)

These equations are preimages of (3.37) with respect to transforma-

tion (3.34). Here h is an arbitrary nonvanishing smooth function of the

variable t.

The two-soliton solution (3.36) leads to the following solution of (3.38)

u = 12e−
∫
h(t)dt ∂

2

∂x2
ln
(
1 + b1e

θ1 + b2e
θ2 + Ab1b2e

θ1+θ2
)
,

where ai, bi are arbitrary constants, θi = aix − a3
i

∫
e−

∫
h(t) dtdt, i = 1, 2;

A =
(
a1−a2
a1+a2

)2

. In a similar way one can construct other types of solutions

for equations from class (3.38) using known solutions of classical KdV

equation.

3.3. Extended Group Analysis of Variable

Coefficient Generalized Kawahara Equations

In this section we study generalized Kawahara equations with time-

dependent coefficients

ut + α(t)unux + β(t)uxxx + σ(t)uxxxxx = 0, (3.39)

from the Lie symmetry point of view. Here n is an arbitrary nonzero

integer, α, β and σ are smooth nonvanishing functions of the variable t.



144

If α, β and σ are not functions but constants, equations (3.39) become

classical models appearing in the solitary waves theory. Here we present

a brief overview on applications of Kawahara equations and the related

results. In the usual sense, solitary waves are nonlinear waves of constant

form which decay rapidly in their tail regions. The rate of this decay is usu-

ally exponential. However, under critical conditions in dispersive systems

(e.g., the magneto-acoustic waves in plasmas, the waves with surface ten-

sion, etc.), unexpected rise of weakly nonlocal solitary waves occurs. These

waves consist of a central core which is similar to that of classical solitary

waves, but they are accompanied by copropagating oscillatory tails which

extend indefinitely far from the core with a nonzero constant amplitude.

In order to describe and clarify the properties of these waves Kawahara

introduced generalized nonlinear dispersive equations which have a form

of the KdV equation with an additional fifth order derivative term, namely,

ut + αuux + βuxxx + σuxxxxx = 0,

where α, β and σ are nonzero constants [118,157]. This equation was heav-

ily studied from different points of view. The exact solitary wave solution

was presented in [320]. In [126] the existence of travelling wave solutions of

the Kawahara equation being considered as a formal asymptotic approx-

imation for water waves with surface tension was shown. In [41] various

numerical computations of both infinite interval and spatially periodic so-

lutions to a one-dimensional wave equation which models capillary-gravity

waves were done. Using techniques of exponential asymptotics it was shown

in [107] that solitary wave solutions of the Kawahara equation form a one-

parameter family characterized by the phase shift of the trailing oscilla-

tions. An explicit asymptotic formula relating the oscillation amplitude to

the phase shift was obtained therein. Solvability of the Cauchy problem (lo-

cal and global existence) of the Kawahara equation was studied in [65,133].

Various studies on behavior of solutions of the Kawahara equations were

presented, e.g., in [?, 15, 69, 74, 112, 321]. Generalized and formal symme-
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tries as well as local conservation laws of the constant coefficient Kawahara

equations with arbitrary nonlinearity ut + f(u)ux + βuxxx + σuxxxxx = 0,

fuβσ 6= 0, were classified recently in [309].

Generalized constant coefficient models related to the Kawahara equa-

tion have appeared later. For example, long waves in a shallow liq-

uid under ice cover in the presence of tension or compression were de-

scribed by the equation ut + ux + αuux + βuxxx + σuxxxxx = 0 [193, 284].

This equation is similar to the classical Kawahara equation with re-

spect to the simple changes of variables: x̃ = x − t, where t and u are

not transformed, or ũ = 1 + αu, where t and x are not transformed.

A stability of solitons, described by the modified Kawahara equations

ut + αunux + βuxxx + σuxxxxx = 0, where α, β and σ are nonzero con-

stants, and n ∈ N, was given in [153, 154]. It appears that solitons are

stable for n < 8.

We note that neither the classical Kawahara equation nor its general-

ization adduced above are integrable by the inverse scattering transform

method [196,269].

Last time much attention is paid to variable coefficient models, like vari-

able coefficient KdV, Burgers, and Schrödinger equations [251]. This is due

to the fact that variable coefficient equations can model certain real-world

phenomena with more accuracy than their constant coefficient counter-

parts. In the recent paper [156] Lie symmetries were applied for finding

exact solutions of variable coefficient Kawahara and modified Kawahara

equations, which are of the form (3.39) with n = 1 and n = 2, respectively.

The presence of three arbitrary coefficients depending on t makes the task

of finding Lie symmetries too difficult to get complete results without re-

ducing the number of coefficients by equivalence transformations. That is

why only few results on Lie symmetries were derived in [156]. In the present

paper we show that the use of such transformations is a cornerstone in the

complete solution of the problem.
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3.3.1. Admissible Transformations. We search for admissible trans-

formations in class (3.39) using the direct method [160]. The investigation

results in the statements presented in Theorems 3.21 and 3.22.

Theorem 3.21. The usual equivalence group G∼ of class (3.39) consists

of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = δ3u,

α̃(t̃) =
δ1

δ3
nTt

α(t), β̃(t̃) =
δ3

1

Tt
β(t), σ̃(t̃) =

δ5
1

Tt
σ(t), ñ = n,

where δj, j = 1, 2, 3, are arbitrary constants with δ1δ3 6= 0, T is an arbitrary

smooth function with Tt 6= 0.

Theorem 3.22. The generalized extended equivalence group Ĝ∼n=1 of the

class of equations

ut + α(t)uux + β(t)uxxx + σ(t)uxxxxx = 0 (3.40)

is formed by the transformations

t̃ = T (t), x̃ = (x+ δ1)X
1 + δ0, ũ =

δ2

X1
u− δ2δ3(x+ δ1),

α̃(t̃) =
(X1)2

δ2Tt
α(t), β̃(t̃) =

(X1)3

Tt
β(t), σ̃(t̃) =

(X1)5

Tt
σ(t),

where X1 = (δ3

∫
α(t)dt + δ4)

−1, δj, j = 0, . . . , 4, are arbitrary constants

with δ2(δ3
2+δ4

2) 6= 0; T = T (t) is a smooth function with Tt 6= 0. The usual

equivalence group G∼n=1 of class (3.40) comprises the above transformations

with δ1 = δ3 = 0.

Theorem 3.23. A variable coefficient equation from class (3.39) is re-

ducible to constant coefficient equation from the same class if and only if

the coefficients α, β and σ satisfy the conditions(
β

α

)
t

=

(
σ

α

)
t

= 0, for n 6= 1, (3.41)(
1

α

(
β

α

)
t

)
t

= 0,

(
σα2

β3

)
t

= 0, for n = 1. (3.42)
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The presence of the arbitrary function T (t) in the equivalence trans-

formations adduced in Theorems 1 and 2 allows one to gauge one of the

arbitrary functions α, β and σ to a simple constant value, e.g., to 1. An

interesting question is which one of the three possible gauges is preferable

for further consideration. Class (3.40) with β = 1 or σ = 1 is still nor-

malized only in the generalized extended sense, since transformations of

independent and dependent variables still involve
∫
α(t)dt. At the same

time class (3.40) with α = 1 is normalized with respect to its usual equiv-

alence group, as X1 appearing in Theorem 3.22 in this case takes the form

X1 = (δ3t + δ4)
−1. This is why we can expect that in the case n = 1 it is

easier to carry out the group classification under the gauge α = 1 rather

than under other possible gauges. If n 6= 1 all the three suggested gauges

look equally convenient, and we choose the gauge α = 1 just to present the

group classification in the uniform way.

The gauge α = 1 is realized by the point transformation

t̂ =
∫
α(t) dt, x̂ = x, û = u. (3.43)

Then class (3.39) is mapped to its subclass with α̂ = 1, β̂ = β/α and

σ̂ = σ/α. Therefore, without loss of generality we can restrict ourselves to

the study of the class

ut + unux + β(t)uxxx + σ(t)uxxxxx = 0, (3.44)

since all results on symmetries, conservation laws, classical solutions and

other related objects for equations (3.39) can be found using the similar

results derived for equations from class (3.44).

To derive the equivalence group for subclass of class (3.39) with α = 1

we set α̃ = α = 1 in the transformations presented in Theorems 3.21

and 3.22.

Corollary 3.24. The generalized equivalence group Ĝ∼α=1 of class (3.44)
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comprises the transformations

t̃ = δ1δ3
−nt+ δ0, x̃ = δ1x+ δ2, ũ = δ3u,

β̃(t̃) = δ1
2δ3

nβ(t), σ̃(t̃) = δ1
4δ3

nσ(t), ñ = n,
(3.45)

where δj, j = 0, 1, 2, 3, are arbitrary constants with δ1δ3 6= 0.

Remark 3.25. If we assume that the constant n varies in class (3.44),

then the equivalence group Ĝ∼α=1 is generalized since n is involved explic-

itly in the transformation of the variable t. From the other hand, n is

invariant under the action of transformations from the equivalence group,

so class (3.44) can be considered as the union of all its subclasses with

fixed n. For each such subclass the group Ĝ∼α=1 is usual equivalence group.

In the case n = 1 we put α = α̃ = 1 in transformation from Theo-

rem 3.22 and redenote the constants δj, j = 0, . . . , 4, to write the transfor-

mations in a more compact form.

Corollary 3.26. The usual equivalence group G∼α=n=1 of the class

ut + uux + β(t)uxxx + σ(t)uxxxxx = 0 (3.46)

consists of the transformations

t̃ =
at+ b

ct+ d
, x̃ =

e2x+ e1t+ e0

ct+ d
, ũ =

e2(ct+ d)u− e2cx− e0c+ e1d

∆
,

β̃ =
e2

3

ct+ d

β

∆
, σ̃ =

e2
5

(ct+ d)3

σ

∆
, (3.47)

where a, b, c, d, e0, e1 and e2 are arbitrary constants with ∆ = ad −
bc 6= 0 and e2 6= 0, the tuple (a, b, c, d, e0, e1, e2) is defined up to a nonzero

multiplier and hence without loss of generality we can assume that ∆ = ±1.

3.3.2. Lie Symmetries. The group classification of equations of the

form (3.44) with n 6= 1 up to G∼α=1-equivalence (resp. up to G∼α=n=1-

equivalence if n = 1) coincides with the group classification of equations

of the form (3.39) with n 6= 1 up to G∼-equivalence (resp. up to Ĝ∼-

equivalence if n = 1). We have proven the following assertions.
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Table 3.6: The group classification of the class (3.39).

no. β(t) σ(t) Basis of Amax

n 6= 1. This case is classified up to G∼-equivalence.

0 ∀ ∀ ∂x

1 λtρ δt
5ρ+2

3 ∂x, 3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u

2 λet δe
5
3
t ∂x, 3n∂t + nx∂x + u∂u

3 λ δ ∂x, ∂t

n = 1. This case is classified up to Ĝ∼-equivalence.

0′ ∀ ∀ ∂x, t∂x + ∂u

1′ λtρ δt
5ρ+2

3 ∂x, t∂x + ∂u, 3t∂t + (ρ+ 1)x∂x + (ρ− 2)u∂u

2′ λet δe
5
3
t ∂x, t∂x + ∂u, 3∂t + x∂x + u∂u

3′ λ δ ∂x, t∂x + ∂u, ∂t

4′ λ(t2 + 1)
1
2 e3ν arctan t δ(t2 + 1)

3
2 e5ν arctan t ∂x, t∂x + ∂u,

(t2 + 1)∂t + (t+ ν)x∂x + ((ν − t)u+ x)∂u

Here α = 1 mod G∼, ρ and ν are arbitrary constants, ρ > 1/2, ν > 0; δ and λ are nonzero

constants, δ = ±1 mod G∼.

Theorem 3.27. The kernel of the maximal Lie invariance algebras of

equations from class (3.44) (resp. (3.39)) with n 6= 1 coincides with the

one-dimensional algebra 〈∂x〉. All possible Ĝ∼α=1-inequivalent (resp. G∼-

inequivalent) cases of extension of the maximal Lie invariance algebras are

exhausted by the cases 1–3 of Table 3.6.

Theorem 3.28. The kernel of the maximal Lie invariance algebras of equa-

tions from class (3.46) (resp. (3.40)) coincides with the two-dimensional

algebra 〈∂x, t∂x + ∂u〉. All possible G∼α=n=1-inequivalent (resp. Ĝ∼n=1-

inequivalent) cases of extension of the maximal Lie invariance algebras

are exhausted by the cases 1′– 4′ of Table 3.6.

To derive the complete list of Lie symmetry extensions for the entire

class (3.39), where arbitrary elements are not simplified by point trans-
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Table 3.7: The group classification of the class (3.39) using no equivalence.

no. β(t) σ(t) Basis of Amax

n 6= 1

0 ∀ ∀ ∂x

1 λ1α(T + l)ρ λ2α(T + l)
5ρ+2

3 ∂x, 3n(T + l)α−1∂t

+ n(ρ+ 1)x∂x + (ρ− 2)u∂u

2 λ1αe
mT λ2αe

5
3
mT ∂x, 3nα−1∂t + nmx∂x +mu∂u

3 λ1α λ2α ∂x, α
−1∂t

n = 1

0′ ∀ ∀ ∂x, T∂x + ∂u

1′ λ1α(aT+b)ρ λ2α(aT+b)
5ρ+2

3 ∂x, T∂x + ∂u, 3(aT+b)(cT+d)α−1∂t

× (cT+d)1−ρ × (cT+d)
7−5ρ

3 +(3acT+ad(ρ+1) + bc(2−ρ))x∂x

+(3acx−(3acT+ad(2−ρ)+bc(ρ+1))u)∂u

2′ λ1α(cT+d)e
aT+b
cT+d λ2α(cT+d)3e

5
3
aT+b
cT+d ∂x, T∂x + ∂u, 3(cT+d)2α−1∂t

+ (3c(cT+d)+∆)x∂x

+
(
3c2x+(∆−3c(cT+d))u

)
∂u

3′ λ1α(cT+d) λ2α(cT+d)3 ∂x, T∂x + ∂u, (cT+d)2α−1∂t+

c(cT+d)x∂x + c(cx−(cT+d)u)∂u

4′ ∂x, T∂x + ∂u,

λ1αe3ν arctan
aT+b
cT+d λ2αe5ν arctan

aT+b
cT+d

(
(aT+b)2+(cT+d)2

)
α−1∂t

×
(
(aT+b)2+(cT+d)2

) 1
2 ×
(
(aT+b)2+(cT+d)2

) 3
2 + (a(aT+b)+c(cT+d)+∆ν)x∂x

+
[
−(a(aT+b)+c(cT+d)−∆ν)u

+ (a2+c2)x
]
∂u

Here λ1, λ2, a, b, c, d, l, m, ρ and ν are arbitrary constants, λ1λ2(c
2 +d2) 6= 0, ∆ = ad− bc 6= 0,

α is an arbitrary nonvanishing smooth function of t, T =
∫
α(t)dt.

formations, we use the equivalence-based approach [289]. The results are

collected in Table 3.7.

The presented group classification reveals equations of the form (3.39)
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that may be of interest for applications and for which the classical Lie

reduction method can be used.

3.3.3. Symmetry Reductions and Exact Solutions. The Lie symme-

try operators derived as a result of solving the group classification prob-

lem can be applied to construction of exact solutions of the corresponding

equations. The reduction method with respect to subalgebras of Lie in-

variance algebras is algorithmic and well-known; we refer to the classical

textbooks on the subject [217, 227]. In order to get an optimal system of

group-invariant solutions reductions should be performed with respect to

subalgebras from the optimal system [217, Section 3.3].

Consider firstly the structure of the two and three-dimensional Lie al-

gebras spanned by the generators presented in Table 3.6, using notations

of [230]. In Cases 1–3 and Case 0′ the maximal Lie-invariance algebras are

two-dimensional. In Case 0′, Case 1 with ρ = −1, and Case 3 they are

Abelian (2A1). The algebras adduced in Case 1 with ρ 6= −1 and Case

2 are non-Abelian (A2). The algebras with basis operators presented in

Cases 1′–4′ are three-dimensional. In Case 1′ with ρ 6= −1, 2 the maximal

Lie invariance algebra is of the type A3.4 if ρ = 1/2, Aa
3.5 with a = ρ−2

ρ+1 or

a = ρ+1
ρ−2 if ρ > 1/2 or ρ < 1/2, respectively. If ρ = −1 or ρ = 2, then

Amax from Case 1′ is A1 ⊕ A2. In other cases the maximal Lie invariance

algebras are of the following types: Case 2′ — A3.2, Case 3′ — the Weyl

algebra A3.1, Case 4′ — Aa
3.7 with a = |ν|.

If a one-dimensional invariance algebra is spanned by an operator

Q = τ∂t+ξ∂x+η∂u, then the associated ansatz reducing the corresponding

PDE with two independent variables to an ODE is found as a solution of

the invariant surface condition Q[u] := τut + ξux − η = 0. In practice

the related characteristic system dt
τ = dx

ξ = du
η has to be solved. Ansatzes

and reduced equations obtained for equations from class (3.44) using one-

dimensional subalgebras from Table 3.8 are collected in Table 3.9. Re-
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Table 3.8: Optimal systems of one-dimensional subalgebras of Amax from Table 3.6.

no. Optimal system

1ρ 6=−1 g0 = 〈∂x〉, g1.1 = 〈3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u〉

1ρ=−1 g0 = 〈∂x〉, ga1.2 = 〈nt∂t + a∂x − u∂u〉

2 g0 = 〈∂x〉, g2 = 〈3n∂t + nx∂x + u∂u〉

3 g0 = 〈∂x〉, ga3 = 〈∂t + a∂x〉

0′ g0 = 〈∂x〉, ga0′ = 〈(t+ a)∂x + ∂u〉

1′ρ 6=−1,2 g0 = 〈∂x〉, gσ0′ = 〈(t+ σ)∂x + ∂u〉 g1′.1 = 〈3t∂t + (ρ+ 1)x∂x + (ρ− 2)u∂u〉

1′ρ=−1 g0 = 〈∂x〉, gσ0′ = 〈(t+ σ)∂x + ∂u〉, ga1′.2 = 〈t∂t + a∂x − u∂u〉,

1′ρ=2 g0 = 〈∂x〉, gσ0′ = 〈(t+ σ)∂x + ∂u〉, ga1′.3 = 〈t∂t + (x+ at) ∂x + a∂u〉,

2′ g0 = 〈∂x〉, g0′ = 〈t∂x + ∂u〉, g2′ = 〈3∂t + x∂x + u∂u〉,

3′ g0 = 〈∂x〉, g3′.1 = 〈∂t〉, ga3′.2 = 〈a∂t + 2t∂x + 2∂u〉

4′ g0 = 〈∂x〉, g4′ = 〈(t2 + 1)∂t + (t+ ν)x∂x + (x+ (ν − t)u)∂u〉

In all cases a ∈ R, n 6= 0, σ ∈ {−1, 0, 1}.

ductions associated with the subalgebra g0 are not considered since they

lead to constant solutions only. We do not present reductions with respect

to the subalgebras g1′.1, ga1′.2 and g2′ since these subalgebras are specifi-

cations of the subalgebras g1.1, ga1.2 and g2 for the case n = 1. The re-

duction for the case 1′ρ=2 is not performed because this case is equivalent

to 1′ρ=−1. Indeed, the equations ut + uux + λt2uxxx + δt4uxxxxx = 0 and

u′t′+u′u′x′+λ/t′u′x′x′x′+δ/t′u′x′x′x′x′x′ = 0 are linked by the transformation

t′ = 1/t, x′ = −x/t, u′ = tu− x.

The first-order reduced equation from Table 3.9, (ω+a)ϕ′+ϕ = 0, gives

the “degenerate” solution of (3.44) for arbitrary values of β(t) and σ(t),

u = (x+ c)/(t+ a), where c and a are arbitrary constants. Using transfor-

mation (B.28) we get the “degenerate” exact solution of equation (3.40) in
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Table 3.9: Similarity reductions of the equations (3.39) α = 1 and nβσ 6= 0.

Case g ω Ansatz, u = Reduced ODE

Reductions for arbitrary nonzero n

1ρ 6=−1 g1.1 xt−
ρ+1
3 t

ρ−2
3n ϕ(ω) δϕ′′′′′ + λϕ′′′ +

(
ϕn − ρ+1

3 ω
)
ϕ′ + ρ−2

3n ϕ = 0

1ρ=−1 ga1.2 x− a
n ln t t−

1
nϕ(ω) δϕ′′′′′ + λϕ′′′ +

(
ϕn − a

n

)
ϕ′ − 1

nϕ = 0

2 g2 xe−
1
3
t e

1
3n
tϕ(ω) δϕ′′′′′ + λϕ′′′ +

(
ϕn − 1

3ω
)
ϕ′ + 1

3nϕ = 0

3 ga3 x− at ϕ(ω) δϕ′′′′′ + λϕ′′′ + (ϕn − a)ϕ′ = 0

Specific reductions for n = 1

0′ ga0′ t ϕ(ω) +
x

t+ a
(ω + a)ϕ′ + ϕ = 0

3′ ga3′.1 x ϕ(ω) δϕ′′′′′ + λϕ′′′ + ϕϕ′ = 0

3′ ga3′.2 x− t2/a 2t/a+ ϕ(ω), a 6= 0 δϕ′′′′′ + λϕ′′′ + ϕϕ′ + 2/a = 0

4′ g4′
xe−ν arctan t√

t2 + 1

eν arctan t√
t2 + 1

ϕ(ω) +
xt

t2 + 1
δϕ′′′′′ + λϕ′′′ + (ϕ− νω)ϕ′ + νϕ+ ω = 0

Here a is an arbitrary constant.

the form

u =
x+ c∫

α(t)dt+ a
. (3.48)

Consider fifth-order reduced ODEs from Table 3.9. Cases 3 and 3′

correspond to the constant-coefficient generalized Kawahara equations.

The corresponding ODEs were heavily studied in the literature, see,

e.g., [14, 68, 169, 228] and references therein. We concentrate our atten-

tion on variable coefficient cases.

3.3.4. Exact Solutions for Equations Reducible to Their Con-

stant Coefficients Counterparts. In recent papers [156, 314] different

techniques for finding exact solutions were applied to construct exact so-

lutions of Kawahara equations with time-dependent coefficients. In both

papers exact solutions were derived for equations whose coefficients obey
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additional constraints, namely, when all the coefficients are proportional to

each other. Theorem 3.23 implies that such variable coefficient equations

from class (3.39) are reducible to constant coefficient Kawahara equations.

In our opinion the optimal way to get exact solutions for equations

from (3.39) that are reducible to the constant-coefficient equations from

this class is to take known solutions for constant coefficient equations and

then to make a corresponding change of variables. In such a way it is

possible to construct exact solution not only for the case when the coef-

ficients in (3.39) are proportional but also (if n = 1) for equations of the

form (3.39) whose coefficients satisfy conditions (B.23).

We derive the corresponding changes of variables using Theorem 3.21

for the case n 6= 1 and Theorem 3.21 for the case n = 1. The following

statement is true. The equations from class (3.39)

ut + α(t)unux + β̃α(t)uxxx + σ̃α(t)uxxxxx = 0, and, (3.49)

ut + α(t)uux + β̃α(t)(δ3

∫
α(t)dt+ δ4)uxxx

+ σ̃α(t)(δ3

∫
α(t)dt+ δ4)

3uxxxxx = 0, (3.50)

where α(t) is a smooth nonvanishing function, reduce to the constant co-

efficient Kawahara equations

ũt̃ + α̃ũnũx̃ + β̃ũx̃x̃x̃ + σ̃ũx̃x̃x̃x̃x̃ = 0, and (3.51)

ũt̃ + α̃ũũx̃ + β̃ũx̃x̃x̃ + σ̃ũx̃x̃x̃x̃x̃ = 0 (3.52)

via the transformations

t̃ =
∫
α(t)dt, x̃ = x, ũ = α̃−

1
nu, and

t̃ =
∫
α(t)(δ3

∫
α(t)dt+ δ4)

−2dt,

x̃ = (x+ δ1)(δ3

∫
α(t)dt+ δ4)

−1,

ũ =
(
(δ3

∫
α(t)dt+ δ4)u− (x+ δ1)δ3

)
/α̃,

(3.53)

respectively. Here δi, i = 1, 3, 4, α̃, β̃, and σ̃ are arbitrary constants with

α̃β̃σ̃(δ2
3 + δ2

4) 6= 0.
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We take a family of solitary wave solutions of the Kawahara equa-

tion (3.52) of the form

ũ = −264992σ̃2κ5 − 7280β̃σ̃κ3 − 31β̃2k + 507σ̃µ

507α̃σ̃κ

− 280κ2(β̃ − 104σ̃κ2)

13α̃
tanh2(κx̃+ µt̃+ χ)

− 1680σ̃κ4

α̃
tanh4(κx̃+ µt̃+ χ)

with κ given by

κ1,2 = ±
√
−13β̃σ̃
26σ̃ , κ3,4 = ±

√
65β̃σ̃(31−3i

√
31)

260σ̃ , κ5,6 = ±
√

65β̃σ̃(31+3i
√

31)

260σ̃ ,

µ and χ being arbitrary constants [169]. The corresponding exact solution

of (3.50), derived with the usage of (3.53), is

u =
1

δ3

∫
α(t)dt+δ4

(
δ3(x+ δ1)−

280

13
κ2(β̃−104σ̃κ2) tanh2(κx̃+µt̃+ χ)

− 264992 σ̃2κ5−7280β̃σ̃κ3 − 31β̃2κ+ 507σ̃µ

507σ̃κ

− 1680σ̃κ4 tanh4(κx̃+ µt̃+ χ)

)
,

where t̃ =
∫
α(t)(δ3

∫
α(t)dt+ δ4)

−2dt, x̃ = (x+ δ1)(δ3

∫
α(t)dt+ δ4)

−1, δ1,

µ and χ are arbitrary constants, κ takes the six values adduced above.

A family of solutions for equation (3.49) with n = 2 has the form

u =
40k2σ̃ − β̃√
−10σ̃

(3.54)

+ 6k2
√
−10σ̃ tanh2

(
kx+

k

10σ̃
(240k4σ̃2 + β̃2)

∫
α(t)dt+ χ

)
,

where k and χ are arbitrary constants with k 6= 0. On Figs. 1–3 we present

the graphs of solution (3.54) for certain values of parameters and different

time inhomogeneities.
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Figure 3.1: Solution (3.54) for

α(t) = 1/t, σ = −0.1, β = −1,

k = 1, χ = 0.

Figure 3.2: Solution (3.54) for

α(t) = 1/t2, σ = −0.1, β = −1,

k = 1, χ = −17.

Figure 3.3: Solution (3.54) for

α(t) =
√
t, σ = −0.1, β = −1,

k = 1, χ = 15.

3.3.5. Numerical Solutions Using Lie Symmetries. Exact solutions

of the fifth-order ODEs presented in Cases 1, 2 and 4′ of Table 3.9 are

not known. At the same time behavior of solutions for variable coefficients

models is what we are most interested in. The Lie reductions obtained

can be useful in seeking solutions of equations (3.39) accompanied with

boundary conditions that are invariant with respect to the corresponding

Lie symmetry algebras [32]. Consider a class of boundary value problems

(BVPs) for variable coefficient generalized Kawahara equations,

ut + unux + λtρuxxx + δt
5ρ+2

3 uxxxxx = 0, t > t0, x > 0, n ∈ N, (3.55)

u(t, 0) = γ0t
ρ−2
3n , ∂ iu(t,x)

∂xi

∣∣∣∣
x=0

= γit
ρ−2−n(ρ+1)i

3n , t > t0, i = 1, . . . , 4, (3.56)

where γi, i = 0, . . . , 4, λ and δ are arbitrary constants with γ0λδ 6= 0.

Both equation and boundary conditions are invariant with respect to the

scaling symmetry operator Q = 3nt∂t+(ρ+1)nx∂x+(ρ−2)u∂u (Case 1 of

Table 3.6). Using the corresponding ansatz (Case 1ρ 6=−1 of Table 3.9) this

problem reduces to the initial value problem (IVP) for a fifth-order ODE,

δϕ′′′′′ + λϕ′′′ +
(
ϕn − ρ+1

3 ω
)
ϕ′ + ρ−2

3n ϕ = 0,

ϕ(0) = γ0,
d iϕ(ω)

dωi

∣∣∣∣
ω=0

= γi, i = 1, . . . , 4.
(3.57)
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After the problem for the latter IVP is solved numerically, then the cor-

responding solution of BVP (3.55)–(3.56) can be recovered using the sim-

ilarity transformation u = t
ρ−2
3n ϕ(ω) with ω = xt−

ρ+1
3 .

We illustrate the usage of Lie symmetries for the construction of numer-

ical solutions for the Kawahara equations with time-dependent coefficients

by the following example.

Example 3.29. Consider the equation

vt + vx + 3
2εvvx + 1

2κvxxx + 1
2γvxxxxx = 0

that arises as a model describing the propagation of long nonlinear waves

in the water covered by ice [103,134,193,284,319]. Here

ε =
a

H
, κ =

h

ρωgλ2
(σ0 − σxx), γ =

Eh3

12(1− ν2)ρωgλ4
,

where v is the dimensionless amplitude of the oscillations of the under-

ice surface of the fluid about the horizontal equilibrium position, a is the

characteristic wave amplitude, H is the depth of the fluid, 2πλ is the

characteristic wavelength, ρω and ρi are the densities of the fluid and ice,

respectively; h, E, and ν are the thickness, Young’s modulus and Poisson’s

ratio of the ice, and σxx is a component of the ice sheet stress tensor,

σ0 = gH[ρωH/(3h) + ρi]. It is assumed that σxx ≈ 105N/m2 is the result of

external forces [134].

We suppose that the growth of ice thickness is described by the law

h = 0.04
√
t, which for certain weather conditions is in well agreement

with the data obtained for the sea of Azov for 10 days (240 hours) of

observations of ice growth starting from h=0.1m [47]. Then for the values

λ ≈ 100m, H ≈ 10m, E ≈ 3 · 109N/m2, a ≈ 0.1m, ρω ≈ 1030kg/m3,

ρω ≈ 916kg/m3 and σ0 ≈ 1.2 · 106N/m2 that is calculated for average ice

thickness ha ≈ 0.3m we will have a model equation of the form

vt + vx + αvvx + λt
1
2vxxx + δt

3
2vxxxxx = 0,
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where α = 1.5 · 10−2, β ≈ 2.20215 · 10−5 and δ ≈ 1.05566 · 10−8 (after

converting time in E, σ0 and σxx in hours). To reduce this equation to the

form (3.55) we make the change of the dependent variable u = 1 +αv and

get the equation

ut + uux + λt
1
2uxxx + δt

3
2uxxxxx = 0 (3.58)

where λ and δ remain the same. We consider the boundary conditions

u(t, 0) = γ0t
− 1

2 , ux(t, 0) = uxx(t, 0) = uxxx(t, 0) = uxxxx(t, 0) = 0, (3.59)

that are invariant with respect to the operator of scaling symmetry 2t∂t +

x∂x − u∂u of the latter equation. Such a BVP reduces to the following

initial value problem

δϕ′′′′′ + λϕ′′′ +
(
ϕ− 1

2ω
)
ϕ′ − 1

2ϕ = 0,

ϕ(0) = γ0, ϕ′(0) = ϕ′′(0) = ϕ′′′(0) = ϕ′′′′(0) = 0.
(3.60)

The numerical solution for this initial value problem is presented on Fig. 4.

The corresponding numerical solution of equation (3.58) with the associ-

ated boundary conditions (3.56) is presented on Fig. 5.

Concluding Remarks. In this section the group classification problem

for class (3.39) of variable coefficient generalized Kawahara equations was

Figure 3.4: Solution of IVP (3.60),

γ0 = 1/120.

Figure 3.5: Solution of BVP (3.58)-(3.59),

γ0 = 1/120.
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solved exhaustively. As a result, new variable coefficient nonlinear models

admitting Lie symmetry extensions were derived. This became possible

due to an appropriate gauge of arbitrary elements of the class. Namely,

the gauge α = 1 was utilized. The use of different equivalence groups for

the cases n 6= 1 and n = 1, which were found in the course of the study

of admissible transformations in class (3.39), allowed us to write down the

classification list in a simple and concise form. We also construceted zero-

order conservation laws of equations of the form (3.44), given by conserved

vectors with characteristics 1 and u(
u, 1

n+1 α(t)un+1+β(t)uxx+σ(t)uxxxx
)
,(

1
2u

2, 1
n+2 α(t)un+2+β(t)

(
uuxx− 1

2u
2
x

)
+σ(t)

(
uuxxxx−uxuxxx+ 1

2u
2
xx

))
.

These are conservation laws of momentum and energy, respectively.

3.4. Lie Symmetries and Conservation Laws

of Generalized Benjamin–Bona–Mahony

Equations

The third-order nonlinear partial differential equation

ut + ux + uux − uxxt = 0,

named these days the Benjamin–Bona–Mahony (BBM) equation, ap-

peared in [20, 231] as an alternative to the Korteweg–de Vries equation,

ut +ux +uux +uxxx = 0, model for the unidirectional propagation of mod-

erately long waves with small but finite amplitude in systems that manifest

nonlinear and dispersive effects. Numerical studies showed that the BBM

equation admits soliton solutions whose interaction is inelastic though close

to elastic [2,40]. It was proved in [75] for the equivalent form ut = uux+uxxt

of the BBM equation that it has no conserved quantity in addition to those

found by Benjamin, Bona and Mahony: u (mass), (u2 + u2
x)/2 (energy),
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and u3/3 (momentum). Lie symmetries and the corresponding reductions

of the BBM equation in the above equivalent form were obtained in [163]

(these results were also presented in [131, pp 194–196]). It was found that

the maximal Lie symmetry algebra of this equation is a three-dimensional

Lie algebra of the type A2.1⊕A1 spanned by the vector fields ∂t, t∂t− u∂u
and ∂x.

There are several recent works (see [199] and references therein) devoted

to the study of Lie symmetries of variable-coefficient BBM equations of the

general form

ut + f(t)ux + g(t)uux + h(t)uxxt = 0, (3.61)

where f , g and h are arbitrary smooth functions of the variable t with

gh 6= 0. However none of these works contains exhaustive and completely

correct results. We aim to fill up this gap by presenting the exhaustive

group classification of equations from class (3.61) and classifying local con-

servation laws of these equations.

Theorem 3.30. The usual equivalence group G∼1 of class (3.61) is com-

prised of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = δ3u+ δ4,

f̃ =
δ1

Ttδ3
(δ3f − δ4g), g̃ =

δ1

Ttδ3
g, h̃ = δ2

1h,

where δj, j = 1, 2, 3, 4, are arbitrary constants with δ1δ3 6= 0 and T = T (t)

is an arbitrary smooth function with Tt 6= 0. Class (3.61) is normalized in

the usual sense.

Thus, each point transformation between equations from class (3.61) is

induced by an element of the group G∼1 . In order to find which variable-

coefficient equations of the form (3.61) admit constant-coefficient coun-

terparts, we assume that the transformed arbitrary elements f̃ , g̃ and h̃

are constants in equivalence transformations. This results in the following

assertion:
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Proposition 3.31. A variable-coefficient equation from class (3.61) is re-

duced to a constant-coefficient equation from the same class by a point

transformation if and only if the corresponding coefficients f, g and h sat-

isfy the conditions(
f

g

)
t

= ht = 0,

i.e., h is a constant and f is proportional to g.

Equivalence transformations allow us to simplify the consideration by

reducing the number of arbitrary elements. For example, we can set the

gauge g = 1 using the family of point transformations

t̃ =
∫
g(t)dt, x̃ = x, ũ = u (3.62)

parameterized by the arbitrary element g and related to equivalence trans-

formations from the group G∼1 . Then the other arbitrary elements are

changed as f̃(t̃) = f(t)/g(t), and h̃(t̃) = h(t). Here and below an integral

with respect to t should be interpreted as a fixed antiderivative.

Therefore, without loss of generality we can restrict ourselves by the

study of the class

ut + f(t)ux + uux + h(t)uxxt = 0. (3.63)

Since class (3.61) is normalized, the equivalence group of its subclass (3.63)

can be easily found as the subgroup of the group G∼1 whose elements pre-

serve the gauge g = 1.

Corollary 3.32. Class (3.63) is normalized in the usual sense. Its usual

equivalence group G∼2 is constituted by the transformations

t̃ =
δ1

δ3
t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u+ δ4, f̃ = δ3f − δ4, h̃ = δ2

1h,

where δj, j = 0, . . . , 4, are arbitrary constants with δ1δ3 6= 0.

There are no truly variable-coefficient equations in class (3.63) that are

reduced by point transformations to constant-coefficient equations from

the same class.
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3.4.1. Lie Symmetries. We use the method of mapping between classes,

which was suggested in [300] for solving the group classification problem.

This method has been successfully applied to several classes of nonlinear

partial differential equations (see, e.g., [297]).

Class (3.61) can be mapped to a similar class of third-order partial

differential equations of the form

ut + uux + h(t)uxxt = l(t), h 6= 0. (3.64)

The mapping is realized by the family of point transformations

t̃ =
∫
g(t)dt, x̃ = x, ũ = u+

f(t)

g(t)
, (3.65)

parameterized by two arbitrary elements of class (3.61). The arbitrary

elements in the imaged equations take values (tildes in (3.64) are omitted)

h̃(t̃) = h(t), l(t̃) = 1
g(t)

(
f(t)
g(t)

)
t
. Following the method of mapping between

classes, we first classify Lie symmetries of the imaged class (3.64) and then

use the family of point transformations (3.65) to extend the result to the

initial class (3.61).

In order to efficiently solve the group classification problem for

class (3.64), we look for admissible transformations in this class using the

direct method. It appears that such transformations are exhausted by

transformations from the usual equivalence group of this class.

Theorem 3.33. The usual equivalence group G∼3 of class (3.64) consists

of the transformations

t̃ =
δ1

δ3
t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u, h̃ = δ2

1h, l̃ =
δ2

3

δ1
l,

where δj, j = 0, 1, 2, 3, are arbitrary constants with δ1δ3 6= 0. Class (3.64)

is normalized in the usual sense.

Using the classical Lie infinitesimal method, we get the complete group

classification of equations from class (3.64). The results are summarized

in the following assertion.
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Table 3.10: The group classification of class (3.64) up to G∼3 -equivalence.

no. h(t) l(t) Basis of Amax

0 ∀ ∀ ∂x

1 εtρ λt
ρ−4
2 ∂x, 2t∂t + ρx∂x + (ρ− 2)u∂u

2 εet λe
1
2
t ∂x, 2∂t + x∂x + u∂u

3 ε 1 ∂x, ∂t

4 ε 0 ∂x, ∂t, t∂t − u∂u

Here ρ and λ are arbitrary constants, ε = ±1 mod G∼3 , in Case 1 (ρ, λ) 6= (0, 0).

Theorem 3.34. The kernel of the maximal Lie invariance algebras of equa-

tions from class (3.64) is the one-dimensional algebra 〈∂x〉. All possible

G∼3 -inequivalent cases of extension of the maximal Lie invariance algebras

are exhausted by Cases 1– 4 of Table 3.10.

Remark 3.35. The most general forms of the functions h and l that cor-

respond to equations from class (3.64) with Lie symmetry extensions are

1. h = λ1(εt+ κ)ρ, l = λ2(εt+ κ)
ρ−4
2 :

Amax = 〈∂x, 2(εt+ κ)∂t + ερx∂x + ε(ρ− 2)u∂u〉;

2. h = λ1e
σt, l = λ2e

1
2σt: Amax = 〈∂x, 2∂t + σx∂x + σu∂u〉;

3. h = λ1, l = λ2: Amax = 〈∂x, ∂t〉;

4. h = λ1, l = 0: Amax = 〈∂x, ∂t, t∂t − u∂u〉.

Here λ1, λ2, ε, κ and ρ are arbitrary constants with λ1σε 6= 0. Additionally,

in Case 1 (ρ, λ2) 6= (0, 0) and in Case 3 λ2 6= 0. Due to the presence of

arbitrary constants λ1 and λ2, the constant ε can be assumed to take the

values ±1 only.

The following example shows how to recover the group classification of

class (3.61) using the results obtained for class (3.64).

Consider Case 1 of Table 3.10 extended by the equivalence transfor-

mations from G∼3 , i.e., the first case presented in Remark 3.35, were
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h̃ = λ1(εt̃+ κ)ρ, l = λ2(εt̃+ κ)
ρ−4
2 . We denote

∫
g(t)dt by T . As t̃ = T and

l(T ) = (f/g)t/g, we get (f/g)t = λ2g(t)(εT + κ)
ρ−4
2 . Finally,

f(t) =

λ2g(t)
(

2
ε(ρ−2)(εT + κ)

ρ−2
2 + λ3

)
, if ρ 6= 2,

λ2g(t)
(

1
ε ln(εT + κ) + λ3

)
, if ρ = 2.

After re-denoting the constants λi, i = 1, 2, 3, it is easy to see that we get

Cases 1 and 2 of Table 3.12, respectively. To obtain the corresponding Lie

symmetry operators one should make the change of variables t̃ = T, x̃ = x,

ũ = u+µ2(εT +κ)
ρ−2
2 +µ3 (resp. ũ = u+µ2 ln(εT +κ) +µ3 for the second

case) in the vector fields X1 = ∂x̃ and X2 = 2(εt̃+κ)∂t̃+ερx̃∂x̃+ε(ρ−2)ũ∂ũ.

It is interesting to note that the images of two distinct inequivalent cases

of Lie symmetry extensions in class (3.61) (Cases 1 and 2 of Table 3.11)

belong to the same case of Lie symmetry extensions for class (3.64) (Case 1

of Table 3.10).

The other cases are easily treated in the same way.

Theorem 3.36. The kernel of the maximal Lie invariance algebras of equa-

tions from class (3.63) is the one-dimensional algebra 〈∂x〉. All possible

G∼2 -inequivalent cases of Lie symmetry extensions are exhausted by Cases

1–5 of Table 3.11.

Corollary 3.37. The group classification for class (3.61) up to G∼1 -

equivalence results in the list presented in Table 3.10, where the arbitrary

element g is assumed to be equal 1.

In order to get the classification list for class (3.61), where forms of arbi-

trary elements are not simplified by equivalence transformations, we apply

transformation (3.62) combined with transformations from the equivalence

group G∼2 to equations of the form (3.63) with f and h presented in Ta-

ble 3.10. Basis elements of the corresponding maximal Lie invariance alge-

bras are pushed forward by the same transformations. Then we re-denote

the constants and collect the obtained results in Table 3.12. The detailed

procedure of the equivalence based approach for deriving most general forms
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Table 3.11: The group classification of class (3.63) up to G∼2 -equivalence.

no. h(t) f(t) Basis of Amax

0 ∀ ∀ ∂x

1 εtρ λt
ρ−2
2 ∂x, 2t∂t + ρx∂x + (ρ− 2)u∂u

2 εt2 ln t ∂x, t∂t + x∂x − ∂u

3 εet λe
1
2
t ∂x, 2∂t + x∂x + u∂u

4 ε t ∂x, ∂t − ∂u

5 ε 0 ∂x, ∂t, t∂t − u∂u

Here ρ and λ are arbitrary constants, ε = ±1 mod G∼2 . In Case 1 (ρ, λ) 6= (0, 0).

Table 3.12: The group classification of class (3.61) using no equivalence.

no. h(t) f(t) Basis of Amax

0 ∀ ∀ ∂x

1 µ1(εT + κ)ρ µ2g(εT + κ)
ρ−2
2 + µ3g ∂x,

2
g (εT + κ)∂t + ερx∂x + ε(ρ− 2)(u+ µ3)∂u

2 µ1(εT + κ)2 µ2g ln(εT + κ) + µ3g ∂x,
1
g (εT + κ)∂t + εx∂x − εµ2∂u

3 µ1 exp(σT ) µ2g exp(12σT ) + µ3g ∂x,
2
g∂t + σx∂x + σ(u+ µ3)∂u

4 µ1 µ2gT + µ3g ∂x,
1
g∂t − µ2∂u

5 µ1 µ3g ∂x,
1
g∂t,

T
g ∂t − (u+ µ3)∂u

Here g is an arbitrary nonvanishing smooth function, T =
∫
g(t) dt; ε = ±1; µ1, µ2, µ3, ν and ρ

are arbitrary constants satisfying the following constraints: µ1λ 6= 0; in Case 1 ρµ2 6= 0; and

in Case 4 µ2 6= 0.

of arbitrary elements and basis elements of the corresponding maximal Lie

invariance algebras can be found in [289].

Comparing the results of [199] with those collected in Table 3.11, we

conclude that Lie symmetry extensions presented in [199] are particular

specifications of Cases 1–5 from Table 3.11 for certain fixed values of the

arbitrary element g. For example, there are two cases in the classification
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list derived in [199] with the three-dimensional maximal Lie symmetry

algebras (Cases 4 and 10 of Table 1 therein). These cases are particular

subcases of Case 5 of Table 3.11 for g = g0 = const and g = g0e
kt.

3.4.2. Conservation Laws. We classify (local) conservation laws of

equations from class (3.61), applying the most direct method based on

the definition of conservation laws [10,11,217].

The classification of local conservation laws of equations from the

class (3.61) is as follows.

Case 0. Each equation from the class (3.61) admits the “natural” con-

servation law with the constant characteristic λ1 = 1. The corresponding

density and flux are

F 1 = u, G1 = f(t)u+
1

2
g(t)u2 + h(t)utx.

For general admitted values of the arbitrary elements f , g and h the asso-

ciated space of conservation laws is one-dimensional.

Case 1. If the arbitrary elements satisfy the equation ((1/h)t/g)t = 0,

and, therefore, h(t) =
(
ρ1

∫
g(t)dt+ ρ2

)−1
, where ρ1 and ρ2 are constants

with (ρ1, ρ2) 6= (0, 0), then the space of conservation laws of the correspond-

ing equation of the form (3.61) is at least two-dimensional. The second

basis conservation law can be chosen to have the following characteristic,

density and flux:

λ2 =
u

h
− ρ1

(
x−

∫
f(t)dt

)
, F 2 =

u2

2h(t)
− u2

x

2
− ρ1

(
x−

∫
f(t)dt

)
u,

G2 =
g(t)

3h(t)
u3 +

f(t)

2h(t)
u2 + uutx + ρ1h(t)ut

− ρ1

(
x−

∫
f(t)dt

)(
f(t)u+

1

2
g(t)u2 + h(t)utx

)
,

where (1/h)t/g = ρ1 = const.

Using the family of point transformations t̃ = ρ1

∫
g(t)dt + ρ2, x̃ = x,

ũ = u/ρ1 related to the group G∼1 , we can reduce any equation of this case
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with ρ1 6= 0 to the form ut + f(t)ux + uux + t−1utxx = 0 (tildes are omitted

in the latter equation).

Case 2. One more case with at least two-dimensional spaces of con-

servation laws is given by the arbitrary elements satisfying the condition

((f/g)t/g)t = 0, i.e., if f(t) =
(
σ1

∫
g(t)dt+ σ2

)
g(t), where σ1 and σ2 are

arbitrary constants. The second basis conservation law can be chosen to

have the following characteristic, density and flux:

λ3 = W 2 − 2σ1x+ 2
h

g
utx, F 3 =

1

3
W 3 − 2σ1xu−

1

3

f(t)3

g(t)3
,

G3 =
h(t)

g(t)
W 2

t +
h(t)2

g(t)
u2
tx + h(t)W 2utx − 2σ1h(t)xutx

− 2σ1f(t)xu− σ1g(t)xu2 +
g(t)

4
W 4,

where W = u+ f(t)/g(t), (f/g)t/g = σ1 = const.

Using the family of point transformations t̃ = σ1

∫
g(t)dt+σ2, x̃ = σ1x,

ũ = u related to the group G∼1 , we can reduce any equation of this case

with σ1 6= 0 to the form ut + tux + uux + h(t)utxx = 0 (tildes are omitted

in the latter equation).

Case 3. The maximal dimension of the spaces of conservation laws for

equations from class (3.61) equals three and is reached for the intersection

of Cases 1 and 2, where arbitrary elements satisfy the both constraints,

((f/g)t/g)t = 0 and ((1/h)t/g)t = 0. Then for each of the spaces, a basis

consists of conservation laws with the characteristics λ1, λ2 and λ3 and

the conserved currents (F 1, G1), (F 2, G2) and (F 3, G3), respectively. The

corresponding equation can be reduced to the form

ut + (σ1t+ σ2)ux + uux + (ρ1t+ ρ2)
−1utxx = 0

by transformation (3.62). The further simplification is possible by trans-

formations from the group G∼2 . For example, we can set one of the linear

combinations σ1t+ σ2 or ρ1t+ ρ2 to t if σ1 6= 0 or ρ1 6= 0, respectively.

A well-studied subcase of Case 3 is constituted by constant-coefficient

equations, for which ρ1 = σ1 = 0 [20, 75, 216]. Up to G∼1 -equivalence any
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constant-coefficient equation from class (3.61) can be mapped to the equa-

tion ut = uux + εuxxt, where ε = sgnh = ±1. Then the characteristics and

the components of the conserved currents of the above basis conservation

laws take the form (cf. [131, p. 195])

λ1 = 1, F 1 = u, G1 = −1

2
u2 − εutx,

λ2 = εu, F 2 =
u2

2
+ ε

u2
x

2
, G2 = −1

3
u3 − εuutx,

λ3 = u2 + 2εutx, F 3 =
1

3
u3, G3 = εu2

t − u2
tx − εu2utx −

1

4
u4.

The results on conservation laws are quite expectable and, at the same

time, are not trivial. They naturally generalize well-known results of

constant-coefficient BBM equations and need the completion of the most

significant and tricky part of the proof, which is deriving an upper bound

for order of conservation laws similarly to [75].

3.5. Equivalence Transformations in the Study

of Integrability

Since late 1960s there is an unceasing interest to the study of exactly

solvable (integrable) partial differential equations (PDEs) that model real-

world phenomena. Thus, the inverse scattering transform method was

introduced in [100] and was applied therein to the prominent Korteweg–de

Vries (KdV) equation ut = uxxx + 6uux [162] in order to find its soliton

solutions. The notion of soliton had appeared earlier in [329]. It was shown

in [198] that the KdV equation possesses an infinite set of conservation

laws of arbitrarily high orders, and this property appeared to be typical for

integrable equations. A new direct method (the Hirota bilinear method) for

finding multisoliton solutions to integrable nonlinear evolution equations

was suggested in [119]. In contrast to the inverse scattering transform

method, the Hirota bilinear method is algebraic rather than analytical.
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These and other methods were then applied to a wide range of integrable

equations [269].

According to [50], integrable equations can be divided into those that

are linearizable by an appropriate Change of variables (C-integrable equa-

tions) and equations integrable by inverse scattering transform method

(Spectral transform technique) (S-integrable equations).

Among the C-integrable equations there are, e.g., the famous Burgers

equation ut+uux = νuxx [49] that can be linearized to the heat equation by

the Hopf–Cole transformation [62,121], the Sharma–Tasso–Olver equation

ut +uxxx + 3u2ux + 3u2
x + 3uuxx = 0 [215,270], which is the second member

of the Burgers hierarchy, the u−2-diffusion equation (named also Fujita–

Storm equation) ut = (u−2ux)x + au [36, 280], the Fokas–Yortsos equation

ut = (u−2ux)x + au−2ux [81, 281]. Further examples in (1+1)-dimensions

can be found in [50].

S-integrable equations in (1+1)-dimensions include the KdV and mod-

ified KdV equations, the Gardner equation (the combined KdV–mKdV

equation) ut + uux + u2ux + uxxx = 0 [197], the cylindrical KdV equation

ut = uxxx + 6uux − 1
2tu [191], the Dym equation ut = u3uxxx [167], the

sine-Gordon equation utt − uxx + sinu = 0, etc. See other examples of

integrable equations, e.g., in [269].

Most of integrable PDEs considered in the beginning of the development

of integrability theory were constant-coefficient ones. At the same time,

many model equations appearing in applications explicitly involve indepen-

dent variables. For example, the generalized Burgers equations describing

the propagation of weakly nonlinear acoustic waves under the influence

of geometrical spreading and thermoviscous diffusion in non-dimensional

variables are represented as ut + uux = g(t)uxx with g 6= 0 [116] (these

equations are not C-integrable for nonconstant values of g). The KdV and

cubic Schrödinger equations with time-dependent coefficients,

ut + f(t)uux + g(t)uxxx = 0 and iut + f(t)uxx + g(t)|u|2u = 0, (3.66)
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respectively, also appear in different applications [105, 106]. Here f and g

are nonvanishing smooth functions of t.

Many papers devoted to the study of variable-coefficient equations were

published, especially, in recent years. Usual topics of these papers are the

application of Painlevé test in order to single out subclasses of integrable

equations within wider classes of variable-coefficient equations, the con-

struction of conservation laws, Lax pairs and bilinear representations and

finding exact soliton solutions by the Hirota bilinear method. Since some-

times variable-coefficient models are quite complicated and the number of

variable coefficients varies from one to five or even to ten in some cases,

packages of symbolic computations are widely used to complete these tasks.

At the same time, the equivalence between equations in a class under study

is neglected in many works, see a discussion in [251]. Though even in pio-

neering works on exactly solvable models it was shown that if an integrable

PDE is related to another PDE by certain change of variables (point or

non-point), then the latter PDE is also integrable. The classical examples

are the connection between the KdV and mKdV equation via the Miura

transformation, the reducibility of the Gardner equation to the mKdV [197]

and of the cylindrical KdV equation to the classical KdV [147,191]. Other

examples are given in [148]. It was shown that the KdV and nonlin-

ear Schrödinger equations with time-dependent coefficients (3.66) pass the

Painlevé test if and only if the coefficients f and g satisfy the conditions

g(t) = f(t)(a1

∫ t
f(s) ds+a0) (resp. g(t) = f(t)/(a1

∫ t
f(s) ds+a0) ), where

a1 and a0 are constants with a2
1 + a2

0 6= 0. These conditions coincide with

those of reducibility of equations (3.66) to their constant-coefficient coun-

terparts, which were obtained in [105,106].

Another way for construction of variable-coefficient integrable models

from constant-coefficient members of integrable hierarchies was presented

in [84, Theorem 3.1]. Any “linear superposition”, with arbitrary time-

dependent coefficients, of members of an integrable evolution hierarchy that
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correspond to mutually commuting flows proved to be again integrable.

The study of point transformations within a given class of variable-

coefficient PDEs and the knowledge of reducibility conditions to constant-

coefficient integrable equations allow one to obtain solutions, conservation

laws, other objects and related information in an easier way than using

the direct computations for variable-coefficient equations. This section is

devoted to the discussion of this subject. The consideration is illustrated

by variable-coefficient fifth-order KdV-like equations.

3.5.1. Admissible Transformations in Classes of Differential Equa-

tions. Consider the class of nth order (1+1)-dimensional evolution equa-

tions,

ut = H(t, x, u0, u1, . . . , un), (3.67)

where n > 2, uj ≡ ∂ju/∂xj, j = 1, 2, . . . , and u0 ≡ u. We shall also employ,

depending on convenience or necessity, the following notation for low-order

derivatives: ux = u1, uxx = u2, uxxx = u3, etc. In general, a subscript of

a function denotes the differentiation with respect to the corresponding

variable, e.g., ut ≡ ∂u/∂t, Hui ≡ ∂H/∂ui. For the above class, the tuple of

arbitrary elements θ consists of a single arbitrary smooth function H of its

arguments. The auxiliary equations to H singling out evolution equations

among all nth order two-dimensional partial differential equations form the

system

Huit = 0, i = 0, . . . , n− 1, Huitt = 0, i = 0, . . . , n− 2, . . . ,

meaning that the arbitrary element H does not depend on derivatives of u

involving the differentiation with respect to t. The condition that the

equation order equals n leads to the auxiliary inequality Hun 6= 0. For

quasilinear evolution equations the arbitrary element H is linear in the

highest-order derivative un, i.e., the subclass Eql of such equations is singled

out from the entire class (3.67) by the additional auxiliary equationHunun =
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0. Representing H in the form H = Fun + G and interpreting F =

F (t, x, u0, u1, . . . , un−1) and G = G(t, x, u0, u1, . . . , un−1) as new arbitrary

elements, we re-parameterize the subclass Eql. In terms of F and G, the

system of auxiliary equations and inequality for the subclass Eql is

Fuit = Guit = 0, i = 0, . . . , n− 1,

Fuitt = Guitt = 0, i = 0, . . . , n− 2, . . . ,

Fun = Gun = 0, F 6= 0.

(3.68)

Imposing additional auxiliary equations on H (resp. F and G), one can

construct a tree of nested subclasses of evolution equations.

We consider a chain of nested normalized classes of evolution equations,

which is of interest in view of the subject of the present paper. It is a well-

known folklore assertion [192] that any contact transformation T relating

two fixed equations ut = H and ũt̃ = H̃ from the class (3.67) has the

form t̃ = T (t), x̃ = X(t, x, u, ux), ũ = U(t, x, u, ux). In comparison with

the general contact transformation in the space of (t, x, u), the peculiar-

ity is that the transformation component for t depends only on t and the

transformation component for all the variables does not depend on ut. The

contact and nondegeneracy assumptions are reduced for T to the conditions

(Ux+Uuux)Xux = (Xx+Xuux)Uux and Tt 6= 0, rank ∂(X,U)/∂(x, u, ux) = 2,

respectively. The standard prolongation of T to the derivatives u1, . . . , un

is carried out using the chain rule, which gives ũx̃ = V (t, x, u, ux), where

V = (Ux+Uuux)/(Xx+Xuux) or V = Uux/Xux if Xx+Xuux 6= 0 or Xux 6= 0,

respectively, and ũi ≡ ∂iũ/∂x̃i = ((1/DxX)Dx)
i−1V , i = 2, . . . , n. Here

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · is the operator of total differ-

entiation with respect to the variable x. The possibility of simultaneous

vanishing Xx +Xuux and Xux is ruled out by the nondegeneracy assump-

tion. Moreover, the contact and nondegeneracy assumptions jointly imply

that (Xu, Uu) 6= (0, 0). The transformed arbitrary element H̃ is equal to

H̃ =
Uu −XuV

Tt
H +

Ut −XtV

Tt
.
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Each of the above contact transformations maps the entire class (3.67) onto

itself. Therefore, its prolongation to the arbitrary element H belongs to the

contact equivalence group G∼c of the class (3.67), and any element of G∼c is

obtained in this way. In other words, the equivalence group G∼c generates

the whole contact equivalence groupoid G∼c of the class (3.67), i.e., this class

is contact-normalized, which obviously implies its normalization also with

respect to point transformations. If n > 3, the subclass Eql of nth order

quasilinear evolution equations has the same contact equivalence group and

is also contact-normalized.

Each next subclass is singled out from the previous one by se-

quently adding more equations to the system (3.68) in the way pre-

serving the property of usual normalization. The additional constraints

Fu2 = · · · = Fun−1 = 0 (i.e., F = F (t, x, u, ux) ) lead to principally nar-

rowing the equivalence groupoid of the corresponding subclass: Its contact

equivalence group coincides with its point equivalence group. Therefore,

in the course of the consideration of equations from this subclass it suffices

to use only the point equivalence. Imposing additionally the constraint

Fu1 = 0, we obtain a subclass in which the x-component of any equiva-

lence transformation does not involve u, Xu = 0, i.e., all equivalence trans-

formations are fiber preserving. The equivalence group of the subclass of

equations with F depending only on t, F = F (t), consists of transforma-

tions satisfying the equation Xxx = 0. Finally, for the subclass of equations

of the form

ut = F (t)un +G(t, x, u0, u1, . . . , un−1), n > 2,

F 6= 0, Guiun−1 = 0, i = 1, . . . , n− 1,
(3.69)

any equivalence transformation is linear in u since Uuu = 0. Collecting all

determining equations for admissible transformations in the class (3.69),

which are exhausted by the above equations Xu = Xxx = Uuu = 0, we can

claim that its usual point equivalence group consists of the transformations

t̃ = T (t), x̃ = X1(t)x+X0(t), ũ = U 1(t, x)u+ U 0(t, x), (3.70)
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F̃ =
(X1)n

Tt
F, G̃ =

1

Tt

[
U 1G−

(
n−1∑
k=0

(
n

k

)
U 1

(n−k)u(k) + U 0
(n)

)
F

+U 1
t u+ U 0

t −
X1
t x+X0

t

X1

(
(U 1u)x + U 0

x

)]
,

where TtX
1U 1 6= 0. The class (3.69) is normalized with respect to this

group.

3.5.2. Integrable Subclasses in a Class of Fifth-Order Variable

Coefficient KdV Equations. Consider the class of variable-coefficient

fifth-order KdV-like equations of the form

ut + a(t)uuxxx + b(t)uxuxx + c(t)u2ux + f(t)uux + g(t)uxxxxx

+ h(t)uxxx +m(t)u+ n(t)ux + k(t)xux = 0,
(3.71)

where the functions a, b, c, f , g, h, m, n, and k are arbitrary smooth

functions of the time variable t with g(a2 + b2 + c2) 6= 0. Recently certain

subclasses of this class were studied, e.g., in [318,326,327].

Thus, in [318] the integrability of equations from the class (3.71) with

k = 0 (and the re-denoted coefficients f = d, g = l and h = e) was

investigated using the Painlevé test. It was found that such equations are

Painlevé integrable in the following three cases

I. b = a, c = µ1ae
∫
m dt, f = 2µ2a, g = a

5µ1
e−

∫
mdt, h = µ2

µ1
ae−

∫
m dt;

II. b = 2a, c = µ1ae
∫
m dt, f = 2µ1he

∫
m dt, g = 3a

10µ1
e−

∫
m dt;

III. b = 5
2a, c = µ1ae

∫
m dt, f = 2µ2a, g = a

5µ1
e−

∫
mdt, h = µ2

µ1
ae−

∫
m dt.

In all three cases µ1 and µ2 are arbitrary constants with µ1 6= 0, the

functions a, m and n are arbitrary. In Case II the function h is also

arbitrary. Here and in what follows an integral with respect to t should be

interpreted as a fixed antiderivative. N -soliton solutions were constructed

for the first two cases whereas only one- and two-soliton solutions were

presented in Case III.

The same subclass of equations with k = 0 was treated earlier in [326].

Although it was stated that both the Painlevé test and the mapping to
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the completely integrable constant-coefficient counterparts were applied for

separating integrable cases, N -soliton solutions, a Bäcklund transformation

and a Lax pair were constructed therein only for equations with additional

constraints a = b = 15gνe
∫
m dt, c = 45gν2e 2

∫
mdt, f = h = 0, where ν

is a nonzero constant (ν = 1/ρ in the notation of [326]), which gives a

particular subcase of Case I. The other integrable cases were missed.

In [327] such objects were constructed for equations of the form (3.71)

with f = h = 0 (and the re-denoted coefficients g = d and k = l) under the

constraints a = b = 15gνe
∫

(m−2k) dt, c = 45gν2e 2
∫

(m−2k) dt. It was also indi-

cated that these constraints are derived both by Painlevé analysis and by

mapping the corresponding variable coefficient models to their completely

integrable constant-coefficient counterparts. In fact, this consideration just

extend results of [326] to the case of nonzero k, although the parameter k

is not essential and can be set to zero by a point transformation.

We show that all the mentioned cases of integrable equations from

class (3.71) are reduced by point transformations to well-known fifth-order

integrable evolution equations. To achieve this goal, we present a com-

plete description of admissible transformations between equations from this

class.

Theorem 3.38. The generalized extended equivalence group G∼ of the

class (3.71) consists of the transformations

t̃ = α(t), x̃ = β(t)x+ γ(t), ũ = ϕ(t)
(
u+ σe−

∫
m dt
)
,

ã =
β3

αtϕ
a, b̃ =

β3

αtϕ
b, c̃ =

β

αtϕ2
c, f̃ =

β

αtϕ

(
f − 2σce−

∫
m dt
)
,

g̃ =
β5

αt
g, h̃ =

β3

αt

(
h− σae−

∫
m dt
)
, m̃ =

1

αt

(
m− ϕt

ϕ

)
, (3.72)

ñ =
β

αt

(
n+

(
γ

β

)
t

− kγ
β

+ σ2ce−2
∫
m dt − σfe−

∫
mdt

)
,

k̃ =
1

αt

(
k +

βt
β

)
.
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where α, β, γ, and ϕ run through the set of smooth functions of t with

αtβϕ 6= 0, and σ is an arbitrary constant. This group generates the en-

tire equivalence groupoid G∼ of the class (3.71), i.e., the class (3.71) is

normalized in the generalized extended sense.

The complete proof of this theorem can be found in [304].

Corollary 3.39. The subclass of the class (3.71) with fh = 0 and (a, c) 6=
(0, 0) is normalized with respect to its usual equivalence group consisting of

the transformations (3.72) with σ = 0.

Corollary 3.40. The subclass of the class (3.71) with k = 0 is normalized

with respect to its generalized extended equivalence group that comprises

the transformations (3.72) with β = const.

Corollary 3.41. Any equation from the class (3.71) can be reduced by the

point transformation

t̃ =
∫
ge−5

∫
k dt dt, x̃ = e−

∫
k dtx−

∫
ne−

∫
k dt dt, ũ = e

∫
m dtu (3.73)

to an equation from the same class with g = 1 and m = n = k = 0. The

subclass of the class (3.71) singled out by the constraints g = 1 and m =

n = k = 0 is normalized with respect to its generalized extended equivalence

group G∼1 consisting of the transformations (3.72) with βt = ϕt = 0, αt =

β5 and γt = σβf − σ2βc.

Transformations from the equivalence group G∼ have a nice particular

structure. The principal property is that they are fiber-preserving (i.e., the

transformation components corresponding to the independent variables t

and x depend only on these variables) and, moreover, linear in u. An

additional bonus is that the transformation component for t depends only

on t and the transformation component for x is linear in x. Therefore,

the entire study of equations from the class (3.71) within integrability

theory can be implemented up to G∼-equivalence, which coincides for this
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class with general contact (resp. point) equivalence since the class (3.71)

is normalized with respect to G∼ in both the contact-transformation and

point-transformation frameworks.

Consider the class of constant-coefficient fifth-order KdV equations of

the form

ut + Auuxxx +Buxuxx + Cu2ux + uxxxxx = 0, (3.74)

where A, B and C are nonzero constants. Up to scale transformations,

there exist three inequivalent triples (A,B,C) such that the correspond-

ing equations of the form (3.74) are integrable. These are the triples

(10, 20, 30), (15, 15, 45) and (10, 25, 20) [196], which respectively give

• Lax’s fifth-order KdV equation [184]

ut + 10uuxxx + 20uxuxx + 30u2ux + uxxxxx = 0; (3.75)

• the Sawada–Kotera equation [264] (equivalent to the Caudrey–Dodd–

Gibbon equation [54])

ut + 15uuxxx + 15uxuxx + 45u2ux + uxxxxx = 0; (3.76)

• the Kaup–Kupershmidt equation [155]

ut + 10uuxxx + 25uxuxx + 20u2ux + uxxxxx = 0. (3.77)

Corollary 3.42. The usual equivalence group G∼const of the class (3.74)

consists of the transformations

t̃ = β5t+ δ, x̃ = βx+ γ, ũ =
u

β2λ
,

Ã = λA, B̃ = λB, C̃ = λ2C.

Here β, γ, δ, and λ are arbitrary constants with βλ 6= 0. This group

generates the entire equivalence groupoid G∼const of the class (3.74), i.e., the

class (3.74) is normalized in the usual sense.
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In view of this assertion it is obvious, e.g., that the Caudrey–Dodd–

Gibbon equation in which (Ã, B̃, C̃) = (30, 30, 180) is similar to the

Sawada–Kotera equation (3.76). The similarity between the equations is

realized by the scale transformation t̃ = t, x̃ = x, ũ = 1
2u.

Theorem 3.43. An equation from the class (3.71) is similar to a constant-

coefficient equation of the form (3.74) with ABC 6= 0 if and only if its

coefficients satisfy the conditions(
b

a

)
t

=

(
b2

cg

)
t

=

(
f

c
e
∫
m dt

)
t

= 0,(
b

g

)
t

=
b

g
(m− 2k), af = 2ch.

(3.78)

The coefficients of all integrable equations considered in [318, 326, 327]

(except the family of equations from [318] with coefficients presented in

Case II) satisfy conditions (3.78). Therefore, these equations are similar

to constant-coefficient ones. Namely, the equation [327]

ut + 15gΥuuxxx + 15gΥuxuxx + 45gΥ2u2ux + guxxxxx

+mu+ nux + kxux = 0,
(3.79)

where Υ = νe
∫

(m−2k) dt and ν is a nonzero constant, is mapped to the Sawa-

da–Kotera equation (3.76) by the transformation that differs from (3.73)

in the additional scaling of u by ν,

t̃ =
∫
ge−5

∫
k dt dt, x̃ = e−

∫
k dtx−

∫
ne−

∫
k dt dt, ũ = νe

∫
mdtu. (3.80)

The same transformation maps the equation (3.71) with f = h = 0 and a,

b, and c given by

a = 10gΥ, b = 20gΥ, c = 30gΥ2 or

a = 10gΥ, b = 25gΥ, c = 20gΥ2

to the constant-coefficient integrable equations (3.75) or (3.77), respec-

tively. Therefore, these two integrable cases were missed in [327].
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Another point transformation of the form

t̃ =
1

5µ1

∫
ae−

∫
mdt dt, x̃ = x−

∫ (
n− µ2

2

µ1
ae−

∫
m dt

)
dt,

ũ = κ

(
e
∫
m dtu+

µ2

µ1

)
with κ = µ1/3 (resp. κ = µ1/2) maps equations from the class (3.71)

with k = 0 and the other coefficients satisfying conditions I (resp. III) to

the Sawada–Kotera equation (3.76) (resp. the Kaup–Kupershmidt equa-

tion (3.77)).

The equation (3.71) with k = 0 and coefficients presented in Case II is

reduced to the variable coefficient equation

ut + 10uuxxx + 20uxuxx

+ 30u2ux + uxxxxx + ψ(t)(6uux + uxxx) = 0,
(3.81)

where ψ(t) = 10µ1

3
h
ae
∫
m dt, by the transformation

t̃ =
3

10µ1

∫
ae−

∫
m dt dt, x̃ = x−

∫
n dt, ũ =

µ1

3
e
∫
mdtu.

The equation (3.81) is integrable since it is a “linear superposition”, with

time-dependent coefficients, of Lax’s fifth-order KdV equation (3.75) and

the classical KdV equation ut + 6uux + uxxx = 0, which are integrable and

whose associated evolution vector fields commute [84, Theorem 3.1].

Using point transformations we have explained the appearance of all

integrable cases found in [318,326,327] and have found that two integrable

cases were missed in [326, 327]. Therefore, all these variable coefficient

integrable equations could be found using equivalence transformations.

3.5.3. Applications of Point Transformations for Finding Lax

Pairs. When the similarity of integrable equations from the class (3.71)

to well-known integrable equations is established, the further considera-

tion is needless as all objects related to general integrable equations from
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the class (3.71) and their properties can be easily derived from those of

the classical similar equations using the similarity. We demonstrate this

derivation only for Lax pairs, for which the special structure of transforma-

tions from G∼ is essential, since the same procedure, e.g., for symmetries,

conservation laws and exact solutions is already absolutely conventional.

The Sawada–Kotera equation (3.76) admits the Lax pairs

L = ∂x
3 + 3u∂x,

P = 9∂x
5 + 45u∂x

3 + 45ux∂x
2 + 15(2uxx + 3u2)∂x;

L = ∂x
3 + 3u∂x + 3ux,

P = 9∂x
5 + 45u∂x

3 + 90ux∂x
2 + 15(5uxx + 3u2)∂x + 30(uxxx + 3uux).

Carrying out the transformation (3.80) in the associated spectral problems,

Lψ = λψ, ψt = Pψ, we derive the corresponding Lax pairs for the variable

coefficient equation (3.79),

L = e3
∫
k dt(∂x

3 + 3Υu∂x),

P = 9g∂x
5+45gΥu∂x

3+45gΥux∂x
2+(30gΥuxx+45gΥ2u2−kx−n)∂x;

L = e3
∫
k dt(∂x

3 + 3Υu∂x + 3Υux),

P = 9g∂x
5 + 45gΥu∂x

3 + 90gΥux∂x
2

+ (75gΥuxx + 45gΥ2u2 − kx− n)∂x + 30gΥuxxx + 90gΥ2uux,

respectively. Here and in what follows we again use the notation Υ =

νe
∫

(m−2k) dt with a nonzero constant ν.

The Kaup–Kupershmidt equation (3.77) admits the Lax pair

L = ∂x
3 + 2u∂x + ux,

P = 9∂x
5 + 30u∂x

3 + 45ux∂x
2 + 5(7uxx + 4u2)∂x + 10(uxxx + 2uux).

Using the transformation (3.80) it is possible to derive the corresponding

Lax pair for the equation

ut + 10gΥuuxxx + 25gΥuxuxx + 20gΥ2u2ux + guxxxxx
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+mu+ nux + kxux = 0,

which is of the form

L = e3
∫
k dt(∂x

3 + 2Υu∂x + Υux),

P = 9g∂x
5 + 30gΥu∂x

3 + 45gΥux∂x
2

+ (35gΥuxx + 20gΥ2u2 − kx− n)∂x + 10gΥuxxx + 20gΥ2uux.

Note that the above Lax pairs, which are constructed using the similar-

ity to well-known constant-coefficient integrable equations, are still associ-

ated with isospectral problems in contrast to, e.g., Lax pairs constructed

in [327] directly for variable coefficient equations.

Discussion. As we have shown, equivalence transformations fit well into

the study of integrability of variable coefficient PDEs, where they can be

used for several targets:

• to look for inessential arbitrary elements of the class of variable coeffi-

cient PDEs under consideration and to gauge these elements to chosen

simple values from the very beginning;

• to establish the similarity of integrable variable coefficient PDEs,

which are separated by another method (e.g., the Painlevé test)

from the class under consideration, to well-known (usually, constant-

coefficient) integrable equations; or, more generally, to select canonical

representatives in the obtained list of integrable equations;

• to check listed integrable cases using the established similarity to pre-

viously known integrable equations;

• to derive all objects related to a singled out integrable equation and

their properties from those of a similar well-studied integrable equa-

tion; such objects include, but are not exhausted by, local symme-

tries, cosymmetries, conservation laws, recursion operators, Bäcklund

transformations, exact solutions, the Painlevé expansion, bilinear rep-

resentations and Lax pairs.
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Chapter 4

Algebraic Method of Group Classification

and its Extensions

Group classification is concerned with finding an exhaustive list of in-

equivalent equations from a class of differential equations containing one

or more arbitrary elements. It was originally motivated from theoreti-

cal physics, where traditionally those equations admitting the maximal

number of symmetries among equations from a given class yield the most

promising model describing real-world phenomena. Mathematically, group

classification problems for classes of differential equations have been in-

tensively investigated, starting with Sophus Lie’s classifications of second-

order ordinary differential equations [188] and of second-order linear par-

tial differential equations with two independent variables [186]. Recently,

a number of novel techniques of group classification have been introduced,

which include various flavors of the algebraic method [21,72,178,222,248]

and of the advanced modification of the direct method called the method

of furcate splitting [23,209,224]. The algebraic method of group classifica-

tion has proven so far to be the most powerful since it has been efficiently

applied to classes of differential equations with arbitrary elements that are

functions of several arguments.

Among the classes considered in the literature on group classification,

the most prominent ones are classes of (1+1)-dimensional evolution equa-

tions, see e.g. [7, 17, 18, 24, 38, 71, 72, 101, 109, 124, 125, 131, 138, 192, 222–

224, 227, 245, 289, 294, 297, 300] and references therein. It is thus also no

coincidence that in the field of invariant discretization, which is concerned
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with deriving numerical schemes for differential equations possessing the

same symmetries as the original, undiscretized equation, mostly evolu-

tionary equations have been considered in the past, see e.g. [26]. What

distinguishes evolutionary equations from the symmetry-perspective is the

special role of the time variable, which is similar to the role of a param-

eter. Thus, the time component of any point or contact transformation

between evolution equations only depends on the time variable [160, 192].

This considerably simplifies the classification procedure.

The complete group classification of the class of mKdV equations with

time-dependent coefficients ut + u2ux + g(t)uxxx + h(t)u = 0, g 6= 0, is

carried out in Section 4.1 using the standard algebraic method. Then

the equivalence method is applied to the group classification of related

classes of mKdV-like equations with variable coefficients. We prove that

the classes under consideration are normalized. This allows us to formulate

the classification results in three ways: up to two kinds of equivalence,

which are respectively generated by the corresponding equivalence groups

and by all admissible point transformations, and using no equivalence.

Some exact solutions of mKdV-like equations are also constructed.

In Section 4.2 we extend the algebraic method of group classification

to non-normalized classes of differential equations. Enhancing and essen-

tially generalizing previous results on a class on (1+1)-dimensional non-

linear wave and elliptic equations, we exhaustively describe its equivalence

groupoid. Then the complete group classification problem for the class un-

der study is achieved up to both usual and general point equivalences. The

solution includes the complete preliminary group classification of the class

and the construction of singular Lie-symmetry extensions, which are not

related to subalgebras of the equivalence algebra. The complete prelimi-

nary group classification is based on classifying appropriate subalgebras of

the entire infinite-dimensional equivalence algebra whose projections are

qualified as maximal extensions of the kernel invariance algebra.
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A preliminary study of Lie symmetries in a class of nonlinear Dirac

equations in two spatial dimensions is given in Section 4.3, using a version

of the algebraic approach. A complete list of inequivalent nonlinearities for

which such equations admit one-dimensional extensions of the kernel Lie

invariance algebras is presented. Some solutions for the equations under

study are constructed.

The results of this chapter are based on works [20*,21*,24*,27*].

4.1. Lie Symmetries and Exact solutions of

Variable Coefficient mKdV Equations

In this section we investigate Lie symmetry properties and exact solutions

of variable coefficient mKdV equations of the form

ut + u2ux + g(t)uxxx + h(t)u = 0, (4.1)

where g and h are arbitrary smooth functions of the variable t, g 6= 0. It is

shown that using equivalence transformations the function h can be always

set to the zero value and therefore the form of h does not affect results of

group classification. So, at first we carry out the exhaustive group classi-

fication of the subclass of class (4.1) singled out by the condition h = 0.

Then using the classification list obtained and equivalence transformations

we present group classification of the initial class (4.1).

Moreover, equivalence transformations appear to be powerful enough to

present the group classification for much wider class of variable coefficient

mKdV equations (3.20), where all parameters are smooth functions of the

variable t, fg 6= 0 and the parameters f, h, k and l satisfy the condition

2lf = kt + kh− kft
f
, (4.2)

i.e. the equations

ut + f(t)u2ux + g(t)uxxx + h(t)u+ (p(t) + q(t)x)ux

+ k(t)uux +
1

2f(t)
(k̇(t) + k(t)h(t)− k(t)ḟ(t)/f(t)) = 0.

(4.3)
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This result can be easily obtained due to the fact that the group classifi-

cation problem for class (3.20) can be reduced to the similar problem for

class (4.1) with h = 0 if and only if condition (4.2) holds. Namely, equa-

tions (3.20) whose coefficients satisfy (4.2) are transformed to equations

from class (4.1) with h = 0 by the point transformations (see Remark 1 for

details). Equations from class (3.20) are important for applications and,

in particular, describe atmospheric blocking phenomenon [282].

The above classes of differential equations is normalized, i.e., all admis-

sible point transformations within these classes are generated by transfor-

mations from the corresponding equivalence groups. Therefore, there are

no additional equivalence transformations between cases of the classifica-

tion lists, which are constructed using the equivalence relations associated

with the corresponding equivalence groups. In other words, the same lists

represent the group classification results for the corresponding classes up

to the general equivalence with respect to point transformations.

Recently the authors of [146] obtained a partial group classification

of class (4.1) (the notation a and b was used there instead of h and g,

respectively.) The reason of failure was neglecting an opportunity to use

equivalence transformations. This is why only some cases of Lie symmetry

extensions were found, namely the cases with h = const and h = 1/t.

In this section we at first carry out the group classification problems

for classes (4.1) and (4.3) up to the respective equivalence groups. Then

using the obtained classification lists and equivalence transformations we

present group classifications of these classes without the simplification of

both equations admitting extensions of Lie symmetry algebras and these

algebras themselves by equivalence transformations. The extended classi-

fication lists can be useful for applications and convenient to be compared

with the results of [146].

Then we show how equivalence transformations can be used to construct

exact solutions for those equations from class (4.3) and its subclass (4.1)
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which are reducible to the standard mKdV equation.

4.1.1. Equivalence Transformations. We find the equivalence group

G∼1 of class (4.1) using the results obtained in [251] for more general class

of variable coefficient mKdV equations. Namely, in [251] a hierarchy of

normalized subclasses of the general third-order evolution equations was

constructed. The equivalence group for normalized class of variable coeffi-

cient mKdV equations (3.20) as well as criterion of reducibility of equations

from this class to the standard mKdV equation were found therein.

The equivalence group G∼ of class (3.20) consists of the transformations

t̃ = α(t), x̃ = β(t)x+ γ(t), ũ = θ(t)u+ ψ(t), (4.4)

where α, β, γ, θ and ψ run through the set of smooth functions of t,

αtβθ 6= 0. The arbitrary elements of (3.20) are transformed by the for-

mulas (3.21) The criterion of reducibility to the standard mKdV equation

obtained in [251] adduced in Proposition 3.15.

Class (4.1) is a subclass of class (3.20) singled out by the conditions

f = 1 and p = q = k = l = 0. Substituting these values of the functions

f, p, q, k and l to (3.22) we obtain the following assertion.

Corollary 4.1. An equation from class (4.1) is reduced to the standard

mKdV equation by a point transformation if and only if

2h = −gt
g
,

i.e. if and only if g(t) = c0 exp(−2
∫
h(t)dt), where c0 is an arbitrary

nonzero constant.

As class (3.20) is normalized [251], its equivalence group G∼ generates

the entire set of admissible (form-preserving) transformations for this class.

Therefore, to describe of the set of admissible transformations for class (4.1)

we should set f̃ = f = 1, p̃ = p = q̃ = q = k̃ = k = l̃ = l = 0 in (3.21) and

solve the resulting equations with respect to transformation parameters.
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It appears that projection of the obtained transformations on the space

of the variables t, x and u can be applied to an arbitrary equation from

class (4.1). It means that set of admissible transformations of class (4.1)

is generated by transformations from its equivalence group and therefore

this class is also normalized.

Summing up the above consideration, we formulate the following theo-

rem.

Theorem 4.2. Class (4.1) is normalized. The equivalence group G∼1 of

this class consists of the transformations

t̃ = β
∫ dt

θ(t)2
, x̃ = βx+ γ, ũ = θ(t)u,

h̃ =
θ

β
(θh− θt) , g̃ = β2θ2g,

where β and γ are arbitrary constants, β 6= 0 and the function θ is an

arbitrary nonvanishing smooth function of the variable t.

The parameterization of transformations from the equivalence groupG∼1

by the arbitrary function θ(t) allows us to simplify the group classification

problem for class (4.1) via reducing the number of arbitrary elements. For

example, we can gauge arbitrary elements via setting either h = 0 or g = 1.

Thus, the gauge h = 0 can be made by the equivalence transformation

t̃ =
∫
e−2

∫
h(t) dtdt, x̃ = x, ũ = e

∫
h(t) dtu, (4.5)

that connects equation (4.1) with the equation ũt̃ + ũ2ũx̃ + g̃(t̃)ũx̃x̃x̃ = 0.

The new arbitrary element g̃ is expressed via g and h in the following way:

g̃(t̃) = e2
∫
h(t) dtg(t).

This is why without loss of generality we can restrict the study to the

class

ut + u2ux + g(t)uxxx = 0, (4.6)
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since all results on symmetries and exact solutions for this class can be

extended to class (4.1) with transformations of the form (4.5).

The equivalence group for class (4.6) can be obtained from Theorem 4.2

by setting h̃ = h = 0. Note that class (4.6) is also normalized.

Theorem 4.3. The equivalence group G∼0 of class (4.6) is formed by the

transformations

t̃ =
δ2

δ 2
4

t+ δ1, x̃ = δ2x+ δ3, ũ = δ4u, g̃ = δ 2
2 δ

2
4 g,

where δj, j = 1, . . . , 4, are arbitrary constants, δ2δ4 6= 0.

Corollary 4.4. The equivalence algebra g∼ of class (4.6) is spanned by the

operators ∂t, ∂x, t∂t − 1
2u∂u − g∂g and t∂t + x∂x + 2g∂g.

Remark 4.5. An equation from class (3.20) is reducible to an equation

from class (4.6) by a point transformation if and only if its coefficients

f, h, k and l satisfy the second condition of (3.22), i.e., condition (4.2).

The corresponding transformation from G∼ has the form

t̃ =
∫
fe−

∫
(q+2h)dtdt, x̃ = e−

∫
qdtx−

∫ (
p− k2

4f

)
e−

∫
qdtdt,

ũ = e
∫
hdt
(
u+ k

2f

)
, g̃ =

g

f
e2
∫

(h−q)dt.
(4.7)

In particular, condition (4.2) implies that all equations from class (3.20)

with k = l = 0 are reducible to equations from class (4.6).

4.1.2. Lie Symmetries. We at first carry out the group classification of

class (4.6) up to G∼0 -equivalence. In this way we simultaneously solve the

group classification problems for class (4.1) up to G∼1 -equivalence and for

the class (4.3) up to G∼-equivalence (see explanations below). Then us-

ing the obtained classification lists and equivalence transformations we are

able to present group classifications of classes (4.1) and (4.3) without the

simplification of equations with wider Lie invariance algebras by equiva-

lence transformations. These extended classification lists can be useful for

applications and convenient to be compared with the results of [146].
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Table 4.1: The group classification of the class (4.6).

no. g(t) Basis of Amax

0 ∀ ∂x

1 δtn, n 6= 0 ∂x, 6t∂t + 2(n+ 1)x∂x + (n− 2)u∂u

2 δet ∂x, 6∂t + 2x∂x + u∂u

3 δ ∂x, ∂t, 3t∂t + x∂x − u∂u

Here δ = ±1 mod G∼0 , n is an arbitrary nonzero constant.

Using the criterion of infinitesimal invariance we get the operators which

generate one-parameter groups of point symmetry transformations of equa-

tions from class (4.6) have the form

Q = (c1t+ c2)∂t + (c3x+ c4)∂x +
1

2
(c3 − c1)u∂u,

and the classifying equation which includes arbitrary element g

(c1t+ c2) gt = (3c3 − c1)g. (4.8)

The study of the classifying equation leads to the following theorem.

The following statement is true.

Theorem 4.6. The kernel g∩ of the maximal Lie invariance algebras of

equations from class (4.6) coincides with the one-dimensional algebra 〈∂x〉.
All possible G∼0 -inequivalent cases of extension of the maximal Lie invari-

ance algebras are exhausted by Cases 1–3 of Table 4.1.

Proof. As class (4.6) is normalized, it is also convenient to use a version of

the algebraic method of group classification or combine this method with

the direct investigation of the classifying equation [72]. The procedure

which we use is the following. We consider the projection Pg∼ of the

equivalence algebra g∼ of class (4.6) to the space of the variables (t, x, u).

It is spanned by the operators ∂t, ∂x, D
t = t∂t− 1

2u∂u and Dx = x∂x+ 1
2u∂u.

For any g the maximal Lie invariance algebra of the corresponding equation
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from class (4.6) is a subalgebra of Pg∼ in view of the normalization of this

class and contains the kernel algebra g∩ = 〈∂x〉. The algebra Pg∼ can be

represented in the form Pg∼ = g∩∈gext, where g∩ and gext = 〈Dt, Dx, ∂t〉 is

an ideal and a subalgebra of Pg∼, respectively. Therefore, each extension of

the kernel algebra g∩ is associated with a subalgebra of gext. In other words,

to classify Lie symmetry extensions in class (4.6) up to G∼0 -equivalence it

is sufficient to classify G∼0 -inequivalent subalgebras of gext and then check

what subalgebras are agreed with the classifying equation and corresponds

to a maximal extension. The complete list of G∼0 -inequivalent subalgebras

of gext is exhausted by the following subalgebras:

g0 = {0}, ga1.1 = 〈Dt + aDx〉, gb1.2 = 〈Dx + b∂t〉, g1.3 = 〈∂t〉,

g2.1 = 〈Dt, Dx〉, ga2.2 = 〈Dt + aDx, ∂t〉, g2.3 = 〈Dx, ∂t〉,

g3 = 〈Dt, Dx, ∂t〉,

where the parameter b can be scaled to any appropriate value if it is

nonzero. We fix a subalgebra from the above list and substitute the coef-

ficients of each basis element of this subalgebra into the classifying equa-

tion (4.8). As a result, we obtain a system of ordinary differential equations

with respect to the arbitrary element g. The systems associated with the

subalgebras g0
1.2, g

a
2.2, where a 6= 1/3, g2.3 and g3 are not consistent with the

condition g 6= 0. The extensions given by the subalgebras g1.3 and g
1/3
1.1 are

not maximal since the maximal Lie invariance algebra in the case gt = 0

coincides with g3. The subalgebras g0, g
a
1.1, g

b
1.2 and g

1/3
2.2 , where a 6= 1/3

and b 6= 0, correspond to cases 0, 1, 2 and 3, respectively. The parameter

n appearing in case 2 is connected with the parameter a via the formula

n = 3a− 1, in case 3 the parameter b is scaled to the value b = 3.

For any equation from class (4.1) there exists an imaged equation in

class (4.6) with respect to transformation (4.5) (resp. in class (4.3) with

respect to transformation (4.7)). The equivalence group G∼0 of class (4.6)

is induced by the equivalence group G∼1 of class (??)♣which, in turn, is
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induced by the equivalence group G∼ of class (3.20). These guarantee that

Table 1 presents also the group classification list for class (4.1) up to G∼1 -

equivalence (resp. for the class (4.3) up to G∼-equivalence). As all of the

above classes are normalized, we can state that we obtain Lie symmetry

classifications of these classes up to general point equivalence. This leads

to the following corollary of Theorem 3.

Corollary 4.7. An equation from class (4.1) (resp. class (3.20)) admits

a three-dimensional Lie invariance algebra if and only if it is reduced by

a point transformation to constant coefficient mKdV equation, i.e., if and

only if g(t) = c0 exp(−2
∫
h(t)dt), where c0 is an arbitrary nonzero constant

(resp. if and only if conditions (3.22) hold).

To derive group classification of class (4.1) which are not simplified by

equivalence transformations, we at first apply equivalence transformations

from the group G∼0 to the classification list presented in Table 4.1 and

obtain the following extended list:

0. arbitrary g̃ : 〈∂x̃〉;
1. g̃ = c0(t̃+ c1)

n : 〈∂x̃, 6(t̃+ c1)∂t̃ + 2(n+ 1)x̃∂x̃ + (n− 2)ũ∂ũ〉;
2. g̃ = c0e

mt̃ : 〈∂x̃, 6∂t̃ + 2mx̃∂x̃ +mũ∂ũ〉;
3. g̃ = c0 : 〈∂x̃, ∂t̃, 3t̃∂t̃ + x̃∂x̃ − ũ∂ũ〉.
Here c0, c1, m and n are arbitrary constants, c0mn 6= 0.

Then we find preimages of equations from class ũt̃+ ũ2ũx̃+ g̃(t̃)ũx̃x̃x̃ = 0

with arbitrary elements collected in the above list with respect to trans-

formation (4.5). The last step is to transform basis operators of the corre-

sponding Lie symmetry algebras. The results are presented in Table 4.3.

Now it is easy to see that Table 4.3 includes all cases presented in [146]

as partial cases.

In a similar way, using transformations (4.7) we obtain group classifi-

cation of class (4.3) without simplification by equivalence transformations.

The corresponding results are collected in Table 4.5.
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Table 4.3: The group classification of the class (4.1).

no. h(t) g(t) Basis of Amax

0 ∀ ∀ ∂x

1 ∀ c0

(∫
e−2

∫
hdtdt+ c1

)n
e−2

∫
hdt ∂x, H∂t + 2(n+ 1)x∂x + (n− 2− hH)u∂u

2 ∀ c0e
∫
(me−2

∫
h dt−2h)dt ∂x, 6e2

∫
hdt∂t + 2mx∂x +

(
m− 6he2

∫
hdt
)
u∂u

3 ∀ c0e
−2

∫
hdt ∂x, e

2
∫
hdt (∂t − hu∂u) ,

H∂t + 2x∂x − (2 + hH)u∂u

Here c0, c1, m and n are arbitrary constants with c0mn 6= 0, and H = 6e2
∫
hdt
( ∫

e−2
∫
hdtdt+c1

)
.

In case 3 c1 = 0 in the formula for H.

4.1.3. Construction of Exact Solutions Using Equivalence Trans-

formations. A number of recent papers concern the construction of exact

solutions to different classes of KdV- or mKdV-like equations using e.g.

such methods as “generalized (G′/G)-expansion method”, “Exp-function

method”, “Jacobi elliptic function expansion method”, etc. A number of

references are presented in [251]. Nevertheless, almost in all cases exact

solutions were constructed only for equations which are reducible to the

standard KdV or mKdV equations by point transformations and usually

these were only solutions similar to the well-known one-soliton solutions. In

this section we show that the usage of equivalence transformations allows

one to obtain more results in a simpler way.

The N -soliton solution of the mKdV equation in the canonical form

Ut + 6U 2Ux + Uxxx = 0 (4.9)

were constructed as early as in the seventies using the Hirota’s method [4].

The one- and two-soliton solutions of equation (4.9) have the form

U = a+
k2

0√
4a2 + k2

0 cosh(k0x− k0(6a2 + k2
0)t+ b) + 2a

, (4.10)
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Table 4.5: The group classification of the class (4.3).

no. g(t) Basis of Amax

0 ∀ e
∫
qdt∂x

1 c0fe
2
∫
(q−h)dt

(
H

F

)n
e
∫
qdt∂x, H∂t +

[
(qH + 2n+ 2)x+H

(
p− k2

4f

)
− 2(n+ 1)Q

]
∂x +

[
(n− 2− hH)u+ k

2f (n− 2)− lH
]
∂u

2 c0fe
∫
(mfe−

∫
(q+2h) dt+2q−2h)dt e

∫
qdt∂x, F∂t +

[
(qF + 2m)x+ F

(
p− k2

4f

)
− 2mQ

]
∂x

+
[
(m− hF )u+ m

2
k
f − lF

]
∂u

3 c0fe
2
∫
(q−h)dt e

∫
qdt∂x, F

[
∂t +

(
qx+ p− k2

4f

)
∂x − (hu+ l) ∂u

]
,

H∂t +
[
(qH + 2)x+H

(
p− k2

4f

)
− 2Q

]
∂x

−
[
(2 + hH)u+ k

f + lH
]
∂u

The functions f, h, p, q and k are arbitrary functions of the variable t in all cases, f 6= 0.

c0, c1, m and n are arbitrary constants, c0mn 6= 0,

F =
6

f
e
∫
(q+2h)dt, H = F

(∫
fe−

∫
(q+2h) dtdt+ c1

)
,

Q = e
∫
qdt
∫ (

p− k2

4f

)
e−

∫
qdtdt, l = 1

2f

(
kt + kh− k ftf

)
.

In case 3 c1 = 0 in the formula for H.

U =

eθ1
(

1 +
A

4a2
2

e2θ2

)
+ eθ2

(
1 +

A

4a2
1

e2θ1

)
(

1

2a1
eθ1 +

1

2a2
eθ2
)2

+

(
1− A

4a1a2
eθ1+θ2

)2 , (4.11)

where k0, a, b, ai, bi are arbitrary constants, θi = aix − a3
i t + bi, i = 1, 2;

A =

(
a1 − a2

a1 + a2

)2

. Rational solutions which can be recovered by taking a

long wave limit of soliton solutions are also known for a long time [3,220].
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Thus, the one- and two-soliton solutions give the rational solutions

U = a− 4a

4a2z2 + 1
and

U = a−
12a

(
z4 +

3

2a2
z2 − 3

16a4
− 24tz

)
4a2

(
z3 + 12t− 3

4a2
z

)2

+ 9

(
z2 +

1

4a2

)2 ,
(4.12)

respectively, where z = x − 6a2t and a is an arbitrary constant. These

solutions can be found also in [238]. Note that solution (4.11) and the

second solution of (4.12) are presented in [238] with misprints.

Combining the simple transformation ũ =
√

6U that connects the

form (4.9) of the mKdV equation with the form

ũt̃ + ũ2ũx̃ + ũx̃x̃x̃ = 0 (4.13)

and transformation (4.5), we obtain the formula

u =
√

6e−
∫
h(t)dt U

(∫
e−2

∫
h(t) dtdt, x

)
.

Using this formula and solutions (4.10)–(4.12) we can easily construct exact

solutions for the equations of the general form

ut + u2ux + e−2
∫
hdtuxxx + hu = 0, (4.14)

which are preimages of (4.13) with respect to transformation (4.5). Here

h = h(t) is an arbitrary nonvanishing smooth function of the variable t.

For example, the two-soliton solution (4.11) leads to the following so-

lution of (4.14)

u =
√

6e−
∫
hdt

eθ1
(

1 +
A

4a2
2

e2θ2

)
+ eθ2

(
1 +

A

4a2
1

e2θ1

)
(

1

2a1
eθ1 +

1

2a2
eθ2
)2

+

(
1− A

4a1a2
eθ1+θ2

)2 ,

where ai, bi are arbitrary constants, θi = aix− a3
i

∫
e−2

∫
hdtdt+ bi, i = 1, 2;

A =
(
a1−a2
a1+a2

)2

. In a similar way one can easily construct one-soliton and

rational solutions for equations from class (4.14).
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More complicated transformation of the form

u =
√

6e−
∫
hdt U

(∫
fe−

∫
(q+2h)dtdt, e−

∫
qdtx−

∫(
p− k2

4f

)
e−

∫
qdtdt

)
− k

2f .

allows us to use solutions (11)–(13) of equation (4.9) for construction of

exact solutions of equations of the form

ut + fu2ux + fe2
∫

(q−h)dtuxxx + hu+ (p+ qx)ux

+ k uux + 1
2f

(
kt + kh− k ftf

)
= 0,

(4.15)

which are preimages of equation (4.13) with respect to transformation (4.7).

Here f, h, k, p and q are arbitrary smooth functions of the variable t, f 6= 0.

For example, the solution of (4.15) obtained from the one-soliton solu-

tion (11) has the form

u =
√

6e−
∫
hdt

(
a+

k2
0√

4a2 + k2
0 cosh z + 2a

)
− k

2f
,

z = k0e
−
∫
qdtx − k0

∫ (
p − k2

4f

)
e−

∫
qdtdt − k0(6a

2 + k2
0)
∫
fe−

∫
(q+2h)dtdt + b,

where k0, a and b are arbitrary constants. In a similar way one can easily

construct other types of solutions for equations from class (4.15).

4.2. Generalization of the Algebraic Method of

Group Classification: Nonlinear Wave and El-

liptic Equations

Wave and elliptic equations play an important role in physics and the math-

ematical sciences since wave equations model the transport of quantities at

finite speeds whereas elliptic equations describe stationary processes. From

the symmetry perspective, such equations are challenging since all the in-

dependent variables in them enter at equal footing. Lie symmetries of wave

and elliptic equations with two independent variables have also been stud-

ied extensively, see e.g. [21,33,34,37,38,99,122,123,131,132,179,181,182]
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and references therein. Note that the first investigations of such equations

within the framework of group analysis of differential equations, which are

relevant for the subject of the present paper, were carried out by Sophus

Lie in the course of his classification of second-order linear partial differen-

tial equations with two independent variables [186] and in the course of his

study of contact transformations between nonlinear Klein–Gordon equa-

tions of the form d2z/dx dy = F (z) [187]. Exact solutions constructed for

nonlinear wave and elliptic equations using group-theoretical and related

methods are collected, e.g., in [131,235–237,336].

In this section we exhaustively solve the group classification problem

for the class W of nonlinear wave and elliptic equations of the form

utt = f(x, u)uxx + g(x, u). (4.16)

We need to explicitly impose two auxiliary inequalities on the arbitrary-

element tuple θ = (f, g) in order to precisely describe the class W , which

is also referred to as the class (4.16) in the paper. The auxiliary inequality

f 6= 0 is natural since equations of the form (4.16) with f = 0 are not

true partial differential equations.4.1 We denote by Wgen the superclass of

equations of the form (4.16) with f 6= 0. In order to guarantee nonlinearity

of equations from the class W , the definition of this class should also in-

clude the auxiliary inequality (fu, guu) 6= (0, 0). The subclass Wlin of linear

equations in Wgen is the complement of W in Wgen, W =Wgen \Wlin. The

reason why we separate nonlinear and linear equations of the form (4.16)

is that they are not mixed by point transformations (see Remark 4.8 be-

low) and have quite different Lie-symmetry properties. Although linear

wave and elliptic equations with two independent variables were already

extensively investigated within the framework of classical symmetry anal-

ysis, see, e.g., [37, 38, 186, 226, 227], we discuss specific transformational

and symmetry properties of equations from Wlin in Remark 4.19 below,

4.1 Since we work within the local framework, auxiliary inequalities on arbitrary elements are interpreted

as satisfied for all values of arguments of arbitrary elements on the relevant domain.
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relating them to equations from W . The sign of f is not too essential in

the course of group classification of the class W . In fact, we classify both

the subclass of hyperbolic equations for which f > 0 and the subclass of

elliptic equations with f < 0. Hyperbolic and elliptic equations are also

not mixed by point transformations. Note that the consideration is local

and all values are real throughout the paper although the transition to the

complex case needs only minor modifications.

Following [7, 132], a so-called partial preliminary group classification

problem [21, 72] for the class W has been considered in [272]. Specifi-

cally, the authors selected a six-dimensional subalgebra g6 of the infinite-

dimensional equivalence algebra g∼ of the class W and tried to only clas-

sify one-dimensional subalgebras of the subalgebra g6 up to the equiva-

lence generated by the corresponding six-dimensional subgroup G6 of the

infinite-dimensional equivalence (pseudo)group G∼ of the class (4.16). The

G6-equivalence is much weaker than the G∼-equivalence. This is why the

classification in [272] led to an excessively large list of 24 G6-equivalent

simplest classification cases of one-dimensional Lie-symmetry extensions

most of which are G∼-equivalent to each other and, up to G∼-equivalence,

fit into the first four cases of Table 4.6 below. Moreover, a number of

classification cases were missed even within the posed partial preliminary

group classification problem.

We enhance and substantially generalize the results of [272]. The

classW is neither normalized nor semi-normalized in any sense (the usual,

the generalized or the extended ones). It cannot be partitioned into

normalized or semi-normalized subclasses that are not related by point

transformations. There is no mapping of it by families of point trans-

formations to a class with better transformational properties. This is

why Lie symmetries of equations from the class W cannot be exhaus-

tively classified by the existing versions of the algebraic method of group

classification, which are explicitly [21, 24, 72, 178, 222, 239, 248] or implic-
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itly [17, 18, 96, 101, 109, 124, 125, 179, 181, 182, 192] based on certain nor-

malization properties of classified classes. (Note that most of the above

papers are devoted to group classifications of various classes of single (1+1)-

dimensional evolution equations.) On the other hand, the class W is not

convenient to be considered within the framework of the direct method of

group classification [7,38,71,131,226,227], including its advanced versions

like the method of furcate splitting suggested in [209]. The last method

is especially efficient for classes of differential equations with arbitrary el-

ements depending on single arguments [122, 123, 138, 224, 245, 289, 297],

although it has also been applied to classes whose arbitrary elements de-

pend on two arguments [23,209]. Various specific algebraic techniques were

suggested for group classification of classes such that sets of certain objects

related to Lie symmetries of equations from these classes can be endowed

with Lie-algebra structures [23, 207, 244] but this is not applicable for the

class W .

This is why to efficiently solve the complete group classification prob-

lem for the class W , we develop a new version of the algebraic method

of group classification for non-normalized classes of (systems of) differen-

tial equations, which is based on classifying admissible transformations of

the class under study up to their equivalence generated by the equivalence

group of this class. In Chapter 1 we revisited the general framework of

the classification of admissible transformations via modifying its basic no-

tion of equivalent admissible transformations and introducing the notion

of generating sets for equivalence groupoids. Several new techniques for

classifying admissible transformations of non-normalized classes are also

suggested. More specifically, we show that the method of furcate splitting

and the algebraic method for computing the complete point or contact

symmetry groups of single systems of differential equations [127–129] and

the complete equivalence groups of classes of such systems [22] (includ-

ing discrete symmetry and equivalence transformations) can be extended
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to admissible transformations. We also use the unexpected opportunity of

describing admissible transformations via establishing of a functor between

the equivalence groupoids of classes that are not related by families of point

transformations. Revisiting the algebraic method of group classification,

we introduce the notions of regular and singular Lie-symmetry extensions

for a class of differential equations, L|S . Regular Lie-symmetry extensions

are associated with subalgebras of the equivalence algebra of the class L|S .
They are the extensions that can be constructed by the algebraic method

in the course of the complete preliminary group classification [21,72] of L|S .
Singular Lie-symmetry extensions can involve only systems from L|S be-

ing sources of admissible transformations of L|S that are not generated by

equivalence transformations of L|S . As a result, the group classification

problem for the class W that originated the above studies turns into a

proof-of-concept example for the new methods designed for its solution.

4.2.1. Preliminary Study of Admissible Transformations To find

the complete point equivalence group G∼ of the class (4.16) (including both

continuous and discrete equivalence transformations) and the equivalence

groupoid G∼ of this class, it is necessary to apply the direct method of com-

puting point transformations that relate systems of differential equations.

We will start our consideration with a preliminary study of admissible

transformations of the superclassWgen, which constitute the groupoid G∼gen

of Wgen. This will also give relevant information on the group G∼ and the

groupoid G∼.

Denote by Lθ the equation in the classWgen that corresponds to a fixed

value of the arbitrary-element tuple θ = (f, g). An admissible transforma-

tion of the class Wgen is a triple (θ,Φ, θ̃), where θ = (f, g) and θ̃ = (f̃ , g̃)

are respectively the source and target arbitrary-element tuples for T , and

Φ: t̃ = T (t, x, u), x̃ = X(t, x, u), ũ = U(t, x, u) (4.17)

with nonvanishing Jacobian J := ∂(T,X, U)/∂(t, x, u) is a point transfor-
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mation in the space with the coordinates (t, x, u) that maps the equation Lθ
to the equation Lθ̃. Therefore, we should directly seek for all point transfor-

mations mapping a fixed equation Lθ of the form (4.16) to an equation Lθ̃
of the same form, ũt̃t̃ = f̃(x̃, ũ)ũx̃x̃ + g̃(x̃, ũ).

To carry out the transformation Φ in practice, it is necessary to find

its prolongation to derivatives of u up to order two. For this we act by

the total derivative operators Dt and Dx, respectively, on the expression

ũ(t̃, x̃) = U(t, x, u), assuming t̃ = T (t, x, u) and x̃ = X(t, x, u). This gives

ũt̃DtT + ũx̃DtX −DtU = 0, ũt̃DxT + ũx̃DxX −DxU = 0,

ũt̃t̃(DtT )2 + 2ũt̃x̃(DtX)(DtT ) + ũx̃x̃(DtX)2 + ũt̃D
2
tT + ũx̃D

2
tX = D2

tU,

ũt̃t̃(DxT )2 + 2ũt̃x̃(DxX)(DxT ) + ũx̃x̃(DxX)2 + ũt̃D
2
xT + ũx̃D

2
xX = D2

xU,

cf. [21]. Solving the last two equations for utt and uxx, respectively, and

substituting the derived expressions into (4.16), we obtain

ũt̃t̃(DtT )2 + 2ũt̃x̃(DtT )(DtX) + ũx̃x̃(DtX)2 + ũt̃V
tT + ũx̃V

tX

− V tU = f
[
ũt̃t̃(DxT )2 + 2ũt̃x̃(DxT )(DxX) + ũx̃x̃(DxX)2 (4.18)

+ ũt̃V
xT + ũx̃V

xX − V xU
]
− g(ũt̃Tu + ũx̃Xu − Uu),

where we use the notation V t := ∂tt + 2ut∂tu + u 2
t ∂uu and V x := ∂xx +

2ux∂xu + u 2
x ∂uu. The substitution ũt̃t̃ = f̃ ũx̃x̃ + g̃ in view of Lθ̃ into (4.18)

wherever ũt̃t̃ occurs leads to an identity with respect to ũt̃x̃ and ũx̃x̃. In

particular, we can collect the coefficients of ũt̃x̃ in (4.18), which results in

(Tt + Tuut)(Xt +Xuut) = f(Tx + Tuux)(Xx +Xuux). (4.19)

The equation (4.19) involves only original quantities (without tilde) and is

a polynomial in ut and ux. Therefore, we can split it with respect to ut

and ux by collecting the coefficients of different powers of these derivatives.

As a result, we get

TuXu = 0, (4.20)
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TuXt + TtXu = 0, (4.21)

TuXx + TxXu = 0, (4.22)

TtXt = fTxXx. (4.23)

We multiply the equation (4.21) by Tu (resp. Xu) and, in view of the equa-

tion (4.20), derive that TuXt = 0 (resp. TtXu = 0). We apply the same

trick also to the equation (4.22) to have the equations TuXx = 0 and (resp.

XuTx = 0). The system TuXt = 0, TuXx = 0, TuXu = 0 (resp. XuTt = 0,

XuTx = 0, XuTu = 0) implies that Tu = 0 (resp. Xu = 0) since oth-

erwise the Jacobian J of the point transformation (4.17) vanishes. The

condition Tu = Xu = 0 means that any admissible point transformation

of the class (4.16) is fiber-preserving. In view of this condition, the equa-

tions (4.20)–(4.22) are identically satisfied, and the splitting of (4.18) with

respect to ũx̃x̃ gives the equations

f̃T 2
t +X 2

t = f(f̃T 2
x +X 2

x ), (4.24)

g̃T 2
t + ũt̃Ttt + ũx̃Xtt − (Utt + 2Utuut + Uuuu

2
t )

= f(g̃T 2
x + ũt̃Txx + ũx̃Xxx − (Uxx + 2Uxuux + Uuuu

2
x)) + gUu.

Splitting the last equation with respect to ũt̃ and ũx̃ gives the equations

Uuu = 0 and

Ttt − 2
Uut
Uu

Tt = f

(
Txx − 2

Uux
Uu

Tx

)
, (4.25)

Xtt − 2
Uut
Uu

Xt = f

(
Xxx − 2

Uux
Uu

Xx

)
, (4.26)

g̃T 2
t − Utt + 2

Uut
Uu

Ut = f

(
g̃T 2

x − Uxx + 2
Uux
Uu

Ux

)
+ gUu. (4.27)

The equation Uuu = 0 implies the representation U = U 1(t, x)u+ U 0(t, x).

The additional condition to keep in mind is the nondegeneracy of Φ, which

in view of the conditions Tu = Xu = 0 reduces to the inequality Uu(TtXx−
TxXt) 6= 0, and hence TtXx − TxXt 6= 0 and U 1 := Uu 6= 0. Note that the



202

equations Tu = Xu = Uuu = 0 for admissible point transformations within

the class Wgen can also be derived using item (c) of Theorem 4.4b in [160].

Rewriting the equation (4.24) as f̃(T 2
t − fT 2

x ) + X 2
t − fX 2

x = 0 shows

that both the expressions T 2
t − fT 2

x and X 2
t − fX 2

x are nonzero,

T 2
t − fT 2

x 6= 0, X 2
t − fX 2

x 6= 0.

Indeed, otherwise f > 0, Tt = ε1f
1/2Tx 6= 0, where ε1 = ±1, and hence

the equation (4.23) would imply that Xt = ε1f
1/2Xx but this contradicts

the nondegeneracy of Φ. Thus, f̃ũ = 0 if fu = 0. Conversely, supposing

f̃ũ = 0 and using the same argumentation for the inverse of T , we derive

that fu = 0. Therefore, f̃ũ = 0 if and only if fu = 0.

In view of nonvanishing the expression T 2
t − fT 2

x , the equation (4.27)

similarly implies that f̃ũ = g̃ũũ = 0 if and only if fu = guu = 0.

Remark 4.8. Preserving the constraint fu = guu = 0 by admissible trans-

formations of the class Wgen means that the equivalence groupoid G∼gen of

the classWgen is the disjoint union of the equivalence groupoids G∼ and G∼lin
of the subclasses W and Wlin, G∼gen = G∼ t G∼lin. In other words, equations

from the class W are not related to equations from the class Wlin by point

transformations. This justifies the exclusion of the class Wlin from the

consideration, which has been mentioned in the introduction.

4.2.2. Equivalence Group and Equivalence Algebra At this point,

we continue the consideration by computing the equivalence group of the

class (4.16) as it is needed both for the exhaustive description of admissi-

ble transformations and for the analysis of the determining equations for

components of Lie-symmetry vector fields. In the course of computing

equivalence transformations, the arbitrary elements f and g of the class

should be varied. We can therefore split the equations (4.23)–(4.27) with

respect to these arbitrary elements. The equation (4.23) and the nonde-

generacy constraint TtXx − TxXt 6= 0 imply that either Tt = Xx = 0 and

TxXt 6= 0 or Tx = Xt = 0 and TtXx 6= 0.
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For Tt = Xx = 0, the equation (4.24) is simplified to X2
t = ff̃T 2

x ,

or T 2
xf = X2

t /f̃ . Differentiating the last equation with respect to t and

splitting the arising equation with respect to f̃ and its derivatives implies

Xt = 0, which contradicts the nondegeneracy condition.

Therefore, we necessarily have Xt = Tx = 0 and thus T = T (t), X =

X(x), where TtXx 6= 0. Then the equation (4.24) reduces to f̃T 2
t = fX2

x

and the differentiation of this equation with respect to t yields

2TtTttf̃ + T 2
t Utf̃ũ = 0. (4.28)

Since the equation (4.28) holds for all f̃ , we can split it with respect to f̃

and f̃ũ and derive Ttt = 0 and Ut = 0. The equation (4.25) is identically

satisfied in view of the above equations. The equation (4.26) reduces to the

equation (U 2
u/Xx)x = 0 and the equation (4.27) yields the transformation

relation for g.

Integrating the derived equations in view of the nondegeneracy condi-

tion J 6= 0, we prove the following theorem.

Theorem 4.9. The equivalence (pseudo)group G∼ of the class (4.16) con-

sists of the transformations

t̃ = c1t+ c0, x̃ = ϕ(x), ũ = c2|ϕx|1/2u+ ψ(x), f̃ =
ϕ2
x

c2
1

f,

g̃ =
c2

c2
1

|ϕx|1/2g −
1

c2
1

(
c2

2ϕxxxϕx − 3ϕ 2
xx

4|ϕx|3/2
u+ ψxx −

ϕxx
ϕx

ψx

)
f,

(4.29)

where c0, c1 and c2 are arbitrary constants satisfying the condition c1c2 6= 0,

and ϕ and ψ run through the set of smooth functions of x with ϕx 6= 0.

Corollary 4.10. The class (4.16) admits exactly three discrete equiva-

lence transformations that are independent up to combining with each other

and with continuous equivalence transformations of this class. These are

involutions alternating signs of variables, (t, x, u, f, g) 7→ (−t, x, u, f, g),

(t, x, u, f, g) 7→ (t,−x, u, f, g) and (t, x, u, f, g) 7→ (t, x,−u, f,−g).
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In contrast to [272], we have proved that there are no other independent

discrete equivalence transformations for the class (4.16).

Theorem 4.9 implies that any transformation T from G∼ can be repre-

sented as the composition T = Pt(c0)D
t(c1)G(ψ)D(ϕ)Du(c2) of elementary

equivalence transformations, each of which belongs to a family of equiv-

alence transformations parameterized by a single constant or functional

parameter,

Pt(c0) : t̃ = t+ c0, x̃ = x, ũ = u, f̃ = f, g̃ = g,

Dt(c1) : t̃ = c1t, x̃ = x, ũ = u, f̃ = c−2
1 f, g̃ = c−2

1 g,

D(ϕ) : t̃ = t, x̃ = ϕ, ũ = |ϕx|1/2u, f̃ = ϕ 2
x f, g̃ = |ϕx|1/2g + αϕ(x)uf,

Du(c2) : t̃ = t, x̃ = x, ũ = c2u, f̃ = f, g̃ = c2g,

Z(ψ) : t̃ = t, x̃ = x, ũ = u+ ψ, f̃ = f, g̃ = g − ψxxf,

where the parameters are described in Theorem 4.9, and

αϕ(x) :=
2ϕxxxϕx − 3ϕ 2

xx

4|ϕx|3/2
.

These transformations are shifts and scalings in t, arbitrary transforma-

tions in x, scalings of u and shifts of u with arbitrary functions of x,

respectively.

The equivalence algebra g∼ of the class (4.16) can be easily derived as

the set of vector fields that generate local one-parametric subgroups of the

equivalence group G∼. It is spanned by the vector fields

P t = ∂t, Dt = t∂t − 2f∂f − 2g∂g, Du = u∂u + g∂g,

D(ζ) = ζ∂x + 1
2ζxu∂u + 2ζxf∂f + 1

2(ζxg − ζxxxuf)∂g,

Z(χ) = χ∂u − χxxf∂g,

(4.30)

where ζ = ζ(x) and χ = χ(x) run through the set of smooth functions

of x. The nonvanishing commutation relations between these vector fields

are exhausted by

[P t,Dt] = P t, [Z(χ),Du] = Z(χ),

[D(ζ1),D(ζ2)] = D(ζ1ζ2
x − ζ1

xζ
2), [D(ζ),Z(χ)] = Z(ζχx − 1

2ζxχ).
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4.2.3. Determining Equations for Lie Symmetries. Suppose that

a vector field Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u belongs to the

maximal Lie invariance algebra gmax of an equation L: L = 0 from the

class (4.16), i.e., it is the generator of a one-parameter Lie-symmetry group

of L.

τu = ξu = ηuu = 0 or τ = τ(t, x), ξ = ξ(t, x) and η = η1(t, x)u+η0(t, x).

the system of determining equations

ξt = τxf, (4.31)

τtt − τxxf = 2ηtu, (4.32)

ξtt − ξxxf = −2ηxuf, (4.33)

ξfx + ηfu = 2(ξx − τt)f, (4.34)

ξgx + ηgu = (ηu − 2τt)g − ηxxf + ηtt. (4.35)

In order to derive the kernel algebra g∩ of the class (4.16), we further split

the determining equations with respect to the arbitrary elements and their

derivatives. This immediately gives that g∩ = 〈∂t〉. Consequently, the Lie

symmetries admitted by each equation from the class (4.16) are exhausted

by transformations of the form (t, x, u) 7→ (t + c0, x, u), where c0 is an

arbitrary constant.

4.2.4. Results of Classifications. For convenience, we collect, in a sin-

gle table, the Lie-symmetry classification cases derived below and formulate

the final result of group classification of the class (4.16) as a theorem.

Theorem 4.11. All G∼-inequivalent (resp. point-inequivalent) cases of

Lie-symmetry extensions of the kernel algebra g∩ = 〈∂t〉 in the class (4.16)

are exhausted by cases presented in Table 4.6.

In each case of Table 4.6 we present only vector fields which extend the

basis (∂t) of g∩ into a basis of the corresponding Lie invariance algebra.

The spans of g∩ and the vector fields given in cases of Table 4.6 that are

parameterized by functions f̂ or ĝ are the maximal Lie invariance algebras



206

Table 4.6: G∼-inequivalent Lie-symmetry extensions of g∩ = 〈∂t〉 for the class (4.16).

N f g Basis of extension

1 f̂(ω)|u|p ĝ(ω)|u|pu −pt∂t + 2δ∂x + 2u∂u

2 f̂(u)ex ĝ(u)ex t∂t − 2∂x

3 f̂(x)eu ĝ(x)eu t∂t − 2∂u

4 f̂(u) ĝ(u) ∂x

5a ε ĝ(u) ∂x, x∂t + εt∂x

5b 1 ĝ(u)e−2x R(ex+t), R(ex−t)

5c −1 ĝ(u)e−2x R(ex cos t), R(ex sin t)

6a ε ĝ(u)x−2 t∂t + x∂x, (t2 + εx2)∂t + 2tx∂x

6b 1 ĝ(u) cos−2 x R(cos t cosx), R(sin t cosx)

6c 1 −ĝ(u) cosh−2 x R(et coshx), R(e−t coshx)

6d 1 ĝ(u) sinh−2 x R(et sinhx), R(e−t sinhx)

6e −1 ĝ(u) cos−2 x R(et cosx), R(e−t cosx)

6f −1 ĝ(u) sinh−2 x R(cos t sinhx), R(sin t sinhx)

7 −1 ĝ(u) cosh−2 x R(cos t coshx), R(sin t coshx)

8a εu−4 µ(x)u−3 2t∂t + u∂u, t2∂t + tu∂u

8b εu−4 µ(x)u−3 + u e2t(∂t + u∂u), e−2t(∂t − u∂u)

8c εu−4 µ(x)u−3 − u cos(2t)∂t − sin(2t)u∂u, sin(2t)∂t + cos(2t)u∂u

9 εex|u|p νex|u|pu p∂x − u∂u, t∂t − 2∂x

10 εx2eu νeu x∂x, t∂t − 2∂u

11 f̂(u) 0 ∂x, t∂t + x∂x

12 εeu ε′equ ∂x, qt∂t + (q − 1)x∂x − 2∂u

13 ε|u|p ε′|u|q ∂x, (1− q)t∂t + (1 + p− q)x∂x + 2u∂u

14a εu−4 ε′u−3 2t∂t + u∂u, t2∂t + tu∂u, ∂x

14b εu−4 ε′u−3 + u e2t(∂t + u∂u), e−2t(∂t − u∂u), ∂x

14c εu−4 ε′u−3 − u cos(2t)∂t − sin(2t)u∂u, sin(2t)∂t + cos(2t)u∂u, ∂x

14d εu4 ε′u ∂x, 2x∂x + u∂u, x2∂x + xu∂u
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Table 2.1: Continuation.

15a εu−4 νx−2u−3 2t∂t + u∂u, t2∂t + tu∂u, 2x∂x − u∂u

15b εu−4 νx−2u−3 + u e2t(∂t + u∂u), e−2t(∂t − u∂u), 2x∂x − u∂u

15c εu−4 νx−2u−3 − u cos(2t)∂t − sin(2t)u∂u, sin(2t)∂t + cos(2t)u∂u, 2x∂x − u∂u

16 ε|u|p 0 ∂x, t∂t + x∂x, px∂x + 2u∂u

17 εeu 0 ∂x, t∂t + x∂x, x∂x + 2∂u

18a ε ε′|u|q ∂x, t∂x + εx∂t, (q − 1)t∂t + (q − 1)x∂x − 2u∂u

18b 1 ε′|u|qe−2x R(ex+t), R(ex−t), (q − 1)∂x + 2u∂u

18c −1 ε′|u|qe−2x R(ex cos t), R(ex sin t), (q − 1)∂x + 2u∂u

19a εu−4 0 2t∂t + u∂u, t2∂t + tu∂u, ∂x, 2x∂x − u∂u

19b εu−4 u e2t(∂t + u∂u), e−2t(∂t − u∂u), ∂x, 2x∂x − u∂u

19c εu−4 −u cos(2t)∂t − sin(2t)u∂u, sin(2t)∂t + cos(2t)u∂u, ∂x, 2x∂x − u∂u

19d εu4 0 ∂x, t∂t + x∂x, 2x∂x + u∂u, x2∂x + xu∂u

20 ε ε′eu τ∂t + ξ∂x − 2τt∂u

Here ε, ε′ = ±1 mod G∼, δ ∈ {0, 1} mod G∼, p, q and ν are arbitrary constants with p 6= 0

and ν 6= 0. Additionally, p 6= ±4 in Case 16, and q 6= 0, 1 in Cases 18a–18c. In Case 1,

ω := x− δ ln |u|. R(Φ) := Φx∂t + Φt∂x. The tuple (τ, ξ) of smooth functions depending on (t, x)

runs through the solution set of the system τt = ξx, ξt = ετx.

of the corresponding equations for the general values of these parameter

functions f̂ and ĝ, but for certain values of f̂ and ĝ additional extensions

are possible, which are equivalent to other cases of Table 4.6. Thus, f̂ 6=
const in Case 4 since otherwise up to G∼-equivalence we obtain Case 5a.

There are also constraints for constant parameters that are imposed by the

condition of inequivalence of the corresponding extensions or the condition

of their maximality.

Depending on the dimension of Lie-symmetry extension (one, two,

three, four or infinity), we split the cases of Table 4.6 into groups sep-

arated by horizontal lines. Note that all Lie-symmetry extensions of maxi-

mal and submaximal dimensions (infinity and four) for equations from the
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class (4.16) are not associated with subalgebras of the equivalence alge-

bra g∼, i.e., they are singular.

The usage of two-level numeration for classification cases listed in Ta-

ble 4.6 is justified by the presence of additional equivalences among them.

Namely, numbers with the same Arabic numerals and different Roman

letters correspond to cases that are G∼-inequivalent but equivalent with

respect to additional equivalence transformations. To construct all ad-

ditional equivalence transformations among G∼-inequivalent classification

cases and thus to solve the group classification problem for the class (4.16)

up to G∼-equivalence, we need to classify admissible transformations of this

class up to G∼-equivalence. This classification is presented in the following

theorem, which is proved in Section 4.2.5.

Theorem 4.12. A generating (up to G∼-equivalence) set B of admissi-

ble transformations for the class W, which is minimal and self-consistent

with respect to G∼-equivalence, is the union of the following families of

admissible transformations, where ε, ε′, ε′′ = ±1:

T1. fx = gx = 0, fu 6= 0 or f = 1, f̃ = 1/f , g̃ = −g/f , Φ: t̃ = x,

x̃ = t, ũ = u;

T2. f = εu−4, g = µ(x)u−3+σu, σ ∈ {−1, 0, 1}, f̃ = εũ−4, g̃ = µ(x̃)ũ−3,

µ runs through the set of smooth functions of x with µx 6= 0,

a. Φ: t̃ = t−1, x̃ = x, ũ = t−1u if σ = 0;

b. Φ: t̃ = 1
2e

2t, x̃ = x, ũ = etu if σ = 1;

c. Φ: t̃ = tan t, x̃ = x, ũ = u cos t if σ = −1;

T3. f = 1, g = e−2xg2(u), f̃ = 1, g̃ = g2(ũ),

Φ: t̃ = e−x sinh t, x̃ = e−x cosh t, ũ = u;

T4. f = 1, g = g1(x)g2(u), f̃ = 1, g̃ = x̃−2g2(ũ),

a. g1(x) = x−2, Φ: t̃ =
t

x2 − t2
, x̃ =

x

x2 − t2
, ũ = u;
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b. g1(x) = cos−2 x, Φ: t̃ =
cos t

sin t+ sinx
, x̃ =

cosx

sin t+ sinx
, ũ = u;

c. g1(x) = − cosh−2 x, Φ: t̃ = et sinhx, x̃ = et coshx, ũ = u;

d. g1(x) = sinh−2 x, Φ: t̃ = et coshx, x̃ = et sinhx, ũ = u;

T5. f = −1, g = e−2xg2(u), f̃ = −1, g̃ = g2(ũ),

Φ: t̃ = e−x sin t, x̃ = e−x cos t, ũ = u;

T6. f = −1, g = g1(x)g2(u), f̃ = −1, g̃ = x̃−2g2(ũ),

a. g1(x) = x−2, Φ: t̃ =
t

x2 + t2
, x̃ =

x

x2 + t2
, ũ = u;

b. g1(x) = cos−2 x, Φ: t̃ = et sinx, x̃ = et cosx, ũ = u;

c. g1(x) = sinh−2 x, Φ: t̃ =
sin t

cos t+ coshx
, x̃ =

sinhx

cos t+ coshx
,

ũ = u;

T7. f = −1, g = g2(u) cosh−2 x, f̃ = −1, g̃ = g2(ũ) cosh−2 x̃,

Φ: t̃ = arctan
sin γ sinhx+ cos γ sin t

cos t
,

x̃ = arctanh
cos γ sinhx− sin γ sin t

coshx
, ũ = u, γ ∈ (0, 2π);

T8. a. f = f̃ = 1, gx = 0, g̃ = g,

Φ: t̃ = t cosh γ+x sinh γ, x̃ = t sinh γ+x cosh γ, ũ = u, γ ∈ R 6=0;

b. f = f̃ = −1, gx = 0, g̃ = g, Φ: t̃ = t cos γ − x sin γ,

x̃ = t sin γ + x cos γ, ũ = u, γ ∈ (0, 2π);

T9. f = ε, g = ε′eu, f̃ = ε, g̃ = ε′eũ, Φ: t̃ = T (t, x), x̃ = X(t, x),

ũ = u + ln |T 2
t − εT 2

x |, where ε, ε′ = ±1, ε′ = 1 if ε = 1, (T,X)

runs through a complete set of representatives of solution cosets of

the system Tt = Xx, Xt = εTx with (Ttt, Tx) 6= (0, 0) with respect to

the action of the group constituted by the transformations of the form

t̂ = c1t+ c0, x̂ = c1x+ c2, T̂ = c̃1T + c̃0, X̂ = c̃1X + c̃2, where c0, c1,

c2, c̃0, c̃1 and c̃2 are arbitrary constants with c1c̃1 6= 0.
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Throughout the rest of the paper, we use the notation TN for the

admissible transformation given in item N of Theorem 4.12, where N is

the corresponding (one- or two-level) number.

Remark 4.13. The transformational part Φ of admissible transforma-

tion T4b can be represented as

T4b: t̃ = cot
x+ t

2
+ tan

x− t
2

, x̃ = cot
x+ t

2
− tan

x− t
2

, ũ = u.

The transformational parts Φ of admissible transformations T4c and T4d

can be replaced by alternative ones, which are analogous to that of T4b,

T4c: t̃ = coth
x+ t

2
− tanh

x− t
2

, x̃ = coth
x+ t

2
+ tanh

x− t
2

, ũ = u;

T4d: t̃ = tanh
x+ t

2
− tanh

x− t
2

, x̃ = tanh
x+ t

2
+ tanh

x− t
2

, ũ = u.

There also exist similar alternatives for transformational parts of other

admissible transformations in the class W . The counterparts of modified

admissible transformations T4b–T4d and of admissible transformation T3

for linear equations from the class Wlin were presented in Notes 1 and 2

of [334].

As a result, we obtain the following independent additional equivalence

transformations among classification cases given in Table 4.6. (Below we

do not indicate the corresponding parameters if they are not changed.)

T1: (a) 4f̂ ,ĝ → 41/f̂ ,−ĝ/f̂ , 5aĝ → 5a−ĝ if ε = 1, 11f̂ → 111/f̂ ,

12q,ε,ε′ ◦ (u→ −u) → 121−q,ε,−εε′, 13p,q,ε,ε′ → 13−p,q−p,ε,−εε′,

14dε,ε′ → 14aε,−εε′, 16p,ε → 16−p,ε, 18aq,ε,ε′ → 18aq,ε,−εε′,

19d → 19a, 20ε,ε′ → 20ε,−εε′.

T2: (b) 8b → 8a, 14b → 14a, 15b → 15a, 19b → 19a;

(c) 8c → 8a, 14c → 14a, 15c → 15a, 19c → 19a.

T3: 5b → 5aε=1, 18b → 18aε=1.
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T4: (b) 6b → 6aε=1, (c) 6c → 6aε=1, (d) 6d → 6aε=1.

T5: 5c → 5aε=−1, 18c → 18aε=−1.

T6: (b) 6e → 6aε=−1, (c) 6f → 6aε=−1.

Remark 4.14. In Table 4.6, only Cases 1–4, 9–13, 14d, 16, 17 and 19d

present regular Lie-symmetry extensions in the class W . Therefore, the

regular Cases 14d and 19d are G∼-inequivalent but G∼-equivalent to the

singular Cases 14a and 19a, respectively.

Consider the subclass Wc of the class W singled out by the additional

constraints fx = gx = 0 for the arbitrary-element tuple θ = (f, g), i.e., the

class of equations of the general form

utt = f(u)uxx + g(u), (4.36)

where (fu, guu) 6= (0, 0). Cases 4, 5a, 11, 12, 13, 14a–14d, 16, 17, 18a,

19a–19d and 20 of Table 4.6 are related to the subclassWc. The kernel Lie

invariance algebra gc = 〈∂t, ∂x〉 of equations from the subclass Wc is given

by Cases 4, which is the general case within this subclass. It is obvious from

Theorem 4.11 and the above list of additional equivalence transformations

that a complete list of G∼c -inequivalent Lie-symmetry extensions within

the subclass Wc, where G∼c is its equivalence groupoid, is exhausted by

Cases 5a, 11, 12, 13, 14a, 16, 17, 18a, 19a and 20 of Table 4.6, where

additionally q > 1/2 in Case 12, p > 0 in Cases 13 and 16, and ε′ = 1 in

Cases 18a and 20 with ε = 1. The group classification of the subclassWc up

to equivalence generated by its equivalence group G∼c is more delicate. The

group G∼c is generated by transformations of the form (4.29) with ϕxx =

ψx = 0, which constitute the intersection G∼c ∩G∼, and one more (discrete)

equivalence transformation t̃ = x, x̃ = t, ũ = u, f̃ = 1/f , g̃ = −f/g of Wc,

which generates the family T1 of admissible transformations within W .

This is why some G∼-inequivalent Lie-symmetry extensions can be G∼c -

equivalent, which occurs for Cases 14a and 14d as well as for Cases 19a



212

and 19d. The converse situation is not possible since the subgroupoid of G∼c
generated by G∼ is contained in the subgroupoid generated by G∼c . This

results in the following assertion.

Corollary 4.15. A complete list of G∼c -inequivalent Lie-symmetry exten-

sions within the subclass Wc is exhausted by Cases 5a, 11, 12, 13, 14a–14c,

16, 17, 18a, 19a–19c and 20 of Table 4.6, where additionally q > 1/2 in

Case 12, p > 0 in Cases 13 and 16, and ε′ = 1 in Cases 18a and 20 with

ε = 1.

4.2.5. Equivalence Groupoid and Singular Lie Symmetry Exten-

sions The equivalence groupoid G∼ of the class W contains admissible

transformations that are not generated by elements of G∼, i.e., this class is

not normalized. Nevertheless, we can describe the groupoid G∼, classifying

admissible transformations within the class W up to the G∼-equivalence;

see [248] for posing the general problem on classifying admissible transfor-

mations. More precisely, proving Theorem 4.12, we construct the generat-

ing (up to G∼-equivalence) subset B of G∼ with the simultaneous classifi-

cation of singular Lie-symmetry extensions within the class W .

Since the class W is a subclass of Wgen, the transformational part Φ of

any admissible transformation T = (θ,Φ, θ̃) in the class W takes the form

t̃ = T (t, x), x̃ = X(t, x), ũ = U = U 1(t, x)u+ U 0(t, x)

with TtXx − TxXt 6= 0 and U 1 6= 0, and additionally the system (4.23)–

(4.27) is satisfied. Here θ = (f, g) and θ̃ = (f̃ , g̃) are respectively the source

and target arbitrary-element tuples for T , Lθ,Lθ̃ ∈ W .

By W0 and W1 we respectively denote the subclasses of W singled out

by the constraints fu = 0 and fu 6= 0. The partition W = W0 t W1

of the class W induces the partition of the equivalence groupoid G∼ of

this class since f̃ũ = 0 if and only if fu = 0, cf. the end of Section 4.2.1.

In other words, equations in the subclass W0 are not related by point
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transformations to equations in the subclass W1. This claim can be nicely

reformulated in terms of equivalence groupoids.

Proposition 4.16. The equivalence groupoid G∼ of the class W is the

disjoint union of the equivalence groupoids G∼0 and G∼1 of the subclasses W0

and W1, G∼ = G∼0 t G∼1 .

We describe the equivalence groupoids G∼0 and G∼1 separately.

Lemma 4.17. The usual equivalence group of the subclass W0 coincides

with G∼. A generating (up to G∼-equivalence) set B0 of admissible trans-

formations for the class W0, which is minimal and self-consistent with

respect to G∼-equivalence, is the union of the restriction of the family T1

to W0 and the families T3–T9.

Lemma 4.18. A complete list of G∼-inequivalent singular Lie-symmetry

extensions for equations from the class W0, which are not related to ap-

propriated subalgebras of g∼, is exhausted by Cases 5a–7, 18a–18c and 20

within the subclass of equations with arbitrary elements of the form f = ε

and g = g1(x)g2(u).

Proof. We will simultaneously prove Lemmas 4.17 and 4.18. Let T ∈ G∼0 ,

i.e., fu = 0, guu 6= 0, f̃ũ = 0 and g̃ũũ 6= 0. We express X 2
t from the

equation (4.24), substitute this expression into the squared equation (4.23).

After factorizing the resulting equation, we obtain the equation

(T 2
t − fT 2

x )(fX 2
x − f̃T 2

t ) = 0,

which implies in view of T 2
t − fT 2

x 6= 0 that fX 2
x = f̃T 2

t . Then the

equation (4.24) yields X 2
t = ff̃T 2

x . This means that f and f̃ have the

same sign and up to G∼-equivalence we can assume that f = f̃ = ε, where

ε = ±1, i.e., X 2
x = T 2

t and X 2
t = T 2

x . More precisely, gauging of f and f̃

can be realized via transformations D(ϕ) and D(ϕ̃) of x and x̃, respectively.

Taking into account the equation (4.23) and alternating the sign of t (this

transformation belongs to the kernel group of the class (4.16)), we can set
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Xx = Tt, Xt = εTx. Since these equations give Ttt = εTxx and Xtt = εXxx,

the pair of the equations (4.25) and (4.26) reduce to the system of linear

homogeneous algebraic equations TtUut− εTxUux = 0, XtUut− εXxUux = 0

with respect to Uut and Uux. The determinant of the associated matrix is

nonzero, ε(TtXx − TxXt) 6= 0. Hence Uut = Uux = 0, i.e., Uu is a nonzero

constant and using a transformation Du(c2) we can set Uu = 1. In view of

the above conditions, the equation (4.27) takes the form

(X 2
x − εX 2

t )g̃ = g + U 0
tt − εU 0

xx. (4.37)

Sequentially acting on the equation (4.37) by the operators (X 2
x −εX 2

t )−1∂t

and ∂t̃, we obtain two differential consequences of (4.37),

Xtg̃x̃ + U 0
t g̃ũ +

(X 2
x − εX 2

t )t
X 2
x − εX 2

t

g̃ =
(U 0

tt − εU 0
xx)t

X 2
x − εX 2

t

, (4.38)

(Xt)t̃g̃x̃ + (U 0
t )t̃g̃ũ +

(
(X 2

x − εX 2
t )t

X 2
x − εX 2

t

)
t̃

g̃ =

(
(U 0

tt − εU 0
xx)t

X 2
x − εX 2

t

)
t̃

. (4.39)

Studying the consistency of the equations (4.38) and (4.39) as first or-

der quasilinear partial differential equations with respect to g̃, we con-

sider different cases depending on whether the matrix of coefficients of the

derivatives g̃x̃ and g̃ũ in the system of these equations is degenerate or

nondegenerate.4.2

1. Suppose first that this matrix is nondegenerate, Xt(U
0
t )t̃−U 0

t (Xt)t̃ 6= 0.

We solve the system (4.38)–(4.39) as a system of linear algebraic equations

with respect to g̃x̃ and g̃ũ,

g̃x̃ = α1g̃ + α0, g̃ũ = β1g̃ + β0. (4.40)

Here the coefficients α0, α1, β0 and β1 are functions of (t̃, x̃) whose explicit

expressions in terms of X and U 0 are not essential for the further consid-

eration. Differentiating the equations (4.40) with respect to t̃, we derive
4.2This procedure and the previous partition of W into W0 and W1 fits well into the framework of the

method of furcate splitting [209,224,289,297]. This method of furcate splitting was used to describe the

equivalence groupoid of the class of general Burgers–Korteweg–de Vries equations with space-dependent

coefficients via classifying maximal conditional equivalence groups of this class [221, 222]. The further

consideration is the first construction of a generating set of admissible transformations using this method.
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the consequences α1
t̃
g̃ + α0

t̃
= 0, β1

t̃
g̃ + β0

t̃
= 0, which implies in view of

gu 6= 0 that α1
t̃

= α0
t̃

= β1
t̃

= β0
t̃

= 0. The cross-differentiation of the equa-

tions (4.40) with respect to x̃ and ũ leads to the compatibility conditions

for these equations, which are β1
x̃ = 0 and β0

x̃ = α1β0 − α0β1. Therefore,

β1 is a constant. Since g̃ũũ 6= 0, the second equation in (4.40) implies that

β1 6= 0. Using the equivalence transformation Du(1/β1), we can gauge β1

to 1. Then the second equation in (4.40) integrates to g̃ = g̃0(x̃)eũ + g̃1(x̃)

with g̃1 = −β0. The equation (4.37) implies that the function g is of similar

form in the initial variables, g = g0(x)eu+g1(x), and (X 2
x −εX 2

t )eU
0

g̃0 = g0,

(X 2
x − εX 2

t )g̃1 = g1 +U 0
tt− εU 0

xx. Using equivalence transformations of the

form G(ψ) in both the old and new variables, we set g0 = ε′ and g̃0 = ε̃′

with ε′, ε̃′ = ±1. Then (X 2
x − εX 2

t )eU
0

ε̃′ = ε′, i.e.,

U 0 = − ln |X 2
x − εX 2

t |

and thus U 0
tt − εU 0

xx = 0 since Xtt − εXxx = 0. The equation (4.37) takes

the form

g1(x)

X 2
x − εX 2

t

= g̃1(X). (4.41)

In other words, in this case it suffices to classify admissible transformations

within the subclass W00 of equations of the form

utt = εuxx + ε′eu + g1(x) (4.42)

up to the subgroup G∼00 of G∼ singled out by the constraints ϕx = ±c1,

c2 = |c1|−1/2 and ψ = 0. This reduces to deriving possible G∼00-inequivalent

expressions for X = X(t, x), g1 = g1(x) and g̃1 = g̃1(x̃) satisfying the joint

system of the equation (4.41) and the equation Xtt = εXxx. We change the

independent variables in this system, y = x+ ιt and z = x− ιt, where ι = 1

or ι = i if ε = 1 or ε = −1, respectively, i is the imaginary unit, i2 = −1.

Hence ι2 = ε. In the variables y and z the equation Xtt = εXxx takes the

form Xyz = 0 and its general solution is represented as X = Y (y) + Z(z),
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where Z(z) coincides with the conjugate value of Y (y) if ε = −1. Then

the equation (4.41) can be rewritten as

1

4YyZz
g1(x) = g̃1(X), assuming x =

y + z

2
, X = Y + Z. (4.43)

Excluding the parameter function g̃1 via acting by the operator Yy∂z−Zz∂y
on the equation (4.43), we reduce this equation, after the expansion and

algebraic transformations, to

2g1(∂y + ∂z)
(
Y −1
y − Z−1

z

)
= −g1

x

(
Y −1
y − Z−1

z

)
.

The last equation integrates to Y −1
y − Z−1

z = ιh0h1, where h0 is a (real-

valued) smooth function of t, h1 := |g1|−1/2 6= 0 and thus h1 is a (real-

valued) smooth function of x. We act on the integration result by the

operator ∂ 2
t − ε∂ 2

x = −4ε∂y∂z to get h0
tth

1 = εh0h1
xx.

If h0 = 0, then Y −1
y = Z−1

z = const ∈ R and thus Yy = Zz = const ∈ R,

which implies Xxx = 0. Therefore, Tx = Ttt = 0 as well. This means that

the admissible transformation T is induced by an element of G∼.

The case h1 = g1 = 0 corresponds to the Liouville equation. The sign

of ε′ is alternated by the corresponding admissible transformation from

the family T1 if ε = 1 and cannot be alternated in view of the equation

(X 2
x − εX 2

t )eU
0

ε̃′ = ε′ if ε = −1. The equivalence group G∼ induces the

subgroupH of the complete point symmetry group of the Liouville equation

for each fixed value of (ε, ε′), which is constituted by the transformations of

the form t̃ = c1t+c0, x̃ = c1x+c2, where c0, c1 and c2 are arbitrary constants

with c1 6= 0. For the minimality of the set of admissible transformations

to be constructed, we should takes a single representative in each coset of

G∼-equivalent elements of the corresponding vertex group. This gives the

family T9 of admissible transformations.

Further we assume that h0h1 6= 0 and thus g1 6= 0 as well. The

separation of variables in the equation h0
tth

1 = εh0h1
xx implies that

h0
tt/h

0 = εh1
xx/h

1 is a constant, which can be assumed, modulo scalings
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from G∼ preserving the constraint f = ε, to take values from the set

{−1, 0, 1}. Up to shifts of x and alternating the sign of x, we have

g1 ∈ C :=
{
ν, νx−2, ν cos−2 x, −ν cosh−2 x, ν sinh−2 x, ε′′e−2x |

ν ∈ R, ν 6= 0, ε′′ = ±1
}
.

Using the same arguments for the inverse of the admissible transforma-

tion T , we obtain that the function g̃1 also belongs to the set C (up to

replacing the argument x by x̃).

We first present a complete set of G∼-inequivalent (independent up to

inversion and composing with each other) non-identity admissible transfor-

mations for g1 running through the set C and then explain the derivation

of this list. It is exhausted by the family T8|W00
and the following families:

T3′. f = 1, g = eu + ε′′e−2x, f̃ = 1, g̃ = eu + ε′′,

Φ: t̃ = e−x sinh t, x̃ = e−x cosh t, ũ = u+ 2x;

T4′. f = 1, g = ε′eu + g1(x), f̃ = 1, g̃ = ε̃′eu + νx̃−2, ν ∈ R 6=0,

a. g1(x) = νx−2, ε̃′ = ε′, Φ: t̃ =
t

x2 − t2
, x̃ =

x

x2 − t2
,

ũ = u+ 2 ln |x2 − t2|;

b. g1(x) = ν cos−2 x, ε̃′ = ε′,

Φ: t̃ =
cos t

sin t+ sinx
, x̃ =

cosx

sin t+ sinx
, ũ = u+ 2 ln | sin t+ sinx|;

c. g1(x) = −ν cosh−2 x, ε̃′ = −ε′, Φ: t̃ = et sinhx, x̃ = et coshx,

ũ = u− 2t;

d. g1(x) = ν sinh−2 x, ε̃′ = ε′, Φ: t̃ = et coshx, x̃ = et sinhx,

ũ = u− 2t;

T5′. f = −1, g = ε′eu + ε′′e−2x, f̃ = −1, g̃ = ε′eu + ε′′,

Φ: t̃ = e−x sin t, x̃ = e−x cos t, ũ = u+ 2x;

T6′. f = −1, g = ε′eu + g1(x), f̃ = −1, g̃ = ε′eu + νx̃−2, ν ∈ R 6=0,
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a. g1(x) = νx−2, Φ: t̃ =
t

x2 + t2
, x̃ =

x

x2 + t2
, ũ = u+2 ln |x2 + t2|;

b. g1(x) = ν cos−2 x, Φ: t̃ = et sinx, x̃ = et cosx, ũ = u− 2t;

c. g1(x) = ν sinh−2 x,

Φ: t̃ =
sin t

cos t+ coshx
, x̃ =

sinhx

cos t+ coshx
,

ũ = u+ 2 ln | cos t+ coshx|;

T7′. f = −1, g = ε′eu + ν cosh−2 x, f̃ = −1, g̃ = ε′eũ + ν cosh−2 x̃,

ν ∈ R 6=0,

Φ: t̃ = arctan
sin γ sinhx+ cos γ sin t

cos t
,

x̃ = arctanh
cos γ sinhx− sin γ sin t

coshx
,

ũ = u+ ln
∣∣ cosh2 x− (cos γ sinhx− sin γ sin t)2

∣∣, γ ∈ (0, 2π).

The direct way of checking which elements of the set C are related

via admissible transformation is to fix an element g1 in C, thus defining

h1 := |g1|−1/2 6= 0, to solve the equation h0
tt = λh0 with λ := εh1

xx/h
1 =

const, to find Y and Z by separating variables y and z in the equation

Y −1
y − Z−1

z = ιh0h1 and further integration, and finally to determine g̃1

from (4.41).

We follow an optimized strategy. In the above way, we find the map-

pings νe−2x 7→ ν by T3′ if f = 1 and by T5′ if f = −1, ν cos−2 x 7→ νx−2

by T4′b if f = 1 and by T6′b if f = −1, −ν cosh−2 x 7→ νx−2 by T4′c if

f = 1, ν sinh−2 x 7→ νx−2 by T4′d if f = 1 and by T6′c if f = −1. The sign

of ε′ is alternated only in T4′c. For f = −1, the value g1 = −ν cosh−2 x

is mapped to the value g1 = νx−2 by an admissible point transformation

only over the complex field.

The maximal Lie invariance algebras of the equations of the form (4.42)

with values of (f, g1) that have not been reduced to other ones are

(f, g1) = (1, ν) : gθ = 〈∂t, ∂x, x∂t + t∂x〉,
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(f, g1) = (−1, ν) : gθ = 〈∂t, ∂x, x∂t − t∂x〉,

(f, g1) = (ε, νx−2) :

gθ = 〈∂t, t∂t + x∂x − 2∂u, (t2 + εx2)∂t + 2tx∂x − 4t∂u〉,

(f, g1) = (−1, ν cosh−2 x) : gθ = 〈∂t, R′(cos t coshx), R′(sin t coshx)〉,

where R′(Φ) := Φx∂t + Φt∂x− 2Φtx∂u. These invariance algebras are given

in Cases 5aε=1 and 5aε=−1 of Table 4.6 and are associated with Cases 6a

and 7 of the same table, respectively. They are realizations of the Poincaré

algebra p(1, 1), the Euclidian algebra e(2), the real special linear algebra

sl(2,R) and the orthogonal algebra o(3), which are not isomorphic to each

other. At the same time, systems of differential equations are related by

point transformations only if their maximal Lie invariance algebras are

isomorphic.

Therefore, we need to classify admissible transformations within

the four subclasses of equations of the form (4.42), where for

each of these subclasses the tuple (f, g1) is of a fixed form in

{(1, ν), (−1, ν), (ε, νx−2) (−1, ν cosh−2)}, and ν runs through R 6=0. For

this purpose, we apply for the first time an extension of the algebraic

method to finding admissible transformations. This method was suggested

by Hydon in [127–129] for computing discrete symmetries and extended to

equivalence transformations in [22].

We in detail consider only the first subclass. Let Lθ and Lθ̃ be two

fixed equations of the form (4.42) with f = f̃ = 1, g̃1 = ν, g1 = ν̃ and

some ε′, ε̃′ = ±1. These equations have the same maximal Lie invariance

algebra, gθ = gθ̃ = 〈∂t, ∂x, t∂x + x∂t〉, which is given in Case 5af=1 of Ta-

ble 4.6 and is a realization of the Poincaré algebra p(1, 1). Therefore, the

pushforward of vector fields by Φ induces an automorphism of gθ associ-

ated with an automorphism of p(1, 1). Recall that the transformation Φ

is completely defined by its t- and x-components. Inner automorphisms of

p(1, 1) correspond to continuous point transformations generated by vec-
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tor fields from gθ. Such transformations are symmetries of Lθ, i.e., they

do not change the parameters ν and ε′. Up to shifts of t and x, which

are induced by elements of G∼, we obtain the family T8a|W00
of admissi-

ble transformations. There are only two outer automorphisms of p(1, 1)

that are independent up to composing to each other and to inner automor-

phisms.4.3 The corresponding transformations are the alternation of the

sign of t, which is a discrete symmetry of Lθ induced by Dt(−1), and the

permutation of t and x, which belongs to the family T1. There is no point

transformation that satisfies the restriction for Φ and induces the identity

automorphism of gθ.

The other three subclasses are considered in a similar way. Each of the

algebras e(2) and sl(2,R) possesses a single independent outer automor-

phism, which is here related, e.g., to alternating the sign of t. The algebra

o(3) admits no outer automorphism but alternating the sign of t generates

the identity automorphism of the corresponding algebra gθ. Factoring out

shift and scaling symmetries of related equations, which are induced by ele-

ments of G∼, we construct the families T8b|W00
, T4′a and T7′, respectively.

The last family consists of the non-identity transformations generated by

the Lie-symmetry vector field R′(cos t coshx) of the equation (4.42) with

(f, g1) = (−1, ν cosh−2).

It is obvious that G∼00-inequivalent singular cases of Lie-symmetry ex-

tensions within the subclass W00 are exhausted by those with g1 ∈ C.

2. Now we suppose that the matrix of coefficients of the derivatives g̃x̃

and g̃ũ in the system (4.38), (4.39) is degenerate,

Xt(U
0
t )t̃ − U 0

t (Xt)t̃ = 0. (4.44)

If Xt = 0 then Tx = Xxx = Ttt = 0 and the equation (4.37) implies in view

of the condition g̃ũũ 6= 0 that U 0
t = 0, i.e., the admissible transformation T

is generated by an element of G∼. This is why in what follows we assume

4.3See [79,243] for necessary facts on automorphisms of low-dimensional Lie algebras.
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that Xt 6= 0. Representing the equation (4.44) in the form (U 0
t /Xt)t̃ = 0,

we integrate it by t̃, which yields U 0
t = V 0(X)Xt for some smooth func-

tion V 0 = V 0(x̃). Then we integrate by t, obtaining U 0 = V 1(X) + V 2(x),

where V 1 is an antiderivative of V 0, V 1
x̃ (x̃) = V 0(x̃), and V 2 = V 2(x) is

a smooth function of x. Therefore, up to G∼-equivalence (namely, up to

composing the transformation T with transformations from the subgroup

{G(ψ)}), we can set U 0 = 0 and thus U = u. We then rewrite the equa-

tion (4.38) as

g̃x̃
g̃

= − 1

Xt

(X 2
x − εX 2

t )t
X 2
x − εX 2

t

.

The left- and right-hand sides of the last equations do not depend on t̃

and ũ, respectively, and hence they are equal to a function of only x̃.

Solving the equation with respect to g̃ gives the representation of g̃ as the

product of functions of different arguments, g̃ = g̃1(x̃)g̃2(ũ). Since ũ = u

and g = (X 2
x − εX 2

t )g̃, the function g admits the similar representation

g = g1(x)g2(u), where g2(u) = g̃2(u). As a result, we again obtain the

equation (4.41). Therefore, equations of the form

utt = εuxx + g1(x)g2(u) with g2
ug

2
uuu 6= (g2

uu)
2 (4.45)

with coinciding values of the parameter function g2 are related by a point

transformation if and only if the equations of the form (4.42) with the same

values of the parameters ε and g1 and some values of ε′ are related by a

point transformation. The inequality g2
ug

2
uuu 6= (g2

uu)
2, which is equivalent

to the linear independence of g2
u, g

2 and 1, is imposed for excluding the

intersection of the subclass (4.45) and the subclass of equations of the form

utt = εuxx + g0(x)eu + g1(x) with g0 6= 0, which are reduced by equiva-

lence transformations to equations from the subclass (4.42). To properly

translate the classification of admissible transformations within the sub-

class (4.42) to those within the subclass (4.45), we take into account the

condition g1 6= 0 for the subclass (4.45) and replace the u-components of
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all transformational parts by ũ = u. Since the coefficients ν and ν̃ coincide,

they can just be absorbed by g2. In total, this gives the restrictions of the

families T1, T3–T7 and T8 to the subclass (4.45). Here the families T3–T7

respectively correspond to the families T3′–T7′.

To complete the classification of admissible transformations in the sub-

classW0, we map each equation from the subclass (4.42) with g1 ∈ C by the

equivalence transformation Z(ln ĝ1) to the equation utt = εuxx+ ĝ1(x)g2(u)

with g2(u) = ε′eu + ν̂. Here ĝ1 is of the same form as g1 but with fixed

ν = 1, ν̂ = 2εε′′, ε′′ = −1 for ĝ1 = cosh−2 x and ε′′ = 1 otherwise. As a

result, the families T3′–T7′ are mapped into the families T3–T7. The com-

pletion of the latter families allows us to neglect the auxiliary inequality

g2
ug

2
uuu 6= (g2

uu)
2 of the subclass (4.45) for these families.

The obtained set B0 of admissible transformations of the subclassW0 is

a generating set for G∼0 up to G∼-equivalence by construction. No element

of GG∼0 relates different values of θ from s(B0) ∪ t(B0). No element of B0

can be represented as the composition of a finite number of other elements

of B0 or their inverses. Therefore, the generating set B0 is minimal and

self-consistent with respect to G∼-equivalence for G∼0 .

Up to G∼-equivalence, singular Lie-symmetry extensions in the sub-

class (4.45) are possible only for g1 ∈ C, which gives Cases 5a–5c, 6a–6f

and 7. Since Case 7 reduces to Case 6a over the complex field, for fur-

ther extensions it suffices to check only equations with g1 = 1 (Case 5a)

and with g1 = x−2 (Case 6a). For g1 = 1, we obtain only Case 18a with

two G∼-equivalent Cases 18b and 18c. There are no further Lie-symmetry

extensions for g1 = x−2.

Remark 4.19. A generating set of admissible point transformations within

the class Wlin of linear equations of the form (4.16) and the group classi-

fication of this class can be easily derived from the computation of their

counterparts for the class W0. For this purpose, we need to consider the

essential subgroupoid G∼ess
lin of the equivalence groupoid G∼lin ofWlin and es-
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sential Lie invariance algebras of equations fromWlin, respectively factoring

out transformations and Lie-symmetry vector fields related to the linear

superposition of solutions, cf. [249, Section 2] and [178]. Elements of Wlin

take the form utt = f(x)uxx+g1(x)u+g0(x). Their kernel point symmetry

group is generated by the transformations π∗P
t(c0) and π∗D

u(c2), and their

kernel invariance algebra is g∩lin = 〈∂t, u∂u〉. The equivalence group of Wlin

coincides with G∼. Using equivalence transformations, we can gauge the

parameter functions f and g0 to ε ∈ {−1, 1} and 0, respectively. As a

result, we map the class Wlin onto its subclass Wlin′ of linear wave and

elliptic equations with x-dependent potentials, which are of the form

utt = εuxx + g1(x)u,

cf. [334]. Each equation Lθ from Wlin′ admits the (pseudo)group Glin
θ of

point symmetries associated with the linear superposition of solutions,

Glin
θ = {Φ : t̃ = t, x̃ = x, ũ = u+h(t, x) | h ∈ Lθ}, where the notation “h ∈
Lθ” means that the function h runs through the solution set of Lθ. The cor-

responding Lie algebra is glin
θ = 〈h(t, x)∂u | h ∈ Lθ〉. Let G∼lin

lin′ be the sub-

groupoid of the equivalence groupoid G∼lin′ of the class Wlin′ that is consti-

tuted by the admissible transformations related the linear superposition of

solutions, i.e., G∼lin
lin′ is the union of Glin

θ as subgroups of vertex groups in G∼lin′
for all θ with Lθ ∈ Wlin′. The essential equivalence groupoid G∼ess

lin′ of Wlin′,

which is the complement of G∼lin
lin′ in G∼lin′, is naturally isomorphic to the

equivalence groupoid of the class of equations of the form (4.42) with a fixed

value of ε′. Therefore, a generating set for G∼ess
lin′ and, thus, for the essential

equivalence groupoid G∼ess
lin ofWlin, which is defined similarly to G∼ess

lin′ , con-

sists of the counterparts of the families T3–T9 for linear equations. That

is, one should substitute g2 = u, g̃2 = ũ into T3–T7 and g = ε′′u, g̃ = ε′′ũ

into T8 and replace g, g̃ and the u-component of Φ in T9 by g = ε′′u, g̃ =

ε′′ũ and ũ = u. A complete list of G∼-inequivalent essential Lie-symmetry

extensions in the class Wlin (i.e., extensions of g∩lin u glin
θ ) are exhausted

by Cases 5a–7 of Table 4.6 with ĝ = ε′′u and the counterpart of Cases 20,
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where g = 0 and the extension is spanned by τ∂t+ξ∂x with the same condi-

tion on (τ, ξ). Additional equivalence transformations between the classifi-

cation cases are exhausted by the counterparts of those for Cases 5a–6f.4.4

It now remains to study the equivalence groupoid G∼1 of the subclassW1,

which is singled out from the class (4.16) by the constraint fu 6= 0. ByW11

andW12 we respectively denote the subclasses ofW1 that is associated with

the additional auxiliary condition fx = gx = 0 mod G∼ and that consists

of the equations G∼-equivalent to equations of the form

utt = εu−4uxx + µ(x)u−3 + σu, (4.46)

where µ runs through the set of smooth functions of x, ε and σ are con-

stants, ε 6= 0 and hence ε = ±1 mod G∼ and σ ∈ {−1, 0, 1} mod G∼.

Lemma 4.20. The usual equivalence group of the subclass W1 coincides

with G∼. Any admissible transformation in W1 \ (W11 ∪W12) is generated

by a transformation from G∼. A generating (up to G∼-equivalence) set B1

of admissible transformations for the class W1, which is minimal and self-

consistent with respect to G∼-equivalence, is the union of the restriction of

the family T1 to W11 and the family T2, which acts within W12.

Proof. For T ∈ G∼1 , the equation (4.23) immediately implies that TtXt =

TxXx = 0 for admissible transformations within the subclass W1.

Supposing Tx 6= 0, we obtain that Xx = 0, Xt 6= 0 and hence Tt = 0.

Up to G∼-equivalence of admissible transformations we can assume that

T = x and X = t as under the above restrictions the transformation T
is represented as the composition of D(T ), a transformation permuting t

and x and D(X). For T = x and X = t, the equations (4.24), (4.25)

4.4Therefore, a complete list of G∼lin-inequivalent Lie-symmetry extensions within the class Wlin are

exhausted by the equations from the class Wlin′ with g1 = 0 (the (1+1)-dimensional wave equation for

ε = 1 and the two-dimensional Laplace equation for ε = −1), (g1, ε) = (−1, 1) (the (1+1)-dimensional

Klein–Gordon equation), (g1, ε) = (ε′,−1) (the two-dimensional Helmholz equation) and g1 = νx−2 (the

(1+1)-dimensional wave equation with the potential νx−2 for ε = 1 and the two-dimensional Laplace

equation with the potential νx−2 for ε = −1).
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and (4.26) reduce to the simple equations f̃f = 1, and Uux = Uut = 0,

i.e. Uu = const. By a scaling of u, which belongs to G∼, the constant Uu

can be set equal to 1. Differentiating the equation f̃ = 1/f with respect

to t and then, assuming (t̃, x̃, ũ) as basic variables, with respect to t̃, we

derive the equation U 0
tx = 0. Therefore, U 0 = ψ(x) + ψ̃(t) and the reduced

transformation T with T = x, X = t and Uu = 1 can be represented as the

composition of the transformations G(ψ), t ↔ x and G(ψ̃), where t ↔ x

denotes the transformation which only permutes t and x: t̃ = x, x̃ = t

and ũ = u. This means that up to G∼-equivalence of admissible transfor-

mations the transformation T coincides with t ↔ x. The corresponding

transformation components for the arbitrary elements f and g follow from

the equations (4.24) and (4.27). They read f̃ = 1/f and g̃ = −g/f . Since

the left-hand (resp. right-hand) sides of these equalities do not depend on

t̃ = x (resp. x̃ = t), the arbitrary elements of equations from the class (4.16)

that are connected by the transformation t↔ x satisfy the additional aux-

iliary constraints fx = gx = 0 and f̃x̃ = g̃x̃ = 0. In other words, admissible

transformations of the case under consideration are generated by transfor-

mations from the equivalence group G∼ of the entire class (4.16) and the

equivalence transformation t ↔ x of the subclass U which is singled out

from the class (4.16) by the additional auxiliary constraints fx = gx = 0

and fu 6= 0. In particular, the equivalence group of the subclass U con-

sists of the transformations of the form (4.29) with ϕxx = ψx = 0 and the

compositions of these transformations with t↔ x.

Now we consider the case Tx = 0 for which Tt 6= 0, Xt = 0 and Xx 6= 0.

Then the equations (4.24)–(4.26) reduce to f̃T 2
t = fX 2

x , (U 2
u /Tt)t = 0,

(U 2
u /Xx)x = 0. From the first equation we can conclude that f̃ũ 6= 0 if and

only if fu 6= 0. Solving the other two equations with respect to Uu, equating

the expressions obtained and separating variables in this equality, we derive

that U 1 := Uu = κ
√
|TtXx|, where κ is a nonzero constant. Differentiating
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the equation f̃T 2
t = fX 2

x with respect to t results in the consequence

Ttt
Tt

(
(ũ− U 0)f̃ũ + 4f̃

)
+ 2U 0

t f̃ũ = 0. (4.47)

If Ttt = 0, the equation (4.47) implies that U 1/
√
|Xx| = const and

U 0
t = 0 and, therefore, the transformation T belongs to the equivalence

group G∼.

Further we assume that Ttt 6= 0. By fixing a value of t, we derive from

the equation (4.47) that the arbitrary element f̃ is a solution of an ordinary

differential equation of the general form (ũ+ β̃(x̃))f̃ũ + 4f̃ = 0, where the

variable x̃ plays the role of a parameter and β̃ is a smooth function of x̃.

This implies that f̃ = α̃(x̃)(ũ+β̃(x̃))−4 for some smooth function α̃ = α̃(x̃).

Combining the equation f̃T 2
t = fX 2

x with the expression for f̃ yields

f =
T 2
t

X2
x

α̃(X)

(U 1u+ U 0 + β̃(X))4
=

α(x)

(u+ β(x))4
,

where α(x) := (κXx)
−4α̃(X) and β(x) := (β̃(X) + U 0)/U 1. Furthermore,

upon using transformations from the equivalence group G∼, we can set

β̃ = β = 0, which consequently implies that U 0 = 0. By means of equiva-

lence transformations, we can also set α, α̃ ∈ {−1, 1} and as the multiplier

relating α and α̃ is strictly positive, we have that α̃ = α =: ε ∈ {−1, 1}.
Then Xx is a constant and we can set X = x and κ = 1 using a scaling

and a translation of x and a scaling of u, which belong to G∼. There-

fore, U = ωu, where ω :=
√
|Tt| and hence ωt 6= 0. After taking into

account all the conditions derived, we reduce the equation (4.27) to the

form ω3g̃ + ω(ω−1)ttu = g. Differentiating the last equation with re-

spect to t and dividing the result by ω2ωt, we obtain ũg̃ũ + 3g̃ = 4σ̃ũ,

where σ̃ := −
(
ω(ω−1)tt

)
t
/(4ω3ωt) is a constant. The general solution of

the equation for g̃ is g̃ = µ̃(x)ũ−3 + σ̃ũ. The expression for g is similar:

g = µ(x)u−3 + σu, where µ = µ̃, and σ := σ̃ω4 + ω(ω−1)tt is, like σ̃, a

constant. We rewrite the relation defining σ as an ordinary differential

equation for ω, (ω−1)tt = σω−1 − σ̃ω3. Up to scalings from G∼ there are
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only three essentially different values of σ (resp. σ̃), σ, σ̃ ∈ {−1, 0, 1}. Fi-

nally, from the class (4.16) we single out the subclass of equations of the

general form (4.46).

For each pair of values of σ, the corresponding equations from the sub-

class (4.46) with the same value of the parameter function µ are related

by a point transformation. This is why within this subclass it suffices to

classify admissible transformations with σ̃ = 0. We solve the equation

(ω−1)tt = σω−1 with respect to ω and then construct T using the relation

Tt = ω2 mod G∼. We find

T =


(a1t+ a0)/(a3t+ a2) if σ = 0,

(a1e
2t + a0)/(a3e

2t + a2) if σ = 1,

b1 tan(t+ b0) + b2 if σ = −1,

where a0, . . . , a3, are constants with a1a2 − a0a3 6= 0 that are determined

up to a common nonvanishing multiplier, and b0, b1 and b2 are constants

with b1 6= 0.

In the case σ = 0 we obtain a subgroup of the complete point symmetry

group of the corresponding equation. This group is obviously isomorphic

to PGL(2,R). The condition Ttt 6= 0 is equivalent to a3 6= 0 and we

can assume a3 = 1 due to the indeterminacy up to a constant multiplier.

Then a0 − a1a2 6= 0 and we gauge a2, a0 and a1 to 0, 1 and 0 using

the s-action of Pt(a2) and the t-action of Pt(−a1) ◦ Dt(c2
2) ◦ Du(c2) with

c2 := (a0 − a1a2)
−1. All the above transformations from the equivalence

group G∼ induce point symmetries of the equation under consideration.

Therefore, we can assume that T = t−1 mod G∼, obtaining the family T2a

of admissible transformations.

In the same way we derive that T = 1
2e

2t mod G∼ and T = tan t mod G∼

if σ = 1 and σ = −1, which gives the family T2b and T2c of admissible

transformations, respectively.

We set µx 6= 0 and µ̃x̃ 6= 0 for admissible transformations from the

family T2 since similar admissible transformations with µx = 0 are G∼-
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equivalent to admissible transformations from the restriction of the fam-

ily T1 toW11∩W12. The equations of the form (4.46) with µx 6= 0 are not

related to those with µx = 0 by point transformations.

Following the argumentation for the generating set B0 of G∼0 from the

end of the simultaneous proof of Lemmas 4.17 and 4.18, we can show that

the singled out set B1 of admissible transformations of the subclass W1

is a minimal self-consistent generating set with respect to G∼-equivalence

for G∼1 .

The equivalence groups of the subclasses W0 and W1 coincide with the

equivalence group G∼ of the entire class W , and G∼ = G∼0 t G∼1 . There-

fore, after uniting the generating (up to G∼-equivalence) sets B0 and B1

of G∼0 and G∼1 , which are minimal and self-consistent with respect to G∼-

equivalence within the corresponding groupoids, we get the generating (up

to G∼-equivalence) set B of G∼, which is minimal and self-consistent with

respect to G∼-equivalence within G∼.

Lemma 4.21. A complete list of G∼-inequivalent Lie-symmetry extensions

for equations of the general form (4.46) is exhausted by the following cases:

1a–1c. general µ : gθ = g∩σ ,

2a–2c. µ = ±1: gθ = g∩σ + 〈∂x〉,

3a–3c. µ = νx−2, ν 6= 0: gθ = g∩σ + 〈2x∂x − u∂u〉,

4a–4c. µ = 0: gθ = g∩σ + 〈∂x, 2x∂x − u∂u〉
with

a. σ = 0: g∩0 = 〈∂t, 2t∂t + u∂u, t
2∂t + tu∂u〉,

b. σ = 1: g∩1 = 〈∂t, e2t(∂t + u∂u), e
−2t(∂t − u∂u)〉,

c. σ = −1: g∩−1 = 〈∂t, cos(2t)∂t − sin(2t)u∂u, sin(2t)∂t + cos(2t)u∂u〉.

The cases σ = 1 and σ = −1 reduce to the case σ = 0 with the same

value of the parameter function µ = µ(x) by the additional equivalence

transformations t̃ = 1
2e

2t, x̃ = x, ũ = etu and t̃ = tan t, x̃ = x, ũ = u cos t,

respectively.
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Proof. It follows from Lemma 4.20 that it suffices to classify only equations

of the form (4.46) with σ = 0. Spitting the system of determining equations

(4.31)–(4.35) for a Lie-symmetry vector field Q of the equation Lθ with θ =

(f, g) = (εu−4, µ(x)u−3) with respect to u, we derive that the components

of Q are of the form τ = τ(t), ξ = 2c1x+c0, η = (1
2τt−c1)u, where τttt = 0,

and c0 and c1 are constants with (2c1x + c0)µx = −4c1µ. The four cases

for µ from the lemma’s statement arise in the course of analysis of the last

equation.

Lemmas 4.20 and 4.21 jointly imply that there are no more singular

Lie-symmetry extensions within the class W1.

Remark 4.22. The groupoid of the class of equations of the form (4.46)

with ε = ±1 and σ ∈ {−1, 0, 1} can be represented in the form (1.1),

where the parameter σ plays the role of γ, Φ0 is the identity transforma-

tion of (t, x, u), and Φ1 and Φ−1 are transformational parts of T2a and T2b,

respectively. Since this class is a subclass of W12 that is obtained by gaug-

ing the arbitrary elements W12 with equivalence transformations of W12,

then the equivalence groupoid ofW12 is of similar structure. The analogue

of the last claim also holds for the intermediate class of equations of the

form (4.46) with ε ∈ R 6=0 and σ ∈ R.

4.2.6. Classification of Appropriate Subalgebras. The equivalence

group G∩ and the equivalence algebra g∼ admit related representations in

the form of a semi-direct product and a semi-direct sum, G∼ = Ĝ∩ oG∼ess

and g∼ = ĝ∩3g∼ess, respectively. Here Ĝ∩ = {Pt(c0) | c0 ∈ R} is the normal

subgroup of G∼ associated with the kernel group G∩ of the class (4.16),

G∼ess is the subgroup of G∼ that consists of the transformations of the

form (4.29) with c0 = 0 and thus effectively acts on the class (4.16),

ĝ∩ = 〈P t〉 is the ideal of g∼ corresponding to the kernel algebra g∩ and

g∼ess = 〈Du,Dt,D(ζ),Z(χ)〉 is a subalgebra of g∼, which is the “essential”

part of g∼ from the point of view of Lie-symmetry extensions within the
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class (4.16). Denote by π the projection from the space with the coordi-

nates (t, x, u, f, g) to the space with the coordinates (t, x, u), and by π∗Q

the pushforward of a projectable vector field Q in the space with the coor-

dinates (t, x, u, f, g) by π. A subalgebra a of g∼ is called appropriate if its

projection π∗a is the maximal Lie invariance algebra gθ of an equation Lθ
from the class (4.16). Any appropriate subalgebra a of g∼ should contain

ĝ∩ as an ideal. Hence it can also be represented in the form of the semi-

direct sum a = ĝ∩3 s, where s is a subalgebra of g∼ess. We call a subalgebra

s of g∼ess appropriate if s = g∼ess ∩ a for an appropriate subalgebra a of g∼.

Appropriate subalgebras a1 and a2 of g∼ are G∼-equivalent if and only if

the corresponding subalgebras s1 and s2 of g∼ess are G∼ess-equivalent. As a re-

sult, the classification of Lie-symmetry extensions induced by subalgebras

of g∼ up to G∼ess-equivalence reduces to the classification of appropriate

subalgebras of g∼ess up to G∼ess-equivalence.

For the latter classification, we need to compute the adjoint action of

the group G∼ess on the algebra g∼ess. Since this algebra is infinite-dimensional,

it is convenient to realize this computation via pushing forward the vector

fields Du, Dt, D(ζ) and Z(χ), which span g∼ess, by elementary equivalence

transformations from G∼ess, i.e., by Dt(c1), G(ψ), D(ϕ) and Du(c2), cf. Sec-

tion 4.2.2. In other words, the usual transformation rule of vector fields

under point transformations will be used [21,72]. This yields the following

non-identity actions:

G∗(ψ)Du = Du −Z(ψ), G∗(ψ)D(ζ) = D(ζ) + Z(ζψx − 1
2ζxψ),

Du
∗(c2)Z(χ) = c2Z(χ), D∗(ϕ)Z(χ) = Z

(
|ϕ̂x|−1/2χ(ϕ̂)

)
,

D∗(ϕ)D(ζ) = D
(
ζ(ϕ̂)/ϕ̂x

)
,

where ϕ̂ = ϕ̂(x) is the inverse of the function ϕ.

All vector fields from π∗g
∼
ess identically satisfy the determining equa-

tions for Lie symmetries of equations from the class (4.16), except the

equations (4.34) and (4.35). The latter two equations imply restrictions on

appropriate subalgebras of g∼ess.



231

Lemma 4.23. s∩ 〈Du,Z(χ)〉 = s∩ 〈Dt〉 = {0} for any appropriate subal-

gebra s.

Proof. Suppose that an appropriate subalgebra s of g∼ess contains a vector

field Q = bDu +Z(χ), where the constant b or the function χ = χ(x) does

not vanish. Then π∗Q is a Lie-symmetry vector field for an equation Lθ
from the class (4.16). Substituting the components of the vector field π∗Q

into the determining equations (4.34) and (4.35) implies the following con-

ditions for the arbitrary-element tuple θ = (f, g):

(bu+ χ)fu = 0, (bu+ χ)gu = bg − χxxf.

Then fu = 0 and guu = 0 if b 6= 0 or χ 6= 0. This contradicts the definition

of the class (4.16).

Analogously, the condition π∗Dt ∈ gθ gives the equation f = 0, which

is also inconsistent with the definition of the class (4.16).

Therefore, any appropriate subalgebra contains no vector fields of the

forms considered.

Lemma 4.24. dim
(
s ∩ 〈D(ζ),Z(χ)〉

)
∈ {0, 1, 3} for any appropriate sub-

algebra s.

Proof. Suppose that s is an appropriate subalgebra of g∼ess and dim
(
s ∩

〈D(ζ),Z(χ)〉
)
> 2. This means that the subalgebra s contains (at least)

two vector fields Qi = D(ζ i) + Z(χi), where the functions ζ i, i = 1, 2,

should be linearly independent in view of Lemma 4.23. In other words,

the projections π∗Q
i of Qi simultaneously are Lie-symmetry vector fields

of an equation from the class (4.16). By W we denote the Wronskian of

the functions ζ1 and ζ2, W = ζ1ζ2
x − ζ2ζ1

x. W 6= 0 as the functions ζ1 and

ζ2 are linearly independent.

Plugging the coefficients of π∗Q
i into the equation (4.34) gives two equa-

tions with respect to f only,

2ζ ifx + (ζ ixu+ 2χi)fu = 4ζ ixf. (4.48)
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We multiply the equation (4.48) with i = 1 by ζ2 and subtract it from

the equation (4.48) with i = 2 multiplied by ζ1. Dividing the resulting

equation by W , we obtain the ordinary differential equation (u+β)fu = 4f ,

where β = β(x) := 2(ζ1χ2
x − ζ2χ1

x)/W and the variable x plays the role

of a parameter. It is possible to set β = 0 by means of an equivalence

transformation, G(−β). Indeed, this transformation preserves the form of

the vector fields Qi, only changing the values of the functional parameters

χi. In particular, it does not affect the linear independency of the functions

ζ i. The integration of the above equation for β = 0 yields that f = αu4,

where α = α(x) is a nonvanishing function of x. In view of the derived

form of f , splitting of equations (4.48) with respect to u leads to ζ iαx = 0

and χiα = 0, i.e., αx = 0 and χi = 0. The constant α can be scaled to

α = ±1 by an equivalence transformation.

In a similar manner, consider the equation (4.35), taking into account

the restrictions set on parameter functions and the form of f . For each Qi,

the equation (4.35) gives an equation with respect to g,

2ζ igx + ζ ixugu = ζ ixg − ζ ixxxαu5. (4.49)

Again, we multiply the equation (4.49) with i = 1 by ζ2 and subtract

it from the equation (4.49) with i = 2 multiplied by ζ1, divide the re-

sulting equation by W and thereby obtain that ugu = g + µ0u5, where

µ0 = µ0(x) := −α(ζ1ζ2
xxx − ζ2ζ1

xxx)/W and the variable x again plays

the role of a parameter. Integrating the last equation for g directly gives

g = µ0u5/4 + µ1u, where µ1 = µ1(x) is a smooth function of x. The

parameter function µ1 can be set equal to zero by the equivalence trans-

formation D(ϕ), where the function ϕ = ϕ(x) is a solution of the equation

α(2ϕxxxϕx − ϕ 2
xx) + µ1ϕ 2

x = 0. Substituting the derived form of g into

equations (4.49) and splitting with respect to u, we find that µ1
x = 0,

ζ ixxx = 0.

Summing up, we have proved that any equation of the class (4.16)

admitting (at least) two linearly independent vector fields π∗Q
i in fact
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possesses exactly three linearly independent vector fields of this form and

is G∼-equivalent to an equation of the form utt = ±u4uxx + µ1u, where µ1

is a constant which can be scaled to ±1 if it is not zero.

The equation utt = ±u4uxx, for which µ1 = 0, admits an additional

Lie-symmetry extension.

Corollary 4.25. There are only two G∼-inequivalent cases of Lie-

symmetry extensions in the class (4.16) where the corresponding Lie in-

variance algebras contain at least two linearly independent vector fields of

the form π∗Q
i with Qi = D(ζ i) + Z(χi),

14d. utt = εu4uxx + ε′u : gmax = g∩ + π∗
〈
D(1),D(x),D(x2)

〉
,

19d. utt = εu4uxx : gmax = g∩ + π∗
〈
D(1),D(x),D(x2),Du − 2Dt

〉
with ε, ε′ = ±1.

Corollary 4.25 gives the classification of appropriate subalgebras of g∼ess

the dimensions of whose intersections with 〈D(ζ),Z(χ)〉 are not less than

two. Hence we should continue with the computation of inequivalent ap-

propriate subalgebras of g∼ess that contain at most one linearly independent

vector field of the form D(ζ) + Z(χ), where ζ = ζ(x) is a nonvanishing

function. In view of Lemma 4.23 it is obvious that the dimension of such

subalgebras cannot be greater than three. Here we select candidates for

such subalgebras using only restrictions on appropriate subalgebras pre-

sented in Lemma 4.23. Since there exist specific restrictions for two- and

three-dimensional appropriate subalgebras, we will make an additional se-

lection of appropriate subalgebras from the set of candidates directly in

the course of the construction of invariant equations.

The result of the classification is formulated in the subsequent lemmas.

Lemma 4.26. A complete list of G∼ess-inequivalent appropriate one-

dimensional subalgebras of g∼ess is given by

〈2Du − qDt + 2D(δ)〉, 〈Dt −D(2)〉, 〈Dt −Z(2)〉, 〈D(1)〉, (4.50)
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where δ ∈ {0, 1} and q is an arbitrary constant.

Remark 4.27. In Lemma 4.26 and in the next two lemmas, we choose such

values of parameters in basis elements of appropriate subalgebras among

possible ones up to G∼-equivalence that the corresponding equations from

the class W have a simple form.

Lemma 4.28. Up to G∼ess-equivalence, any appropriate two-dimensional

subalgebra of g∼ess which contains at most one linearly independent vector

field of the form D(ζ) + Z(χ) belongs to the following list:

〈Du −D(p), Dt −D(2)〉, 〈Du − 2D(x), Dt −Z(2)〉,

〈a1Du + a2Dt + a3D(x) + Z(δ), D(1)〉,
(4.51)

where p, a1, a2, a3 and δ are constants with p 6= 0, (a1, a2) 6= (0, 0),

(a2, a3) 6= (0, 0) and (a1, a3, δ) 6= (0, 0, 0). Due to scaling of the first basis

element and G∼ess-equivalence we can also assume that one of a’s equals 1,

(2a1 + a3)δ = 0, and δ ∈ {0, 1}.

Lemma 4.29. Up to G∼ess-equivalence, any appropriate three-dimensional

subalgebra of g∼ess, which contains at most one linearly independent vector

field of the form D(ζ) + Z(χ), has one of the forms

〈Du + p1D(x), Dt + p2D(x), D(1)〉,

〈Du − 2D(x) + Z(d), Dt −Z(2), D(1)〉,
(4.52)

where p1, p2 and d are constants such that p1p2 6= 0.

4.2.7. Regular Lie Symmetry Extensions For each vector field Q
from g∼, the substitution of the components of π∗Q into the system (4.34)–

(4.35) results in the condition on the arbitrary-element tuple θ = (f, g) for

the equation Lθ to be invariant with respect to π∗Q. This is why equations

from the class (4.16) that are invariant with respect to the projection π∗s

of an appropriate subalgebra s of g∼ can be described by the following way:

For each basis elementQ of s, we substitute the components of π∗Q into the
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equations (4.34) and (4.35). Collecting all the equations derived from the

entire basis s leads to a system of first-order (quasi)linear partial differential

equations in the arbitrary elements f and g to be solved. Simultaneously

we check whether the projection π∗s is really the maximal Lie invariance

algebra of the equation Lθ for obtained values of the arbitrary-element

tuple θ = (f, g).

Each of the algebras listed in Lemma 4.26 is really an appropriate one-

dimensional subalgebra of g∼ess and results in a simple uncoupled system of

two first-order linear differential equations in f and g. The corresponding

list of equations from the class (4.16), which possess one-dimensional Lie-

symmetry extensions of g∩ related to g∼, reads

1. 2Du − qDt + 2D(δ) : utt = |u|q(f̂(ω)uxx + ĝ(ω)u),

2. Dt −D(2) : utt = ex(f̂(u)uxx + ĝ(u)),

3. Dt −Z(2) : utt = eu(f̂(x)uxx + ĝ(x)),

4. D(1) : utt = f̂(u)uxx + ĝ(u),

where ω := x− δ ln |u|, δ ∈ {0, 1} and q is an arbitrary constant. Here and

in what follows, in each case we present only vector fields that extend the

basis (P t) of the ideal ĝ∩ of g∼ into a basis of the corresponding subalgebra

of g∼.

The computation related to two-dimensional extensions are more com-

plicated. We first present its result and then give some explanations.

9. Du −D(p), Dt −D(2), p 6= 0: utt = ±ex|u|p(uxx + νu),

10. Du − 2D(x), Dt −Z(2) : utt = ±x2euuxx + νeu,

11. −Du + 2Dt + 2D(x), D(1) : utt = f̂(u)uxx,

12. (1− q)Du + 2qDt − 2(1− q)D(x)−Z(4), D(1) :

utt = ±euuxx + ε′equ,

13. (3− p+ q)Du + 2(1− q)Dt + 2(1 + p− q)D(x), D(1) :

utt = ±|u|puxx + ε′|u|q.
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Constraints for constant and functional parameters that are imposed by

the maximality condition for the corresponding extensions and their in-

equivalence are discussed after Theorem 4.11.

Cases 9 and 10 are associated with the first and second families of

subalgebras listed in Lemma 4.28, respectively. In both the cases, ν is an

arbitrary constant. Note that an arbitrary nonzero constant multiplier in

the expression for the arbitrary element f , which arises in the course of

integrating the equation for f , can always be set to ±1, e.g., by scaling

of t.

The third span from Lemma 4.28 in fact represents a multiparametric

series of candidates for appropriate extensions, which is partitioned in the

course of the construction of invariant equations into Cases 11–13. Not

all values of series parameters give appropriate extensions. Additional

constraints for parameters follow from the compatibility conditions of the

associated system in the arbitrary elements,

fx = 0, ((a1 + 1
2a3)u+ δ)fu = pf,

gx = 0, ((a1 + 1
2a3)u+ δ)gu = qg,

with the inequalities f 6= 0 and (fu, guu) 6= (0, 0) and the requirement that

the dimension of extensions should not exceed two. Here we introduce the

notation p = 2(a3 − a2) and q = a1 + 1
2a3 − 2a2.

The above partition is carried out in the following way. If a3 = −2a1

and δ = 0, the inequality f 6= 0 implies that p = 0, i.e., a2 = a3. Since a1,

a2 and a3 cannot simultaneously be zero, we obtain that q 6= 0 and hence

g = 0. Multiplying the first basis element by −a−1
1 , we set a1 = −1. This

gives Case 11. For a3 = −2a1 and δ = 1 we have a2 = −q/2, a3 = (p−q)/2
and a1 = −(p− q)/4. The parameter p should be nonzero since otherwise

we obtain the Liouville equation whose maximal Lie invariance algebra is

infinite-dimensional. We additionally multiply the first basis element by

−4 and scale p with Du(c2) for some c2 to 1 and obtain Case 12. Case 13

corresponds to the condition a3 6= −2a1. Scaling the first basis element
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allows us to set a1 + 1
2a3 = 4. Then a2 = 2(1 − q), a3 = 2(1 + p − q)

and a3 = (3− p+ q). In both Cases 12 and 13 the parameter ε′ is nonzero

(otherwise the extension dimension is greater than two) and can be gauged

to ±1 by simultaneous scaling of t and x.

Consider the candidates for three-dimensional appropriate extensions

listed in Lemma 4.29. The compatibility of the associated systems in the

arbitrary elements, supplemented with the inequality f 6= 0, implies p1 =

2(p2 − 1) and d = −4 for the first and the second span of Lemma 4.29,

respectively. The general solutions of these systems up to G∼-equivalence

are (f, g) = (±|u|p, 0) and (f, g) = (±eu, 0). This gives the following cases

of Lie-symmetry extensions:

16. (p− 4)Du − 2pD(x), (p− 4)Dt − 4D(x), D(1), p 6= 0, 4:

utt = ±|u|puxx,

17. Du − 2D(x)−Z(4), Dt −Z(2), D(1) :

utt = ±euuxx.

Here p := 4(p2− 1)/p2 6= 4 since for p = 4 the corresponding equations ad-

mits the Lie-symmetry vector fields π∗D(x) and π∗D(x2). Equations from

the class (4.16) which are invariant with respect to two linearly indepen-

dent vector fields of the form π∗Q
i, where Qi = D(ζ i)+Z(χi), are classified

in Corollary 4.25. Therefore, G∼-inequivalent regular Lie-symmetry exten-

sions in the class (4.16) are exhausted by Cases 1–4, 9–13, 14d, 16, 17 and

19d.

4.2.8. Concluding Remarks. The complete group classification of the

class W of (1+1)-dimensional nonlinear wave and elliptic equations of the

form (4.16) is performed up to both G∼- and G∼-equivalences using the new

version of the algebraic method of group classification for non-normalized

classes of differential equations. The results of the classification are col-

lected in Theorem 4.11. The key ingredient of the classification procedure

is the construction of a generating set for the equivalence groupoid G∼ of
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the class W modulo G∼-equivalence. This generating set is given in The-

orem 4.12. In view of the partition G∼gen = G∼ t G∼lin of the equivalence

groupoids G∼gen of the superclass Wgen of all equations of the form (4.16)

with f 6= 0, cf. Remark 4.8, we can merge the results on W with the anal-

ogous results from Remark 4.19 on the classWlin of linear equations of the

form (4.16) to those for Wgen. Thus, we have also obtained the complete

group classifications of the classes Wlin and Wgen and the classifications of

admissible transformations of these classes.

Below we compare this paper’s results with some similar results existing

in the literature for related classes of differential equations. The problem of

group classification for the class of semilinear wave equations of the general

form

utt = uxx + g(t, x, u, ux) (4.53)

was solved in [181, 182]. The class (4.53) was partitioned into four (nor-

malized) subclasses, and each of these subclasses was classified separately.

One of these subclasses, which we denote by K, is singled out from the

class (4.53) by the constraint gux = 0. The group classification of the

subclass K was carried out in Section 6 of [182] and the major part of

classification results was collected in Table 1 therein, see also Section V

and Table I in [181]. Cases 1δ=1,p=2,f̂=1, 2f̂=1, 5aε=1, 6aε=1 and 18aε=1 of

Table 4.6 in the present paper correspond to Cases 3, 2, 8, 5 and 9 of

Table 1 in [182], whereas the Liouville equation is given as Case 20 in Ta-

ble 4.6 of the present paper and as the equation (5.4) in [182], and this

exhausts all possible analogous cases. The counterpart of Case 1δ=1,p 6=2,f̂=1

of our Table 4.6 is missed in [181, 182]. In fact, each of Cases 3 and 4 of

Table 1 in [182] should contain one more constant parameter, which cannot

be removed by equivalence transformations of the subclass K. In [179,180],

Lahno and Spichak classified the semilinear elliptic equations of the rather

general form

utt + uxx = F (t, x, u, ut, ux)
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whose maximal Lie invariance algebras are finite-dimensional. Cases 6a, 7,

5a and 18a of Table 4.6 are the restrictions of the first cases of Theorems 3.1

and 3.2 from [179] and of the cases “A3.8-Invariant Equations (1)” and

“A4.10-Invariant Equations (3)” from [180] to the class W , respectively.

There are no other related cases in [179,180] and the present paper.

More important than the solutions of the above specific classification

problems are the development and modification of general concepts and

techniques as well as their combinations that have been carried out in the

course of solving these problems in the present paper.

Partitions of classes of differential equations into subclasses that induce

partitions of the corresponding equivalence groupoids had already regularly

been applied in the course of the study of equivalence groupoids [21, 239,

248]. We have made the two partitions of classes, Wgen = W tWlin and

W =W0 tW1, obtaining the partitions of the groupoids

G∼gen = G∼ t G∼lin and G∼ = G∼0 t G∼1 ,

see Remark 4.8 and Proposition 4.16. All the above classes and subclasses

have the same equivalence groupG∼. Nevertheless, in contrast to the exam-

ples existing in the literature, the subclasses in these two partitions do not

have better normalization properties than their superclasses. This is why

no kind of normalization can be used for justifying the partitions, which

are rather derived via the direct analysis of the determining equations

for admissible transformations. Although the structure of the partition

components is simpler than the entire groupoid for both the groupoid par-

titions, this becomes clear only after a comprehensive study of admissible

transformations.

We have separately constructed generating sets B0 and B1 of the equiv-

alence groupoids G∼0 and G∼1 , which are constituted by the families T1|W0

and T3–T9 and by the families T1|W1
and T2 given in Theorem 4.12, re-

spectively. Due to constructing B0 and B1 modulo G∼-equivalence, we can

and should factor out elements of the action groupoid GG∼ from admis-
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sible transformations before including to these sets. This is realized via

successively gauging arbitrary elements of singled out subclasses of equa-

tions that are sources or, equivalently, targets of elements from G∼ \ GG∼.
In other words, mapping these subclasses onto smaller ones with simpler

equivalence groupoids by families of equivalence transformations, we have

factored out subgroups of G∼ and have simplified the consideration for the

corresponding classification cases.

To classify admissible transformations of the class W0 in the optimal

way, we split the construction of the generating set B0 in the simultaneous

proof of Lemmas 4.17 and 4.18 into two cases depending on the number

of independent constraints for arbitrary elements that arise in the course

of the classification. In this way, we have extended for the first time the

method of furcate splitting to the construction of generating sets of admis-

sible transformations.

Moreover, we have found a bijective functor between two categories,

which are the equivalence groupoids G∼00ε′ and G∼01g2
of the subclasses W00ε′

and W01g2 of equations of the forms (4.42) and (4.45) with g1 6= 0 and a

fixed ε′ ∈ {−1, 1} and with a fixed g2 satisfying g2
ug

2
uuu 6= (g2

uu)
2, respec-

tively. The isomorphism from G∼00ε′ to G∼01g2
is given by

ε 7→ ε̌ = ε, g1 7→ ǧ1 = g1,

Φ: t̃ = T, x̃ = X, ũ = u− ln |X 2
x − εX 2

t | 7→

Φ̌ : t̃ = T, x̃ = X, ũ = u.

Fixing ε′ and g2 is natural since values of these parameters cannot be

changed by admissible transformations in the entire classes W00 and W01

up to gauge equivalence transformations of moving a nonzero constant

multiplier between g1 and g2 within W01, which can be neglected. That

is, the partitions of the classes W00 and W01 into the subclasses associated

with fixed values of ε′ and of g2, W00 = tε′W00ε′ and W01 = tg2W01g2,
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induce the partition of the corresponding equivalence groupoids,

G∼00 = tε′ G∼00ε′ and G∼01 = tg2 G∼01g2.

No equations fromW00ε′ are related to equations fromW01g2 by point trans-

formations. In other words, the functor from G∼00ε′ to G∼01g2
is not underlaid

by a family of point transformations generating a mapping from W00ε′

onto W01g2 or conversely. Nevertheless, it allows us to easily obtain the

equivalence groupoid G∼01g2
from the equivalence groupoid G∼00ε′.

A necessary preliminary step for finding the above functor is the proper

selection of classes to be related via a functor. For the first (degenerate)

case in the simultaneous proof of Lemmas 4.17 and 4.18, under the gauge

f = ε we derive the specific form g = g0(x)eu + g1(x) for values of g of the

source and target equations of admissible transformations that are not gen-

erated by elements of G∼. There are two possibilities for a further gauging

of parameters in the above form of g, either to g1 = 0 or to g0 = ε′. The

first possibility seems preferable since after gauging we obtain equations of

the same general form as those in the class (4.45). In this way, the study

can be reduced to describing the equivalence groupoid of the single class of

equations of the form (4.45), where the auxiliary inequality g2
ug

2
uuu 6= (g2

uu)
2

is neglected. At the same time, the structure of the subgroupoid of the

above groupoid that is the equivalence groupoid of the subclass singled out

by the constraint g2
ug

2
uuu = (g2

uu)
2 is different from and more complicated

than the structure of its complement, and thus this subgroupoid needs a

separate consideration. As a result, the preferable gauge is in fact g0 = ε′.

Although we then have to study two classes of equations of different forms,

via excluding the evidently marked out value g1 = 0, which corresponds

to the Liouville equations giving rise to the family T9 of admissible trans-

formations, and via fixing ε′ and g2 we have partitioned the corresponding

equivalence groupoids into naturally isomorphic subgroupoids. Therefore,

it suffices to describe only one of them.

It is convenient to construct a generating set for the equivalence
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groupoid G∼00ε′ up to the equivalence group of the subclassW00ε′ since then

we can apply various algebraic techniques, including an original extension

of Hydon’s algebraic method to admissible transformations.4.5 These tech-

niques are based on knowing the maximal Lie invariance algebras of equa-

tions from the subclassW00ε′ whose efficient classification involves a prelim-

inary knowledge on admissible transformations within the subclass W00ε′.

This is why we have merged the proofs of Lemmas 4.17 and 4.18. Mapping

the families T3′–T7′ into the families T3–T7 and uniting the restrictions of

the families T3–T8 to W01 and to the class of equations of the same form

with g2
ug

2
uuu = (g2

uu)
2 provide us with the presentation of the final results in

Theorem 4.12 in a concise form.

An unexpected by-product of the proper additional gauging of the

arbitrary elements for equations from the class W0 with f = ε and

g = g0(x)eu + g1(x) by transformations from the group G∼ is that this

gauging is in accordance with the maximal natural gauging of the arbi-

trary elements within the class Wlin by transformations from the same

group, which leads to the subclass Wlin′ of Wlin. There exists a canonical

isomorphism between the essential equivalence groupoid G∼ess
lin′ of Wlin′ and

the equivalence groupoid of the class of equations of the form (4.42) with a

fixed value of ε′, and it is the above concordance that makes this existence

evident. As a result, the complete group classifications of the classWlin up

to G∼- and G∼-equivalences and the classification of admissible transforma-

tions within this class are carried out in the single Remark 4.19. This is one

more demonstration of the efficiency of the functor method in classification

problems of group analysis of differential equations. Note that analogously

to the previous isomorphism between G∼00ε′ and G∼01g2
, this groupoid isomor-

phism is not induced by families of admissible point transformations within

4.5This consideration shows that the algebraic method can further be developed to the construction

of the complete equivalence groupoids for classes of differential equations via applying the algebraic

method to the corresponding equivalence algebroids, which are infinitesimal counterparts of the equiva-

lence groupoids.
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the superclass Wgen.

Necessary preliminaries for the classification of singular Lie-symmetry

extensions within the subclass W1 have been given by the classification of

admissible transformations within this subclass. As a result, the former

classification can easily be completed by either the direct or the algebraic

method. The classification of regular Lie-symmetry extensions has been

carried out within the framework of the algebraic method and has reduced

to the preliminary group classification of the subclass W . We have used

our optimized version of this method, which involves the classification of

candidates for appropriate subalgebras of g∼ by taking into account the

principal restrictions on the dimensions and structure of such subalgebras

and the completion of selecting appropriate subalgebras in the course of

constructing the corresponding equations possessing Lie-symmetry exten-

sions.

4.3. Lie Symmetries of (2+1)-Dimensional

Nonlinear Dirac Equations

In 2004/2005 the first truly two-dimensional solid state material, graphene,

was created in the laboratory [210,211,331]. Later in 2010 the Nobel Prize

in Physics was awarded to A. Geim and K. Novoselov “for groundbreak-

ing experiments regarding the two-dimensional material graphen”. It was

noted in [210] that in graphene “electron transport is essentially governed

by Dirac’s (relativistic) equation.” The authors of [331] has presented a

new class of nonlinear phenomena in Bose–Einstein condensates in a honey-

comb optical lattice, that can be described by a nonlinear Dirac equation

(NLDE) in 2+1 dimensions. The form of the nonlinearity appeared as

a natural physical result of binary interactions between bosons. It was

shown that NLDE for Bose–Einstein condensates breaks the Lie symmetry

governed by Poincaré algebra. After these works there were a number of
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papers with studies of NLDEs in two spatial dimensions. For example,

some exact stationary state solutions of a nonlinear Dirac equation in 2+1

dimensions was constructed in [113] (see also [115]). The important results

on symmetries of NLDEs can be found in [89,95].

Inspired by the importance of (2+1)-dimensional NLDEs we investigate

Lie symmetries of the following model equations

(iσ2∂t + σ1∂x − σ3∂y)Ψ = Φ, where Ψ =

(
u

v

)
, Φ =

(
F

G

)
. (4.54)

Here u = u(t, x, y) and v = v(t, x, y) are dependent variables, F = F (u, v)

and G = G(u, v) are arbitrary smooth functions which are not linear in u

and v simultaneously, σ1, σ2, and σ3 are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

Equation (4.54) can be rewritten as the coupled system of first-order partial

differential equations (PDE system)

vt + vx − uy = F (u, v),

ut − ux − vy = −G(u, v).
(4.55)

It is well known that the Dirac equation describes a complex wave

function. However, for some physical problems it is possible to restrict

ourselves to real solutions like it is done in theories of massive neutrino.

In this case a special (Majorana) representation of the Dirac matrices with

purely imaginary entries should be used. In the present paper we also

restrict ourselves to the Dirac equation for real wave functions.

4.3.1. Lie symmetries. We study Lie symmetries of PDE systems from

class (4.55) using the classical approach [217,227]. We fix a system L from

class (4.55) and search for vector fields of the form

X = ξt(t, x, y, u, v)∂t + ξx(t, x, y, u, v)∂x + ξy(t, x, y, u, v)∂y
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+ ηu(t, x, y, u, v)∂u + ηv(t, x, y, u, v)∂v

that generate one-parameter point symmetry groups of L. These vector

fields form the maximal Lie invariance algebra Amax = Amax(L) of the PDE

system L. Any such vector field X satisfies the infinitesimal invariance

criterion, i.e., we require that

X(1)
(
vt + vx − uy − F (u, v)

)∣∣
L = 0,

X(1)
(
ut − ux − vy +G(u, v)

)∣∣
L = 0.

(4.56)

After the elimination of ut and vt by means of (4.55), equations (4.56)

become identities in nine variables, t, x, y, u, v, ux, uy, vx and vy. In fact,

equations (4.56) are polynomials in the variables ux, uy, vx and vy. The co-

efficients of different powers of these variables are zero, which gives twenty

four determining equations for the coefficients ξt, ξx, ξy, ηu and ηv. The

computations were verified using GeM software package for computation

of symmetries and conservation laws of differential equations [57].

At first we solve those determining equations, which do not involve F

and G, and find the form of the coefficients of the operator X:

ξt = 1
2α0(t

2 + x2 + y2) + (δ + α1x+ α2y)t+ β1y + β2x+ ρ0,

ξx = 1
2α1(t

2 + x2 − y2) + (δ + α0t+ α2y)x− β0y + β2t+ ρ1,

ξy = 1
2α2(t

2 − x2 + y2) + (δ + α0t+ α1x)y + β0x+ β1t+ ρ2,

ηu = λu+ ϕ− 1
2(β2 + α0x+ α1t)u

+1
2(α2(x− t)− (α0 + α1)y − (β0 + β1))v,

ηv = λv + ψ + 1
2(β2 + α0x+ α1t)v

−1
2(α2(x+ t) + (α0 − α1)y + (β0 − β1))u,

where αi, βi, ρi, i = 0, 1, 2, and δ are arbitrary constants whereas λ, ϕ, and

ψ are arbitrary smooth functions of the independent variables t, x, and y.

Therefore, the general form of the infinitesimal operator is

X = χ+ αiK
i + βiJ

i + δD + ρiP
i, (4.57)
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where αi, βi, ρi, i = 0, 1, 2, and δ are arbitrary constants and

χ = (λu+ ϕ)∂u + (λv + ψ)∂v, P 0 = ∂t, P 1 = ∂x, P 2 = ∂y,

D = t∂t + x∂x + y∂y, J0 = x∂y − y∂x − 1
2v∂u + 1

2u∂v,

J1 = t∂y + y∂t − 1
2v∂u −

1
2u∂v, J2 = t∂x + x∂t − 1

2u∂u + 1
2v∂v,

K0 = 1
2(t2 + x2 + y2)∂t + tx∂x + ty∂y − 1

2(xu+ yv)∂u + 1
2(xv − yu)∂v,

K1 = tx∂t + 1
2(t2 + x2 − y2)∂x + xy∂y − 1

2(tu+ yv)∂u + 1
2(yu+ tv)∂v,

K2 = ty∂t + xy∂x + 1
2(t2 − x2 + y2)∂y + 1

2(x− t)v∂u − 1
2(x+ t)u∂v.

The usual summation convention, i.e., summation over repeated indices, is

used in (4.57). The nonzero commutation relations are

[P i, Ki] = D, [P 0, J1] = P 2, [P 0, J2] = P 1, [P 1, J0] = P 2,

[P 1, J2] = P 0, [P 2, J0] = −P 1, [P 2, J1] = P 0, [J0, J1] = J2,

[J0, J2] = −J0, [J1, J2] = −J1, [P 0, K1] = J2, [P 0, K2] = J1,

[P 1, K0] = J2, [P 1, K2] = −J0, [P 2, K0] = J1, [P 2, K1] = J0,

where i = 0, 1, 2.

Then the remaining determining equations, which involve the func-

tions F , G and their first-order partial derivatives with respect to u and v,

are [(
λ− 1

2(β2+α0x+α1t)
)
u− 1

2 (α2(t−x)+(α0+α1)y+β0+β1) v+ϕ
]
Fu

+
[

1
2 (−α2(x+t)+(α1−α0)y+β0−β1)u+

(
λ+ 1

2(β2+α0x+α1t)
)
v+ψ

]
Fv

+1
2 [α2(t−x)+(α1+α0)y+β0+β1]G

+
[
(α0+ 1

2α1)t+(α1+ 1
2α0)x+α2y+ 1

2β2+δ−λ
]
F

+(λy+α2)u−(λt+λx+α1+α0)v−ψt−ψx+ϕy = 0,[(
λ− 1

2(β2+α0x+α1t)
)
u− 1

2 (α2(t−x) + (α0+α1)y+β0+β1) v+ϕ
]
Gu

+
[

1
2 (−α2(x+t)+(α1−α0)y+β0−β1)u+

(
λ+ 1

2(β2+α0x+α1t)
)
v+ψ

]
Gv

+1
2 [α2(x+t)−(α1−α0)y−β0+β1]F
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+
[
(α0− 1

2α1)t+(α1− 1
2α0)x+α2y− 1

2β2+δ−λ
]
G

+(λt−λx−α1+α0)u−(λy+α2)v+ϕt−ϕx−ψy = 0.

These equations are called the classifying equations or the classifying sys-

tem. The main difficulty of group classification problem is that they should

be solved for remaining uncertainties in the coefficients of X and the arbi-

trary elements of the class simultaneously.

4.3.2. The kernel algebra. In order to find Lie symmetries which are

admitted by any PDE system (4.55) we should split classifying equations

with respect to the functions F , G and their derivatives. This results in

the conditions αi = βj = 0, i, j = 0, 1, 2, and δ = λ = ϕ = ψ = 0, ρk,

k = 0, 1, 2, are arbitrary constants. The following statement is true.

Lemma 4.30. The kernel of the maximal Lie invariance algebras of sys-

tems of equations from class (4.55) coincides with the three-dimensional

algebra Aker = 〈P 0, P 1, P 2〉.

One-dimensional extension of Amax. As classifying equations are quite com-

plicated we at first consider extension of the kernel algebra Aker on one

symmetry generator. For this purpose we take the general form of the

admitted Lie symmetry operator (4.57) and require that X and operators

from Aker form a Lie algebra, i.e., we require [Aker, X] ∈ 〈Aker, X〉. This

condition implies the equalities

[P 0, X] = α0D + α1J
2 + α2J

1 + χt = aX,

[P 1, X] = α0J
2 + α1D − α2J

0 + χx = bX,

[P 2, X] = α0J
1 + α1J

0 + α2D + χy = cX,

which result in the two possibilities for X

1. (a, b, c) = (0, 0, 0) ⇒ X = δD + βiJ
i + χ,

2. (a, b, c) 6= (0, 0, 0) ⇒ X = eat+bx+cyχ.
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Here a, b and c are arbitrary real constants, χ = (λu+ ϕ)∂u + (λv + ψ)∂v

with λ, ϕ, and ψ being arbitrary constants.

Case I. If X = δD + βiJ
i + (λu + ϕ)∂u + (λv + ψ)∂v, where λ, ϕ, and ψ

are arbitrary constants, then the classifying equations take the form

[(2λ− β2)u− (β0 + β1)v + 2ϕ]Fu + [(β0 − β1)u

+(2λ+ β2)v + 2ψ]Fv + (β1 + β0)G+ (2δ − 2λ+ β2)F = 0,

[(2λ− β2)u− (β0 + β1)v + 2ϕ]Gu + [(β0 − β1)u

+(2λ+ β2)v + 2ψ]Gv + (2δ − 2λ− β2)G+ (β1 − β0)F = 0.

(4.58)

This PDE system admits the point equivalence transformations

u = a1ũ+ b1ṽ + c1, v = a2ũ+ b2ṽ + c2,

F = a1F̃ + b1G̃, G = a2F̃ + b2G̃.

Here ai, bi and ci, i = 1, 2, are arbitrary constants with ∆ = a1b2−b1a2 6= 0.

The constant parameters appearing in system (4.58) are changed under

the action of these transformations as follows: λ̃d = d̃λ,

β̃0 = 1
2∆

d̃
d

(
(β0 − β1)(a

2
1 + b2

1) + (β0 + β1)(a
2
2 + b2

2) + 2β2(a1a2 + b1b2)
)
,

β̃1 = − 1
2∆

d̃
d

(
(β0 − β1)(a

2
1 − b2

1) + (β0 + β1)(a
2
2 − b2

2) + 2β2(a1a2 − b1b2)
)
,

β̃2 = 1
∆
d̃
d ((β0 − β1)a1b1 + (β0 + β1)a2b2 + β2(a1b2 + b1a2)) ,

ϕ̃ = − 1
2∆

d̃
d [(β0 − β1)b1c1 + (β0 + β1)b2c2 + β2(b1c2 + c1b2)

+2λ(b1c2 − c1b2) + 2b1ψ − 2b2ϕ] ,

ψ̃ = 1
2∆

d̃
d [(β0 − β1)a1c1 + (β0 + β1)a2c2 + β2(a1c2 + c1a2)

+2λ(a1c2 − c1a2) + 2a1ψ − 2a2ϕ] ,

where ∆ = a1b2 − b1a2 6= 0. Considering the possibilities of simplifying

the coefficients we obtain that the nonzero triple (β̃0, β̃1, β̃2) has only three

inequivalent values depending on the sign of D = b2
2 + b2

1 − b2
0:

(0, 0, 1) if D > 0, (1, 1, 0) if D = 0, (1, 0, 0) if D < 0.

Therefore, it is sufficient to consider four inequivalent forms of

the constant tuple (β̃0, β̃1, β̃2, δ̃, λ̃, ϕ̃, ψ̃), namely, 1. (0, 0, 1, δ′, λ′, 0, 0),
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2. (1, 0, 0, δ′, λ′, 0, 0), 3. (1, 1, 0, δ′, λ′, 0, 0), 4. (1, 1, 0, δ′, 0, ϕ′, ψ′) and the

fifth tuple, namely, 5. (0, 0, 0, δ′, λ′, 0, 0) arises when β0 = β1 = β2 = 0.

Consider the first case, where β0 = β1 = ϕ = ψ = 0, β2 = 1, δ and λ

are arbitrary constants. Then system (4.58) becomes

(2λ− 1)uFu + (2λ+ 1)vFv + (2δ − 2λ+ 1)F = 0,

(2λ− 1)uGu + (2λ+ 1)vGv + (2δ − 2λ− 1)G = 0.
(4.59)

If λ 6= 1/2, then the general solution of (4.59) is F = u1+ 2δ
1−2λ F

(
vu

1+2λ
1−2λ
)
,

G = u1+ 2δ−2
1−2λ G

(
vu

1+2λ
1−2λ
)

(Case 1 of Table 4.7). Here and below the functions

F and G are arbitrary smooth functions of their variables.

If λ = 1
2 , then F = v−δ F(u), G = v1−δ G(u) (Case 2 of Table 4.7).

In the second case system (4.58) takes such a form which has no solu-

tions over the real field R and can be solved over the field C only.

In the third and the fourth cases system (4.58) becomes

(λu− v + ϕ)Fu + (λv + ψ)Fv + (δ − λ)F +G = 0,

(λu− v + ϕ)Gu + (λv + ψ)Gv + (δ − λ)G = 0,
(4.60)

where either ϕ = ψ = 0 or λ = 0. The results of its integration are

presented by Cases 3–5 of Table 4.7.

In the fifth case system (4.58) is of the form

uFu + vFv + (δ/λ− 1)F = 0, uGu + vGv + (δ/λ− 1)G = 0,

whose general solution is F = u1−δ/λF(v/u), G = u1−δ/λF(v/u) (Case 6

of Table 4.7).

Case II. If X = eat+bx+cy ((λu+ ϕ)∂u + (λv + ψ)∂v), where a, b, c, λ, ϕ,

and ψ are arbitrary constants with (a, b, c) 6= (0, 0, 0), then system of the

classifying equations becomes the uncoupled system

(λu+ϕ)Fu+(λv+ψ)Fv−λF+c(λu+ϕ)−(a+b)(λv+ψ) = 0,

(λu+ϕ)Gu + (λv+ψ)Gv − λG+ (a−b)(λu+ϕ)− c(λv+ψ) = 0
(4.61)

If λ 6= 0, then the equivalence transformation ũ = λu + ϕ, ṽ = λv + ψ,
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Table 4.7: Lie symmetries of (2+1)-dimensional Dirac equations (4.55).

Nonlinearities Basis operators of Amax

1 F = u1+
2δ

1−2λ F
(
vu

1+2λ
1−2λ

)
, P 0, P 1, P 2,

λ 6= 1
2 G = u1+

2δ−2
1−2λ G

(
vu

1+2λ
1−2λ

)
δD+J2+λ(u∂u+v∂v)

2 F = v−δ F(u), P 0, P 1, P 2,

G = v1−δ G(u) δD+J2+ 1
2(u∂u+v∂v)

3 F = − 1
λ W(z)G P 0, P 1, P 2,

λ 6=0 + e
λ−δ
λ

W(z)F(ln v+λu/v) , δD+J0+J1+λ(∂u+v∂v)

G = e
λ−δ
λ

W(z)G(ln v+λu/v)

4 F =
ϕ− v
ψ

G P 0, P 1, P 2,

ψ 6=0 +e
δ
ψ
(ϕ−v)F(ϕv − ψu− 1

2v
2), δD+J0+J1+ϕ∂u+ψ∂v

G = e
δ
ψ
(ϕ−v) G(ϕv − ψu− 1

2v
2)

5 F =
u

v − ϕ
G+ e

δu
v−ϕ F (v) , P 0, P 1, P 2,

G = e
δu
v−ϕ G (v) δD+J0+J1+ϕ∂u

6 F = u1−δ/λF(v/u), P 0, P 1, P 2,

λ 6=0 G = u1−δ/λ G(v/u) δD+λ(u∂u+v∂v)

7 F = ((b+a)v − cu) lnu+uF(v/u) , P 0, P 1, P 2,

G = ((b−a)u+ cv) lnu+uG(v/u) eat+bx+cy(u∂u+v∂v)

8 F = ((b+ a)/ϕ− c)u+ F(u− ϕv) , P 0, P 1, P 2,

ϕ 6=0 G = (b− a+ c/ϕ)u+ G(u− ϕv) σ(ω)eat+bx+cy(ϕ∂u+∂v)

9 F = (a+b)v + F(u), P 0, P 1, P 2,

G = cv + G(u) σ(x−t)eat+bx+cy∂v
10 F = −cu+ F(v), P 0, P 1, P 2,

G = (b−a)u+ G(v) σ(x+t)eat+bx+cy∂u

Here δ, λ, ϕ, ψ, a, b and c are constants with a2 + b2 + c2 6= 0, ω = ϕ2(t+ x) + 2ϕy+ t− x; σ is

arbitrary smooth nonvanishing function of the indicated variable. W(z) = LambertW(z) [64],

where z = −λuv e
−λu

v .

F̃ = λF, G̃ = λG maps system (4.61) to the one with λ̃ = 1, ϕ̃ = ψ̃ = 0,

whose general solution is

F = ((b+ a)v − cu) lnu+ uF(v/u) ,

G = ((b− a)u+ cv) lnu+ uG(v/u)
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(see Case 7 of Table 4.7).

If λ = 0, then (ϕ, ψ) has the following inequivalent values (ϕ, 1) with

ϕ 6= 0 and (1, 0). The corresponding general solutions are

F = ((b+ a)/ϕ− c)u+ F(u− ϕv) ,

G = (b− a+ c/ϕ)u+ G(u− ϕv) ,
ϕ 6= 0, ψ = 1,

F = (a+b)v + F(u),

G = cv + G(u),
ϕ = 0, ψ = 1,

F = −cu+ F(v),

G = (b−a)u+ G(v),
ϕ = 1, ψ = 0,

(Cases 8–10 of Table 4.7).

Let us note that the four-dimensional Lie symmetry algebras

〈P 0, P 1, P 2, eat+bx+cy(ϕ∂u + ψ∂v)〉, (ϕ, ψ) ∈ {(ϕ, 1), (1, 0)}

are not maximal for nonlinearities presented in Cases 8–10. The corre-

sponding systems (4.55) admit infinite-dimensional Lie symmetry algebras

with basis operators adduced in Table 4.7.

Therefore we have found all nonlinearities F and G, for which (2+1)-

dimensional real Dirac equations admit extension on one-symmetry gen-

erator. It should be noted that in most cases the maximal Lie invariance

algebra becomes four-dimensional (Cases 1–7), but sometimes the exten-

sion operator appears to involve an arbitrary function and in this case the

maximal Lie invariance algebra becomes infinite-dimensional (Cases 8–10).

Note 4.31. Table 4.7 consists some cases that are equivalent with respect

to point transformations. Thus, Cases 9 and 10 are mapped to each other

by the transformation

t 7→ −t, x 7→ x, y 7→ −y, u 7→ v, v 7→ u, F 7→ G, G 7→ F,

that belongs to the equivalence group of class (4.55). The same transfor-

mation maps Case 2 to Case 1 with λ = −1/2.
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Note 4.32. The Lie invariance algebras adduced in Table 4.7 are maximal

Lie invariance algebras for arbitrary values of constants and functions ap-

pearing in corresponding nonlinearities F and G. For certain values of the

parameters these algebras will not be maximal. For example, let ϕ = 0,

Fv = Gv = 0 in Case 5 of Table 4.7, then the system (4.55) takes the form

vt + vx − uy =
(u
v
κ1 + κ2

)
e
δu
v ,

ut − ux − vy = −κ1e
δu
v ,

where κ1 and κ2 are constants, κ2
1 + κ2

2 6= 0. It admits additional Lie

symmetry generated by the operator D + u∂u + v∂v. The maximal Lie

invariance algebra is five-dimensional in this case.

4.3.3. Reduction Procedure. In this section we present a couple of

examples of finding exact solutions of NLDEs from class (4.55) via Lie

reduction method. Consider Case 6 of Table 4.7 with δ = λ 6= 0, namely,

PDE systems (4.55) of the form

vt + vx − uy = F(v/u),

ut − ux − vy = −G(v/u),
(4.62)

admitting the Lie invariance algebra g = 〈P 0, P 1, P 2, D + u∂u + v∂v〉.
Using one-dimensional subalgebras of g we can reduce family of PDE

systems (4.62) to PDE system in (1+1) dimensions. Consider, for exam-

ple, the one-dimensional subalgebra 〈D+u∂u+v∂v)〉 of g. This subalgebra

belongs to the optimal system of subalgebras of g (a procedure of finding

the optimal system is well described in [217] and classification of subalge-

bras of real three- and four-dimensional algebras can be found in [230]).

The substitutions u = t U(z, w), v = t V (z, w), where z = x/t, w = y/t,

reduce (4.62) to the (1+1)-dimensionsional PDE system

(1− z)Vz − wVw − Uw + V = F(V/U),

(1 + z)Uz + wUw + Vw − U = G(V/U).
(4.63)
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We have found simple particular solutions of this system for arbitrary

F = ±G. It is

U = ∓V = (w ∓ 1)C1 ∓F(∓1), F = ±G,

where C1 is an arbitrary constant. Thus system (4.62) has the solutions

u = −v = (y − t)C1 − tF(−1) if F = G,

u = v = (y + t)C1 + tF(1) if F = −G,

that are valid for any function F that is well-defined when its argument is

equal to −1 (resp. to 1 in the second case).

To reduce system (4.62) to an ODE system a two-dimensional subalge-

bra should be used. Consider the two-dimensional subalgebra

〈P 1 + α2P
2 + α0P

0, D + u∂u + v∂v〉, α2, α0 ∈ R.

The substitutions reducing system (4.62) to ODE system are

u = (t− α0x)U(z),

v = (t− α0x)V (z),
where z =

y − α2x

t− α0x
.

The corresponding ODE system is

((α0 − 1)z − α2)Vz − Uz + (1− α0)V = F(V/U),

((α0 + 1)z − α2)Uz + Vz − (1 + α0)U = G(V/U).
(4.64)

If F = G then the system has particular solution

U = −V = (α2 − 1 + (1− α0)z)C1 −F(−1)/(1− α0), α0 6= 1,

where C1 is an arbitrary constant. Therefore the solution of system (4.62)

with F = G is

u = −v = [(t− α0x)(α2 − 1) + (y − α2x)(1− α0)]C1−
(t− α0x)F(−1)

(1− α0)
.

It is valid for any F that is well-defined when its argument is equal to −1.
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Using the reduction method exact solutions can be constructed to other

NLDEs (4.55) with nonlinearities presented in Table 4.7.

The preliminary group classification of nonlinear Dirac equations in

two spatial dimensions for real wave functions is carried out in [303].

Namely, all forms of nonlinearities F and G such that the correspond-

ing NLDE (4.55) admits one-dimensional extension of its Lie invariance

algebra are described. The found symmetries are useful for construction

of exact solutions for wide subclasses of such equations with nonlinearities

presented in Table 4.7.
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177. Kuriksha O., Pošta S. and Vaneeva O., Group analysis of variable

coefficient generalized fifth-order KdV equations, Physics of Particles

and Nuclei Letters 11 (2014), 990–995.

178. Kurujyibwami C., Basarab-Horwath P. and Popovych R.O., Alge-

braic method for group classification of (1+1)-dimensional linear

Schrödinger equations, Acta Appl. Math. 157 (2018), 171–203.

179. Lahno V.I. and Spichak S.V., Group classification of quasilinear

elliptic-type equations. I. Invariance with respect to Lie algebras with

nontrivial Levi decomposition, Ukrainian Math. J. 59 (2007), 1719–

1736.

180. Lahno V.I. and Spichak S.V., Group classification of quasilinear

elliptic-type equations. II. Invariance under solvable Lie algebras,

Ukrainian Math. J. 63 (2011), 236–253.

181. Lahno V. and Zhdanov R., Group classification of nonlinear wave

equations, J. Math. Phys. 46 (2005), 053301, 37 pp.

182. Lahno V., Zhdanov R. and Magda O., Group classification and exact

solutions of nonlinear wave equations, Acta Appl. Math. 91 (2006),

253–313.

183. Lanconelli E., Pascucci A. and Polidoro S., Linear and nonlinear ul-

traparabolic equations of Kolmogorov type arising in diffusion theory

and in finance, Nonlinear Problems in Mathematical Physics and Re-

lated Topics, II, 243–265, Int. Math. Ser. (N. Y.) 2, Kluwer/Plenum,

New York, 2002.

184. Lax P.D., Integrals of nonlinear equations of evolution and solitary

waves, Comm. Pure Appl. Math. 21 (1968), 467–490.

185. Levi D. and Winternitz P., Non-classical symmetry reduction: exam-

ple of the Boussinesq equation, J. Phys. A: Math. Gen. 22 (1989),

2915–2924.



274
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Appendix A

Lie and Nonclassical Symmetries of Variable

Coefficient Reaction–Diffusion Equations

In this appendix we collect the results on classification of Lie and nonclas-

sical (conditional and potential) reduction operators for classes of (1+1)-

dimensional reaction–diffusion equations with coefficients dependent on

spatial variable.

Section A.1 is devoted to the group classification of diffusion equations

with a nonlinear source ut = uxx + h(x)B(u), hBuu 6= 0. The achieve

complete classification we use a conditional equivalence group found in the

course of the study of admissible point transformation within the class.

In section A.2 Lie and nonclassical reduction operators of variable co-

efficient semilinear reaction-diffusion equations with exponential source

f(x)ut = (g(x)ux)x + h(x)emu are investigated using the algorithm involv-

ing a mapping between classes of differential equations, which is generated

by a family of point transformations. Special attention is paid to check

whether reduction operators are inequivalent to Lie symmetry operators.

The derived reduction operators are applied to construction of closed-form

solutions. The similar study on nonclassical reduction operators of vari-

able coefficient semilinear reaction-diffusion equations with power source

f(x)ut = (g(x)ux)x + h(x)um is performed in Section A.3.

In Section A.4 we derive potential symmetries of variable coefficient

nonlinear diffusion equations of the form f(x)ut = (g(x)unux)x, fgn 6= 0.

The results collected in this appendix are published in the following

papers [11*,23*,25*,26*,30*].
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A.1. Group Classification of a Class of Quasilinear

Reaction–Diffusion Equations

In this section we solve the group classification problem for the class of

variable coefficient semilinear reaction–diffusion equations of the form

ut = uxx + h(x)B(u), (A.1)

where h = h(x) and B = B(u) are arbitrary smooth functions of their

variables, hBuu 6= 0. Linear equations singled out from class (A.1) by the

condition Buu = 0 are excluded from consideration since group classifica-

tion of all second-order linear PDEs in two dimensions was performed by

Lie (see [186]). Equations (A.1) are used to model various phenomena such

as microwave heating, problems in population genetics, etc. (see, e.g., [44]

and references therein). Lie symmetries of certain subclasses of (A.1) are

known. The group classification of constant coefficient equations from

class (A.1) was carried out by Dorodnitsyn [70] (the results are adduced

in handbook [131]). Class (A.1) includes the generalized Huxley equations

ut = uxx + h(x)u2(1 − u), whose Lie symmetries were studied in [43, 136].

There exists also a certain intersection with the results on group classifi-

cation of the classes

ut = uxx +H(x)um + F (x)u, m 6= 0, 1, H 6= 0, and (A.2)

ut = uxx +H(x)u2 +G(x), H 6= 0, (A.3)

which were obtained in [300]. Firstly we present the results on the study

of admissible transformations in class (A.1).

Theorem A.1. The usual equivalence group G∼ of class (A.1) consists of

the transformations

t̃ = δ2
1t+ δ2, x̃ = δ1x+ δ3, ũ = δ4u+ δ5, h̃ =

δ4

δ2
1δ0

h, B̃ = δ0B,

where δj, j = 0, . . . , 5, are arbitrary constants with δ0δ1δ4 6= 0.
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Table A.1: The group classification of the class ut = uxx + h(x)B(u), hBuu 6= 0.

no. B(u) h(x) Basis of Amax

0 ∀ ∀ ∂t

1 ∀ δx−2 ∂t, 2t∂t + x∂x

2 ∀ δ ∂t, ∂x

3 um δxs ∂t, 2(m− 1)t∂t + (m− 1)x∂x − (s+ 2)u∂u

4 um δex ∂t, (1−m)∂x + u∂u

5 um δ ∂t, ∂x, 2(m− 1)t∂t + (m− 1)x∂x − 2u∂u

6 eu δxs ∂t, 2t∂t + x∂x − (s+ 2)∂u

7 eu δe±x
2

∂t, ∂x ∓ 2x∂u

8 eu δ ∂t, ∂x, 2t∂t + x∂x − 2∂u

9 u lnu δ ∂t, ∂x, eδtu∂u, eδt(∂x − δ
2xu∂u)

Here δ, m and s are arbitrary constants, m 6= 0, 1, s 6= 0, δ = ±1 mod G∼.

It appears that there exist point transformations between equations

from (A.1) which do not belong to G∼ and form a conditional equivalence

group. Moreover, this group is not usual but a generalized extended one.

Theorem A.2. The generalized extended equivalence group Ĝ∼exp of the

subclass

ut = uxx + h(x)(enu + r) (A.4)

of class (A.1) is formed by the transformations

t̃ = δ1
2t+ δ2, x̃ = δ1x+ δ3, ũ = δ4u+ ϕ(x),

h̃ =
δ4

δ1
2
e−

n
δ4
ϕh, ñ =

n

δ4
, r̃ = e

n
δ4
ϕ

(
r − ϕxx

δ4h

)
,

where r and δj, j = 1, . . . , 4, are arbitrary constants with δ1δ4 6= 0. The

transformation component for r can be interpreted as the constraint for ϕ,

ϕxx = δ4h(r − r̃e−
n
δ4
ϕ).
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Theorem A.2 implies that class (A.4) reduces to the class

ũt = ũxx + h̃(x)enũ (A.5)

by the transformation t̃ = t, x̃ = x, ũ = u+ϕ(x), where h̃(x̃) = e−ϕ(x)h(x)

and ϕxx = rh(x). Class (A.4) is normalized. Therefore, the equivalence

group of class (A.4) with r = 0 can be found setting r̃ = r = 0 in transfor-

mations from the group Ĝ∼exp.

Corollary A.3. The usual equivalence group G∼exp of the class

ut = uxx + h(x)enu

consists of the transformations

t̃ = δ2
1t+ δ2, x̃ = δ1x+ δ3, ũ = δ4u+ δ5x+ δ6,

h̃ =
δ4

δ2
1

e−
n
δ4

(δ5x+δ6)h, ñ =
n

δ4
,

where δj, j = 1, . . . , 6, are arbitrary constants with δ1δ4 6= 0.

In the course of the study of Lie symmetries we use the derived equiv-

alence transformations for the simplification of calculations and for pre-

senting the final results in a concise form. We study Lie symmetries of

equations from class (A.1) using the classical approach [227] in a combi-

nation with the method of furcate splitting [245]. The results on group

classification of class (A.1) are summarized in Table A.1. It is important

to note that group classification of subclass (A.4) is carried out up to the

Ĝ∼exp-equivalence, whereas all other cases are classified up to the usual G∼-

equivalence. The complete proofs can be found in [308].

The derived results on group classification can be applied for searching

closed form solutions via the classical reduction method. The knowledge of

Lie symmetries is also necessary for finding nonclassical symmetries (called

also Q-conditional symmetries or reduction operators) of equations (A.1).
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A.2. Lie and Nonclassical Reduction Operators

of a Class of Semilinear Diffusion

Equations with an Exponential Source

In this section we use the method of mappings between classes to find non-

classical reduction operators of the variable coefficient reaction-diffusion

equations with exponential nonlinearity

f(x)ut = (g(x)ux)x + h(x)emu. (A.6)

Here f , g and h are arbitrary smooth functions of the variable x, fgh 6= 0

and m is an arbitrary nonvanishing constant.

Lie Symmetries and Equivalence Transformations. Class (A.6) has

complicated transformational properties. An indicator of this is that it

possesses the nontrivial generalized extended equivalence group, which does

not coincide with its usual equivalence group, cf. Theorem A.4 below. To

produce the group classification of class (A.6) it is necessary to gauge

arbitrary elements of this class with equivalence transformations and a

subsequent mapping of it onto a simpler class [288, 300]. It appears that

the preimage set of each equation from the imaged class is a biparametric

family of equations from the initial class (A.6). Moreover preimages of the

same equation belong to the same orbit of the equivalence group of the

initial class. It allows one to look only for the simplest representative of

the preimage to obtain its symmetries, solution etc., and then to reproduce

these results for a two-parametric family of equations from the initial class

using equivalence transformations.

Theorem A.4. The generalized extended equivalence group Ĝ∼exp of

class (A.6) consists of the transformations

t̃ = δ1t+ δ2, x̃ = ϕ(x), ũ = δ3u+ ψ(x),

f̃ =
δ0δ1

ϕx
f, g̃ = δ0ϕxg, h̃ =

δ0δ3

ϕx
exp

(
−m
δ3
ψ

)
h, m̃ =

m

δ3
,
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where ϕ is an arbitrary nonconstant smooth function of x, ψ = δ4

∫
dx
g(x) +δ5

and δj, j = 0, 1, . . . , 5, are arbitrary constants such that δ0δ1δ3 6= 0.

Corollary A.5. The usual equivalence group of class (A.6) is the subgroup

of Ĝ∼exp singled out by the condition δ4 = 0.

The transformations from Ĝ∼exp associated with varying the parameter δ0

in fact do not change equations from class (A.6) and hence form the gauge

equivalence group of this class. The values of arbitrary elements connected

by a such transformation correspond to different representations of the

same equation.

We firstly map class (A.6) onto its subclass

f(x)ut = (f(x)ux)x + h(x)eu (A.7)

(we omit tildes over the variables) using the family of equivalence trans-

formations parameterized by the arbitrary elements f , g and m,

t̃ = sign(f(x)g(x)) t, x̃ =

∫ ∣∣∣∣f(x)

g(x)

∣∣∣∣ 12 dx, ũ = mu. (A.8)

The new arbitrary elements are expressed via the old ones in the following

way:

f̃(x̃) = g̃(x̃) = sign(g(x))|f(x)g(x)|
1
2 , h̃(x̃) = m

∣∣∣∣g(x)

f(x)

∣∣∣∣ 12 h(x), m̃ = 1.

The next step is to change the dependent variable in class (A.7):

v(t, x) = u(t, x) +G(x), where G(x) = ln |f(x)−1h(x)|. (A.9)

Finally we obtain the class

vt = vxx + F (x)vx + εe v +H(x), (A.10)

where ε = sign(f(x)h(x)) and the new arbitrary elements F and H are

expressed via the arbitrary elements of class (A.10) according to the for-

mulas

F = fxf
−1 and H = −Gxx −GxF. (A.11)



296

Table A.2: The group classification of the class A.10.

no. F (x) H(x) Basis of Amax

0 ∀ ∀ ∂t

1 αx−1 + µx βx−2 + 2µ ∂t, e−2µt(∂t − µx∂x + 2µ∂v)

2 αx−1 βx−2 ∂t, 2t∂t + x∂x − 2∂v

3 µx γ ∂t, e−µt∂x

4 λ γ ∂t, ∂x

5 µx 2µ ∂t, e−µt∂x, e−2µt(∂t − µx∂x + 2µ∂v)

6 λ 0 ∂t, ∂x, 2t∂t + (x− λt)∂x − 2∂v

Here λ ∈ {0, 1} mod G∼exp, µ = ±1 mod G∼exp; α, β and γ are arbitrary constants,

α2 + β2 6= 0. We also have γ 6= 2µ and γ 6= 0 in Cases 3 and 4, respectively.

All results on Lie symmetries and solutions of class (A.10) can be ex-

tended to class (A.7) by the inversion of transformation (A.9).

The arbitrary elements f and h of class (A.10) are expressed via the

functions F and H in the following way:

f = c0 exp
(∫

Fdx
)
, h = εc0 exp

(∫
Fdx+G

)
,

where G =
∫
e−

∫
Fdx
(
c1 −

∫
He

∫
Fdxdx

)
dx+ c2.

(A.12)

Here c0, c1 and c2 are arbitrary constants, c0 6= 0. The constant c0 is

inessential and can be set to the unity by an obvious gauge equivalence

transformation. The equations from class (A.7), that have the same image

in class (A.10) with respect to transformation (A.9), i.e. the arbitrary

elements of which are given by (A.12) and differ only by values of constants

c1 and c2, are Ĝ∼exp-equivalent. The equivalence transformation

t̃ = t, x̃ = x, ũ = u+ c1

∫
e−

∫
Fdxdx+ c2 (A.13)

maps an equation (A.10) having f and h of the form (A.12) with c2
1+c2

2 6= 0

to the one with c1 = c2 = 0. Hence up to Ĝ∼exp-equivalence we can consider,
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without loss of generality, only equations from class (A.7) that have the

arbitrary elements determined by (A.12) with c1 = c2 = 0.

Theorem A.6. The generalized extended equivalence group G∼exp of

class (A.10) coincides with its usual equivalence group and is formed by

the transformations

t̃ = δ 2
1 t+ δ2, x̃ = δ1x+ δ3, ṽ = v − ln δ 2

1 , F̃ = δ−1
1 F, H̃ = δ−2

1 H,

where δj, j = 1, 2, 3, are arbitrary constants, δ1 6= 0.

The kernel of the maximal Lie invariance algebras of equations from

class (A.10) is the one-dimensional algebra 〈∂t〉. It means that any equation

from class (A.10) is invariant with respect to translations by t and there

are no more common Lie symmetries.

Theorem A.7. G∼exp-inequivalent cases of extension of the maximal Lie

invariance algebras in class (A.10) are exhausted by those presented in

Table A.2.

The corresponding results on group classification of class (A.6) up to

Ĝ∼exp-equivalence were derived in [288] and collected in Table A.3. The first

number of each case indicates the associated case of Table A.2.

Additional equivalence transformations between G∼exp-inequivalent cases

of Lie symmetry extension are also constructed. The pairs of point-

equivalent cases from Table A.2 and the corresponding transformations

are exhausted by the following:

1 7→ 2̃, 5 7→ 6̃|λ̃=0 : t̃ =
1

2µ
e2µt, x̃ = eµtx, ṽ = v − 2µt,

4 7→ 4̃|λ̃=0, 6 7→ 6̃|λ̃=0 : t̃ = t, x̃ = x+ λt, ṽ = v.
(A.14)

The inequivalence of other different cases of Table A.2 can be proved using

differences in properties of the corresponding maximal Lie invariance alge-

bras, which should coincide for similar equations. Thus the dimensions of

the maximal Lie invariance algebras are one, three and two in the general
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Table A.3: The group classification of class (A.7)

no. f(x) h(x) Basis of Amax

0 ∀ ∀ ∂t

1 xαe
µ
2
x2 δxαe

µ
2
x2+ω1

∂t, e−2µt
[
∂t − µx∂x + µ

(
2 + xω1

x

)
∂u
]

2.1 xα δxα+
β

1−α ∂t, 2t∂t + x∂x −
(

2 + β
1−α

)
∂u

2.2 x δx1−
β
2
lnx ∂t, 2t∂t + x∂x − (2− β lnx)∂u

3 e
µ
2
x2 δe

µ
2
x2+ω3

∂t, e−µt∂x − e−µtω3
x∂u

4.1 ex δe ρx ∂t, ∂x + (1− ρ)∂u

4.2 1 δe−
γ
2
x2 ∂t, ∂x + γx∂u

5 e
µ
2
x2 δe

µ
2
x2+ω5

∂t, e−µt∂x − e−µtω5
x∂u,

e−2µt
[
∂t − µx∂x + µ

(
2 + xω5

x

)
∂u
]

6.1 ex δex ∂t, ∂x, 2t∂t + (x− t)∂x − 2∂u

6.2 1 δ ∂t, ∂x, 2t∂t + x∂x − 2∂u

Here δ = ±1, µ = ±1 mod Ĝ∼1 ; α, β, γ, ρ are arbitrary constants, ρ 6= 1, α2 + β2 6= 0. In case

2.1 α 6= 1. In case 3 γ 6= 2µ. In case 4.2 γ 6= 0; ω1 = −
∫
x−αe−

µ
2
x2
∫

(βx−2 + 2µ)xαe
µ
2
x2dx dx,

ω3 = −γ
∫
e−

µ
2
x2
∫
e
µ
2
x2dx dx, ω5 = ω3|γ=2µ, ωix = dωi

dx , i=1,3,5.

case (Case 0), Cases 5 and 6 and the other cases, respectively. In contrast

to Cases 1–3, the algebra of Case 4 is commutative. The derivative of the

algebra of Case 3 has the zero projection onto the space of t and this is

not the case for Cases 1 and 2. Possession of the zero (resp. nonzero) pro-

jection onto the space of t is an invariant characteristic of Lie algebras of

vector fields in the space of the variables t, x and v with respect to point

transformations connecting a pair of evolution equations since for any such

transformation the expression of the transformed t is well known to depend

only on t [160,192].

A more difficult problem is to prove that there are no more additional

equivalences within a parameterized case of Table A.2. (In fact all the cases

are parameterized.) A description of the set of admissible transformations
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of the class (A.10) is given by the following statements.

Proposition A.8. Any admissible point transformation in the class (A.10)

has the form

t̃ = T (t), x̃ = δ
√
Tt x+X(t), ṽ = v − lnTt,

where δ = ±1 and T and X are arbitrary smooth functions of t such that

Tt > 0. The corresponding values of the arbitrary elements are related via

the formulas

F̃ =
δ√
Tt
F − δ

2

Ttt√
Tt3

x− Xt

Tt
, H̃ =

1

Tt
H − Ttt

Tt2
.

Corollary A.9. Only equations from the class (A.10) the arbitrary ele-

ments of which have the form

F = µx+ λ+
α

x+ κ
, H = γ +

β

(x+ κ)2
, (A.15)

where α, β, γ, κ and µ are constants, possess admissible transformations

that are not generated by transformations from the equivalence group G∼exp.

The subclass of the class (A.10), singled out by condition (A.15), is closed

under any admissible transformation within class (A.10). The (constant)

parameters of the representation (A.15) are transformed by an admissible

transformation in the following way:

α̃ = α, β̃ = β, κ̃ = δ
√
Ttκ−X if (α, β) 6= (0, 0),

γ̃ =
γ

Tt
− Ttt
T 2
t

, µ̃ =
µ

Tt
− 1

2

Ttt
T 2
t

, λ̃ = −µ̃X − Xt

Tt
+

δλ√
Tt
.

In particular Ttt = 0 if γ 6= 2µ.

Finally we can formulate the assertion on group classification with re-

spect to the set of admissible transformations.

Theorem A.10. Up to point equivalence cases of extension of the maximal

Lie invariance algebras in class (A.10) are exhausted by Cases 0, 2, 3, 4λ=0

and 6|λ=0 of Table A.2.
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A.2.1. Nonclassical Reduction Operators and Solutions. Reduc-

tion operators of equations from class (A.7) are easily found from reduction

operators of corresponding equations from (A.10) using the formula

Q̃ = τ∂t + ξ∂x + (η − ξGx) ∂u. (A.16)

Here τ , ξ and η, respectively, are the coefficients of ∂t, ∂x and ∂v in a

reduction operator of an equation from class (A.10). The function G is

defined in (A.12).

In [299, 300] we discussed two ways to use mappings between classes

of equations in the investigation of reduction operators and their usage

to find solutions. The preferable way is based on the implementation of

reductions in the imaged class and preimaging of the obtained solutions

instead of preimaging the corresponding reduction operators.

Following the above algorithm we look for G∼exp-inequivalent reduction

operators with nonvanishing coefficient of ∂t for the equations from the

imaged class (A.10). Up to the usual equivalence of reduction operators

we need to consider only the operators of the form

Q = ∂t + ξ(t, x, v)∂x + η(t, x, v)∂v.

Applying conditional invariance criterion to equation (A.10) we obtain

a third-degree polynomial of vx with coefficients depending on t, x and v

which has to identically equal zero. Separation respect to different powers

of vx results in the following determining equations for the coefficients ξ

and η:

ξvv = 0, ηvv = 2(ξxv − ξξv − Fξv), ξt − ξxx + 2ξxξ

+ 3ξv (H + εev) + 2ηvx − 2ξvη + Fξx + ξFx = 0, (A.17)

ηt − ηxx + 2ξxη = ξHx + Fηx + (2ξx − ηv)H + εev (η + 2ξx − ηv) .

Integration of the first two equations of (A.17) gives us the expressions

for ξ and η with an explicit dependence on v:

ξ = av + b, η = −1

3
a2v3 + (ax − ab− aF )v2 + cv + d, (A.18)
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where a = a(t, x), b = b(t, x), c = c(t, x) and d = d(t, x) are smooth

functions of t and x.

Substituting the expressions (A.18) for ξ and η into the third and forth

equations of (A.17) and collecting the coefficients of different powers of v

in the resulting equations, we derive the conditions a = c = 0, d = −2bx

and two classifying equations, which contain both the coefficient b = b(t, x)

and the arbitrary elements F = F (x) and H = H(x). Summarising the

above consideration we have the following assertion.

Proposition A.11. Any regular reduction operator of an equation from

the imaged class (A.10) is equivalent to an operator of the form

Q = ∂t + b∂x − 2bx∂v, (A.19)

where the coefficient b = b(t, x) satisfies the overdetermined system of par-

tial differential equations

bt − bxx + 2bbx + Fbx + bFx = 0,

bHx + 2bxH − 4bbxx − 2(Fb)xx − 2Fbxx = 0
(A.20)

with the corresponding values of the arbitrary elements F = F (x) and

H = H(x).

We were not able to completely study all the cases of integration of

system (A.20) depending upon values of F and H. This is why we try to

solve this system under different additional constraints imposed either on b

or on (F,H).

The most interesting results are obtained for the constraint bt = 0.

Then F and H are expressed, after a partial integration of (A.20), via the

function b = b(x) that leads to the following statement.

Theorem A.12. For an arbitrary smooth function b = b(x) the equation

from class (A.10) with the arbitrary elements

F =
1

b

(
bx + k1 − b2

)
, H =

2

b2

(
k2 + bx(k1 − b2) + bbxx

)
, (A.21)
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where k1 and k2 are constants, admits the reduction operator (A.19) with

the same b.

An Ansatz constructed by the reduction operator (A.19) with bt = 0

has the form

v = z(ω)− 2 ln |b|, where ω = t−
∫
dx

b
.

The substitution of the Ansatz into equation (A.10) leads to the reduced

ODE

zωω − k1zω + εe z + 2k2 = 0. (A.22)

For k1 = 0 the general solution of (A.22) is written in the implicit form∫
(c1 − 4k2z − 2εe z)−

1
2 dz = ±(ω + c2). (A.23)

Up to similarity of solutions of equation (A.10) the constant c2 is inessential

and can be set to equal zero by a translation of ω, which is always induced

by a translation of t.

Setting additionally k2 = 0 in (A.23), we are able to integrate (A.23) in

closed form and to write explicitly the general solution of (A.22). If ε = 1,

then c1 > 0 and (A.23) gives the following expression for ez:

ez =
2s2

1

cosh2(s1ω + s2)
.

Here and below s1 =
√
|c1|/2 and s2 = c2s1. If ε = −1, the integration

leads to

ez =



2s2
1

sinh2(s1ω + s2)
, c1 > 0,

2s2
1

cos2(s1ω + s2)
, c1 < 0,

2

(ω + c2)2
, c1 = 0.
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As a result, for the equation from class (A.10) of the form

vt = vxx +
1

b

(
bx − b2

)
vx + εev +

2

b
(bxx − bbx) (A.24)

with ε = −1, we construct three families of closed-form solutions

v = −2 ln

∣∣∣∣∣
√

2

2s1
b sinh

(
s1t− s1

∫
dx

b
+ s2

)∣∣∣∣∣ ,
v = −2 ln

∣∣∣∣∣
√

2

2s1
b cos

(
s1t− s1

∫
dx

b
+ s2

)∣∣∣∣∣ , (A.25)

v = −2 ln

∣∣∣∣∣
√

2

2
b

(
t−
∫
dx

b
+ c2

)∣∣∣∣∣ ,
where s1, s2 and c2 are arbitrary constants, s1 6= 0. Also we obtain a family

of solutions

v = −2 ln

∣∣∣∣∣
√

2

2s1
b cosh

(
s1t− s1

∫
dx

b
+ s2

)∣∣∣∣∣ (A.26)

of the equation (A.24) with ε = 1.

We continue the consideration by studying whether the equations from

class (A.10) possessing nontrivial Lie symmetry properties, i.e. having the

maximal Lie invariance algebras of dimension two or three, have nontrivial

(i.e. inequivalent to Lie ones) regular reduction operators. It has been

already remarked that constant coefficient equations from class (A.10) do

not admit such reduction operators [13,61]. Hence it is needless to consider

Cases 4 and 6 of Table A.2 as well as Case 5 connected with Case 6 by

point transformation (A.14). As Case 1 reduces to Case 2 with the same

transformation (A.14), we have to study only two cases, namely Cases 2

and 3. We substitute the pairs of values of the parameter-functions F

and H corresponding to Cases 2 and 3 into system (A.20) in order to find

relevant values for b. We ascertain that bt = 0 is a necessary condition for

existing non-Lie regular reduction operators for equations with the above
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values of (F,H). This is why we can use equations (A.21) instead of (A.20)

for further studying.

The investigation of Case 3 of Table A.2 leads to the conclusion that

there are no non-Lie regular reduction operators for this case.

The functions F and H presented in Case 2 of Table A.2 satisfy (A.21)

if and only if β = 2(1− α), i.e., they have the form F = αx−1, H = 2(1−
α)x−2, and k1 = k2 = 0. The corresponding value of b is b = −(1 + α)x−1.

Hence α 6= −1 since otherwise b = 0. Substituting the derived form of the

function b into the formulas (A.25) and (A.26), we find that the equation

vt = vxx +
α

x
vx + εev +

2(1− α)

x2
(A.27)

has the families of solutions

v = −2 ln

∣∣∣∣∣
√

2(1 + α)

2s1x
cosh

(
s1t+

s1x
2

2(1 + α)
+ s2

)∣∣∣∣∣
if ε = 1 and

v = −2 ln

∣∣∣∣∣
√

2(1 + α)

2s1x
sinh

(
s1t+

s1x
2

2(1 + α)
+ s2

)∣∣∣∣∣ ,
v = −2 ln

∣∣∣∣∣
√

2(1 + α)

2s1x
cos

(
s1t+

s1x
2

2(1 + α)
+ s2

)∣∣∣∣∣ ,
v = −2 ln

∣∣∣∣∣
√

2(1 + α)

2x

(
t+

x2

2(1 + α)
+ c2

)∣∣∣∣∣
if ε = −1. Recall that s1, s2 and c2 are arbitrary constants with s1 6= 0.

As a representative of the preimage of equation (A.46) with respect to

the transformation (A.9) we can choose the equation

xαut = (xαux)x + εxα+2eu. (A.28)

Solutions of this equation can be easily constructed from the above solu-

tions of equation (A.46) using the transformation u = v−2 ln |x|. If α = 1,
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the chosen equation (A.28) can be replaced, e.g., by xut = (xux)x + εxeu

which is just another representation of equation (A.46).

Non-Lie solutions of the equation

vt = vxx +
(α
x

+ µx
)
vx + εev +

2(1− α)

x2
+ 2µ,

where α 6= −1 (Case 1 of Table A.2), can be easily obtained from exact

solutions of the equation (A.28) using the transformation (A.14). The

corresponding reduction operator has the form (A.19) with b = −(1 +

α)x−1 − µx.

We also prove the following assertions.

Proposition A.13. Equations from class (A.10) with F = const or

H = const may admit only nontrivial regular reduction operators that are

equivalent to operators of the form (A.19), where the function b does not

depend upon the variable t.

Proposition A.14. Any reduction operator of an equation from

class (A.10), having the form (A.19) with bxx = 0, is equivalent to a Lie

symmetry operator of this equation.

A.3. Nonclassical Reduction Operators of a Class

of Semilinear Diffusion Equations With Power

Source

In [300] simultaneous usage of equivalence transformations and mappings

between classes allowed us to carry out group classification of the class

of variable coefficient semilinear reaction–diffusion equations with power

nonlinearity

f(x)ut = (g(x)ux)x + h(x)um, (A.29)

where f = f(x), g = g(x) and h = h(x) are arbitrary smooth functions of

the variable x, f(x)g(x)h(x) 6= 0, m is an arbitrary constant (m 6= 0, 1).
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At first the gauge f = g was performed using equivalence transformations

of the class, so class was reduced to its subclass A.29

f(x)ut = (f(x)ux)x + h(x)um, fh 6= 0, m 6= 0, 1. (A.30)

The next step was to make the change of the dependent variable

v(t, x) =
√
|f(x)|u(t, x) (A.31)

in class (A.30). As a result, we obtain the class of related equations

vt = vxx +H(x)vm + F (x)v, (A.32)

where the new arbitrary elements F and H are connected with the old ones

via the formulas

F (x) = −
(
√
|f(x)|)xx√
|f(x)|

, H(x) =
h(x) sign f(x)

(
√
|f(x)|)m+1

. (A.33)

We study nonclassical reduction operators for equations (A.32) and then

use them to construct exact solutions of equations (A.30).

Reduction Operators for General Values of m. We look for G∼FH-

inequivalent reduction operators of the imaged class (A.32). Here reduction

operators have the general form Q = τ∂t + ξ∂x + η∂v, where τ , ξ and η are

functions of t, x and v, and (τ, ξ) 6= (0, 0). Since (A.32) is an evolution

equation, there are two principally different cases of finding Q: τ 6= 0 and

τ = 0 [92,173,333]. The singular case τ = 0 was exhaustively investigated

for general evolution equation in [173,333].

If τ 6= 0, we can assume τ = 1 up to the usual equivalence of reduction

operators. Then the determining equations are of the form

ξvv = 0, ηvv = 2(ξxv − ξξv),

ηt − ηxx + 2ξxη = (A.34)

ξ (Hxv
m + Fxv) + (2ξx − ηv) (Hvm + Fv) + η

(
F +Hvm−1m

)
,

3ξv (Hvm + Fv) + 2ξxξ + ξt + 2ηvx − ξxx − 2ξvη = 0.
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Integration of first two equations of system (A.34) gives us the following

expressions for ξ and η

ξ = av + b,

η = −1
3a

2v3 + (ax − ab)v2 + cv + d,
(A.35)

where a = a(t, x), b = b(t, x), c = c(t, x) and d = d(t, x).

Substituting ξ and η from (A.35) into the third and forth equations

of (A.34), we obtain the classifying equations which include both the resid-

uary uncertainties in coefficients of the operator and the arbitrary elements

of the class under consideration.

Since the functions a, b, c, d, F and H do not depend on the variable

v, the classifying equations should be split with respect to different powers

of v. Two principally different cases a = 0 and a 6= 0 should be considered

separately.

If a = 0 then for any m 6= 0, 1, 2 the splitting results in the system of

five equations

mHd = 0, dt − dxx + 2bxd− Fd = 0,

bt − bxx + 2bbx + 2cx = 0,

bHx + (c(m− 1) + 2bx)H = 0,

bFx + 2bxF + cxx − ct − 2bxc = 0.

(A.36)

Since mH 6= 0 then d = 0 and the second equation of (A.36) becomes

identity.

Finding the general solution of the other three equations from (A.36)

appears to be a very difficult problem. But it is easy to construct certain

particular solutions setting, e.g., bt = 0. This supposition implies that

ct = 0. Then the integration of (A.36) gives the expressions of c, F and H

via the function b(x) 6= 0

c = −1

2
b2 +

1

2
bx + k1,



308

F = −1

4
b2 + k1 + k2b

−2 + bx +
1

4

(
bx
b

)2

− 1

2

bxx
b
, (A.37)

H = k3b
−m+3

2 exp

[
(m− 1)

∫ (
b

2
− k1

b

)
dx

]
, (A.38)

where k1, k2 and k3 are arbitrary constants, k3 6= 0.

Theorem A.15. The equations from class (A.32) with the arbitrary ele-

ments given by formulas (A.37) and (A.38) admit reduction operators of

the form

Q = ∂t + b∂x +

(
−1

2
b2 +

1

2
bx + k1

)
v∂v, (A.39)

where b = b(x) is an arbitrary smooth function and k1 is an arbitrary

constant.

Note A.16. Theorem A.15 is true for any m ∈ R, including m ∈ {0, 1, 2}.

We present the illustrative example, by considering specific of the func-

tion b.

Example A.17. Consider b = x−1. In view of theorem A.15 the equations

from class (A.32) with the arbitrary elements

F = k1 + k2x
2 − 2x−2, H = k3x

m+1e
1
2 (1−m)k1x

2

(A.40)

admit the reduction operator

Q = ∂t + x−1∂x +
(
k1 − x−2

)
v∂v.

The ansatz constructed with this operator is v = x−1e k1tz(ω), where

ω = x2 − 2t, and the reduced equation reads

4zωω + k3e
1
2 (1−m)k1ωzm + k2z = 0.

If k1 = k2 = 0, the reduced equation has the particular solution

z =


(
±m−1

2

√
− k3

2(m+1) ω
) 2

1−m
, m 6= −1,

exp

{
−
[
erf−1

(
±
√

2
2

√
k3
π ω

)]2
}
, m = −1.
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Substituting the obtained z to the ansatz, we construct exact solutions

of equations from class (A.32) with the arbitrary elements (A.40) for the

values k1 = k2 = 0.

The preimaged equation x4ut = (x4ux)x + k3 x
3(m+1)um has the exact

solution

u =


x−3

(
±m−1

2

√
− k3

2(m+1) (x2 − 2t)
) 2

1−m
, m 6= −1,

x−3 exp

{
−
[
erf−1

(
±
√

2
2

√
k3
π (x2 − 2t)

)]2
}
, m = −1.

More examples can be found in [299]. We have shown the applicability

of theorem A.15 for construction of non-Lie exact solutions of equations

from classes (A.32) and (A.30). Moreover, using these solutions one can

find exact solutions for other equations from (A.32) and (A.30) with the

help of equivalence transformations from the corresponding equivalence

groups.

In the case m = 3 we are able to construct more exact solutions of

equations from class (A.32) whose coefficients are given by (A.37)–(A.38)

with k1 = 0, namely, for the equations

vt = vxx + k3b
−3e

∫
bdxv3

+

(
k2

b2
− 1

4
b2 + bx +

1

4

(
bx
b

)2

− 1

2

bxx
b

)
v, (A.41)

where b = b(x), k3 6= 0.

According to theorem A.15, equation (A.41) admits the reduction op-

erator (A.39) (with k1 = 0). An ansatz constructed with this operator has

the form

v = z(ω)
√
|b| e−

1
2

∫
bdx, where ω = t−

∫
dx

b
,

and reduces (A.41) to the second-order ODE

zωω = −k3z
3 − k2z.
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It is interesting that the reduced ODE does not depend on the function

b(x). Multiplying this equation by zω and integrating once, we obtain the

equation

z2
ω = −k3

2
z4 − k2z

2 + C1.

Its general solution is expressed via Jacobian elliptic functions depending

on values of the constants k2, k3 and C1.

For example, if k2 = 1 + µ2, k3 = −2µ2 and C1 = 1 (0 < µ < 1) we find

two exact solutions of equation (A.41)

v = sn
(
t−
∫

1
bdx, µ

)√
|b| e− 1

2

∫
bdx, v = cd

(
t−
∫

1
bdx, µ

)√
|b| e− 1

2

∫
bdx,

where sn(ω, µ), cd(ω, µ) are Jacobian elliptic functions [316].

The second case to be considered is a 6= 0. Then after substitution of ξ

and η from (A.35) to system (A.34) its last equation takes the form

2

3
a3v3 + 2a(ab− 2ax)v

2 + (at + 3axx + 3aF − 2(ab)x − 2ac)v

+bt + 2bxb− bxx − 2ad+ 2cx + 3aHvm = 0.
(A.42)

It is easy to see that a 6= 0 if and only if m = 3.

Specific Reduction Operators for the Cubic Nonlinearity. Splitting

equation (A.42) in the case m = 3 and a 6= 0 with respect to u, we obtain

that the functions a, b c and d do not depend on the variable t and are

expressed via the functions F and H in the following way

a =
3

2

√
2 ε
√
−H, b =

Hx

H
,

c =
1

8

(
12F − 2

(
Hx

H

)
x

−
(
Hx

H

)2)
,

d =

√
2 ε

2
√
−H

(
Fx +

1

2

Hx

H

(
Hx

H

)
x

− 1

2

(
Hx

H

)
xx

)
,

(A.43)

where ε = ±1. If H < 0 the corresponding reduction operators have real

coefficients.
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Then splitting of the third equation of system (A.34) for m = 3 results

in the system of two ordinary differential equations

H3Hxxxx − 13H4
x + 2FxH

3Hx + 22HH2
xHxx − 4FH2H2

x

− 4H2H2
xx − 6H2HxHxxx + 4FH3Hxx − 6FxxH

4 = 0,

16FxxxH
5 + 16H2HxH

2
xx + 3H2H2

xHxxx − 4FxH
4Hxx

− 6H3HxxHxxx − 18HH3
xHxx − 8FFxH

5 + 2FxH
3H2

x

− 20FH2H3
x − 12FH4Hxxx + 5H5

x + 32FH3HxHxx = 0.

(A.44)

The following statement is true.

Theorem A.18. The equations from class (A.32) with m = 3 and the

arbitrary elements satisfying system (A.44) admit reduction operators of

the form

Q = ∂t +

(
3

2

√
2 ε
√
−H v +

Hx

H

)
∂x

+

[
3

2
Hv3 +

3

4

√
2 ε

Hx√
−H

v2 +
1

8

(
12F − 2

(
Hx

H

)
x

−
(
Hx

H

)2
)
v

+

√
2 ε

2
√
−H

(
Fx +

1

2

Hx

H

(
Hx

H

)
x

− 1

2

(
Hx

H

)
xx

)]
∂v, (A.45)

where ε = ±1.

System (A.44) consists of two nonlinear fourth- and third-order ODEs.

Unfortunately we were not able to find its general solution. Nevertheless,

we tested the six pairs of functions F and H appearing in table 1 in order to

check whether they satisfy system (A.44). In the case of positive answer the

corresponding reduction operator is easily constructed via formula (A.45).

It appears that system (A.44) is satisfied by F and H from cases 1, 2 and

6 and by those from cases 3 and 4 for special values of the constants k and

a2, namely, (k, a2) ∈
{(
−3, 9

4

)
,
(
−3

2 ,
3
16

)}
.
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Example A.19. Class (A.32) contains equations with cubic nonlinearity,

which are not reduced to constant-coefficient ones by point transformations

and admit reduction operators of the form (A.45). One of them is the

equation with the coefficients F and H presented by case 3 of table ??

with k = −3, a2 = 9
4 and δ = −1, namely,

vt = vxx − x−3v3 +
9

4
x−2v. (A.46)

According to theorem A.18 this equation admits two similar reduction

operators (ε = ±1)

Q± = ∂t +
3

2

√
2
(
εx−

3
2v −

√
2x−1

)
∂x−

3

4

√
2
(√

2x−3v3 − 3εx−
5
2v2 −

√
2x−2v + 4εx−

3
2

)
∂v.

They lead to the solutions differing only in their signs. Since equa-

tion (A.46) is invariant with respect to the transformation v 7→ −v, we

consider in detail only the case ε = 1. For all expressions to be correctly

defined, we have to restrict ourself with values x > 0. (Another way is to

replace x by |x|.)
For convenient reduction we apply the hodograph transformation

t̃ = v, x̃ = x, ṽ = t

which maps equation (A.46) and the reduction operator Q+ to the equation

ṽt̃
2 ṽx̃x̃ + ṽx̃

2 ṽt̃t̃ − 2 ṽt̃ ṽx̃ ṽt̃x̃ + ṽt̃
2 +

t̃ 3

x̃3
ṽt̃

3 − 9

4

t̃

x̃2
ṽt̃

3 = 0 (A.47)

and its reduction operator

Q̃+ = −3

4

√
2
(√

2 x̃−3t̃ 3 − 3x̃−
5
2 t̃ 2 −

√
2 x̃−2t̃+ 4x̃−

3
2

)
∂t̃ +

3

2

√
2
(
x̃−

3
2 t̃−
√

2 x̃−1
)
∂x̃ + ∂ṽ,

respectively. An ansatz constructed with the operator Q̃+ has the form

ṽ =
1

24
x̃2 t̃+

√
2x̃

t̃−
√

2x̃
− 1

12
x̃2 + z(ω), where ω = x̃2 t̃−

√
2x̃

t̃+
√

2x̃
,
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and reduces (A.47) to the simple linear ODE ωzωω+2zω = 0 whose general

solution z = c̃1 + c̃2ω
−1 substituted to the ansatz gives the exact solution

ṽ =
x̃4 + 24c̃2

24x̃2

t̃+
√

2x̃

t̃−
√

2x̃
− 1

12
x̃2 + c̃1

of equation (A.47). Applying the inverse hodograph transformation and

canceling the constant c̃1 by translations with respect to t, we construct

the non-Lie solution

v =
√

2x
3x4 + 24tx2 + c2

x4 + 24tx2 − c2
(A.48)

of equation (A.46). The solution (A.48) with c2 = 0 is a Lie solution

invariant with respect to the dilatation operator D = 4t∂t + 2x∂x + v∂v

from the maximal Lie invariance algebra of equation (A.46). However, it

is much harder to find this solution by the reduction with respect to the

operator D. The corresponding ansatz v =
√
xz(ω), where ω = t−1x2, has

a simple form but the reduced ODE 4ω2zωω + ω(ω + 4)zω + 2z − z3 = 0 is

nonlinear and complicated.

This example justifies the observation made by W. Fushchych [85] that

“ansatzes generated by conditional symmetry operators often reduce an

initial nonlinear equation to a linear one. As a rule, a Lie reduction does

not change the nonlinear structure of an equation.” We can also formulate

the more general similar observation that a complicated non-Lie ansatz

may lead to a simple reduced equation while a simple Lie ansatz may give

a complicated reduced equation which is difficult to be integrated.

One of the preimages of equation (A.46) with respect to transforma-

tion (A.31) is the equation

x sin2(
√

2 lnx)ut =
(
x sin2(

√
2 lnx)ux

)
x
− x−1 sin4(

√
2 lnx)u3,

having the non-Lie exact solution

u =

√
2

x
| cosec(

√
2 lnx)|3x

4 + 24tx2 + c2

x4 + 24tx2 − c2
.



314

Example A.20. Consider the equation from the imaged class (A.32)

vt = vxx − x−
3
2v3 +

3

16

v

x2
(A.49)

for the values x > 0. It admits the reduction operator of form (A.45)

Q+ = ∂t +
3

2

(√
2x−

3
4v − x−1

)
∂x −

3

8

(
4x−

3
2v3 − 3

√
2x−

7
4v2 + x−2v

)
∂v.

Usage of the same technique as in the previous example gives the non-Lie

exact solution of (A.49)

v =
1

2
5
√

2x
1
4

3 t+ x2

√
x(15 t+ x2) + c2

. (A.50)

Applying the transformation v =
√
x(b1x

1
4 + b2x

− 1
4 )u to solution (A.50),

we obtain a non-Lie solution of the equation

x(b1x
1
4 + b2x

− 1
4 )2ut =(

x(b1x
1
4 + b2x

− 1
4 )2ux

)
x
−
√
x(b1x

1
4 + b2x

− 1
4 )4u3

from class (A.30), where b1 and b2 are arbitrary constants, b2
1 + b2

2 6= 0.

More examples and nonclassical reduction operators of those equations

from class (A.30) that are reducible to constant coefficient equations from

class (A.32) can be found in [299].

A.4. Potential Symmetries of a Class of

Inhomogeneous Diffusion Equations

In this section we consider variable coefficient nonlinear diffusion equations

of the form

f(x)ut = (g(x)unux)x, fgn 6= 0. (A.51)

Using the transformation t̃ = t, x̃ =
∫

dx
g(x) , ũ = u, we can reduce equa-

tion (A.51) to f̃(x̃)ũt̃ = (ũnũx̃)x̃, where f̃(x̃) = g(x)f(x) and g̃(x̃) = 1.
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That is why, without loss of generality, we restrict ourselves to the inves-

tigation of equations having the form

f(x)ut = (unux)x, fn 6= 0. (A.52)

The equivalence group G∼ of class (A.52) has a simple structure and

consists of the transformations

t̃ = δ1t+ δ4, x̃ = δ2x+ δ5, ũ = δ3u,

f̃ = δ1δ
−2
2 δn3f, ñ = n,

where δi, i = 1, . . . , 5, are arbitrary constants, δ1δ2δ3 6= 0. At the same

time, class (A.52) possesses a generalized equivalence group which is wider

than G∼.

Theorem A.21. The generalized equivalence group Ĝ∼ of class (A.52)

under the condition n 6= −1 consists of the transformations

t̃ = δ1t+ δ2, x̃ =
δ3x+ δ4

δ5x+ δ6
, ũ = δ7|δ5x+ δ6|−

1
n+1u,

f̃ = δ1δ7
n|δ5x+ δ6|

3n+4
n+1 f, ñ = n,

where δj, j = 1, . . . , 7, are real constants, δ1δ7 6= 0 and δ3δ6 − δ4δ5 = ±1.

In the case n = −1 transformations from the group Ĝ∼ take the form

t̃ = δ1t+ δ2, x̃ = δ3x+ δ4, ũ = δ5e
δ6xu, f̃ = δ1δ

−2
3 δ−1

5 e−δ6xf,

where δj, j = 1, . . . , 6, are arbitrary constants, δ1δ3δ5 6= 0.

Since the parameter n is an invariant of all admissible (point) transfor-

mations in class (A.52), this class can be presented as the union of disjoint

subclasses where each from the subclasses corresponds to a fixed value

of n. This representation allows us to give the interpretation of the gener-

alized equivalence group Ĝ∼ as a family of the usual conditional equivalence

groups of the subclasses parameterized with n, and the value n = 0 and

n = −1 being singular.
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The conservation laws for the class (A.52) are found in [137, 140]. The

space of local conservation laws of any equation (A.52) with n 6= 0 is

two-dimensional and spanned by conservation laws with the conserved vec-

tors (fu,−unux) and (xfu, −xunux +
∫
undu ).

Up to G∼-equivalence, these conservation laws give rise to the following

inequivalent potential systems for equations (A.52):

1. v1
x = fu, v1

t = unux;

2. v2
x = xfu, v2

t = xunux −
∫
undu;

3. v1
x = fu, v1

t = unux, v2
x = xfu, v2

t = xunux −
∫
undu.

Systems 1 and 2 are associated with the conservation laws having the char-

acteristics 1 and x, respectively. The united system 3 corresponds to the

whole space of conservation laws. The generalized equivalence group Ĝ∼

prolonged to potentials establishes additional equivalence between poten-

tial systems. Thus, in the case n 6= −1 the transformation

t̃ = t, x̃ = x−1, ũ = |x|− 1
n+1u,

ṽ1 = −(signx)v2, ṽ2 = −(signx)v1
(A.53)

maps systems 1 and 2 to systems 2 and 1 in the tilde variables with

f̃ = |x̃|− 3n+4
n+1 f(x̃−1), respectively. Systems 1 and 2 are Ĝ∼-inequivalent for

an arbitrary pair of values of f iff n = −1.

Potential symmetries of equation (A.52), associated with system 1, were

first obtained in [274, 275], see also [7, 38, 39] for the constant coefficient

case f = 1. There exist two inequivalent equations of form (A.52) admit-

ting such nonlocal symmetries. Below we adduce the values of arbitrary

elements together with bases of the corresponding maximal Lie invariance

algebras.

1.1. f = 1, n = −2:

〈∂t, ∂v1, 2t∂t+u∂u+v1∂v1, x∂x−u∂u, −v1x∂x+(xu+v1)u∂u+2t∂v1,

4t2∂t−((v1)2+2t)x∂x+((v1)2+6t+2xuv1)u∂u+4tv1∂v1, ϕ∂x−ϕv1u2∂u〉;
1.2. f = x−4/3, n = −2:
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〈∂t, ∂v1, 2t∂t + u∂u + v1∂v1, 3x∂x − u∂u − 2v1∂v1,

3xv1∂x − (v1 + 3x−1/3u)u∂u − (v1)2∂v1〉.

Here and below ϕ = ϕ(t, v1) is an arbitrary solution of the linear heat

equation ϕt = ϕv1v1.

Potential symmetries of equation (A.52) associated with system 2 were

first investigated in [276] (see also [141]). Up to the equivalence group G∼,

there exist exactly two cases of equations in class (A.52) admitting such

potential symmetries:

2.1. f = x−2, n = −2:

〈∂t, ∂v2, x∂x, 2t∂t + u∂u + v2∂v2, v
2x∂x − u2∂u + 2t∂v2,

4t2∂t+((v2)2+2t)x∂x+2(2t−uv2)u∂u+4tv2∂v2, x
2ψ∂x−xu(ψ+ψv2u)∂u〉.

2.2. f = x−2(c1 + c2x
−1)−4/3, c2 6= 0, n = −2:

〈∂t, ∂v2, 2t∂t+u∂u+v2∂v2, 3(c1x+c2)x∂x− (2c2 +3c1x)u∂u+2c2v
2∂v2,

3v2(c1x+c2)x∂x−(3x4/3(c1x+c2)
−1/3u+(2c2+3c1x)v2)u∂u+c2(v

2)2∂v2〉;

Here and below ψ = ψ(t, v2) is an arbitrary solution of the linear heat

equation ψt = ψv2v2. By transformation (A.53), cases 2.1 and 2.2 are

reduced to cases 1.1 and 1.2, respectively. For the precise reduction 2.2→
1.2 the transformation t̂ = t̃, x̂ = c1 + c2x̃, û = c−1

2 ũ from G∼ has to be

additionally carried out.

The united system 3 is equivalent to the second-level potential system

v1
x = fu, wx = v1, wt =

∫
undu (A.54)

constructed from system 1 using its conserved vector (v,−
∫
undu), and

w = xv1 − v2. Nontrivial G∼-inequivalent cases of potential symmetries

associated with system (A.54) are new and exhausted by the following

ones:

3.1. f = 1, n = −2:

〈∂t, ∂w, ∂v1 + x∂w, 2t∂t + u∂u + v1∂v1 + w∂w, x∂x − u∂u + w∂w,
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(w − 2v1x)∂x + (2xu+ v1)u∂u + 2t∂v1 + (2t− (v1)2)x∂w,

4t2∂t+(2v1w−3x(v1)2−6tx)∂x+(6xuv1−2uw+(v1)2+10t)u∂u+4tv1∂v1

+ ((v1)2w − 2tw − 2x(v1)3)∂w, ϕv1∂x − ϕtu2∂u + (v1ϕv1 − ϕ)∂w〉;

3.2. f = 1, n = −2/3:

〈∂t, ∂x, ∂w, ∂v1 + x∂w, 2t∂t + 3u∂u + 3v1∂v1 + 3w∂w,

x∂x − 3u∂u − 2v1∂v1 − w∂w, w∂x − 3uv1∂u − (v1)2∂v1〉;

3.3. f = x−2, n = −2:

〈∂t, ∂w, ∂v1 + x∂w, x∂x − v1∂v1, 2t∂t + u∂u + v1∂v1 + w∂w,

x(2xv1 − w)∂x − u(xv1 + 2u)∂u + v1(w − xv1)∂v1 + (x2(v1)2 − 2t)∂w,

4t2∂t + x(6t+ 3x2(v1)2 − 4xv1w + w2)∂x

+ 2u(2t− 3xuv1 + 2uw − x2(v1)2 + xv1w)∂u

+(2xv1w − 2t− x2(v1)2 − w2)v1∂v1 + 2(2tw + x3(v1)3 − x2(v1)2w)∂w,

x2ψv2∂x + (ψv2 + uψt)xu∂u − ψ∂v1 + x(xv1ψv2 − ψ)∂w〉;

3.4. f = x−6, n = −2/3:

〈∂t, ∂w, ∂v1+x∂w, 2t∂t+3u∂u+3v1∂v1+3w∂w, x∂x+6u∂u+v
1∂v1+2w∂w,

x2∂x + 3xu∂u + (w − xv1)∂v1 + xw∂w,

xw∂x − 3(xv1 − 2w)u∂u − (xv1 − w)v1∂v1 + w2∂w〉.

Here v2 = xv1 −w. By transformation (A.53) which is rewritten for v1

and w as ṽ1 = w signx − |x|v1 and w̃ = |x|−1w, cases 3.3 and 3.4 are

reduced to cases 3.1 and 3.2, respectively.
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Appendix B

Group Analysis of K(m,n),

Benjamin–Bona–Mahony–Burgers and

KdV-Like Equations

In this appendix we present the results on group analysis of K(m,n),

Benjamin–Bona–Mahony–Burgers and generalized Korteweg–de Fries

equations of third and fifth orders. Usage of transformations from the

equivalence groupoids of the classes plays the crucial role in complete solu-

tion of group classification problems for all the classes under consideration.

In Section B.1 we perform the group classification of the variable coef-

ficient Gardner equations ut + k(t)uux + f(t)u2ux + g(t)uxxx = 0, fg 6= 0.

We show that even the use of usual equivalence group allows one to get

the complete result. At the same time utilizing wider generalized extended

equivalence group provides more simplification and therefore is preferable.

The exhaustive group classification of a class of variable coefficient gen-

eralized KdV equations ut+u
nux+h(t)u+g(t)uxxx = 0, ng 6= 0, is presented

in Section B.2. The found Lie symmetries are applied in order to reduce

the initial and boundary value problem for the generalized KdV equations

to an initial value problem for nonlinear third-order ODEs.

Sections B.3 and B.4 are devoted to the exhaustive group classification

of generalized fKdV equations with time dependent coefficients of the gen-

eral form ut + unux + α(t)u + β(t)uxxxxx = 0, nβ 6= 0. The cases n = 1

and n 6= 1 differ by their transformational properties and therefore treated

separately in sections B.3 and B.4, respectively.
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In Section B.5 we investigate Lie symmetry properties of variable co-

efficient K(m,n) equations ut + g(t)(um)x + f(t)(un)xxx = 0, fn 6= 0.

Group classification is presented up to widest possible equivalence groups,

the usual equivalence group of the whole class for the general case and the

conditional equivalence groups for special values of the exponents m and n.

Using the method of mapping between classes we present the complete

group classification of BBMB equations ut + f(t)ux + g(t)uux + k(t)uxx +

h(t)uxxt = 0, ghk 6= 0, in Section B.6. As a by-product of this approach

we also get the group classification of a related class of BBMB equations

with a forcing term ut + uux +K(t)uxx +H(t)uxxt = F (t), HK 6= 0.

For many equations from the considered classes exact solutions are

constructed. The results adduced in this appendix are published in pa-

pers [5*,8*,12*,14*,15*,16*].

B.1. Enhanced Group Classification of Gardner

Equations with Time Dependent Coefficients

In this section we perform the group classification of the variable coefficient

Gardner equations

ut + k(t)uux + f(t)u2ux + g(t)uxxx = 0, fg 6= 0, (B.1)

Here k, f , and g are smooth functions of the variable t. The particular

results on Lie symmetries of such equations were derived in [200]. We

achieve the exhaustive classification using the groups of equivalence trans-

formations of class (B.1). We show that even the use of usual equivalence

group allows one to get the complete result. At the same time utilizing

wider generalized extended equivalence group provides more simplification

and therefore is preferable. This is illustrated in the process of finding Lie

symmetries of equations (B.1).

Firstly we investigate admissible transformations in class (B.1). The

following statements are true.
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Theorem B.1. The generalized extended equivalence group Ĝ∼ of

class (B.1) is formed by the transformations

t̃ = α(t), x̃ = δ1x+ δ1δ3
δ 2
2

∫
(δ2k(t)− δ3f(t))dt+ δ4, ũ = δ2u+ δ3,

k̃(t̃) =
δ1

δ2αt

(
k(t)− 2

δ3

δ2
f(t)

)
, f̃(t̃) =

δ1

δ 2
2 αt

f(t), g̃(t̃) =
δ 3

1

αt
g(t),

where δi, i = 1, . . . , 4, are arbitrary constants with δ1δ2 6= 0, α is an arbi-

trary smooth function with αt 6= 0.

The usual equivalence group G∼ of class (B.1) consists of the above

transformations with δ3 = 0.

Theorem B.2. The entire set of admissible transformations (equivalence

groupoid) of class (B.1) is generated by the transformations from the

group Ĝ∼. Class (B.1) is normalized in the generalized extended sense.

Thus, there are no other point transformations between equations from

class (B.1) than those transformations from the group Ĝ∼. To deduce

which variable coefficient equations of the form (B.1) is reducible to their

constant coefficient counterparts we assume k̃ and f̃ are constant in the

transformation components for arbitrary elements in Ĝ∼, this results in

the following statement.

Proposition B.3. A variable coefficient equation from class (B.1) is re-

ducible to constant coefficient equation from the same class if and only if

the coefficients f, g and k satisfy the conditions

(f/k)t = (g/k)t = 0.

As there is one arbitrary function, α(t), in the transformations from

the group Ĝ∼, we can set one of the arbitrary elements of class (B.1) to a

nonzero constant value. We choose the gauging g = 1 and perform it using

the transformation

t̃ =
∫
g(t)dt, x̃ = x, ũ = u. (B.2)
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Then, any equation from the class (B.1) is mapped to one from its subclass

singled out by the condition g = 1. Old forms of the arbitrary elements

are connected with new ones via the formulae k̃ = k/g and f̃ = f/g.

The most general form of transformation that maps an equation from

class (B.1) to another equation from the same class with g = 1 is

t̃ = δ 3
1

∫
g(t)dt+ δ0, ũ = δ2u+ δ3,

x̃ = δ1x+
δ1δ3

δ 2
2

∫
(δ2k(t)− δ3f(t))dt+ δ4,

(B.3)

where δi, i = 0, . . . , 4, are constants with δ1δ2 6= 0.

Without loss of generality, we can restrict ourselves to the study of the

class

ut + k(t)uux + f(t)u2ux + uxxx = 0. (B.4)

As class (B.1) is normalized in the generalized extended sense, in order

to derive the equivalence group for its subclass with g = 1 it is enough

to set g̃ = g = 1 in the transformations from the group Ĝ∼ presented

in Theorem 1. This leads to the equation for α: αt = δ 3
1 , resulting in

α = δ 3
1 t + δ0, where δ0 is an arbitrary constant. The following statement

is true.

Theorem B.4. The generalized extended equivalence group Ĝ∼1 of

class (B.4) comprises the transformations

t̃ = δ 3
1 t+ δ0, x̃ = δ1x+

δ1δ3

δ 2
2

∫
(δ2k(t)− δ3f(t))dt+ δ4,

ũ = δ2u+ δ3, k̃(t̃) =
δ2k(t)− 2δ3f(t)

δ 2
1 δ

2
2

, f̃(t̃) =
f(t)

δ 2
1 δ

2
2

,

where δi, i = 0, . . . , 4, are arbitrary constants with δ1δ2 6= 0.

The usual equivalence group G∼1 of class (B.4) consists of the above

transformations with δ3 = 0.



323

Table B.1: The group classification of class (B.1) up to G∼-equivalence.

no. f(t) k(t) Basis of Amax

0 ∀ ∀ ∂x

I.1 λ1t
ρ λ2t

3ρ−2
6 + δtρ ∂x, 3t∂t +

(
x− κ 3ρ+2

2

(
6λ2
3ρ+4 t

3ρ+4
6 + δ

ρ+1 t
ρ+1
))

∂x

− 3ρ+2
2 (u+ κ) ∂u

I.2 λ1t
− 2

3 t−
2
3 ln |t| ∂x, 2λ1t∂t +

(
2
3λ1x− 3 (ln |t| − 3) t

1
3

)
∂x − ∂u

I.3 λ1t
−1 λ2t

− 5
6 + δt−1 ∂x, 3t∂t +

(
x+ κ

(
3λ2t

1
6 + 1

2δ ln |t|
))

∂x + 1
2 (u+ κ) ∂u

I.4 λ1t
− 4

3 λ2t
−1 + δt−

4
3 ∂x, 3t∂t +

(
x+ κ

(
λ2 ln |t| − 3δt−

1
3

))
∂x + (u+ κ) ∂u

II λ1e
t λ2e

t
2 + δet ∂x, 2∂t − κ

(
2λ2e

t
2 + δet

)
∂x − (u+ κ) ∂u

III λ1 t ∂x, 2λ1∂t − 1
2 t

2∂x − ∂u

IV ε δ ∂x, ∂t, 3t∂t + (x− κ δt)∂x − (u+ κ) ∂u

Here g = 1 mod G∼; λi, i = 1, 2, and ρ are arbitrary constants with λ1 6= 0, ρ 6= −4
3 ,−1;

δ ∈ {0, 1} mod G∼, ε = ±1 mod G∼, and κ = 1
2δ/λ1. In Case I.1 (ρ, δ) 6= (0, 0).

We note that class (B.4) is normalized in the generalized extended sense.

From Proposition B.3 we deduce that there are no variable coefficient equa-

tions (B.4) that are reducible to constant coefficient equations from the

same class by point transformations.

In the next section we demonstrate usage of the found equivalence trans-

formations in the process of group classification. Simplifications by usual

and generalized equivalence groups will be compared.

Classification of Lie Symmetries. Using the classical Lie-Ovsiannikov

technique, we have proved the following statement.

Theorem B.5. The kernel of the maximal Lie invariance algebras of equa-

tions from class (B.1) coincides with the one-dimensional algebra 〈∂x〉. All

possible G∼-inequivalent (resp. Ĝ∼-inequivalent) cases of extension of the

maximal Lie invariance algebras are exhausted by Cases I–IV of Table B.1

(resp. Table B.2).
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Table B.2: The group classification of class (B.1) up to Ĝ∼-equivalence.

no. f(t) k(t) Basis of Amax

0 ∀ ∀ ∂x

I.1 λ1t
ρ δt

3ρ−2
6 ∂x, 3t∂t + x∂x − 3ρ+2

2 u∂u

I.2 λ1t
− 2

3 t−
2
3 ln |t| ∂x, 2λ1t∂t +

(
2
3λ1x− 3 (ln |t| − 3) t

1
3

)
∂x − ∂u

II λ1e
t δe

t
2 ∂x, 2∂t − u∂u

III λ1 t ∂x, 2λ1∂t − 1
2 t

2∂x − ∂u

IV ε 0 ∂x, ∂t, 3t∂t + x∂x − u∂u

Here g = 1 mod Ĝ∼; λ1 and ρ are arbitrary constants with λ1 6= 0,

δ ∈ {0, 1} mod Ĝ∼, and ε = ±1 mod G∼. In Case I.1 (ρ, δ) 6= (0, 0).

In order to get the most general forms of arbitrary elements of

class (B.1) (not simplified by equivalence transformations) we should ap-

ply transformation (B.3) to the equations (B.4) with k and f presented in

Table B.1 or even simpler transformation (B.3) with δ3 = 0 to the equa-

tions (B.4) with k and f presented in Table B.2. The complete results

are presented in [297], were we also used the method of mappings between

classes to perform the group classification of the related class of equations

ut + F (t)u2ux + uxxx = L(t), F 6= 0.

We have found that, besides the usual equivalence group G∼, class (B.1)

admits the wider generalized extended equivalence group Ĝ∼. Although the

exhaustive group classification of class (B.1) can be achieved even using

the usual equivalence group, we have shown that the generalized extended

equivalence group provides more simplification and allows one to write

down the classification list in a simple and concise form (compare Table B.2

with Table B.1).

We note that the case of the three-dimensional maximal Lie symmetry

algebra was not indicated in [200].
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B.2. Application of Lie Symmetries to Boundary

Value Problems for Variable Coefficient

Generalized KdV Equations

In applications, one is usually interested in a solution of a given PDE sat-

isfying some initial condition or/and a boundary condition. In a recent

paper [307], Lie symmetries were successfully applied to solve an initial

and boundary value problem (IBVP) for a generalized Burgers equation

arising in nonlinear acoustics. Namely, the IBVP for a generalized Burgers

equation was reduced to an initial value problem (IVP) for a related non-

linear second-order ODE. As a result, a closed-form solution of the IBVP

for the generalized Burgers equation was found. Motivated by that work,

we intend to apply Lie symmetries to construct solutions for IBVP for the

variable coefficient generalized Korteweg–de Vries (KdV) equation,

ut + unux + h(t)u+ g(t)uxxx = 0, ng 6= 0, (B.5)

arising in several applications (see [266] and references therein). For this

purpose we carry out an exhaustive group classification of equations from

this class. In other words, we at first find a Lie invariance algebra admitted

by any equation in the class, the so-called kernel algebra, and then classify

all possible cases of extension of Lie invariance algebras of such equations

with respect to the equivalence group of the class [227]. Some cases of

Lie symmetry extension for (B.5) were found in [266], namely, the cases

h = const and h = 1/(at+b) with a and b being constants. Here we present

a complete group classification taking advantage of the use of equivalence

transformations (this opportunity was neglected in [266]). We point out

that complete group classifications of class (B.5) for n = 1 and n = 2 were

obtained in [251, 289] (see also [290]). The results were presented there in

two ways: with respect to corresponding equivalence groups and using no

equivalence. We would like to mention that in [109] group classifications

for more general classes that include class (B.5) were carried out. However
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it seems to be inconvenient to derive group classifications for class (B.5)

using those results obtained up to a very wide equivalence group.

Note that the more general class of the form

ut + f(t)unux + h(t)u+ g(t)uxxx = 0, nfg 6= 0, (B.6)

reduces to class (B.5) via the change of the variable t. That is why without

loss of generality it is sufficient to study class (B.5), since all results on

exact solutions, symmetries, conservation laws, etc. for class (B.6) can be

derived form those obtained for (B.5).

Admissible Transformations. We study admissible transformations in

class (B.5) using the direct method [160]. We omit the details of calcula-

tions and present the result only.

Theorem B.6. The equivalence group G∼ of class (B.5) consists of the

transformations

t̃ = ε1

∫
θ−ndt+ ε2, x̃ = ε1x+ ε0, ũ = θu,

g̃ = ε 2
1 θ

n g, h̃ =
θn

ε1

(
h− θt

θ

)
, ñ = n,

(B.7)

where εj, j = 0, 1, 2, are arbitrary constants with ε1 6= 0; θ = θ(t) is an

arbitrary nonvanishing smooth function.

Now we can use equivalence transformations (B.7) to gauge one of the

arbitrary elements g or h to a simple constant value. It was shown in [251]

that the parameter-function h in (B.5) can be set equal to zero by the point

transformation

t̃ =
∫
e−n

∫
h(t) dt dt, x̃ = x, ũ = e

∫
h(t) dtu, (B.8)

and the transformed value of the arbitrary element g is g̃(t̃) = en
∫
h(t) dtg(t).

This transformation can be easily found from Theorem B.6 setting h̃ = 0

in (B.7) and solving the obtained equation for θ. The fact that the arbi-

trary element h can always be set to zero means that fixing the arbitrary
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element h cannot lead to cases of equations (B.5) with special symmetry

properties. So, without loss of generality we can restrict our investigation

to the class

ut + unux + g(t)uxxx = 0, ng 6= 0. (B.9)

There are no other point transformations except (B.7) that link equa-

tions from class (B.5) with n 6= 0, 1, therefore, this class is normalized.

It means that an equivalence group for (B.9) can be derived from Theo-

rem B.6 by simply setting h̃ = h = 0. Then we get that θ = ε3 is an

arbitrary nonzero constant and the following statement is true.

Corollary B.7. The equivalence group G∼0 of class (B.9) is formed by the

transformations

t̃ = ε1ε
−n
3 t+ ε0, x̃ = ε1x+ ε2, ũ = ε3u,

g̃ = ε 2
1 ε

n
3 g, ñ = n,

where εj, j = 0, . . . , 3, are arbitrary constants with ε1ε3 6= 0.

B.2.1. Lie Symmetries. The group classification of class (B.5) up to

G∼-equivalence reduces to the group classification of class (B.9) up to G∼0 -

equivalence. We carry out the group classification of class (B.9) using the

classical algorithm [217].

Theorem B.8. The kernel of the maximal Lie invariance algebras Amax of

equations from class (B.9) (resp. (B.5)) coincides with the one-dimensional

algebra 〈∂x〉. All possible G∼0 -inequivalent (resp. G∼-inequivalent) cases of

extension of Amax are exhausted by Cases 1–3 of Table B.3.

In Table B.4, we also adduce the results of the group classification

of (B.5) without gauging of h and g by equivalence transformations. The

extended classification list can be derived from that presented in Ta-

ble B.3 using equivalence transformations (the detailed procedure is de-

scribed in [289, 290]). It is easy to see that Table B.4 includes all cases

presented in [266] as special cases.
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Table B.3: The group classification of class (B.5) up to G∼-equivalence.

no. g(t) Basis of Amax

0 ∀ ∂x

1 εtρ ∂x, 3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u

2 εet ∂x, 3n∂t + nx∂x + u∂u

3 ε ∂x, ∂t, 3nt∂t + nx∂x − 2u∂u

Here h = 0 mod G∼, ε = ±1 mod G∼, ρ is an arbitrary nonzero constant.

Table B.4: The group classification of class (B.5) using no equivalence.

no. g(t) Basis of Amax

0 ∀ ∂x

1 λ
( ∫

e−n
∫
h(t) dtdt+ κ

)ρ
e−n

∫
h(t)dt ∂x, H∂t + n(ρ+ 1)x∂x + (ρ− 2− h(t)H)u∂u

2 λ e
∫
(me−n

∫
h(t) dt−nh(t))dt ∂x, 3nen

∫
h(t)dt∂t +mnx∂x +

(
m− 3nh(t)en

∫
h(t)dt

)
u∂u

3 λ e−n
∫
h(t)dt ∂x, e

n
∫
h(t)dt (∂t − h(t)u∂u) ,

H∂t + nx∂x − (2 + h(t)H)u∂u

Here λ, κ, ρ, and m are arbitrary constants with λρm 6= 0. The function h(t) is arbitrary

in all cases and H = 3nen
∫
hdt
( ∫

e−n
∫
hdtdt+ κ

)
. In Case 3, κ = 0 in the formula for H.

Similarity Solutions of the Generalized KdV Equations. Lie sym-

metries provide us with an algorithmic technique for finding exact solutions

using the reduction method [217,227]. It was found by Lie that if one Lie

symmetry generator of an ODE is known, than the order of this ODE

can be reduced by one, and if we know a Lie symmetry generator for a

n-dimensional PDE, then it can be reduced to a n−1-dimensional PDE.

This is true for Lie symmetry generators corresponding to one-parameter

Lie symmetry groups that act regularly and transversally on a manifold

defined by this PDE [217]. So, in our case of (1+1)-dimensional PDEs it is

enough to perform reductions with respect to one-dimensional subalgebras
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Table B.5: Optimal systems of subalgebras of Amax presented in Table B.3.

no. Optimal system

1ρ 6=−1 g1 = 〈∂x〉, g1.1 = 〈3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u〉

1ρ=−1 g1 = 〈∂x〉, ga1.2 = 〈nt∂t + a∂x − u∂u〉

2 g1 = 〈∂x〉, g2 = 〈3n∂t + nx∂x + u∂u〉

3 g1 = 〈∂x〉, gσ3.1 = 〈∂t + σ∂x〉, g3.2 = 〈3nt∂t + nx∂x − 2u〉

In all cases a ∈ R, n 6= 0, σ ∈ {−1, 0, 1}.

Table B.6: Similarity reductions of the class ut + unux + g(t)uxxx = 0 with ng 6= 0 that

correspond to the subalgebras presented in Table B.5.

no. g(t) g ω Ansatz, u Reduced ODE

1 εtρ, ρ 6= −1 g1.1 xt−
ρ+1
3 t

ρ−2
3n ϕ(ω) εϕ′′′ +

(
ϕn − ρ+1

3 ω
)
ϕ′ + ρ−2

3n ϕ = 0

2 εt−1 ga1.2 x− a
n ln t t−

1
nϕ(ω) εϕ′′′ +

(
ϕn − a

n

)
ϕ′ − 1

nf = 0

3 εet g2 xe−
1
3
t e

1
3n
tϕ(ω) εϕ′′′ +

(
ϕn − 1

3ω
)
ϕ′ + 1

3nϕ = 0

4 ε gσ3.1 x− σt ϕ(ω) εϕ′′′ + (ϕn − σ)ϕ′ = 0

5 ε g3.2 xt−
1
3 t−

2
3nϕ(ω) εϕ′′′ +

(
ϕn − 1

3ω
)
ϕ′ − 2

3nϕ = 0

In all cases a ∈ R, n 6= 0, σ ∈ {−1, 0, 1}, ε = ±1 mod G∼.

of the found maximal Lie invariance algebras to get reductions to ODEs.

Reductions should be performed using subalgebras from the optimal

system [217]. Optimal systems of one-dimensional subalgebras of Lie in-

variance algebras from Table B.3 are presented in Table B.5.

We do not consider reductions associated with the subalgebra g1 = 〈∂x〉
because they lead to constant solutions only. Ansatzes and reduced equa-

tions that are obtained for equations from class (B.9) by means of one-

dimensional subalgebras from Table B.5 are collected in Table B.6.

It is possible to get exact traveling wave solutions of the equation ut +
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unux + εuxxx = 0 solving the reduced ODE from Case 4 of Table B.6,

εϕ′′′ + (ϕn − σ)ϕ′ = 0. (B.10)

If σ 6= 0, two partial solutions of this equation are, for example,

ϕ =

(
− σ(n+1)(n+2)

2 sinh2(n2
√

σ
εω+C)

) 1
n

, and ϕ =

(
σ(n+1)(n+2)

2 cosh2(n2
√

σ
εω+C)

) 1
n

, where C is an

arbitrary constant. They lead to the following traveling wave solutions

u =

(
−σ(n+ 1)(n+ 2)

2 sinh2 z

) 1
n

, u =

(
σ(n+ 1)(n+ 2)

2 cosh2 z

) 1
n

,

where z = n
2

√
σ
ε (x−at)+C, of the generalized KdV equation with constant

coefficients, ut + unux + εuxxx = 0. Note that some exact solutions were

constructed in the literature for variable coefficient generalized KdV equa-

tions of the form ut+u
nux+α(t)u+εe−n

∫
α(t) dtuxxx = 0, (see, e.g., [27,322]),

but it is due to the fact that the latter equations are reduced to constant

coefficient ones.

Boundary Value Problem for Generalized KdV Equations. There

are several approaches for exploiting Lie symmetries to reduce boundary

value problems (BVPs) for PDEs to those for ODEs. The classical tech-

nique is to require that both equation and boundary conditions are left in-

variant under the one-parameter Lie group of infinitesimal transformations.

Of course, the infinitesimal approach is usually applied (see, e.g., [32, Sec-

tion 4.4]). We apply this technique for an IBVP for variable coefficient

generalized KdV equations with and without linear damping terms.

IBVP for Generalized KdV Without Linear Damping. We apply

at first this procedure to a problem with the governing equation being the

KdV of the form (B.9), i.e., we consider the following initial and boundary

value problem

ut + unux + g(t)uxxx = 0, t > 0, x > 0, (B.11)
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u(x, 0) = 0, x > 0,

u(0, t) = q(t), t > 0,

ux(0, t) = 0, t > 0,

uxx(0, t) = 0, t > 0,

(B.12)

where q(t) is a nonvanishing smooth function of its variable.

The procedure starts by assuming a general symmetry of the form

Q =
n∑
i=1

αiQi, (B.13)

where n is the number of basis operators of the maximal Lie invariance

algebra of the given PDE and αi, i = 1, . . . , n, are constants to be deter-

mined.

We consider Case 1 of Table B.3. The general symmetry (B.13) takes

the form

Q = α1∂x + α2 [3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u] .

Application of Q to the first boundary condition x = 0, u(t, 0) = q(t) gives

α1 = 0 and q(t) = γt
ρ−2
3n , γ = const .

Using the second extension of Q,

Q(2) = 3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u

+ (ρ− nρ− n− 2)ux∂ux + (ρ− 2nρ− 2n− 2)uxx∂uxx,

where the unused terms have been ignored, it can be shown that it leaves

the initial condition and the remaining three boundary conditions invari-

ant. Finally, symmetry Q produces the ansatz

u = t
ρ−2
3n ϕ(ω), ω = xt−

ρ+1
3 , (B.14)

which reduces the problem (B.11) into the initial value problem

εϕ′′′ + ϕnϕ′ − ρ+1
3 ωϕ′ + ρ−2

3n ϕ = 0,

ϕ(0) = γ, ϕ′(0) = 0, ϕ′′(0) = 0.
(B.15)
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In Case 2 of Table B.3, the corresponding symmetry does not leave the

boundary conditions invariant and for Case 3 we obtain the above results

with ρ = 0.

IBVP for Generalized KdV With Linear Damping. We consider

the IBVP for the generalized KdV equation with variable-coefficient linear

damping

ut + unux +
j

t
u+ g(t)uxxx = 0, t > 0, x > 0, (B.16)

with initial and boundary conditions (B.12). In the previous section we

have shown that the symmetry operator which is admitted by both an

equation from class (B.5) and initial and boundary conditions (B.12) with q

being a power function is the so-called dilatation operator, i.e., the operator

corresponding to the one-parameter Lie group of scalings of the variables

t, x and u. Equation (B.17) admits a Lie symmetry generator which keeps

the boundary conditions invariant if and only if g is a power function

or constant (Cases 1 and 3 of Table B.4). Substituting h = j/t into the

formulas for g and corresponding symmetry generators presented in Case 1

of Table B.4 (without loss of generality we set κ = 0) we find that the

equation

ut + unux +
j

t
u+ λtρ(1−nj)−njuxxx = 0, (B.17)

admits the Lie symmetry generators ∂x and

Q =
3n

1− nj
t∂t + n(ρ+ 1)x∂x +

(
ρ− 2− 3nj

1− nj

)
u∂u.

Boundary conditions (B.12) are left invariant with respect to the sym-

metry transformation generated by the operator Q if and only if

q = γt
(ρ−2)(1−nj)−3nj

3n , where γ = const . Therefore we can apply Lie sym-

metries to solve the following BVP for the generalized KdV equation with

linear damping

ut + unux +
j

t
u+ λtρ(1−nj)−njuxxx = 0, t > 0, x > 0, (B.18)
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u(x, 0) = 0, x > 0,

u(0, t) = γt
ρ(1−nj)−nj−2

3n , t > 0,

ux(0, t) = 0, t > 0,

uxx(0, t) = 0, t > 0.

(B.19)

The symmetry Q produces the transformation

u = t
ρ(1−nj)−nj−2

3n ϕ(ω), ω = xt
(ρ+1)(nj−1)

3 ,

which reduces the problem (B.18)–(B.19) to

λϕ′′′ + ϕnϕ′ + (ρ+1)(nj−1)
3 ωϕ′ + (ρ−2)(1−nj)

3n ϕ = 0,

ϕ(0) = γ, ϕ′(0) = 0, ϕ′′(0) = 0.
(B.20)

For j = 1/2 and j = 1 (B.18) becomes generalized cylindrical and

spherical KdV equations, respectively.

A group classification for variable coefficient generalized KdV equa-

tions (B.5) is carried out exhaustively. The results are presented in two

ways: up to G∼-equivalence (Table B.3) and without simplification by

equivalence transformations (Table B.4). Similarity solutions are classified

(Table B.6). The derived Lie symmetries of a generalized KdV equation

are employed to IBVP (B.11)–(B.12) transforming it into an IVP for an

ODE (B.15) in [298]. The resulting nonlinear problem is solved numerically

with the aid of a second-order finite-difference scheme with fixed-point it-

erations. The scheme was validated by applying it to similar problems in

the literature which were solved using other methods and the results were

found to be in excellent agreement. The effect of the governing parame-

ters on the solutions of (B.11)–(B.12) was examined and solutions of the

original PDE were constructed using the aforementioned transformations.
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B.3. Group Analysis of Variable Coefficient

Fifth-Order KdV Equations

The KdV equation arises, in particular, in the modeling of one-dimensional

plane waves in cold quasi-neutral collision-free plasma propagating along

the x-direction under the presence of a uniform magnetic field [149]. It

appeared that, when the propagation angle of the wave relative to the

external magnetic field becomes critical, the third-order (dispersion) term

in the model equation should be replaced by the fifth-order one [150].

Namely, magneto-acoustic waves propagating along this critical direction

are modeled by the simplest fifth-order KdV (fKdV) equation (called also

quintic KdV equation),

ut + uux + µuxxxxx = 0, µ = const. (B.21)

In [204] the equation (B.21) with µ = −1 was shown to describe solitary

waves in the nonlinear transmission line of a LC ladder type.

Later equation (B.21) and its generalizations were studied in a number

of papers. Thus, an exact solitary wave solution of equation (B.21) in terms

of Jacobi elliptic function cn was found in [152, 320]. Pulsating multiplet

solutions of this equation were examined in [130]. Local conservation laws

with the densities u, u2 and u3 + 3
2(uxx)

2 were indicated therein. Note that

the fKdV equation is not integrable by the inverse scattering transform

method in contrast to the classical KdV equation [196]. Lie symmetries and

the corresponding reductions of (B.21) to ordinary differential equations

(ODEs) were found in [189].

An attempt of Lie symmetry classification of the generalized fKdV equa-

tions with time dependent coefficients, ut + unux +α(t)u+ β(t)uxxxxx = 0,

was made in [311]. However, the results presented therein are incorrect in

general. In the present paper we perform the correct and complete group

classification of the class

ut + uux + α(t)u+ β(t)uxxxxx = 0, β 6= 0, (B.22)
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where α and β are smooth functions of the variable t. To be able to reduce

the number of variable coefficients and to proceed with Lie symmetry anal-

ysis in an optimal way, we at first find the admissible transformations [248]

in class (B.22). Then classifications of Lie symmetries and similarity re-

ductions are presented.

Admissible Transformations. The equivalence groupoid of class (B.22)

is described in the following statement.

Theorem B.9. The generalized extended equivalence group Ĝ∼ of

class (B.22) is formed by the transformations

t̃ = T (t), x̃ = (x+ δ1)X
1 + δ2, ũ =

1

Tt

(
X1u+X1

t (x+ δ1)
)
,

α̃(t̃) =
1

Tt

(
α(t)− 2

X1
t

X1
+
Ttt
Tt

)
, β̃(t̃) =

(X1)5

Tt
β(t),

where X1 = (δ3

∫
e−

∫
α(t)dtdt+δ4)

−1, δj, j = 1, . . . , 4, are arbitrary constants

with (δ3, δ4) 6= (0, 0) and T = T (t) is a smooth function with Tt 6= 0.

The entire set of admissible transformations of class (B.22) is generated

by the transformations from the group Ĝ∼.

Using this theorem we can formulate a criterion of reducibility of vari-

able coefficient fKdV equations to constant coefficient ones.

Theorem B.10. A variable coefficient equation from class (B.22) is re-

ducible to the constant coefficient fKdV equation (B.21) if and only if its

coefficients α and β are related by the formula

β = e−
∫
α(t)dt

(
c1

∫
e−

∫
α(t)dtdt+ c2

)3

, (B.23)

where c1 and c2 are arbitrary constants with (c1, c2) 6= (0, 0).

Using the equivalence transformation

t̂ =
∫
e−

∫
α(t) dtdt, x̂ = x, û = e

∫
α(t) dtu (B.24)

from the group Ĝ∼ we can set the arbitrary element α to the zero value.

Indeed, this transformation maps class (B.22) to its subclass with α̂ = 0.
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The arbitrary element β̂ of a mapped equation is expressed in terms of α

and β as β̂ = e
∫
α(t) dtβ. Without loss of generality we can restrict ourselves

to the investigation of the class

ut + uux + β(t)uxxxxx = 0. (B.25)

We derive equivalence transformations in class (B.25) setting α̃ = α = 0

in transformations presented in Theorem B.9.

Corollary B.11. The usual equivalence group G∼α=0 of class (B.25) con-

sists of the transformations

t̃ =
at+ b

ct+ d
, x̃ =

e2x+ e1t+ e0

ct+ d
, ũ =

e2(ct+ d)u− e2cx− e0c+ e1d

∆
,

β̃ =
e2

5

(ct+ d)3

β

∆
,

where a, b, c, d, e0, e1 and e2 are arbitrary constants with ∆ = ad −
bc 6= 0 and e2 6= 0, the tuple (a, b, c, d, e0, e1, e2) is defined up to a nonzero

multiplier and hence without loss of generality we can assume that ∆ = ±1.

The entire set of admissible transformations of class (B.25) is generated

by the transformations from the group G∼α=0.

The transformation components for t, x and u coincide with those ob-

tained for the class of Burgers equations ut + uux + β(t)uxx = 0 [232] and

the class of KdV equations ut + uux + β(t)uxxx = 0 [251].

Corollary B.12. A variable coefficient equation from class (B.25) is re-

ducible to the constant coefficient fKdV equation (B.21) if and only if

β = (c1t+c2)
3, where c1 and c2 are arbitrary constants with (c1, c2) 6= (0, 0).

Lie Symmetries. We solve the group classification problem using the

classical Lie–Ovsiannikov approach. The following assertion is true.

Theorem B.13. The kernel of the maximal Lie invariance algebras of

equations from class (B.25) is the two-dimensional Abelian algebra Aker =

〈∂x, t∂x + ∂u〉. All possible G∼α=0-inequivalent cases of extension of the

maximal Lie invariance algebras are exhausted by Cases 1–4 of Table B.7.
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Table B.7: The group classification of the class (B.25) up to G∼α=0-equivalence.

no. β(t) Basis of Amax

0 ∀ ∂x, t∂x + ∂u

1 tρ ∂x, t∂x + ∂u, 5t∂t + (ρ+ 1)x∂x + (ρ− 4)u∂u

2 et ∂x, t∂x + ∂u, 5∂t + x∂x + u∂u

3 (t2 + 1)
3
2 e5ν arctan t ∂x, t∂x + ∂u, (t2 + 1)∂t + (t+ ν)x∂x + ((ν − t)u+ x)∂u

4 1 ∂x, t∂x + ∂u, ∂t, 5t∂t + x∂x − 4u∂u

Here ρ and ν are real constants, ρ 6= 0. Up to G∼α=0-equivalence we can assume that

ρ 6 3/2, ν > 0.

Remark B.14. A group classification list for class (B.22) up to Ĝ∼-

equivalence coincides with the list presented in Table B.7.

Remark B.15. An equation of the form (B.22) admits a four-dimensional

Lie symmetry algebra if and only if it is point-equivalent to the constant

coefficient fKdV equation (B.21).

In Table B.8 we present also the complete list of Lie symmetry ex-

tensions for class (B.22), where arbitrary elements are not simplified by

point transformations. This is achieved using the equivalence-based ap-

proach [289].

Cases presented in Table B.8 give all equations (B.22) for which the

classical method of Lie reduction can be effectively used.

Lie Symmetry Reductions. Lie symmetries provide one with the pow-

erful tool for finding solutions of nonlinear PDEs reducing them to PDEs

with fewer number of independent variables or even to ODEs. If a (1+1)-

dimensional PDE admits a Lie symmetry operator, Q = τ∂t + ξ∂x + η∂u,

then the ansatz reducing this PDE to an ODE is found as a solution of the

invariant surface condition Q[u] := τut+ξux−η = 0 [217,227]. In practice,

one has to solve the corresponding characteristic system dt
τ = dx

ξ = du
η . To

get inequivalent reductions one should use subalgebras from an optimal
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Table B.8: The group classification of class (B.22) using no equivalence.

no. β(t) Basis of Amax

0 ∀ ∂x, T∂x + Tt∂u

1 ∂x, T∂x + Tt∂u, 5T−1t (aT + b)(cT + d)∂t +
[
5acT

λTt(aT + b)ρ(cT + d)3−ρ + ad(ρ+ 1) + bc(4− ρ)
]
x∂x +

(
5acxTt −

[
5acT

+ 5αT−1t (aT + b)(cT + d) + bc(ρ+ 1) + ad(4− ρ)
]
u
)
∂u

2 λTt(cT + d)3 exp
(
aT+b
cT+d

)
∂x, T∂x + Tt∂u, 5T−1t (cT + d)2∂t + (5c(cT + d) + ∆)x∂x

+
[
5c2xTt +

(
∆− 5(cT + d)(c+ α(cT + d)T−1t )

)
u
]
∂u

3 ∂x, T∂x + Tt∂u, T−1t

(
(aT + b)2 + (cT + d)2

)
∂t

λTte
5ν arctan(aT+b

cT+d) +
[
a(aT + b) + c(cT + d) + ν∆

]
x∂x

×
(
(aT + b)2 + (cT + d)2

) 3
2 +

[
(a2 + c2)xTt −

(
a(aT + b) + c(cT + d)− ν∆

+ αT−1t

(
(aT + b)2 + (cT + d)2

))
u
]
∂u

4a λTt ∂x, T∂x + Tt∂u, T−1t (∂t − αu∂u),

5TT−1t ∂t + x∂x − (4 + 5TT−1t α)u∂u

4b ∂x, T∂x + Tt∂u,

Tt(cT + d)3 5T−1t (cT + d)∂t + 4cx∂x − (c+ 5T−1t (cT + d)α)u∂u,

T−1t (cT + d)2∂t + c(cT + d)x∂x

+ [c2xTt − (cT + d)(c+ T−1t (cT + d)α)u]∂u

Here a, b, c, d, λ, ν, and ρ are arbitrary constants with λ 6= 0 and ρ 6= 0, 3, ∆ = ad−bc 6= 0;

The function α(t) is arbitrary in all cases, T =
∫
e−

∫
α(t)dtdt.

system (see Section 3.3 in [217]).

We have constructed optimal systems of one-dimensional subalgebras

for all the maximal Lie invariance algebras presented in Table B.7. The

results are summarized in Table B.9.

The reductions with respect to the subalgebra g lead to constant solu-

tions only. The reduction with respect to the subalgebra g4.3 is not pre-

sented since it coincides with that performed using g1.1 for ρ = 0. Other

reductions are listed in Table B.10.
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Table B.9: Optimal systems of one-dimensional subalgebras of Amax from Table B.7.

Case Optimal system

0 g = 〈∂x〉, ga = 〈(t+ a)∂x + ∂u〉

1ρ 6=−1,4 g = 〈∂x〉, gσ = 〈(t+ σ)∂x + ∂u〉, g1.1 = 〈5t∂t + (ρ+ 1)x∂x + (ρ− 4)u∂u〉

1ρ=−1 g = 〈∂x〉, gσ = 〈(t+ σ)∂x + ∂u〉, ga1.2 = 〈t∂t + a∂x − u∂u〉

2 g = 〈∂x〉, g0 = 〈t∂x + ∂u〉, g2 = 〈5∂t + x∂x + u∂u〉

3 g = 〈∂x〉, g3 = 〈(t2 + 1)∂t + (t+ ν)x∂x + (x+ (ν − t)u)∂u〉

4 g = 〈∂x〉, g4.1 = 〈∂t〉, gσ4.2 = 〈σ∂t + t∂x + ∂u〉, g4.3 = 〈5t∂t + x∂x − 4u∂u〉

Here a is a real constant, σ ∈ {−1, 0, 1}. Up to G∼α=0-equivalence we can assume that

ρ 6 3/2, ν > 0.

Table B.10: Similarity reductions of the equations (B.25).

Case g ω Ansatz, u = Reduced ODE

0 ga t ϕ(ω) +
x

t+ a
(ω + a)ϕ′ + ϕ = 0

1ρ 6=−1,4 g1.1 xt−
ρ+1
5 t

ρ−4
5 ϕ(ω) ϕ′′′′′ +

(
ϕ− ρ+1

5 ω
)
ϕ′ + ρ−4

5 ϕ = 0

1ρ=−1 ga1.2 x− a ln t t−1ϕ(ω) ϕ′′′′′ + (ϕ− a)ϕ′ − ϕ = 0

2 g2 xe−
1
5
t e

1
5
tϕ(ω) ϕ′′′′′ +

(
ϕ− 1

5ω
)
ϕ′ + 1

5ϕ = 0

3 g3
xe−ν arctan t√

t2 + 1

eν arctan t√
t2 + 1

ϕ(ω) +
xt

t2 + 1
ϕ′′′′′ + (ϕ− νω)ϕ′ + νϕ+ ω = 0

4.1 g4.1 x ϕ(ω) ϕ′′′′′ + ϕϕ′ = 0

4.2 gσ4.2 x± t2

2
ϕ(ω)∓ t ϕ′′′′′ + ϕϕ′ ∓ 1 = 0

Here a is an arbitrary constant.

Solving the first-order reduced equation from Table B.10 and subse-

quently applying to it transformation (B.28) we get a “degenerate” solution

of equation (B.22),

u =
x+ b∫

e−
∫
α(t)dtdt+ a

e−
∫
α(t)dt,

that is valid for any smooth function α. Here a and b are arbitrary con-
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stants.

Using equivalence transformations it is possible to construct an exact

solution for the equations (B.22) that are reducible to their constant coef-

ficient counterparts, i.e., whose coefficients are related by (B.23). We take

the known solution in terms of the Jacobi elliptic function cn from [320]

for equation (B.21) and get the exact solution

u =

105
16 a cn4

(
W (t, x);

√
2

2

)
+ c1(x+ d)

e
∫
α(t)dtZ

,

for the variable coefficient fKdV equation,

ut + uux + α(t)u− e−
∫
α(t)dtZ3uxxxxx = 0,

where W (t, x) =
√

2
4 a

1
4

(
x+d
Z −

21
8 a
∫

e−
∫
α(t)dt

Z2 dt
)

+ b, Z = c1

∫
e−

∫
α(t)dtdt +

c2, a is a positive constant, c1, c2, b and d are arbitrary constants with

(c1, c2) 6= (0, 0).

One-dimensional subalgebras of the Lie symmetry algebras admitted by

equations from class (B.22) are classified in Table B.9 and all inequivalent

reductions with respect to such subalgebras are summarized in Table B.10.

Performed reductions can be used for the construction of exact and/or

numerical solutions. Examples of such constructions were given in [175] for

the generalized Kawahara equations. Two simple solutions are constructed

in this section.

B.4. Group Analysis of a Class of Generalized

Fifth-Order Korteweg–de Vries Equations

In this section the class of generalized variable-coefficient fifth-order

Korteweg–de Vries (fKdV) equations

ut + unux + α(t)u+ β(t)uxxxxx = 0 (B.26)

is investigated from the Lie symmetry point of view. Here α and β are

smooth nonvanishing functions of the variable t and n is a positive integer,
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n > 2. This work is a natural continuation of the study undertaken by

ourselves in [177], where the group classification of the equations (B.26)

with n = 1 was carried out exhaustively. Lie symmetry analysis of the

class (B.26) was initiated in [311]. We show that the results presented

therein are incorrect. The case n = 2 was considered also in [312] but the

complete group classification was not achieved.

Various generalizations of the Korteweg–de Vries equation appear in

many physical models, including ones describing gravity waves, plasma

waves and waves in lattices [144]. The equation (B.26) with n = 1, α =

0 and β = const models, for example, one-dimensional hydromagnetic

waves in a cold quasi-neutral collision-free plasma propagating along the

x-direction under the presence of a uniform magnetic field under some

conditions, namely, when the propagation angle of the wave relative to

the external magnetic field becomes special, critical angle [150]. More

references on studies concerned with these equations can be found in [177].

We also discuss the incorrectnesses of the results obtained in [311,312].

Admissible Transformations. We search for admissible transformations

in class (B.26) using the direct method [160]. The following statement is

true.

Theorem B.16. The generalized equivalence group G∼ of the class (B.26)

consists of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ =

(
δ1

Tt

) 1
n

u,

α̃(t̃) =
α

Tt
+

Ttt
nT 2

t

, β̃(t̃) =
δ1

5

Tt
β(t), ñ = n,

where δj, j = 1, 2, are arbitrary constants, T is an arbitrary smooth func-

tion with δ1Tt > 0.

The entire set of admissible transformations of the class (B.26) is gen-

erated by the transformations from the group G∼.

If we assume that the constant n varies in the class (B.26), then the

equivalence group G∼ is generalized since n is involved explicitly in the



342

transformation of the variable u. Since n is invariant under the action

of transformations from the equivalence group, the class (B.26) can be

considered as the union of its disjoint subclasses with fixed n. For each

such subclass the equivalence group G∼ is usual one.

Using Theorem B.16 we derive a criterion of reducibility of variable-

coefficient equations (B.26) to constant coefficient equations from the same

class.

Theorem B.17. A variable coefficient equation from the class (B.26) is

reducible to the constant coefficient equation from the same class if and

only if its coefficients α and β satisfy the equality

n (α/β)t = (1/β)tt . (B.27)

Equivalence transformations from the group G∼ allow us to gauge one

of the arbitrary element α or β to a simple constant value, for example, α

can be set to zero or β to unity. The gauge α = 0 leads to more essential

simplification of the study than the gauge β = 1, therefore, the first one

is preferable. Any equation from the class (B.26) can be mapped to an

equation from the same class with α̃ = 0 by the equivalence transformation

t̃ =
∫
e−n

∫
α(t) dtdt, x̃ = x, ũ = e

∫
α(t) dtu. (B.28)

Then the single variable coefficient in the transformed equation will be

expressed via α and β as β̃ = en
∫
α(t) dtβ. (Here and in what follows an

integral with respect to t should be interpreted as a fixed antiderivative.)

Therefore, we can restrict ourselves to the study of the class

ut + unux + β(t)uxxxxx = 0. (B.29)

To derive the equivalence group for (B.29) we set α̃ = α = 0 in the

corresponding transformation presented in Theorem B.16 and deduce that

the function T is linear with respect to t. The following assertion is true.
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Table B.11: The group classification of class (B.29) up to G∼0 -equivalence.

no. β(t) Basis of Amax

1 ∀ ∂x

2 εtρ ∂x, 5nt∂t + (ρ+ 1)nx∂x + (ρ− 4)u∂u

3 εet ∂x, 5n∂t + nx∂x + u∂u

4 ε ∂x, ∂t, 5nt∂t + nx∂x − 4u∂u

Here n 6= 0, 1, ρ is an arbitrary nonzero constant; ε = ±1 mod G∼0 .

Corollary B.18. The generalized equivalence group G∼0 of the class (B.29)

comprises the transformations

t̃ = δ3t+ δ4, x̃ = δ1x+ δ2, ũ =
(
δ1
δ3

) 1
n

u,

β̃(t̃) =
δ1

5

δ3
β(t), ñ = n,

(B.30)

where δj, j = 1, 2, 3, 4, are arbitrary constants with δ1δ3 > 0.

The entire set of admissible transformations of the class (B.29) is gen-

erated by the transformations from the group G∼0 .

Lie symmetries. In the previous section we have shown that the group

classification problem for the class (B.26) reduces to the similar problem

for its subclass (B.29). We have proved the following statement.

Theorem B.19. The kernel of the maximal Lie invariance algebras of non-

linear equations from the class (B.29) with n 6= 1 coincides with the one-

dimensional algebra 〈∂x〉. All possible G∼0 -inequivalent cases of extension

of the maximal Lie invariance algebras are exhausted by those presented in

Cases 2–4 of Table B.11.

Proposition B.20. A group classification list for the class (B.26) up to

G∼-equivalence coincides with the list presented in Table B.11.

Proposition B.21. An equation of the form (B.26) admits a three-

dimensional Lie symmetry algebra if and only if it is point-equivalent to
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Table B.12: The group classification of the class (B.26) with n 6= 0, 1 using no equivalence.

no. β(t) Basis of Amax

1 ∀ ∂x

2 λTt
(
T + κ

)ρ
∂x, 5n(T + κ)T−1t ∂t + n(ρ+ 1)x∂x + (ρ− 4− 5nα(t)(T + κ)T−1t )u∂u

3 λTte
mT ∂x, 5nT−1t ∂t +mnx∂x +

(
m− 5nα(t)T−1t

)
u∂u

4 λTt ∂x, T
−1
t (∂t − α(t)u∂u), 5nTT−1t ∂t + nx∂x − (4 + 5nα(t)TT−1t )u∂u

Here λ, κ, ρ, and m are arbitrary constants with λρm 6= 0, T = T (t) =
∫
e−n

∫
α(t) dtdt,

and the function α(t) is arbitrary in all cases.

the constant-coefficient fKdV equation ut + unux + εuxxxxx = 0 from the

same class.

For convenience of further applications we present in Table B.12 the

complete list of Lie symmetry extensions for the initial class (B.26), where

arbitrary elements are not simplified by equivalence transformations (the

detailed procedure of deriving such a list from a simplified one is described

in [289]).

The obtained group classification results give all equations (B.26) for

which the classical method of Lie reduction can be applied.

Symmetry Reductions and Construction of Exact Solutions. To

find optimal systems of one-dimensional subalgebras for Lie algebras Amax

presented in Table B.11, we firstly consider their structure, using notations

of [230]. In Cases 2 and 3 the maximal Lie-invariance algebras are two-

dimensional. In Case 2 with ρ = −1 it is Abelian (2A1). The algebras

adduced in Case 2 with ρ 6= −1 and Case 3 are non-Abelian (A2). The

three-dimensional algebra with basis operators presented in Case 4 is of

the type Aa
3.5, where a = 1/5.

Therefore, optimal systems of one-dimensional subalgebras of the maxi-

mal Lie invariance algebras Amax presented in Table B.11 are the following:

2ρ 6=−1 : g0 = 〈∂x〉, g2.1 = 〈5nt∂t + (ρ+ 1)nx∂x + (ρ− 4)u∂u〉;
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Table B.13: Similarity reductions of the equations ut + unux + β(t)uxxxxx = 0.

no. β(t) g ω Ansatz Reduced ODE

1 εtρ, ρ 6= −1 g2.1 xt−
ρ+1
5 u = t

ρ−4
5n ϕ(ω) εϕ′′′′′ +

(
ϕn − ρ+1

5 ω
)
ϕ′ + ρ−4

5n ϕ = 0

2 εt−1 ga2.2 x− a
n ln t u = t−

1
nϕ(ω) εϕ′′′′′ +

(
ϕn − a

n

)
ϕ′ − 1

nϕ = 0

3 εet g3 xe−
1
5
t u = e

1
5n
tϕ(ω) εϕ′′′′′ +

(
ϕn − 1

5ω
)
ϕ′ + 1

5nϕ = 0

4 ε gσ4.1 x− σt u = ϕ(ω) εϕ′′′′′ + (ϕn − σ)ϕ′ = 0

5 ε g4.2 xt−
1
5 u = t−

4
5nϕ(ω) εϕ′′′′′ +

(
ϕn − ω

5

)
ϕ′ − 4

5nϕ = 0

Here a is an arbitrary constant, σ ∈ {−1, 0, 1}, ε = ±1 mod G∼0 , n 6= 0, 1.

2ρ=−1 : g0 = 〈∂x〉, ga2.2 = 〈nt∂t + a∂x − u∂u〉, where a is an arbitrary

constant;

3 : g0 = 〈∂x〉, g3 = 〈5n∂t + nx∂x + u∂u〉;

4 : g0 = 〈∂x〉, gσ4.1 = 〈∂t + σ∂x〉, g4.2 = 〈5nt∂t + nx∂x − 4u∂u〉;
σ ∈ {−1, 0, 1}.

We do not perform the reductions with respect to the subalgebra g0

since they lead to constant solutions only. The reductions with respect to

other one-dimensional subalgebras from the found optimal lists are pre-

sented in Table B.13.

It is possible to consider also reductions of the generalized fKdV equa-

tions to algebraic equations using two-dimensional subalgebras of their Lie

invariance algebras. There is only one such subalgebra that leads to a

nonconstant solution, it is the subalgebra

〈∂t, 5nt∂t + nx∂x − 4u∂u〉

of the algebra Amax presented in Case 4 of Table B.11. The corresponding

ansatz u = Cx−
4
n reduces the equation

ut + unux + εuxxxxx = 0 (B.31)

to an algebraic equation on the constant C. We solve it and get the sta-
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tionary solution

u = (−8ε(n+ 1)(n+ 2)(n+ 4)(3n+ 4))
1
n (nx)−

4
n .

of the equation (B.31). Using this solution and equivalence transforma-

tion (B.28) we construct simple nonstationary exact solution,

u = (−8ε(n+ 1)(n+ 2)(n+ 4)(3n+ 4))
1
n (nx)−

4
ne−

∫
α(t) dt,

for the fKdV equation with time-dependent coefficients

ut + unux + α(t)u+ εe−n
∫
α(t) dtuxxxxx = 0, (B.32)

where α is an arbitrary nonvanishing smooth function.

If n = 2 the travelling wave solution

u = ±2
√
−10ε

(
3 tanh(x+ 24εt)2 − 2

)
of the equation (B.31) is known [228]. Using (B.28) we get the exact

solution of the equation (B.32) with n = 2,

u = ±2
√
−10ε

(
3 tanh

(
x+ 24ε

∫
e−2

∫
α(t) dtdt

)2

− 2

)
e−

∫
α(t) dt.

It is worthy to note that the obtained reductions to ODEs can be used

for construction of numerical solutions of the generalized fKdV equations,

see [175,298] for details.

Concluding remarks. Lie symmetry analysis of the class (B.26) was

initiated in [311], and the case n = 2 was also treated separately in [312].

However, the results presented therein are either incorrect [311] or incom-

plete [312]. Here we discuss main lucks of the results obtained in those two

papers.

In [312] only some cases of Lie symmetry extensions for equations of the

form (B.26) with n = 2 were found, namely, the cases with α = const and

α = 1/t. If one performs the group classification up to the corresponding

equivalence transformations it is enough to consider the case α = 0. If one
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wants to get the classification, where all equations admitting Lie symmetry

extensions are presented, not only their inequivalent representatives, then

all such equations will have the coefficient α being arbitrary, so the cases

α = const and α = 1/t can be considered as particular examples only.

Moreover, even studying these particular cases the authors of [312] missed

one case of Lie symmetry extension for each value of α considered by them.

For example, for the case α = 0 this is β = ε(t+ δ)ρ, where ε, δ and ρ are

arbitrary constants with ερ 6= 0. Nevertheless, at least dimensions and basis

operators of the found Lie symmetry algebras for those particular cases

derived in [312] are correct in contrast to the results presented in [311].

In [311] the authors state that they find three cases of Lie symmetry

extensions for equations (B.26) and in each derived case the corresponding

Lie symmetry algebra is four-dimensional. This is a false assertion. In this

paper and in [177] we show that equation (B.26) admits four-dimensional

Lie symmetry algebra if and only if n = 1 and, moreover, the equation is

point-equivalent to the simplest constant-coefficient fKdV equation ut +

uux +µuxxxxx = 0, where µ = const. So, the results of [311] are principally

incorrect.

B.5. Group Classification of Variable Coefficient

K(m,n) Equations

In order to understand the role of nonlinear dispersion in the formation of

patterns in liquid drops, Rosenau and Hyman [259] introduced a general-

ization of the KdV equation of the form

ut + ε(um)x + (un)xxx = 0,

where ε = ±1. Such equations, that are known as K(m,n) equations, have

the property for certain values of m and n their solitary wave solutions are

of compact support. In other words, they vanish identically outside a finite

core region. Further study followed in the references [255–258].
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Here we consider a class of variable coefficient K(m,n) equations of the

form

ut + ε(um)x + f(t) (un)xxx = 0, (B.33)

where f is an arbitrary nonvanishing function of the variable t, n and m are

arbitrary constants with n 6= 0, and ε = ±1. Note that the more general

class (appeared, e.g., in [324]) of the form

ut + g(t)(um)x + f(t)(un)xxx = 0, fn 6= 0, (B.34)

reduces to class (B.33) via the transformation t̃ = ε
∫
g(t)dt, x̃ = x, ũ = u.

This transformation maps the class (B.34) into its subclass (B.33), where

f̃ = εf/g. This is why without loss of generality it is sufficient to study

class (B.33).

In this section we carry out the Lie group classification for the class

(B.33). All point transformations that link equations from the class are

described. Firstly we find equivalence group of the entire class and then de-

rive three its subclasses that have nontrivial conditional equivalence groups.

The obtained Lie symmetries are employed also to a specific boundary value

problem.

Admissible transformations. The results on admissible transforma-

tions for equations from the class (B.33) are given in the following theo-

rems, which give the description of the equivalence groupoid. We exclude

linear equations, i.e., equations with (n,m) ∈ {(1, 0), (1, 1)}, from the con-

sideration. The proofs of these theorems are omitted.

Theorem B.22. The usual equivalence group G∼ of the class (B.33) is

formed by the transformations

t̃ = ±δ1δ
1−m
3 t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u,

f̃ = ±δ2
1δ

m−n
3 f, ε̃ = ±ε, ñ = n, m̃ = m,

where δj, j = 0, 1, 2, 3, are arbitrary constants with δ1δ3 6= 0.
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It appears that if (n,m) ∈ {(n, 0), (n, 1), (1, 2)}, then there exist non-

trivial conditional equivalence groups of the class (B.33) that are wider

than G∼, namely the following assertions are true.

Theorem B.23. The class (B.33) with m = 0,

ut + f(t) (un)xxx = 0, (B.35)

admits usual equivalence group G∼(n,0) consisting of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = δ3u, f̃ =
δ3

1δ
1−n
3

Tt
f, ñ = n,

where δj, j = 1, 2, 3, are arbitrary constants with δ1δ3 6= 0, T (t) is an

arbitrary smooth function with Tt 6= 0.

Theorem B.24. The generalized equivalence group G∼(n,1) of the

class (B.33) with m = 1,

ut + εux + f(t) (un)xxx = 0, (B.36)

comprises the transformations

t̃ = T (t), x̃ = δ1(x− εt)± εT (t) + δ2, ũ = δ3u,

f̃ =
δ3

1δ
1−n
3

Tt
f, ε̃ = ±ε, ñ = n,

where δj, j = 1, 2, 3, are arbitrary constants with δ1δ3 6= 0, T (t) is an

arbitrary smooth function with Tt 6= 0.

Theorem B.25. The generalized equivalence group G∼(1,2) of the class,

ut + ε(u2)x + f(t)uxxx = 0, (B.37)

consists of the transformations

ũ = ±2εκ(γt+ δ)u− κγx+ µ1δ − µ0γ

2ε(αδ − βγ)
,

t̃ =
αt+ β

γt+ δ
, x̃ =

κx+ µ1t+ µ0

γt+ δ
, ε̃ = ±ε, f̃ =

κ3

αδ − βγ
f

γt+ δ
,

where α, β, γ, δ, µ1, µ0, and κ are constants defined up to a nonzero multi-

plier, κ(αδ − βγ) 6= 0.
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Table B.14: Classification of the equations (B.33) with n 6= 1.

no. n m f(t) Basis of Amax

1 ∀ ∀ ∀ ∂x

2 ∀ n+2
3 ∀ ∂x, x∂x + 3

n−1u∂u

3 ∀ 0 1 ∂t, ∂x, x∂x + 3
n−1u∂u, 3t∂t + x∂x

4 −1
2 0 1 ∂t, ∂x, x∂x − 2u∂u, 3t∂t + x∂x, x

2∂x − 4xu∂u

5 ∀ ∀ 1 ∂t, ∂x, (3m−n−2)t∂t + (m−n)x∂x − 2u∂u

6a −1
2 −1

2 1 ∂t, ∂x, 3t∂t + 2u∂u,

sinx ∂x − 2 cosxu∂u, cosx ∂x + 2 sinxu∂u

6b −1
2 −1

2 1 ∂t, ∂x, 3t∂t + 2u∂u, e
x∂x − 2exu∂u, e

−x∂x + 2e−xu∂u

7 ∀ ∀ tk ∂x, (3m−n−2)t∂t + (km− k+m−n)x∂x + (k−2)u∂u

8 ∀ n+2
3 t2 ∂x, x∂x + 3

n−1u∂u, t∂t + x∂x

9 ∀ ∀ et ∂x, (3m−n−2)∂t + (m−1)x∂x + u∂u

Here k is an arbitrary nonzero constant. In Cases 6a and 6b ε = 1 and ε = −1, respectively.

The equations from the class (B.36) can be reduced to ones (with tilded

variables) from the class (B.35) by the additional equivalence transforma-

tion t̃ = t, x̃ = x − εt, ũ = u. Therefore, the case m = 1 being equivalent

to the case m = 0 will be excluded from the classification list.

Lie symmetries. We perform the group classification of class (B.33)

within the framework of the classical approach [38, 217, 227]. There are

two essentially distinguished cases n 6= 1 and n = 1.

Lie symmetries according to the forms of f(t) of equations (B.33) with

n 6= 1 are tabulated in Table B.14. All cases presented in Table B.14 except

Cases 3 and 4 are classified up to G∼-equivalence. For Cases 3 and 4,

where m = 0, we used the equivalence group G∼(n,0) that is wider than G∼.

Thus, the equation (B.35) with n 6= −1/2 admits the four-dimensional Lie

symmetry algebra with the basis operators

1

f(t)
∂t, ∂x, x∂x +

3

n− 1
u∂u, 3

∫
f(t)dt

f(t)
∂t + x∂x



351

Table B.15: Classification of the class (B.33) with n = 1.

no. f(t) Basis of Amax

m 6= 2

1 ∀ ∂x

2 1 ∂t, ∂x, 3(m− 1)t∂t + (m− 1)x∂x − 2u∂u

3 tk ∂x, 3(m− 1)t∂t + (m− 1)(k + 1)x∂x + (k − 2)u∂u

4 et ∂x, 3(m− 1)∂t + (m− 1)x∂x + u∂u

m = 2

5 ∀ ∂x, 2εt∂x + ∂u

6 1 ∂t, 2εt∂x + ∂u, ∂x, 3t∂t + x∂x − 2u∂u

7 tk ∂x, 2εt∂x + ∂u, 3t∂t + (k + 1)x∂x + (k − 2)u∂u

8 et ∂x, 2εt∂x + ∂u, 3∂t + x∂x + u∂u

9 ek arctan t
√
t2 + 1 ∂x, 2εt∂x + ∂u, 6ε(t2 + 1)∂t + 2ε(3t+ k)x∂x + (2ε(k − 3t)u+ 3x)∂u

Here k is an arbitrary constant satisfying the following constraints: k 6= 0 in Case 3, k 6= 0, 1

and k > 1/2 mod G∼(1,2) in Case 7, k > 0 mod G∼(1,2) in Case 9.

irrespectively of the form of the function f . Here and throughout the paper

an integral with respect to t should be interpreted as a fixed antiderivative.

If n = −1/2, then the Lie symmetry algebra of the equation (B.35) is five-

dimensional spanned by the above operators and the additional operator

x2∂x − 4xu∂u. Using the equivalence transformation t̃ =
∫
f(t)dt, x̃ = x,

ũ = u from the group G∼(n,0) we reduce these cases to ones with f = 1 (cf.,

Cases 3 and 4 of Table B.14).

Lie symmetries according to the forms of f(t) of equations (B.33) with

n = 1 are tabulated in Table B.15.

The group classification of the class (B.33) with n = 1 and m 6= 2 is

performed up to G∼-equivalence. For the classification of Lie symmetries of

the equations (B.33) with n = 1 and m = 2 we used the wider conditional

equivalence group G∼(1,2). Since transformations from the group G∼(1,2) are
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quite complicated, we adduce also the additional cases of Lie symmetry

extensions of equations (B.33) with n = 1 and m = 2 that are inequivalent

with respect to the group G∼ to Cases 6–9 of Table B.15.

1. f = (t+ β)kt1−k, k 6= 0, 1, β 6= 0: 〈∂x, 2εt∂x + ∂u, Q3〉, where

Q3 = 6εt(t+ β)∂t + 2ε (3t+ β(2− k))x∂x + [3x− 2ε(3t+ β(k + 1))u]∂u;

2. f = te
1
t : 〈∂x, 2εt∂x+∂u, 6εt2∂t+2ε(3t−1)x∂x+(3x−2ε(3t+2)u)∂u〉;

3. f = t: 〈∂x, 2εt∂x + ∂u, 3t∂t + 2x∂x − u∂u,
2εt2∂t + 2εtx∂x + (x− 2εtu)∂u〉.

From the first sight it looks like the counterpart to Case 9 of Ta-

ble B.14 is missed. At the same time it appears that the func-

tion f = λ exp
(
k arctanαt+βγt+δ

)
locally coincides with the function

f̌ = λ̌ exp(k arctan(α̌t+ β̌)), see [234] for details.

As an example for a reduction into an ordinary differential equation, we

consider Case 7 of Table B.15 which corresponds to the variable coefficient

KdV equation

ut + ε(u2)x + tkuxxx = 0 (B.38)

that admits the three-dimensional Lie symmetry algebra

Q1 = ∂x, Q2 = 2εt∂x + ∂u, Q3 = 3t∂t + (k + 1)x∂x + (k − 2)u∂u.

Depending on the value of k an optimal system of one-dimensional subal-

gebras of this Lie symmetry algebra consists of the subalgebras

〈Q1〉, 〈Q2 + σQ1〉, 〈Q3〉 if k 6= −1, 2

〈Q1〉, 〈Q2 + σQ1〉, 〈Q3 + aQ1〉 if k = −1

〈Q1〉, 〈Q2 + σQ1〉, 〈Q3 + aQ2〉 if k = 2.

Here σ ∈ {−1, 0, 1}, a ∈ R.
Reductions associated with the subalgebra 〈Q1〉 are not considered since

they lead to constant solutions only. The ansatz constructed with the

subalgebra 〈Q2 +σQ1〉 has the form u =
x

2εt+ σ
+φ(ω) with the similarity
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variable ω = t. This ansatz reduces equation (7) to the ODE (2εω+σ)φω+

2εφ = 0 whose general solution is φ =
c1

2εω + σ
, where c1 is an arbitrary

constant. The corresponding solution of (7) takes the form u =
x+ c1

2εt+ σ
.

It is fair to note that this solution satisfies equations of the form (B.37) for

arbitrary f . Other reductions depend on the value of the exponent k. We

adduce the ansatzes together with the corresponding reduced equations.

k 6= −1, 2. 〈Q3〉 : u = t
k−2
3 φ(ω), ω = xt−

k+1
3 ,

3φωωω + 6εφφω − (k + 1)φωω + (k − 2)φ = 0;

k = −1. 〈Q3 + aQ1〉 : u =
1

t
φ(ω), ω = x− a

3
ln t,

3φωωω + 6εφφω − aφω − 3φ = 0;

k = 2. 〈Q3 + aQ2〉 : u =
a

3
ln t+ φ(ω), ω =

x

t
− 2aε

3
ln t,

3φωωω + 6εφφω − 3φωω − 2aεφω + a = 0.

We note that the latter two cases are equivalent. Indeed, the equation

ut+ε(u2)x+ t2uxxx = 0 is mapped to the equation ũt̃+ε(ũ)2
x̃+ t̃−1ũx̃x̃x̃ = 0

by the following transformation from the group G∼(1,2)

t̃ =
1

t
, x̃ = −x

t
, ũ =

2εtu− x
2ε

.

As a result Lie symmetries of K(m,n) equations with time-dependent

coefficients are classified. Group classification is presented up to widest

possible equivalence groups, the usual equivalence group of the whole class

for the general case and the conditional equivalence groups for special val-

ues of the exponents m and n.

B.6. Enhanced Group Analysis of a Class of

Benjamin–Bona–Mahony–Burgers Equations

The regularized long wave equation ut + ux + uux− uxxt = 0 was proposed

by Peregrine [231] and later by Benjamin et al. [20] to describe small-
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amplitude long waves on the surface of water in a channel. In order to

take into account the mechanisms leading to the degradation of the wave

the model including dissipative term uxx was considered in [9], namely

ut + ux + uux − νuxx − uxxt = 0, ν ∈ R+.

Here u = u(x, t) is a real-valued function of the two real variables x and

t, which, in applications, are typically proportional to distance in the di-

rection of propagation and to elapsed time, respectively. The dependent

variable may represent a displacement of the underlying medium or a veloc-

ity [9]. The regularized long wave equation with a Burgers-type dissipative

term appended is more frequently called the Benjamin–Bona–Mahony–

Burgers (BBMB) equation [205].

The most general form of the BBMB equation with time-dependent

coefficients is

ut + f(t)ux + g(t)uux + k(t)uxx + h(t)uxxt = 0, ghk 6= 0, (B.39)

where f , g, h, and k are smooth functions of the variable t.

In this paper we aim to investigate this class with the Lie symmetry

point of view, namely, to present the complete group classification of this

class of equations. A similar study was initiated in [170] but the complete

and correct group classification was not achieved therein. Lie symmetries

and conservation laws of equations (B.39) without dissipative term (i.e.

with k = 0) were thoroughly investigated in [305].

We carry out the group classification of class (B.39) using the method of

mapping between classes suggested in [300] and then successfully applied

for several classes of variable coefficient PDEs, see, e.g., recent works [297,

305]. When the complete group classification is achieved Lie reductions of

BBMB equations to ODEs are performed as well as some exact solutions

are constructed.

Equivalence Groupoid and Group Classification. Consider firstly

the transformational properties of class (B.39). We look for the admissible
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point transformations using the direct method [160]. The proofs of the

statements below are similar to those presented in [305] for equations (B.39)

with k = 0. Thus, we skip the details of calculations for the sake of brevity

and present the final results only.

All the admissible transformations in class (B.39) are generated by

equivalence transformations and therefore this class is normalized in the

usual sense. The following statement is true.

Theorem B.26. The usual equivalence group G∼ of class (B.39) consists

of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = δ3u+ δ4, k̃(t̃) =
δ1

2

Tt
k(t),

f̃(t̃) =
δ1

Ttδ3
(δ3f(t)− δ4g(t)), g̃(t̃) =

δ1

Ttδ3
g(t), h̃(t̃) = δ1

2h(t),

where δj, j = 1, 2, 3, 4, are arbitrary constants with δ1δ3 6= 0 and T = T (t)

is an arbitrary smooth function with Tt 6= 0. Class (B.39) is normalized in

the usual sense.

Using this theorem, we can formulate the criterion of reducibility of

variable coefficient BBMB equations from class (B.39) to their constant

coefficient counterparts:

Proposition B.27. A variable-coefficient equation from class (B.39) is

reduced to a constant-coefficient equation from the same class by a point

transformation if and only if the corresponding coefficients f, g, h, and k

satisfy the conditions

(f/g)t = ht = kt = 0,

i.e., k and h are constants and the function f is proportional to g.

We note that the maximal Lie invariance algebra Amax of the constant

coefficient BBMB equation was found in [46]. It is two-dimensional Abelian

algebra 〈∂t, ∂x〉 spanned by the operators of time and space translations.
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Table B.16: The group classification of class (B.41) up to G∼1 -equivalence.

no. H(t) K(t) F (t) Basis of Amax

0 ∀ ∀ ∀ ∂x

1 εtρ λtρ−1 δt
ρ−4
2 ∂x, 2t∂t + ρx∂x + (ρ− 2)u∂u

2 εet λet δe
1
2
t ∂x, 2∂t + x∂x + u∂u

3 ε λ δ ∂x, ∂t

Here ε, δ, λ, and ρ are arbitrary constants with ελ 6= 0, ε = ±1 mod G∼1 .

In Case 3 δ = 0, 1 mod G∼1 and additionally λ = −1 mod G∼1 if δ = 0.

The presence of four arbitrary elements in class (B.39) leads to diffi-

culties in solving the group classification problem. Therefore, we firstly

simplify the problem by reducing the number of arbitrary elements in the

class. This can be done either via gauging of arbitrary elements by equiv-

alence transformations or using the method of mapping between classes.

We choose the second option.

The family of point transformations

t̃ =
∫
g(t)dt, x̃ = x, ũ = u+

f(t)

g(t)
, (B.40)

parameterized by two arbitrary elements of class (B.39), maps class (B.39)

to the related class of variable coefficient BBMB equations with a forcing

term

ut + uux +K(t)uxx +H(t)uxxt = F (t), HK 6= 0. (B.41)

(Tildes in (B.41) are omitted.) The arbitrary elements of the initial

class (B.39) and the imaged class (B.41) are related via the formulas

K(t̃) =
k(t)

g(t)
, H(t̃) = h(t), F (t̃) =

1

g(t)

(
f(t)

g(t)

)
t

. (B.42)

Following the method of mapping between classes, we firstly classify Lie

symmetries of the imaged class (B.41) and then use the family of point
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transformations (B.40) and the relations (B.42) to extend the result to the

initial class (B.39).

In order to efficiently solve the group classification problem for

class (B.41), we look for admissible transformations in this class using

the direct method. Similarly to class (B.39) such transformations are ex-

hausted by transformations from the usual equivalence group admitted by

this class.

Theorem B.28. The usual equivalence group G∼1 of class (B.41) comprises

the transformations

t̃ =
δ1

δ3
t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u,

K̃(t̃) = δ1δ3K(t), H̃(t̃) = δ1
2H(t), F̃ (t̃) =

δ3
2

δ1
F (t),

where δj, j = 0, 1, 2, 3, are arbitrary constants with δ1δ3 6= 0. Class (B.41)

is normalized in the usual sense.

The results on group classification of the class (B.41) are summarized

in Table B.16.

Note B.29. Any constant coefficient BBMB equation ut + fux + guux +

kuxx +hutxx = 0 can be reduced to the equation ut +uux−uxx + εutxx = 0,

where ε = sign(h), (Case 4 of Table B.17 with δ = 0 and λ = −1) by

the transformation t̃ = − k

|h|
t, x̃ =

x√
|h|
, ũ = −

√
|h|
k

(gu + f) from the

group G∼.

The classification list for the initial class (B.39) can be obtained using

the transformation (B.40), the relations (B.42) and the group classifica-

tion results derived for the imaged class (B.41) (Table B.16). The trans-

formation (B.40) can be considered as a composition of the equivalence

transformation τ∼ : t̃ =
∫
g(t̄)dt̄, x̃ = x̄, ũ = ū from the group G∼ and

the transformation τ : t̄ = t, x̄ = x, ū = u + f(t)
g(t) that does not belong to

the group G∼. The transformation τ∼ maps any equation from (1) to the
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Table B.17: The group classification of class (B.39) up to G∼-equivalence.

no. h(t) k(t) f(t) Basis of Amax

0 ∀ ∀ ∀ ∂x

1 εtρ λtρ−1 δt
ρ−2
2 ∂x, 2t∂t + ρx∂x + (ρ− 2)u∂u

2 εt2 λt δ ln t ∂x, t∂t + x∂x − δ∂u

3 εet λet δe
1
2
t ∂x, 2∂t + x∂x + u∂u

4 ε λ δt ∂x, ∂t − δ∂u

Here g(t) = 1 mod G∼; ε, δ, λ, and ρ are arbitrary constants with ελ 6= 0, ε = ±1 mod G∼.

In Case 4 δ = 0, 1 mod G∼ and additionally λ = −1 mod G∼ if δ = 0.

equation from the same class with g = 1. In order to obtain the group clas-

sification for class (B.39) up to the G∼-equivalence it is enough to consider

the transformation (B.40) with g = 1. Then the formulas (B.42) which

connect arbitrary elements in classes (B.39) and (B.41) take the simple

form H = h, K = k, F = ft. We integrate the latter ODE for the values

of F appearing in Table B.16. We, respectively, get the following forms of

f = f(t):

1. f = δ̄t
ρ−2
2 +C (δ̄ = 2δ/(ρ−2)), if ρ 6= 2 and f = δ ln t+C, otherwise;

2. f = δ̄e
1
2 t + C (δ̄ = 2δ); 3. f = δt+ C.

The integration constant C = 0 mod G∼. The last step is to perform the

change of variable ũ = u + f(t) in basis operators of the maximal Lie

invariance algebras presented in Table B.16. The results are summarized

in Table B.17.

We also derive the complete list of Lie symmetry extensions for the

entire class (B.39), where arbitrary elements are not simplified by point

transformations (Table B.18).

Reductions and Exact Solutions. The classes of BBMB equa-

tions (B.39) and (B.41) are similar with respect to the transforma-

tions (B.40). If one has exact solutions for equations (B.41) the simi-

lar solutions for equations (B.39) can easily be recovered using (B.40).
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Table B.18: The group classification of class (B.39) using no equivalence.

no. h(t) k(t) f(t) Basis of Amax

0 ∀ ∀ ∀ ∂x

1 µ1(εT + κ)ρ µ2g(εT + κ)ρ−1 µ3g(εT + κ)
ρ−2
2 + µ4g ∂x,

2

g
(εT + κ)∂t + ερx∂x

+ ε(ρ− 2)(u+ µ4)∂u

2 µ1(εT + κ)2 µ2g(εT + κ) µ3g ln(εT + κ) + µ4g ∂x,
1

g
(εT + κ)∂t + εx∂x − εµ3∂u

3 µ1 exp(σT ) µ2g exp(σT ) µ3g exp(12σT ) + µ4g ∂x,
2

g
∂t + σx∂x + σ(u+ µ4)∂u

4 µ1 µ2g µ3gT + µ4g ∂x,
1

g
∂t − µ3∂u

Here g is an arbitrary nonvanishing smooth function, T =
∫
g(t) dt; ε = ±1; µi, i = 1, . . . , 4,

σ, κ and ρ are arbitrary constants with σµ1µ2 6= 0.

That is why it is convenient to perform classification of Lie reductions

for class (B.41), where the number of inequivalent cases of Lie symmetry

extension is smaller.

To perform the classification of Lie reductions we need the optimal

systems of one-dimensional subalgebras of the maximal Lie invariance al-

gebras of the BBMB equations (B.41). Such algebras are at most two-

dimensional. The optimal system of a two-dimensional Lie algebra 〈X1, X2〉
is {〈X1〉, 〈X2〉} if the algebra is non-Abelian and {〈X1〉, 〈X2+αX1〉}, where

α ∈ R, if it is Abelian. We have non-Abelian algebras in Case 1 with ρ 6= 0

and Case 2 of Table B.16 and Abelian algebras in Case 1 with ρ = 0 and

Case 3 of this table. We note that reductions with respect to subalge-

bra 〈X1 = ∂x〉 lead to trivial constant solutions. Therefore, we perform

only the reductions with the second subalgebra. For each case we list the

BBMB equation, the one-dimensional subalgebra, the Ansatz constructed

with this subalgebra and the corresponding reduced ODE.

Case 1ρ6=0.

ut + uux + λtρ−1uxx + εtρuxxt = δt
ρ−4
2 , (B.43)
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〈2t∂t + ρx∂x + (ρ− 2)u∂u〉, u = t
ρ
2−1ϕ(ω), where ω = xt−

ρ
2 ,

ερ ωϕ′′′ + (ε(ρ+ 2)− 2λ)ϕ′′ − 2ϕϕ′ + ρωϕ′ + (2− ρ)ϕ+ 2δ = 0.

This ODE has particular exact solution ϕ = ω + 2δ
ρ , which gives the

“degenerate” solution u =
x

t
+

2δ

ρ
t
ρ
2−1 of equation (B.43) with ρ 6= 0.

Case 1ρ=0.

ut + uux + λt−1uxx + εuxxt = δt−2, (B.44)

〈t∂t + α∂x − u∂u〉, u =
1

t
ϕ(ω), where ω = x− α ln t,

εαϕ′′′ + (ε− λ)ϕ′′ − ϕϕ′ + αϕ′ + ϕ+ δ = 0.

For α = −δ this ODE has particular solution ϕ = ω + c, where c is an

arbitrary constant. This leads to the “degenerate” solution u =
1

t
(x +

δ ln t+ c) of the equation (B.44).

Case 2.

ut + uux + λetuxx + εetuxxt = δe
1
2 t, (B.45)

〈2∂t + x∂x + u∂u〉, u = e
t
2ϕ(ω), where ω = xe−

t
2 ,

εωϕ′′′ + (ε− 2λ)ϕ′′ − 2ϕϕ′ + ωϕ′ − ϕ+ 2δ = 0.

Case 3.

ut + uux + λuxx + εuxxt = δ, (B.46)

〈∂t + α∂x〉, u = ϕ(ω), where ω = x− αt,

εαϕ′′′ − λϕ′′ − ϕϕ′ + αϕ′ + δ = 0.

Up to the equivalence we can consider λ = −1. We found exact solutions

for the case δ = 0, these are ϕ = −2 tanhω, α = 0; and

ϕ = ±1− 12ε

10ε
− 12

5
tanhω ± 6

5
tanh2 ω, α = ± 1

10ε
.

Thus, equation ut + uux − uxx + εuxxt = 0 admits the exact solutions

u = −2 tanhx and

u = ±1− 12ε

10ε
− 12

5
tanh

(
x± t

10ε

)
± 6

5
tanh2

(
x± t

10ε

)
.
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Using the method of mapping between classes we have presented the

complete group classification of BBMB equations (B.39). As a by-product

of this approach we also got the group classification of a related class

of BBMB equations with a forcing term (B.41). For the convenience of

applications we adduced the results in two ways: the classification list

where only inequivalent equations are presented (Table B.17) and the list

with their most general forms (Table B.18).
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