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Foreword

This book provides a modern investigation into the free-surface wave mo-
tion of a fluid inside a container, the so-called sloshing. The container may
be at rest or can be shaken or may be moved due to the hydrodynamic
forces acting on the walls of the container. We all know how badly be-
haved cups of hot drinks can be when we try to carry two mugs with our
hands, for example, through a sprung-loaded fire door, or when we rest a
brimful glass on a thick-piled carpet. Sloshing theory has been stimulated
by engineering problems from the automotive, aerospace and shipbuild-
ing industries where the transport of a tank filled with a fluid has to be
modelled. It is related to a complex evolutional free boundary value prob-
lem, whose history started in the 19th century. There are, of course, pure
engineering, sometimes semi-empirical methods, but only the comprehen-
sive mathematical theory of sloshing has generalised and optimised these
engineering solutions. The design and tuning of ship anti-rolling devices
and, most recently, the construction of earthquake-vibration absorbers
for high-rise buildings in Japan can be taken as an example.

The book presented by Gavrilyuk, Lukovsky, Makarov and Timokha
will be of great importance for the development of new analytical results
and numerical-analytical techniques which, from my point of view, are
the most interesting themes in the field of theoretical sloshing. It cov-
ers systematically all the fundamental topics and recent results for both
linear and nonlinear models. Special attention is given to operator and
multi-modal methods. The two main chapters deal with them. The last
chapter contains a detailed analysis of the compressible potential flow
and the “vibroequilibria” occurring due to high-frequency vibro-fields.
Although the associated mathematical models are characterised by sim-
ilar free boundary value problems, from a physical point of view, the
presented material has only a small connection to the preceding chap-
ters.
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Almost all of the results in this book were obtained by joint work
of the authors. They have been published in international top journals
of applied mathematics and hydrodynamics. The authors were partly
sponsored by the German “Deutsche Forschungsgemeinschaft” (DFG).

The introductory chapter is designed to acquaint the reader with some
of the types of problems that occur in sloshing theory. Moreover, a short
survey of the structure of the text is given. The linear sloshing problem
is presented in Chapter 2. It is treated mathematically as a second or-
der differential equation with an operator coefficient. Notwithstanding
extensive studies of sloshing in many fields of research, there seems to
be a gap between the mathematical theory and engineering practice. In
an attempt to fill up this gap the authors give a unified treatment of the
mathematical theory of the operator cosine function and the correspond-
ing numerical methods. Details of the implementation are exemplified for
two-dimensional sloshing in a chute with and without horizontal baffles.

Chapter 3 represents the main part of the book. It is devoted to small-
dimensional systems of nonlinear ordinary differential equations, the so-
called modal systems. The modal systems are “hand-made products”,
whose derivation is based on a variety of physical assumptions and em-
ploys both asymptotic and variational techniques. Structure and dimen-
sion of the modal systems are functions of the tank shape, the external
loads and the fluid filling (depth). Bearing in mind the contribution of
Lorenz to the chaos theory which deals with similar small-dimensional
structures and its influence on the theory of nonlinear dynamical sys-
tems, these modal systems may give rise to new mathematical theories
and techniques. In particular, it can be expected that the modal systems
developed and analysed here from a more physical point of view will
be thoroughly studied mathematically by experts in nonlinear analysis,
bifurcation theory, numerical methods, etc.

Finally, Chapter 4 represents innovative studies on the so-called vi-
brocapillary equilibria. It was amazing to realise that the theory of the
authors made it possible to explain the flattening of Faraday’s drop for
the first time. This phenomenon has been observed in 1831 and until now
there was no appropriate mathematical model. The mathematical results
of the this chapter can also be used in modern vibro- and nanotechnol-
ogy, e.g. in the contactless precision-technique for positioning small fluid
particles and droplets in space.

The book is valuable for researchers and post-graduate students in
mechanical and aeronautical engineering and physicians. Due to the ex-
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tensive analysis of the methods, it is especially suited to researchers with
a very strong mathematical background. Mathematicians who want to
deal with real world applications and numerical methods may find this
book, with its amazing physical models, to be a useful resource. An in-
teresting feature of the presentation is the use of graphs, diagrams and
other aids to visualise important ideas and results.

All in all, the book about the theoretical aspects of sloshing is a won-
derful text blending together the mathematical basis, good numerical-
analytical techniques, and practical knowledge for solving real problems.
It is destined to be a classic and will serve as an important reference for
mathematicians, physicists, and theoretically inclined engineers working
in sloshing theory and its applications.

Martin Hermann
Professor
Jena University, Germany






Preface

Almost since the earliest philosophers began the development of what
we call “rational mechanics”, curiously about how fluid behaves when
contained in a vessel has been strong. Beginning with the oscillations of
water in lakes and harbours occurring as the result of earthquakes, similar
phenomena surround us at almost every turn, giving rise from modern
technology as well as from the nature herself. Thus, geophysicists, civilian
engineers and many other scientists have devoted themselves to studying
these fascinating subjects. Our own experience in carrying a cup of tee
or a bowl of soup may be frustrating unless we are very careful as to how
we move, but may deceive us into believing that the “sloshing” of the
fluid is simple. Indeed, it is not so. Depending on the type of disturbance
and container shape, the free fluid surface can experience different types
of motion including planar, non-planar, rotational (swirling), irregular
beating, symmetric, asymmetric, quasi-periodic and even chaotic.

The idea of this monograph goes back to 1999 when the present au-
thors have began their joint research work on the scientific project of
the German Research Council (DFG) “Combined Numerical-Analytical
Methods for Solving Non-Classical FEvolutional and Spectral Problems
Arising in Fluid Sloshing Analysis”. Being full of ambitions, we were
then faced with a tough decision — should we focus on developing the
Computational Fluid Dynamics (CFD) methods, which have been domi-
nating in the literature on sloshing, or can go on our preliminary planed
activities oriented toward analytical studies? Because of the disproportion
in the literature, switching to the CFD-methods implied a tedious job,
but provided a guaranteed numerical result. In contrast, the preliminary
schedule of the applied mathematical project has promised an attractive
work, which might not lead to immediate success in quantitative analysis
of the fluid sloshing. The latter challenged us as professional mathemati-
cians and, in spite of numerous obstacles and difficulties, we have decided
to continue working on the ‘mathematical sloshing’. The present book
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reports some of most interesting and promising analytical-and-numerical
results obtained within the framework of the applied mathematical DFG-
project. The last author (A.N.Timokha) also acknowledges the sponsor-
ships by the Alexander von Humboldt Foundation and the Centre for
Ships and Ocean Structures (Centre of Excellence at Norwegian Uni-
versity of Science and Technology, Trondheim), whose financial supports
made him possible to concentrate on preparation of this book.

Eisenach-Kiev-Leipzig-Jena-Trondheim, ITwan P. Gavrilyuk
July 2005 Viadimir L. Makarov
ITvan A. Lukovsky

Alexander N. Timokha
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Introduction

Since the early 1950’s, because hydrodynamic forces and moments caused
by a propellant form a dramatical feedback to the flight performance of
jet vehicles, sloshing of the contained fluid has been of primary concern to
aerospace engineering. As a consequence, new areas of research activities
have emerged. Nowadays, the free boundary problems on fluid sloshing
in moving and stationary containers are of great concern for civil and
nuclear engineers, physicists, designers of road and ships tankers, and
of course, applied mathematicians. The state-of-the-art is influenced by
further studies of uncovered complex dynamic phenomena, primary of
nonlinear nature. These include rotary waves (swirling), nonlinear inter-
action with solid/elastic structures, internal resonances, stochastic dy-
namics, hydrodynamic impact (slamming), g-jitter under micro-gravity
field and cross-waves. The dynamics of liquefied natural gas (LNG) carri-
ers and the hydrodynamic impact loads are problems of current interest
to the designers of such systems. In populated cities, gasoline and other
flammable tankers are prone rollover accidents while entering and exit-
ing highways. Civil engineers have been studying sloshing effects on large
dams, petroleum tanks and elevated water towers under ground motion.
They also mount sloshing tanks on the roofs of multistory buildings as a
means to mitigate building vibrations owing to earthquakes.

The two typical physical assumptions characterising the mathematical
modelling of sloshing are that the fluid is assumed to be incompressible
with irrotational flows and that there are no overturning waves. Appli-
cability of the inviscid fluid model has been validated for smooth tanks
(without internal structures, e.g. baffles) and non-shallow fluid depths.
In addition, sloshing in macroscopic tanks situated under Earth-based
conditions is characterised by large Bond numbers. This implies that the
surface tensions can also be neglected (Myshkis et al. (1986) [132] and
Billingham (2002) [28]). Reviews of experimental and theoretical studies
dealing with sloshing have been given by Abramson (1966) [1], Abram-
son et al. (1974) [2], Narimanov et al. (1977) [135], Mikishev (1978) [122],
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Fig. 1.1. Sketch of the fluid sloshing in a moving rectangular base tank with
vo = %(m,nz,ng)T; w= %(Wl, Wy, ¥3)T. The unperturbed (hydrostatic) free
surface Xy is defined by the plane z = 0.

Mikishev & Rabinovich (1968) [124], Tbrahim et al. (2001,2005) [83, 82]
and Faltinsen & Timokha (2000-2002) [45, 49, 50].

Derivation of the free boundary problem, which describes an inviscid
fluid sloshing in a rigid tank, is outlined by Moiseev & Rumyantsev (1965)
[130] and Narimanov et al. (1977) [135]. The problem couples the time-
varying fluid domain Q(¢) of the constant volume V and the velocity
potential &(z,y, z,t), which is defined inside of Q(t). The domain Q(¢) is
confined to the free boundary X (¢) and the wetted tank surface S(t). The
tank motions are described by the pair of time-dependent vectors vo(t) =
7)(t) and w(t) = ¥(t) representing instantaneous translatory and angular
velocities of the mobile Cartesian coordinate system Ozyz relative to an
absolute coordinate system O'z'y’z’' (dots over & and 1) denote the time-
derivative) as illustrated in Figure 1.1. The problem requires either initial
or (for periodic vector-functions vo(t) and w(t)) periodicity conditions.
Physically, the initial value problem determines transient waves which are
caused by combined effect of (vo(t), w(t)) and initial perturbations of
X(t). The periodicity conditions imply the so-called steady-state waves.

The mathematical justification of the initial and time-periodic free
boundary value problems is still an open question (even in the two-
dimensional formulation). Being familiar with both former Soviet and
Western literature, the present authors were not able to find rigor-
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ous mathematical results for the time-periodic boundary value problem.
There is only a limited set of mathematical papers that report local ex-
istence theorems for the initial boundary value problems. Almost all of
these results have been documented by Shinbrot (1976) [156], Reeder
& Shinbrot (1976,1979) [148, 149] and Ovsyannikov et al. (1985) [142].
Because of the mathematical complexity, the current studies mainly con-
centrate on developing the Computational Fluid Dynamics (CFD) meth-
ods. Differences and advantages of various CFD-methods have been dis-
cussed in comparative surveys by Solaas (1995) [157], Cariou and Casella
(1999) [34], Gerrits (2001) [75], Ibrahim et al. (2001) [83], Celebi & Aky-
ildiz (2002) [35], Sames et al. (2002) [153], Aliabadi et al. (2003) [6] and
Frandsen (2004) [55].

This is a difficult mathematical problem to solve the free boundary
problem on sloshing analytically. The boundary conditions at the free
surface are nonlinear and the free surface varies with time in a manner
not known a priory. As a result, the free surface can perform a wide spec-
trum of motions and demonstrate enormous set of stable and unstable
dynamic regimes. Some of them are predictable by means of relatively
simple engineering approaches utilising, as a rule, the concept of equiv-
alent mechanical systems (the equivalence is taken in the sense of the
same dynamic forces and moments acting on the tank wall). By properly
accounting for the equivalent mechanical systems, the problem on the
coupled “tank-fluid” dynamics can be reduced to small-dimensional sys-
tems of ordinary differential equations. For small-magnitude oscillations,
when the free surface remains close to its hydrostatic (planar) shape X,
the equivalent mechanical systems can for instance be represented by
a set of mathematical pendulums or mass-spring-dashpot systems. The
eigenfrequencies of these linear “pendulum” systems must coincide with
the natural sloshing frequencies. Nonlinear sloshing requires to replace
the systems by a compound or spherical pendulum.

Purpose of this book consists of gaining an insight into three con-
temporary directions of the mathematical sloshing, which are uncovered
by the recent encyclopedic book by Ibrahim (2005) [82]. The first direc-
tion (represented by Chapter 2) is associated with an operator approach
to the linear sloshing problems. The latter reduces the linearised evolu-
tional boundary problem to a second-order differential operator equation.
The second direction (Chapter 3) deals with weakly-nonlinear sloshing.
The chapter presents some of new authors’ results on the so-called non-
linear multi-modal method. The method is based on combining specific
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variational and asymptotic techniques, whose fundamentals have been
established by Lukovsky (1976) [113] and Miles (1976) [125]. The chap-
ter extends the method to the tanks of complex (non-cylindrical) shape
as well as documents compact modal systems, which may be adopted
for description of resonant sloshing in rectangular, circular cylindrical
and conical containers. Finally, Chapter 4 collects proper authors’ jour-
nal publications devoted to the compressible fluid dynamics with the free
surface in tanks shaking with a high frequency. This is an absolutely new
area of the mathematical sloshing giving rise from modern vibrotech-
nology in chemical industry (the positioning of droplets), microgravity
hydrodynamics and nanotechnology.



2

Evolutional operator problems in linear
sloshing

2.1 Linear sloshing

This section concentrates on linear evolutional problems which describe
a small-magnitude fluid sloshing in a stationary basin. The basin has
cylindrical shape near the mean (hydrostatic) free surface as shown in
Fig. 2.1. Details of the physical statement were discussed by John (1953)
[87], Feschenko et al. (1969) [53], Friedmann & Shinbrot (1967) [56] and
Morand & Ohayon (1995) [131].

Let 2 € R? be a closed domain (reservoir, tank, basin etc.) with an up-
right cylindrical endpart in the z,-direction and 2 C £2 be a subdomain
filled by a fluid (see, Fig. 2.1). Let ¢(x,t) be the velocity potential, which
is a harmonic function of the coordinates x = (x1,2,x3). The velocity
potential should satisfy the zero-Neumann condition, i.e. 3,¢ = ¢, = 0,
on the wetted tank surface I'7. Further, we assume that the free surface
I' is defined by the equation zo = ((z1,%3,t) + a, where « is such a
constant that zo = « is the equation of the unperturbed (hydrostatic)
free surface Iy. Using Bernoulli’s integral derives the so-called dynamic
condition on the free surface

@i+ 5(Ve)* +g¢ + ga + % = const, (2.1)

where g is the gravity acceleration, p is the fluid density and py = const
is the “atmospheric” pressure. Assuming ¢,,,( — &, (s, @ = 1,2,3 to
be small, one can neglect nonlinear terms in Eq. (2.1) and trace it on
Iy, i.e. on the plane 2 = a. Once doing that and substituting the final
expression into the linearised kinematic condition (; = ¢, on Iy, we get
the following evolutional boundary problem with respect to ¢:

Ap=0 in 2; ¢, =0 on Ii; @y +ges = f(t) on Iy,

2.2
po=1fo; pr=/fr on Iy at t=0, (2:2)
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Fig. 2.1. Sketch of the tank and the adopted nomenclature.

where f(t) can be cancelled (f = 0) by the substitution ¢ := ¢ + @(¢) (@
is a suitable time-dependent function). The problem (2.2) contains the
initial conditions introduced as follows

fi(z1,23) = —g(C+ a +po)li=0; fo(T1,73) = Pley=¢,t=0,

where fy and f; are the two known functions.

By introducing the trace of the velocity potential on Iy such that
u = ¢|r, and considering u as a prescribed function we arrive at the
Dirichlet-Neumann problem

AQOZ 0 in 'Q; <Pn|1"1 =05 (P|1"0 =u (23)

to be solved at an instant ¢. The function ¢ depends on u uniquely and
linearly so that the following linear (Poincare-Steklov) operator A can be
defined:

0
Au = ga—;zm, u = u(r1,23)-

The condition on Iy in (2.2) yields then the following Cauchy operator
problem

Pu
ot?
where ug = fo,u1 = f1.

Eq. (2.4) describes the linear sloshing. Advantages of the formulation
(2.4) relative to the original boundary value problem (2.2) are (i) the

+Au=0 on Ip; u(0)=wug, u'(0)=u, (2.4)
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dimensionality reduction (from IR?® to IR? ) and (ii) the possibility to
apply mathematical results of the operator cosine theory. The latter will
be done in the forthcoming sections.

2.2 Second order differential operator equations

The second order differential equations with an operator coeflicient re-
ceived a great deal of attention (see, for example, Goldstein (1984) [77]
and Krein (1971) [94]) as a powerful mathematical tool to describe and
study the partial differential equations. However, various representations
of their solutions, e.g. semi-groups, the operator cosine (sine) functions,
etc., which have been considered, are less suitable to constructing al-
gorithmic approaches. The main goal of this section is to find explicit
closed-form representations of the exact solution and their approxima-
tions, which can be easily algorithmized. More precisely, we establish a
one-to-one correspondence between the continuous initial value problem
and a discrete second order initial value problem with a contractive op-
erator. Using the Laguerre and Chebyshev orthogonal polynomials, we
give explicit formulae for their solutions. On the basis of these formu-
lae we propose an algorithmic approximation possessing exponential rate
of convergence, if the operator coefficient is bounded, and polynomial
rate of convergence automatically depending on the smoothness of the
initial data, if the operator coefficient is unbounded. One can consider
our approach as a semi-discretisation of second order (in time) evolu-
tion equations which, contrary to many well known approximations (see,
for example, Fujita & Suzuki (1991) [58] and Dautray & Lions (1992)
[39]), automatically adapts the accuracy to the analytical properties of
the exact solution.

Our approach is in some detail described by Gavrilyk & Makarov
(1996,2005) [69, 72, 73], Gavrilyuk (1999) [63] and Samarskii & Makarov
(2001) [152]. It is a generalisation of results by Quarteroni & Valli (1994)
[147] and Tal-Ezer (1989) [161]. A similar idea was also developed by
Arov et al. (1995) [10] for time-dependent problems of parabolic type. He
considered

z(t) + Az(t) =0, z(0) =z (2.5)

to find an algorithmic representation of the Co-semi-groups (here, A is
a bounded linear positive-defined operator in a Hilbert space H, and,
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thereby, —A is the infinitesimal generator of a Cy-semi-group 7'(t)). To-
gether with (2.5), Arov et al. (1995) [10] introduced the discrete initial
value problem

Yy,nt+1 = T’Yy’y,na n= 07 17 RS} Yo = To,

where T., = (yI — A)(vI + A)~! is the Cayley transform of the operator
A, v is an arbitrary positive number, ||T,|| < ¢y < 1. The solutions of the
continuous and discrete initial value problems are connected by means of
the formulae (one-to-one correspondence)

oo

a(t) = T(t)wo = Zw (27t
Yy = TTa0 = ( [/ bn(t) ( )dt+wo], (2.6)

2yt
eo(2yt) = (~1)P e LD, (291) =

where

= (-1 7 L0 (291) - LY, (211)]

d 1 (0)

Unlt) = —e 2L, (1) = T2 2 L (1)

with L,(,a) (t) being the Laguerre polynomials (see, Szegd (1939) [160] and
Suetin (1979) [159]). The corresponding formulae connecting the contin-
uous semi-group 7'(t) and the discrete semi-group 7. are

Zgop 29) TP = e_'ytz ”L(O) (2yt)TH(I +TP),

[ eion ()]

As an approximation of the exact solution, one can use the truncated
sum

=e 0t Z pL(O) (27t) (Yr,p + Yr,p+1)-

It was shown by Agmon (1962) [5] that =™V (t) converges to z(t) as N —
oo with a rate of geometric progression and the denominator ¢, < 1.
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These results were generalised by Arov et al. (1995) [10], and Gavrilyuk
& Makarov (1996) [68] for the case of an unbounded operator A. They
showed that

(|l if A is bounded
N7 A%x||, if A is self-adjoint,
positive definite,
To € D(Aa)a

N
supiefo,co)|[#(t) =27 (D) < ¢ { N—o+||A7x0]|, if A is strongly positive in
a Banach space,

€ is an arbitrarily small

positive number,
Xg € D(Ag)

\

Here and throughout the section, ¢ denotes certain positive constants
independent of N, xg.

The idea on how to transform a second order differential equation
to a discrete initial value problem and the corresponding interrelation
formulae are given in the following text. We discuss a natural approxi-
mation and error estimates. An example with both temporal and spatial
discretisation will be given.

2.2.1 Operator cosine function and a family of explicit
representations

We consider the initial value problem
i(t) + Az(t) = 0, z(0) = zo, %(0) = zg, (2.7)

where g,z are given elements of a Hilbert space H with the scalar prod-
uct (-,-) and the norm ||-|| and A is a densely defined, linear, self-adjoint,
positive definite operator with the domain D(A), which is the genera-
tor of the operator cosine-function C(t), i.e. (Az,z) > Xo||z]|? V z €
D(A), A= C(0). We denote by p(A) the resolvent set and by X(A) the
spectral set of the operator A. The operator sine-function S(t) associated
with C(t) is defined by

t
S@)f = /0 C(s) fds

. By a solution of (2.7) we mean a H-valued function z(t) such that
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i) z(t) is continuously differentiable for ¢ € [0,T] and the second
derivative is continuous for ¢ € (0,77;

ii) z(t) € D(A) for t € (0,T] and (2.7) is satisfied.

The operator sine- and cosine-functions are related to an initial value
problem (2.7) like as the Cp-semi-groups to an initial value problem for
the first order equation (2.5).

The following solution of (2.7) is given by Goldstein (1985) [77]

z(t) = C(t)zo + S(t)zg + /0 S(t —s)f(s)ds.

In particular, it determines

as a solution of the initial value problem
Z(t) + Az(t) =0, z(0) = zo, z(0) = 0. (2.9)
We are starting from the scalar problem

d?z(t)
dt?

+az(t) =0, z€(0,T]; z(0)=umz, 2'(0)=0, (2.10)
where a > 0 and zg are real numbers. The solution of (2.10) is
z(t) = z(t;a) = cosva t - xq. (2.11)

We can formally obtain a representation for cos/a t using the generating

function for the Laguerre polynomials L (t) (Bateman & Erdeilyi (1953)
[17]) as follows

wt >
- ) = (a) _ +1
P ( 1 _w) =Y L Bw (1 —w) T, <1 (212)
n=0
Set up for an arbitrary § < %
- —diva+s,  i=v-L (2.13)
1—wy

Then
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_ Fiva+d a+6(0—-1)Fiva L
YT fato—1  a+(e—12 ¢ >
r? =r?(a,8) = lwi|]® = (a+6*)(a+ (6 —1)*) 7!

& =£(a,d) =cost =(a+6(0—1))x
X (a+06%)"2(a+ (6 —1)%) 2,

V1—€ =sinf =+a(a+8) "2 (a+ (6 —1)2)"

and we get

N\»—‘

eivat _ o0t Z Lg’) t) (Tneima _ T,n+le:ti(n+l)9) ’
n=0

cosvat= = ( "/_t+e_"/_t) =

e~ Z [L(O) (0) (t)] r™ cosnf =
= e~ Z LO ) (r™ cos 6 — 7™ cos(n + 1)6) =
_ 1 —ot = (0) (0) n n
= 5e Z [L0) = L2, ()] (it +wn),

1
sinvat= =

> (eiﬁt _e-iVa t) _

—6t2[ yONT ()] ™ sinnd =
_ —atz[ L) — L, ()] (wr — w?).

Further, we introduce the sequences {u,(ll)} and {usf)} by

1
ul) = E(wi +w™) =" cosnf = r"T,(cos8) = T, (£),

1
ul) = —Q—i(wi

=71"V1 = Un-1(6),

—w") =r"sinnd = r"sinOU,,_1(cosb) =

29

(2.14)

(2.15)

(2.16)
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where T),(§) = cos(narccos§), Up(§) = sin((n + 1)arccos€) //1 — &2
are the Chebyshev polynomials of the first and second kind, respectively,

(see, Bateman & Erdelyi (1953) [17]). Since
cos(n +1)0 — 2 cosf cosné + cos(n — 1)8 = 0,
sin(n + 1) — 2 cos @ sinnf + sin(n — 1) = 0,
{ug)} and {ug)} admit the following recurrence formulae
. —26rull) + rzu(l) =0,
n >0, (1) =1, u =&, (2.17)
u(%)r —2¢rul?) + r%ﬁf}l =0,
n >0, u(()z) =0, u?) =7ry1—&2 =rsiné.
One should note that the coefficient &7 in (2.17) is given by

gr=rcosf=[a+38(6—1)][a+(6—1)%]", (2.18)

i.e. one does not need to calculate y/a to find {ug)}. Finally, we can write
down

oo

cosvat=—-e % Z [L(O) 0) NG )] (W} +w?) =

oo

e Z [0 - L, )] uih, (2.19)
=0
: — -t — (0) _ 7(0) no_ny —
sin+/a t %e ; [L" (t) Ln,l(t)] (W — w")

~e 3 [0 - L2, ()] .
n=0

Returning to the abstract problem (2.9) we will show that its solution
can analogously to (2.19) be represented in the form

z(t) = z(t; A) = (cos VA t)zg =
e—0t [}

- Z[ = L)) (W + W) =
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oo
_ 0
ety [Lgv ) =L, )] u.  (2.20)
n=0

and, therefore, the operator cosine-function with the generator A can be
expressed as

C(t) = cos VAt = %& i [L(n") (t) — Lifll(t)] (W +W") =
n=0

S 000, e

where
Wy =(iVA+6D)(+iVA+ (- 1))~ =
=[Avo6 DA [A+ -1, @)
—Wa(l —=We)™" = £iVA+4I,

and the sequences of the vectors {u, } and the operators {Un} = {U,(A4)}
are defined by the recursion relations

Unpr =2[A+ 6 — DI [A+ (6 — 1)1 up—
—[A+ P [A+ (=121 upy, n>1, (2.23)
uo =z0, w1 = [A+8(6—1)I][A+ (6 —1)21] " o
and
Uni1 =2[A+ 606 - DI [A+ (6 —1)21] " U
—[A+ &SI [A+ 6 -1 Uy, n>1, (224)
Up=I, Uh=[A+5E-D][A+E-1)2",
respectively. Eq. (2.24) does not contain v/A.

Analogously, one can define the operator sine-function with generator
A by

St =sinVAt= Lt Y [100) - 10,0 Wr W) =
n=0
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=3 [E0®) - 19, )] V.
n=0

where
Vi1 =2[A+ 86 — DI [A+ (6 — 1)) V,—
—[A+ T [A+ (=1 Va1, n>1,

Vo=0, Vi=VA[A+(5—1)21]".

We can formally write down

Up = AT, (B); Vo = CAUp_y(B), (2.25)
where
A=[A+81)? [A+(@E-1)2] 2,
B=[A+6(6-DI[A+81] * [A+(@E-121] %, (2.26)

D=

1
2

C=VA[A+8] 2 [A+(6-1)21]
It is easy to see that

1
Un = UnTo = i(WJTrL + Wﬁ).’L’O

We introduce also the sequence of vectors

1
Up = VpZo = — Z(Wf —W™)xo

so that
1 o0
(sin VA )70 = 2_2,67& 3 [L;‘D (t) — Lﬁ?jl] (WP — W)z =
n=0

—e Y [LO® - L, (1)) wn.
n=0

Note, that (sinv/A t)zo can also be obtained by integration of (2.20)
without the use of v/A.
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By formal differentiation and simple transformations of (2.20), using
the relation & [L{" (1) — L), (1)] = ~L{, (1) (see Szegs (1939) [160]
and Suetin (1979) [159]) and (2.22), we get the following series

(1) e~ 0t Z (L(O) stozl(t)) (W_T_L + Wil) To—
e 0t Z LY ()W} + W)z = (2.27)

:52'\/2@—“2 [Lgn(t) _ LS’ll(t)] (WP — W)z =
n=0
A sin vV At.

Repeating this procedure once again we get
6 oo
2@ () = — 5@'\/2@"”2 [Lff) (t) — Lifll(t)] (WD — W)z —
- —1\/_ e"”ZL — W™z = (2.28)

=- 5Ae“”§0 [L%O) (t) - Lﬁf’ll(t)] (WP + W™)zo =
= — Az(t).

In order to quantify the convergence of the series (2.20), (2.27) and
(2.28) in H, we need the following results:

Lemma 2.1. Let § < 0,5 and zy € D(A7), o0 > 0, then

l[unll < e(a,8)n 7 |A720ll, [l Aunll < c(o,O)n~ V|| A%,
lonll < (o, O~ |Aol, [V Avnll < e(o,8)n == )| A7a]|.

If A is a bounded operator, then
llunll < cq[lzoll;  lvnll < cq™(zoll,

where ¢ = q(8,A) € (0,1) is a constant.
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Proof. We have for an arbitrary zo € D(A”)

?

lunll = U | = H | Ta)ams Ao
Ao

llvnll = Vol =
= /Oo/\*" A 2, _1(x2)dE\A
- o ()\+6(6—1))2+)\X1 n—1{X2 A 01l »
[ Aunll = || [ ACxF T (x2)dEr A% o |,
Ao
1V Av,|| = h A~ A XE U1 (x2)dEAA" 0],
Ao A+5(6—-1)2+ A
where
NPT
X=X T o)
A3(6—1) L A+66-1)

X TR0 0-12 JOTo0-DE N

T,,U, are the Chebyshev polynomials of the first and second kind, E)
is the spectral family associated with A. It is easy to prove that there
exists a constant ¢ = ¢(o,d) such that

o) = [AT*xT < em™ VY X € [Ag,0), u>0.

If A is a bounded operator, then X (A) = [Ag, 4g] for a certain Ay < oo
and § < 0.5
il <g<1.

Using the inequalities

O +00 —1)2 + A
)

ITu(x2)| <1, [Un(x2)| < (1=x3) %= \/

derives the statements.
O

Furthermore, we assume that < 0.5 and use some classical results
for the Laguerre polynomials, namely, Szeg6 (1939) [160]:
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=L (1) = =t LTV (8) = nLi® (8) — (n + ) L, (1), (2.29)
L () —r 33t 5 Tips i [cos(Zx/n— - a2_7r - %) + (nt)_%O(l)] ,
L), w<oo, a> -1, (2.30)

t o 1
—5 L;a)(t)‘ <enti(l4n ati) V>0, a+ 520

(2.31)

Useful properties of the series (2.20), (2.27), (2.28) are collected by
the following auxiliary lemma:

Lemma 2.2. Let A be a densely defined, positive definite linear operator
and xg € D(A%), o > 0. Then,

1) o > % implies the uniform convergence of (2.20) with respect to t €
[0,T] and z(t) is continuous on [0,T];

2) o > 2 implies the uniform convergence of (2.27) with respect to t €
[0,T], (M) (t) is continuous on [0,T] and V) (t) = &(t);

3) o > 2 implies the uniform convergence of (2.28) with respect to t €
[0,T], ) (t) is continuous on [0,T] and =2 (t) = () (t) = &(t);

4) o > 5 implies z(t) € D(A) Vt € [0,T].

Proof. Tt follows from (2.29) and (2.31) that

t
L9 - L, ()] =

L)

IN

ti)=0(mn"%)  (2.32)

IS

< ct%e%n_%(l +n"

uniformly in ¢ € [0,T]. Lemma 2.1 and Eq. (2.26) imply that the series
(2.20), (2.27) and (2.28) are majorized by the number series

oo o oo
cZn_(‘”%), cZn_(‘”%) and cZn_("_%), (2.33)
n=1 n=1 n=1

respectively, where the first three statements of the lemma follow from.
We denote by z? (t) the truncated sum of (2.20) with N + 1 terms. If
o> %, then

N
AN (f) = e S (L;(’) (t) — Lg’jl(t)) Ay
n=0
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By Lemma 2.1 we get that the series

_ - 0 .

zat) Ze “ZO [L§9> (t) — L(nll(t)] Aup = lim Az"(2)
n=

converges uniformly with respect to ¢ € [0, 7] provided that o > 2. The
uniform convergence of the last series as well as in Eq. (2.20) (under the
assumption o > %) and the closeness of the strongly positive operator A
yield z(t) € D(A) for all t € [0,T].
O

We are now in position to show that the series (2.20) represents the
solution of the problem (2.9).

Theorem 2.3. Let the assumptions of Lemma 2.2 be satisfied and o > %.
Then, the function x(t) given by (2.20) is a solution for the initial value
problem (2.9).

Proof. Since LY 0)=1, LEO% (t) = 0, one remains to show that z(t) given
by (2.20) satisfies the equation (2.9). The latter follows immediately from
(2.20), (2.28) and Lemma 2.2.

O

Remark 2.4. The solution z(t) given by (2.20) for o € (,2) is a gener-
alised solution. The condition zg € D(A”) and the parameter o charac-
terise the regularity of zy and z(t).

Remark 2.5. If A is a bounded operator then the series (2.20), (2.27) and
(2.28) are majorized by the number series

oo
cZn*%q”, 0<g<l1
n=1

provided that xo € H. Thus, the series (2.20) represents a solution of
(2.9).
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2.2.2 Approximation

In this section, we study the truncated sum

N
AOETRDY [Lg)) (t) — Lﬁf’ll(t)] Un (2.34)

n=0
as an approximate solution of the problem (2.9). The following theorem

establishes the accuracy of this approximation as N — .

Theorem 2.6. Let A be a densely defined, positive definite operator and
xo € D(A%). Then

sup |len(t) — 2(8)]| < N~ Dzl b,
t€[0,T]

where ||zo||pe = ||A 20| -

Proof. Using Lemma 2.1 and Eq. (2.26) gives

6% - a(o)ll = e 3 [LO®) = L, ()] un | <
n=N+1

oo
—(g—1
<c Y 7Dzl pe < eNTETD |lag| pe,
n=N+1

The domain D(A?) of the operator A’ becomes a Banach space D’
with the norm ||z||pe = ||A?z||g. In this space, we have, for example,

m n
lunllpe = H A A= =03E T (x2) B A%z || < en==9 gl
0

for 0 > 6. When utilising this estimate and using the scheme of the proof
of Theorem 2.6, we get the following estimate:

Theorem 2.7. Let the assumptions of Theorem 2.6 be satisfied. Then

sup |2V (8) = 2(t)|| po < N7 ||| e 0 > 6.
te[0,T]
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Remark 2.8. If A is a bounded operator, then analogously as above we
get the following estimate with an exponential decay of the error

2 (2) — 2(0)]| < eN~2q¥ o]l (2:35)

Remark 2.9. The operator sine-function gives rise to a solution of the
following initial value problem

() + Az(t) = 0, z(0) =0, z'(0) =z
by z(t) = —A~2S(t)z1. Hence, the solution of (2.7) can be given by
z(t) = C(t)zo — A3 S(t)x),. (2.36)
Remark 2.10. Let #(t) and z(¢t) be solutions of the problem (2.9) related
to the initial vectors %o and zo. Then, proceeding as it was done above

and using the estimates from Lemma 2.1 and (2.26), one gets the following
stability estimate

sup [|Z(t) — z(t)l|pe < cllTo — 2ollp-, O <o
te(o,,T)

provided that zo,Z € D(47), 0 > L.

2.2.3 Example

Let us consider the wave equation

if =i§, -1<¢<1,t>0, z(t,-1) ==x(t,1) =0,
o 52(0 (2.37)
2(0,€) =x0 (), x(a;; 8 _ 0, —1<e<1.

The problem (2.37) is of the type (2.7), (2.9) with 2o = 2¢(£), (=0, A
acting in H = L%(-1,1),
D(A) = {uu € H*(-1,1), u(-1) =u(1) =0},
d*u

In accordance with (2.20) we have
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o
_ 0
2(t,€) = e Y (L0 (1) - L2, 1) up(©), (2.38)
p=0

where u_1(§) = 0, up(§) = z0(§) and uy(€), p > 1 are the solutions of
the stationary equations

_d2U1

dg?

+ ((5 — 1)2u1 =— CZ—;? + (5((5 - ].)Uo,
ul(—l) :’U,l(l) = 0, (239)
d?u,,
dg?
dzup_l
dg?
upi1(—1) =upa (1) =0, p2>1.

& Up+1

d€2 + (5 - 1)2Up+1 =—=2

+26(8 — Lup+

+ - 62Up_1,

The representations (2.38) and (2.39) define the following natural semi-
discrete approximation of the problem (2.37)

AV (t,€) = e 3 (L) — LY (1)) uy(6). (2.40)

p=0

In order to get a fully discrete approximation, we discretize problems
(2.39) by the Legendre collocation method. Let

be the Gauss-Lobatto nodes, where L,,(£) are the Legendre polynomials.
We denote by I, the interpolation operator related to wy,, i.e.

L C-1,1] » Pu,  (Ing)(&) =ul&) 0<i<n,

where IP,, is the set of polynomials of a certain degree < n. Let {V,,} be
the sequence of the (n — 1)-dimensional subspaces of D(A) defined by

Vo = {(1 = €)pn-2(€) Ipn—2(8) € Pp_sl}.

The operators I,, define a sequence of projection operators {P,}, P, :
C[-1,1] - P, D(A) — V. It is easy to see that

P,Av=Av Vv elP,. (2.41)
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We replace equations (2.39) by the projection (collocation) equations

/0/0(&]) = mo(&j)a

d2" . R d2A

% + (0= 1)y (§) = Zz(f’) 000 = Ditn(&),

dPiipq1(€5)

% + (0 —1)? lp11(&5) = (2.42)

d2" .
— 9 Zzggﬂ) +20(6 — 1)a,(&)+
: UZE('S") —pa(§), 1<j<n-1,p>1
where 9
W6 = (1-€) Y ol
=0

with unknown coefficients a§p ), 0<i<n—-2.

For each p, the equations (2.42) form a system of linear algebraic equa-
tions with respect to agp ), 0 <i < n —2. The fully discrete approximate
solution of (2.37) is defined by

N
2 (6,€) = e Y [LO (1) = L, (8)] a4y ©). (2.43)
p=0
We pose the error z(t,&) = z(t,€) — z) (t,€) as

where z1(t,€) = 2(t,§) -2V (t,€), 2(t,§) =2V (t,€) -2 (t,€). Owing

to Theorem 2.6, we have

sup ||zi(t,-)llz2(—1,1) LN~ a+4||$0||H2<’( 1,1) (2.45)
tef0,11]

under the assumption zo € D(A%) C H?7(—1,1).
It follows from (2.41) that

up = Upo, Up = Up Pro.

Because ¢ — Ppzo € D(V/A) (see, for example, Lostrom (1992) [108]),
one gets
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(b €) = /A et dEy (4% (@0 - Poao))

0

N 2 5
Kt =S[00 - £2.0] (52 os) YE @

p=0
A+6(0—1)
T, )
VOA+60-1))2+A
where E) is the spectral family associated with A. Proceeding as it was
done in the proof of Lemma 2.1 and using (2.26), we get

N
5N <Y p i <a,

p=1

which yields (together with Eq. (2.46))

sup flza(t, Mza 1) < e[ 4% @0 = Pazo)|

te[0,T] L2(-1,1) —

S C”.’I?o - Pn$0||H1(—1,1)- (2.47)

The following estimate holds for P, = I, (see Bernardi & Maday
(1992)[22])

[|zo — PnZ'OHH’C(—l,l) < an720-||$0||H2a(_1,1). (2.48)

Now, we get from (2.44), (2.45), (2.47) and (2.48)

_ 1 _
sup. 12 (¢, ) = 2t Y| p2(—1) < € (N o+t 4 pt 20) lzoll 20 (1.1
te[o, T

provided that zq € D(A?).

Using the representation

2ol €) = /A " r(t, \)dEx (30 — Paso)

0

with 1 (t,A\) = VAk(t,\) and the estimate

N
|k1(t, V)] < ch*% < cNi,

p=1
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we get (analogously to (2.2.3))

P § 1 94
sup 2 (t,) = 2(t, Muaapy < ¢ (N7 + N3 027 [lzoll gar a1y
te[0,T]

provided that zo € D(A?).

Let us compare the asymptotic complexity of the scheme (2.43) with
the conditionally stable (under the condition 7 = ch) explicit difference
scheme of the accuracy order O(h? + 72). First, assume that the spatial
grid consists of n = 1/h equidistant points. To get the approximate solu-
tion at a fixed point ¢ = t* with a given tolerance € ~ c(h? + 72) ~ 2¢72,
one has to do N ~ t*/7 steps performing cn ~ cr~! arithmetical
operations in each step. Hence, the complexity of the finite difference
method, which we define as the number of arithmetical operations nec-
essary for computing the approximate solution at a single fixed point,
is Npp ~ t*/72 ~ 2t*c/e (note that Npp increases together with t*).
In order to balance the contribution of both discretisation parameters
into the error of the scheme (2.43), we choose N ~ n?. Then we have
£ ~ 2cin 2°+3. We must solve ~ n? systems of the linear algebraic
equations (2.42) of the order n. Using the Gauss elimination, we have
to carry out ~ n® operations for the first system, ~ n? operations for
each of the next systems and ~ n* operations in order to calculate
all the vectors d,, p = 0,...,N as well as ~ n? operations to calcu-
late the Laguerre polynomials. Hence, the complexity of our method is
Ner ~nt ~ (2¢1/ 5)’”—4—1/2 (independent of t*). We can see that for a suf-
ficiently large o, i.e. for the smooth initial data, we have Nor < Npp.
Numerical experiments with smooth initial functions (for example, with
zo(€) =sin7é and o (£) = sinwé + 1 sin37€) confirm this conclusion.

Remark 2.11. One can get spectral discretisation without the assumption
xo € D(A7), which admits N = N(n). To this end, we use a semi-discrete
spectral approximation in space, for example, for the problem (2.37),

Fn(t) + Anzn(t) =0, ,(0) = I,z0, 2'(0)=0
with an accuracy estimate
|z (8) — ull < en®|lzo|| m2-,

where zo € H??(—1,1), A, is the collocation Gauss-Legendre approxi-
mation of the spatial operator, I, is the related interpolation operator
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by Quarteroni & Valli (1994) [147]. Further, we define the fully discrete
approximation by

N
(1) = e 3 [L0@) - L2, (0)] 4,
p=0

where 4, are the solutions of equations (2.42). Though A,, is not a self-
adjoint operator, one can show that (Gavrilyuk & Makarov (1996) [68])

llen — zall < cg" |zl

where ¢ = 1 — en™#, pu is a positive constant depending on § and the
spectrum of A,,. Thus,

lzn = 2ll < e(n™7 + (1 = en™) )|zl 2o

Choosing N ~ n#*t¢ for a positive ¢, we get the method with spectral
accuracy with respect to n.

Remark 2.12. Another way to overcome the demanding condition zy €
D(A”) within the framework of the concept of adaptive algorithms con-
sists of finding an Zy € D(AY) (see, Remark following (2.36)), which
approximates xy depending on the regularity of zp, and, therewith, to
solve the problem (2.9) with x(0) = Zo by the presented algorithm. This
makes it possible to use the following adaptive procedure for the Dirichlet
boundary conditions.

Let Ny be a fixed integer and £§', 1 < j < Np be the zeros of the
Jacobi polynomials

F(a + 1) F(No + 20 + 1) P(a’a) (f)
I'a+1) I'Ng+a+1) M ’

IN, (§) =
which are connected with the Gegenbauer polynomials G (€) by

a ats
(&) =G @).
We denote by i}, _; the interpolation operator related to {£$'}, i.e.
iNo-19 €Png-1, (R 19)(§f) = 9(&f), 1<j<No V 9 eC[-1,1].

Let a > —1,
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1
HY(-1,) =21 D) = {u bl = [ (©pae)de < +o0].
-1
k
HL(-1,1) ={v: [lollia =D I0Vl5 0 < +oo}, k21
1=0

be the Sobolev spaces associated with the measure p, (€)d¢ = (1—&£2)@dE,
and define HS(—1,1) for a real s by interpolation of Bernardi & Maday
(1992) [22]. Henceforth, let k be equal to % or ™+l for any integer
m > 1 and assume that —1 < a < 1. Then, for any real number o >
max{1,142} and for any ¢ such that (1 — £?)*¢ belongs to HS(—1,1),

the following result is known (Bernardi & Maday (1992) [22], p.98)

- &)k —igtme)lly . <eNg -], .. (249)

Now, consider zo(£) from (2.37), which belongs to H2°(—1,1), but zg
does not belong to D(A%) for ¢ > 1. To simplify the exposition, we
assume that o = 2s for an integer s (the case o € R can be regarded
analogously using results by Lostrom (1992) [108]). The domain of the op-
erator A consists of all u € H??(—1,1) such that u(>)(—1) = u(?)(1) =
0,0<j<o—1.

We choose aa = 0 and k =20 — 1, i. e. m = 40 — 2. Then, we have

2o(€) = (1 = E)*0(€), »(&) = (1 - &) xo(§)
and (1 — £2)*p belongs to H??(—1,1) = H2?(—1,1). Obviously, it holds
Fo(6) = (1— )T, € D(A”)
and owing to (2.49)
lZo — $0||L2(_1,1) = ||(1 — & (p— i%ofl(p)“LZ(_l’l) <
< eNg = |lzol 2w (1.1
Due to Remark 2.10, we have

~ 1 2,
sup [|E(t) —z(@)|| < eNg ™ [|oll 2o (—1,1)
t€[0,T]

and, therefore, the results of Theorems 2.6 and 2.7 hold true for the
problem (2.9) with the solution %(t), £(0) = Zo.
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X3

Fig. 2.2. Sketch of a chute and adopted denoting

2.3 Linear sloshing in an infinite chute

Let ¢(x,t) be the velocity potential, which is a harmonic function in the
region (reservoir, tank) 2 = {z: 0 < z; < 27, 0 < 3 < ( + 27, —00 <
z3 < 4o00}. We assume that the free surface is defined by the equation
s = ((x1,x3,t)+27. As described in the beginning of this chapter, when
adopting the linear sloshing theory, one can neglect nonlinear terms in
the boundary conditions and trace them on the unperturbed free surface,
i.e. on the plane x5 = 27. The potential is then taken to be defined in the
known domain 2 = {z: 0 <z, <27, a =1,2,—00 < 23 < +00}. We
denote F():{.’L'Zogaj'l S271', —o0 < z3 < 400, T2 =27r}, I :F\Fo,
where I' is the entire boundary of 2 (see, Fig. 2.2). For brevity, we also
assume g = 1. In accordance with procedure from the introductory part
of the chapter, we arrive at the following mathematical problem

d*u ,

Tl +Au=0 on Ip;  w(0)=wuo, u'(0)=u, (2.50)
with the Poicaré-Steklov operator Au = g—;‘;ﬂ“g, where u : Ry — Hisa
vector-valued function and ug = fo, u1 = f1.

If we consider an infinite (in the z3-direction) chute as the domain (2,
functions fy, fi may be independent of x3 and the pressure p may also be
independent of ¢. As a result, we get the two-dimensional sloshing problem
in the rectangle (see, Fig. 2.2) 2 = (9, = {2 = (21,22) : 0 < 24 <
27, a@ = 1,2} and its analogy, namely, the homogeneous one-dimensional
evolution problem (2.50) on Iy = {z = (21,27) : 0 < 21 < 27}
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In order to solve (2.50) numerically, one has to discretize both the
time derivative (temporal discretisation) and the operator .4 (spatial dis-
cretisation). The finite difference methods are often used for the temporal
discretisation that implies a fixed convergence rate with respect to the
temporal discretisation parameter even though the exact solution is in-
finitely differentiable. This was done by Ashralyev & Sobolev (1994) [12],
Branble et al. (1977) [30], Fujita & Susuki (1991) [58], Quarteroni & Valli
(1994) [147] and Samarsky (1984) [151]. A broad range of applications
and a convenient algorithmic “step-by-step”-structure are advantages of
these discretisations.

New methods of the temporal discretisation based on the Cayley
transform (CT-methods) were recently developed by Arov & Gavrilyuk
(1993) [11], Arov et al. (1995) [10], Garipov (1967) [62] and Amosov
(1990) [7] for the first order evolution equations and by Gavrilyuk &
Makarov (1999) [70] for the second order equations. These methods pre-
serve all the advantages of the finite difference methods in the case of
time-independent operators and, in addition, have the remarkable prop-
erty that the convergence rate with respect to a temporal parameter is
either exponential (for the analytical solution) or polynomial, which de-
pends automatically on the smoothness of the exact solution (spectral
property).

Various methods of the spatial discretisation for evolution equations
with a linear integral operator coefficient including the boundary element
and the boundary collocation methods are presented by Amosov (1990)
[7], Kress (1989) [95], Kress & Sloan (1993) [97] and Schatz et al. (1990)
[154]. These showed that the collocation methods provide exponential
convergence for the analytical initial data. Gavrilyuk et al. (1998) [71]
used a combination of the CT-method with a trigonometric collocation
method to get a fully discrete approximation for the first order evolu-
tion problem with a spatial pseudo-differential operator coefficient. This
method has the spectral property with respect to both the temporal and
spatial discretisation parameters.

The goal of this section is to study the problem (2.50) and to combine
the CT-method by Gavrilyuk & Makarov (1999) [70] with special trigono-
metric collocation method to obtain a fully discrete spectral approxima-
tion (see, Gavrilyuk et al. (2001) [64]). By using an explicit representation
of the exact solution by the CT-method, we reduce the problem (2.50) to
a sequence of stationary recurrence relations of the second order. Further,
a collocation procedure for the discretisation of these equations using a
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trigonometric interpolation adapted for the operator A will be proposed.
This interpolation and its estimates constitute the subject of § 2.3.2. The
linear sloshing in a chute will be analysed in § 2.3.1, but sloshing in tanks
with a horizontal baffle (rib) will be studied in § 2.3.3. The fully discrete
approximation for the latter case will be justified in § 2.3.3.

2.3.1 Operator formulation for linear sloshing in a chute

We consider the problem (2.3) and, by using the separation of variables,
derive that the solution of (2.3) can be presented as

1 2m 1 2w 5
o@) =5 [ w1 [ ok @
with
- > £
K(z,€) = ngl p— cosh % cos % cos %

oo
Because the functions F = { - { L cos % } are orthonormal
27 VT 2 n=1

on [0,27], denoting z; by x gives the following representation of the
operator A

1 27
()@ = = [ u(@) K (e e, (2.51)
where -
K(z,6) = Z g tanh nm cos % cos %5 (2.52)

n=1
Alternatively, the problem (2.50) can also read as
2 1 2w 0
% + o /0 u(,t) Z n tanh nm cos % cos %€d§ =0,

n=1

ou(z,0)
ot

The operator A defined by (2.51) is self-adjoint and nonnegative def-
inite. It is easy to show that its eigenvalues are A\ = gtanh km with the
corresponding eigenfunctions vg (z) = cos %‘”, k =0,1,.... Either piece-
wise continuous function ¢(z) defined on [0, 27] with ¢'(0) = ¢'(27) =0
can always be represented by the Fourier series

z € [0,27] u(z,0) = ugp(x), =0.
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- ke G0 = 3= [ p(w)dz;
% + Z P COS - with

k=1 or == 027r ¢(z) cos £ dz,
which converges to ¢(x) at the points of continuity and to (¢(z + 0) +
o(z —0))/2 at the points of discontinuity. Outside of the interval [0, 27],
this series converges to the even periodical extension of ¢(z).

Let us extend u(x) even onto the interval [0,4n] and then periodically
onto (—oo,00). We denote this extension by @(z). The function v(z) =
9(2z) has the following properties: (a) v(z) is 2m-periodic; (b) v(z) is
even with respect to the point m, i.e. v(z) = v(27 — z) ; (c) u(z) =
v(5), = € [0,27].

It is easy to see that the Fourier coefficients

1 [2m k 1 [27 )
d = —/ u(z) cos ;d:c, O v(z)e *%dz, k#0
0

™ - 2n

are connected by the relations uy = 47y,

1 27 1 27
lig = o /. u(z)de = %/0 v(z)dz = g

and Oy = 0. If 0 € H?[0,4n], then v € H*[0, 27| and

oo oo
iy = Y (A +m)Plom> =2 (1+m®)Ploml* + |80 =
m=—00 m=1
oo
=5 > A+ m)Plam]’ + Jof
m=1

for the Sobolev norm of v.

Since
1 2m e
Au = ;/0 u(§)n§1 gtanhmrcos%cos %£d§ =

nr
a5

(o]
= Z n tanhnz - 4,, cos
2 2

n=1

we see that A : H? — HP~! (for all p € R) is an even pseudo-differential
operator of the order 1.
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2.3.2 Interpolation operators and a discrete model

To discretize the operator A by an quadrature collocation method, we will
need a suitable interpolation procedure. Because of special structure of
the kernel (2.52), the use of the trigonometric interpolation polynomials
by Amosov (1990) [7], Kress (1989) [95] and Kress & Sloan (1993) [97]
leads to a matrix discretisation 4y with elements appearing as infinite
series (a consequence of the fact that the corresponding trigonometric
polynomials are not invariant with respect to .4 ). That is why, we use
the following class T of the trigonometric polynomials:

which is not a subset of the polynomials by Amosov (1990) [7], Kress
(1989) [95] and Kress & Sloan (1993) [97].

Our error analysis below (see, Theorem 2.13) shows that, contrary to
the optimal order O(N?~?) for the interpolation polynomials by Amosov
(1990) [7], Kress (1989) [95] and Kress & Sloan (1993) [97], the optimal
convergence rate of our method in the scale of the Sobolev norms is
O(N q_p+%). This is a consequence of the fact that the second sum in
RN m is independent of m. The sum vanishes when the function u(z)
defined on [0, 2] is odd with respect to the middle point = «. For this
subset of functions we get the convergence order O(N?P).

Let wy = {z; = o) = ” ,7=0,1,---2N — 1} be a portion of the
interval [0, 27] and u(z) be a functlon defined on [0, 27]. We define the
interpolation operator Py and the interpolation polynomial Iy (z;u) by

Py:C0,2m) = Ty, u In(ww) Iy (2§750) =u (V)
j=0,1,...,2N - 1.

To find an explicit representation of Iy (x;u), we use the following simple
relations

N1 2N, k=1=0,
lz; )N k=1#0
ty = Z cos—cos 5 — 1_(_1)k+l
——— k#0,
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2N—-1 2N-1

o 1— e2iaN
Z cosaj = Re Z e’ = Reﬁ,
=0 =0
2N—1 ;
. ) 1— eQzaN
Z (—=1)? cosaj = Re T4eia
j=0
2N—1
o kx;  opm; 1 —(=1)kte
—1)7 et Lntnd A S
Z(I)COSQCOSQ 3
j=0
Let us define the matrix S by
,—1)(j—1
S = [cos (=D =Dr . (2.53)
2N i,j=1,...,2N

Note, that S is not orthogonal matrix and, therefore, it can be inversed
explicitly in the usual way. Denoting the interpolation conditions as
In(z;u) = iﬁg b dy, cos k2 leads to the equations

2N—-1 k
> dy cos aj =uj, j=0,1,...2N 1
k=0

or, in the matrix form, to
d=5S"u (2.54)

with d = (do,...,dan—1), u = (ug,...,uan—1). It is easy to check that
S-1 =

0 1 0 1
1 —1+cos % l4+cosZx -+ —l+cosZFEn
=% 0 1+ cos 2% —1+cosgn - 1+COS%
2
1 —1+cos 2l 14 cos 22NN ... 1 4 cos ENZD)

and, as consequence,
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1 N
=~ Z Usk—1;

2N-1

2pk
d2,,—N Z [ 1) + cos 2pN7T]uk, p=1,...,N—-1,
2N-1
(2p—1)k7r B
d2p_1— U0+— Z [ T Uk, p—]-;---aNa

Additionally, we can write the Lagrange representation of the trigono-
metric interpolation polynomials

R 2N-1
In(z;u) = Z 1N (z)u, (2.55)
n=0

with the fundamental interpolation polynomials anN) (z) given by

N
A 1 2p—1 ~ 1—-(=-1)™
l((,N) () = = E cos P x; [(N) (z) = 7( ) +

= 2 m 2N
1233t pT pmmw
+ = Z CoS — [cos— + (=1)Prm=t m =1,2,..,2N — 1.
N = 2 2N

Now, we are in the position to prove the following result:

Theorem 2.13. For the trigonometric interpolation polynomial Iy the
error estimate

- 1
lo=InGw)lly < NP Eflull,, 0<q<p, 5<p  (256)

holds provided that v € HP, where ¢ is a constant depending on p and q.

Proof. We have form = 2sN+p, 0 < p < 2N, s =0,1,... that cos T3¢ =
(=1)%¥ cos 5% and

cos &7, s —even
aN_—
cos —5Ftx, s—odd, u#0

In (:c;cos %) =

2 > (—1)P7tcosE —1,s—odd, p=0.
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The interpolation error can be represented by

o 2N-1 28N+M
BRn(z) = u—IN (z;u) Z Z Ups N4y COS ———
s=0 p=0
o 2N-—-1
. 1%
Y e B
s=0 p=0
o 2N-1
22s—1)N +p
_Z Z da(2s-1)N4ulN (w Cos 2 2) ) =
s=1 pu=0
oo 2N-1 oo 2N-1
2sN + p N nx
—Z Z ugsNJrHcosT Z UgsN+p COS 5~
s=1 pu=0 s=1 p=0
0 2N-—1 2N —1 pr 1
—1
—Z Z UgsN— MCOS——2ZU2(25 N lz (=1)? 0057—51.
s=1 p=0 p=1

For the Fourier coefficients RN,m of Rn(z) we get

RN,m:am; m > 2N;

o0 o0 o0

Rno=— Zﬂ4sN + Zﬂ2(2s—1)N ==Y (=1)%dzn,

s=1

Bym=-— Z UasNtm + Gasn—m) — 2(— Zuz(zs )N
s=1

m=1,...,2N -1

and
||RN||3 =2 Z 1+ m?)!Ry,m|* + |Byol* = S1 + Sz + Ss,
m=1

where
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S1=2 ) Q+m*)anls  Sz= Y (=1)dzn| ,
m>2N s=1
2N-1 oo

Sy =2 ) (14+m*)?|= > (lasnym + Gasn—m)—
m=1 s=1

2

oo

m—1 ~
E U2(25—-1)N
s=1

For p > g we have the estimate

St < A+4N?)TP 3" (1+m?)P|Ry m|*> < NP [ul|2.
m>2N

By using the Cauchy inequality, we get

oo
E /a4sN+r
s=1
o

o0
<Y [+ @sN 412D 1+ @8N +1)°]" |dusn o] <
s=1

2
o0
=D [1+@sN+r)?]® [1+(43N+T)2]%ﬁ4sN+r <

’ﬁ

s=1

s=1
o0
< (2N)_2PZ(23+ — 21’2 + (4sN +7)%]? Gasnir |-
s=1
The series

o0
Z(Qs +1)7%, 0<t<1

s=1

converges uniformly for p > % and, therefore, is bounded by an absolute
constant. Hence, we have

2

2N-1
S <8 ) (1+m?) +
m=1
2N—-1 oo
+ 16 Z (1+m?)? Za2(2371)N <
m=1 s=1

2N -1 %)
< c{ > (1+m?)12eN)P Yy ([1 + (45N + m)*]” |iuggnm|* +

m=1
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+[1+ (48N = m)?]P|@asn—m|?)+

+ Z_ (1+m?)12N)"P > " [1+ (2(2s — 1)N)2]”|ﬂ2<23_1w|2} <

m=1 s=1
< {2 a2+ N2 D2} < N2 D 2
Analogously, one can get the estimate
S < NP [Jul2

Combining these estimates leads to the statement of the theorem.
O

Remark 2.14. The estimate of Theorem 2.13 is optimal in the sense that
there exist p,q and a function u(zx), for which it is attainable. Actually,
let us consider a function u(z) with the Fourier coefficients

1
7; ==, 5=1,...; Up= 2(2s —1)N.
Ug(25—-1)N [2(28 — 1)N]25 B} ) ; Um 0, m ;é ( $ )

Using the relations
RN,m =2(-1)™ Zﬂz(u_l)]v, m=1,..,2N -1,
s=1

o0
RN,O = Zﬁ’2(2sfl); RN,m =0, m>2N,

s=1
we have
1 A _
llully = llull? =3 > (14 2@2s - DN)?) (2(2s - )N) ™ =
s=1

= N 24+ 0N,

IBn @I} = |Bx ()] )2 =

) 2 12Nt
= (22122(23—1)N) (5 Z (1 + 7’n2)1/2 + 1) =
s=1

m=1



2.9 lLanear sloshing in an infinite chute 49

1 oo 2 12Nt
T ANt (Z@s— 1)2> (5 Y (1+m?) +1>
s=1 m=1
=16¢IN 2+ O(N®)
for p=1,q =1, where
1 o0
—2
e _§;(25—1) .
It is easy to find that
Rn(z)|?
N—ooo ||ul|2

i.e. there exist positive constants A, B such that
Allullp < [[Bn(2)llg < Bllullp.

Let T be the set of trigonometric polynomials of the form

N N-1
u(t) = Z Ay COSTNE + Z by, sinmit
m=0 m=1

and In(z;u) € Tn be the interpolation polynomial for u related to the
nodes ng) =jn/N, j =0,1,...,2N — 1. Kress (1989) [95] and Kress &
Sloan (1993) [97] established that

2N—1
In(z;u) = Z u (sz)) l,(cN)(:c),
k=0

where

N-1
ll(cN)(v'U) = % {1+2 Z cosm (:c —a:ch)) +cosN <x—x§cN))} )
m=1

We denote by Py : C[0,27] - Tn, u — In(z;u) the interpolation
operator and will use it for functions, which are even with respect to the

point z = 7. In that case, u (xiN)) =u (xé%)fk), which leads to the
interpolation polynomial in the following form
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In(z;u) = i u (g;;m) ™ () (2.57)
k=0
with
i) () = 1 S (V)
p o (T) = N+ d0x + ) 2(2 — 0m,0 — Om,N) COSTUT COSTET,,

m=0
k=0,1,..,N.

For this interpolation, the following estimate holds true (see, Kress
(1989) [95] and Kress & Sloan (1993) [97])
_ 1
llu = In(5u)lly < eN*Pllully, 0<qg<p, 5<p. (2.58)
In order to get a discretisation of the operator A, we calculate
(AIN)(z) and collocate it at the points of wy. This gives

2N—1 .
(Aln)(z) = Z dk§ tanh k7 - cos o
k=0
setting x = :E;N) and using (2.53), (2.54) lead to the matrix equation
T

[(AfN)(mj)] = SAS~tu

J=0,1,....2N—1
with A = diag [% tanh k7]4=o,1,....2v—1. Therefore, one gets the matrix
An = SAS™!

as a discretisation of the operator A on the grid wy. The eigenvalues of
An coincide with the first 2V eigenvalues of .4 and are given by )\ch) =
Ap = %tanh(k — 1)7. Moreover, the corresponding eigenvectors are
u; = S_lek, k= 1,2, ...,2N, where e, = (6kj)j:1,...,2N-

Now, we can combine this discretisation of the spatial operator A
and the time discretisation from Section 2.1. A solution of the problem
(2.50) can be represented by (2.20) in accordance with Theorem 2.3. The
approximation of this solution by the truncated sum (2.34) and its accu-
racy are given by Theorem 2.6. This theorem was based on the estimates

LY (t) — Lg]_)l(t)‘ = O(n~%) and the representation
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o0

Uy = /\_"XI%TH(Xz)dE)\.A‘Tuo,
Ao

where Ao is the lower bound of the spectrum of A, E) is the spectral
family of A and T,,(x) are the Chebyshev polynomials,
A+ 62 A+6(6-1)
X1 = v ey X2 = :
A+ (6-1) VO+686—1)2+

(2.59)

For the operator A given by (2.51), A > 0, A\g = 0 is an isolated simple
eigenvalue with the corresponding eigenfunction vy = 1 and the rest of
the spectrum lies in the interval [A1,00), A1 > 0.

Define ug(z) = do(x) + g, where ap = f027r ug(z)dz and do(z) =
up(z) — ap € (Ker A)*, ay € Ker A. Then, obviously, the solution of
(2.50) can be expressed as

u(z,t) = ur(z,t) + ao;  ui(z,t) = <cos \/Zt) o

and the representation (2.20) holds with
Uy = A2 Th(x2)dEN\A% .
A1

We call the truncated sum
M
up (2, ) = €70 N LY (1) (2) — gy ()]
k=0

the semi-discrete approximation for u;. Replacing ug by its interpolation
polynomial Pyug leads to the following problem
%4 - - - o
W—FAU:O, @(0) = 4o = Pnug, @'(0)=0
and, analogously,
ﬂ(m,t) = ﬁl(xat) + ao,

where

Qg = PNUOd.’L'; U1 (t,.’l)’) = (COS \/.Zt)ao; ’L:L()(Z') = Ug—Qgy € (Ker .A)L
0
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We define the fully discrete approximation for u(z,t) as

u s (z,t) = MZL“” ) [ak(@) = dpra (2)]

where 4y (x) satisfy
(A+ (0= 12D g1 =2(A+ 600 — DDitg, — (A+ D1, k> 1,
(A+ (6 — 12Dy = (A+6(8 — 1))dg, do = Pniip € (KerA)*.

Theorem 2.15. For the error of the fully discrete approrimation, the
following estimate holds true

sup.[[u-,2) — ully (1) — o], < e (M=% 4 N4 Jjug]l.
te[0,T]

Proof. Since Py Au = Au V¥ u € Ty, these equations are equivalent to
the following collocation equations

[(A+ (@ = 1)’ Dagp] (z)) = 2[(A+6(86 = D) Da] () -
— [(A+ & Dig_1] (=),

where ™) = 1T, j=0,1,..,2N — 1.
The matrlx form of (2. 60) reads

(AN + (6 = 1) Dtigy1 = 2(An + 6(6 — 1))y, — (A + 8°Diag 1,
(AN + (6 = 1)’ D)t = (An +6(6 — 1)T)fg, g = 1o — do,

N . N . N N N
where @t = (i (2")), ..., ik (@5N1))7s 10 = (o (§"))), .oy o (@SN)_,))T
We have for the total error

ot = ) =l < | [ (o) Prunto)) e +




2.9 lLanear sloshing in an infinite chute 99

+ [|lur — ur, M| + ||u1,M — uf{MH .

Representing
wr () = / FON (¢, X dBito (a);
M (2.61)
ufM(t, x) = M) (t, \)dExuo(x)
A1
with
f(M) t,A) 7&2[’(0) [ n(X2) — X1§Tn+1(X2)] =

— it Z 1) {x:* [Ta(xs) = Tora ()] + Tal)x§ [1-x1 ]} =

n+41

nt1 1
e % Z L) { X, sin (n + 2) arccos xz2 X

1-x 1
2 T (xo)X 1— f}

and using the estimates

0@ <1, el <1,
A
VO+6GE -2+ A/ F30 - D)2+ A+ A+6(6—1))
<AL A€e0,00),

[1—x2| =

A+ 62
A+ (0 —1)2

+1| <(@-=2811

1-26
1—./yv1=
X1 [A +(6— 1)2]
we get that there exists a positive constant ¢ such that
\f‘M)(t,A)\ <eVte[0,T], Xelo,o00)

and owing to Theorem 2.13

llur (8) = wr,pe (B)]] < M~ 7 || A d | -
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Because A is bounded from HP into HP~! for all p, one holds

lla () — wn,pe (B) |5 < M5 ||dg]|, <
< M7 (|luollr + |ao]) < M fugl,-

Accounting for (2.61), we derive the inequality

Juso®) =0 = | [ 5096, 95 o — )| < el — il
A1

and, in particular,
[[ur, 0 (8) = ufl pr (D), < ellio —tao|s <
<c (||U0 — Pruolls + oo — 540|) . (2:62)
Using the embedding theorem we have
oo — Go| < V27|uo — Pnuollo < clluo — Pruolls, (2.63)
for s > 0 and, due to Theorem 2.13,
lluo = Prvuolls < eN*~"+3Ju]l (2.64)

Therefore, we deduce from (2.62), (2.63) and (2.64) that
uC,8) = ullar () = o], < e (M774F 4 N=7758) fug]l,

in what follows the statement.
O

2.3.3 Sloshing in a chute with baffles, a discrete model

Let us consider an infinite chute with two identical horizontal baffles
(ribs) of the width a attached to the vertical walls and located at the
height z2 = b as shown in Fig. 2.3. The original sloshing problem must
therefore be solved in the “non-smooth”, non-Lipschitz’s domain 2(*%) =
{zr = (21,22) : 0 <11 <27, 0 < 29 <47}

Let us also denote Iy = {z = (z1,22) : 0 < z1 < 2w, zy = 47},
0 = {.73 = (xl,mg) : 0 <z < 271', b <z < 47T}, 2y = {.’L‘ = (.fL'l,ZCQ) :
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41

X

a 2T-a 27

Fig. 2.3. Cross-section of a chute with baffles.

0 <z <27, 0<zy <b} and 71,72,7 be the line segments v, = {2 =
(1,22) : 0 <21 <@, z2 = b}, 2 = {2 = (z1,22) : 2n —a <z <
21, £y = b}, v = {z = (21,22) : a < 21 < 27 — a, z, = b}. We denote
by ¢(z1) = ¢(z) the unknown normal derivative of the potential on ~.
Then the normal derivative of ¢ is defined on v; Uy U~ and

(w)—% B 0, T € vy Ums,
T Bay @), zen.

To=2T

Note, that the potential ¢ is solution of the following boundary value
problem

9¢(z)

= (ab). - .
6¢ 07 T € ) ¢(.’L‘) ’U/(.TE), T e F07 on

= 0, x € F\F(]U’YlU’)/Q.

(2.65)
The problem (2.65) is uniquely solvable, but we impose the resolvability
condition for the corresponding Neumann problem as follows

2m—a
[ e =o.
a
Without loss of generality, set up b = 2. By separating the variables,

one gets the following solutions in 2; and (2,

2
dara) =1 [ (O K (1,0, e



20 2 Kvolutional operator problems in linear sloshing

2m—a
_2 / PO Kus(er, 20,6, (a1,02) € 2

" 2 27m—a N
(w1, 22) =ao + ;/ V() Ka(x1,22,8)dE, (21,72) € (22,

where ag is an arbitrary constant,

nxy coshn(mr — 22) né
Ki(21,22,8) = —+Z IR a— 27 cos =
"331 sinhn(27 — 22) né
- > 1 nry nTa n§
Ko(z1,22,8) = Z b 8 g cosh?co 5
n=1

This gives the following equation on ~ (henceforth, we denote z1 by x)

1 27 2 2m—a
[ ummiw -2 [ @K 0de a0 =0, (266)
0 a
where
Ky (z,7) = Ky (21,27, 7) 1+°° 1 cos 2 cos =
xr = x = — _ _
s T LWL ST =5 — coshnm 2 2’
Koz (z,€) = Ki2(1,2m, &) + Ko(21,2m,8) = (2.67)
o0
coth 27n nx né
=22Tc057c057.
Using the formula by Kanwal (1997) [89], p.205
o
1 nx n§ T 13
—2zﬁc057cos7 =In2 cos§ —cos§ ,
n=1
we further get
x i3 e~ 2™ nr  né
Kos(z,6) = —1In2 cos 5 — cos—‘ + 22 mcos;cos >
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Changing the variables in the second integral of (2.66) by

£ a T a
€08 o = COS 5 COST; COS 5 = COS ; COS 0;

2
(2.68)
we arrive at
1 27I' - 1 27I' -
—/ u(tT)Ky11 (6, 7)dT — — Y(T)Ka2(0,7)dT —ag =0, (2.69)
™ Jo ™ Jo
where

~ 1 > 1 nr a
K = +Y ———cos T, ( a 0),
11(0,7) 3 + 2 P cos 5 In cos 5 cos

K'QQ(Q,T) =—In [2 ‘cosg‘ |cosf — COST|] +

—27n

o0
e a a
+20 e (cos 5 cos0) T (cos 5 cos).
Y(r)=¢ (2 arccos (cos g cos T))

and T, (7) are the Chebyshev polynomials of the first kind.
Note, that the function (7) is an even function with respect to the

point 7 = 7 and f027r ¥(7)dT = 0. We denote by Ey the space of all such
functions. In what follows, we will need the integral

fm.n (cos g) = /27r cosmbT, <cos g cos 9) dé,
0

which can be calculated by implementing the following formulae (see,
Kress (1989) [95] p. 167)

2

ab e dr a—b\" _..

= = in 2.

7r / (@® + b%) — (a®? — b?) cos(t + 7) (a+b) ¢« (2:70)
0

2T 4 t_
R A (—sin2 T) dr=-1, n=0,..., (2.71)
27T 0 2
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and generating the functions for the Chebyshev, Legendre and Jacobi
polynomials

1—1tz
1— 2tz + 22 Z Tl (2.72)

Verrre Z Pl (279)

VPR '1-w+R) *1+w+R) % =Y Pl*P@w", (274
n=0

where R = /1 — 2zw + w?. Using (2.72) gives

itnf ( a)_/27r P 1 —tcos g cosf g6 —
~ m,n COS2 = A cosm 1—2tcos%cos¢9+t2 =

1—¢2 27 cos mf
= =d6 + T 0.
2 /0 1 —2tcos § cosf + 12 "Om.0

Setting a® + b% := 1 +¢?, a® — b? := 2t cos ¢ in (2.70), we deduce

= a (1 —t2)
t" mn( —) = X
z_: Jm.n{c0s 3 [1 — 2t% cosa + t4]'/2

2t cos §
X
1+¢+[1—2t2cosa+t

]1/2] +7i'(5m,0, (275)

from where
1d” 1-¢
o (c053) = 2 { =t
2 n!dt® | /1 —2t2cosa + t*
( 2t cos & ) m}
X 2 .
14+t2++1—2t2cosa +tt =0

It is easily seen, that fm n(cos§) = 0 for n < m and fp,m(cos §) =
m(cos §)™, m > 1. To get an explicit formula for the case m = 0, we set

up £ =cosa, w =t>,a = 0,3 =m in (2.73), (2.74) and, by using (2.75),
get
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a a
fo,0(cos 5) =27, foon-1 (cos 5) =0,
fo,2n (cos g) = [P,(LO’O) (cosa) — P9 (cos a)] = (2.76)
=7 (Pp(cosa) — P,_1(cosa)), n=12,..,
and
Sm,m+2k+1(cos g) =0, m>1, k=0,1,..,
a a\m m ,m
fm,m+2k(cos 5) =7 (cos 5) <P,§O’ )(cos a) — P,g(ll )(cos a)) , k=1,2,....
The formula (2.71) implies

1 2w
— In 2| cosé — cos 7|df =
27 Jo
2 _ 1 2w — (27 —0
=9 ; In4 sinezT‘d9+%/0 In sin%‘d@z (2.77)
1 2w . _
=%/0 In 4 sin? 2Td6=0.

Now, we are in position to determine the constant ag. Integrating (2.69)
in 6 € [0, 27] and using (2.76)+(2.77) give

_1/27r (1) 1+§: ! cos 2 ! 27rT (cosacosC) d¢
= 0 D coshnz 2 27 )y " 2

n=1

- l/027r7,b(7){— In ‘cosg‘+

™

o —27n 2w
e a 1 a
+2 ,,?21 an (cos ) cos T) o /0 T, (cos 3 cos C) dC}dT =

1 [ — 1
=5 ; u(T) {1 + T; wosh 2o COSTT [P, (cosa) — P,_1(cos a)]} dr—

_1 /02W111(T){— In ‘cosg‘+

™
6747rn

— T,
+ Z 2n sinh47n >

n=1

(cos g cos T) [P, (cosa)—P,_1(cosa)] }dT. (2.78)
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After substituting (2.78) into (2.69), we arrive at the following equation
coupling u and 9

27 27 6 —
3 [ wori0.0d+ 5 [Coom (S 5 )ae-

1 27

27TO

where

o0

K1(07€) = Z

n=1

coshmm cos %€ [Tn <cos g cos 0) —

[e's)
1 27

1 £
s ; T, (cos g cos C) dC] = Z coshnm cos %Tn (cos g cosO) -

n=1

oo

1 1
-5 Z prR e né [P, (cosa) — P,_1(cosa)],

n=1

Ky(60,8) =—1+2) ~
n=1

e—27rn

T, (cos g cos 5) [Tn (cos g cos 0) —

sinh 27n

1 27

T, (cos g cos () dC]

_ﬂo

o0 e—27rn a a
=-1+ 2; an (cos 3 cos{) T, (cos 3 cose) —

0 —47n
e a
_ ; ngn (cos 5 cos §) [Pn(cosa) — P,_1(cosa)].
The kernels K7, Ko are 2m-periodic with respect to both variables, and
infinitely differentiable.

We define the operators L, By acting in the space Eg by

1 27

L)) =5 [ vem (s 5 E) ae.

0
1 27

(Ba)(0) = 5 | W Ka(6, e

and the operator By acting in a space of functions defined on [0, 27] by
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B®) = 5= [ u©K 6.0

™

It is easy to see that on the class Fjy, it holds

1 2m & e 2mn a
(B29)(8) = ;/0 Y(§) {nz_; R . [Tn (cos 2 cosg) —

27

_ i /Tn (cos g cos C) dC] [Tn <cos g cos 0) —

2w
27
_%/Tn (cosgCOSC) dC] d¢,

0
0
i.e. the operator B, is symmetric, By = B;.

We define the operator A(® by

(40u) @) = 22200~ )+ Brw @), @7)

where A is given by (2.51). Thus, the operator formulation of the linear
sloshing problem in 2(®) = 2(2:27) can be written in the following form

gggﬂwwAmmezo,tzmxe(m%m
(Biu)(z) + (L) (z) — (B2¥)(x) =0,z € (a,27 — a) (2.80)
ou(z,0)

u(z,0) = uo(),

ot
First, let us show that the case a = 0 reduces the formulation (2.80) to
(2.50) in the rectangle 24, = {z = (z1,22) : 0 < 21 <27, 0 < 2y < 47},
As matter of the fact, multiplying (2.69) by cosj# and integrating in 6
over (0,27) yield
27 - 27 . .
1 j& coth j27 j€
/0 u )coshjw cos 3 £ ; &) 7 cos dé =0,

ji=1,...; ag =0, i.e. the Fourier coefficients of u and 1) are coupled by

. J

P= U ) =1,2,... 2.81
Vi 4coshj7rcoth27rju]’ J=h (2:81)
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with

1
™ Jo

o jé
- 5 W(€) cos T dE.

27 .
;= —/0 u(€) cos Jgdf, 1&,- =

Using (2.81) gives

2 cosh

n=1
(o)
n=1

This expression coincides with a formula for the operator A from (2.51)
in the case when the baffle is absent and the height of the reservoir is 47.
It can be shown that A(®) coincides with A for a = 7 as well.

Let us show that the operator A(®) is self-adjoint and non-negative
definite in Ly (0, 27). We define ¢ and v as solutions of the Laplace equa-
tion in 2(®) such that ¢(z,47) = u(x), ¥(z,47) = u(zx), = € [0,27],
g—ﬁ =0, % = 0 on the rest of the boundary and on the bank of the
cut. Accounting for singularities at the edges, the following integration
by parts is justified

o o
1 - nx
A) (@) = 32 P iy 082 b cos™ =
( u) (x) 3212 anh n - iy, - cos +E Yn, - COS 5

nx
tanh 27n - 4, - cos o5

|3

2
0= Ap -1pds = /ﬂ(a) grad ¢ - grad 1ds — /0 (Au)(x)v(z)dz,

(a)

ie. A@ . H3(I) - H™%(I}) is a symmetric non-negative pseudo-
differential operator of the order 1.
We rewrite Eq. (2.80) in the following form

(L — B3)Y = —Byu,

where the operator L is an even pseudo-differential operator of the order
-1. It defines an isomorphism from H? onto HP*! for all p € IR. Because
the kernel of Bs is infinitely differentiable, this operator maps H? bound-
edly into H? for any pairs p, ¢q. In view of the boundary value problem for
the potential ¢ in £2(®), which is uniquely resolvable, the operator L — By
has a trivial null-space and, therefore, L~ B, is compact. According to
the Riesz-Fredholm theory, the operator L — B, : HP — HP*! is an
isomorphism. Thus,
¢ = —(L - By)"'Bu
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and the operator A(® : HP — HP~! can also be represented by
AWy =[A~Bf(L - Bs)"'Bi]u

The following theorem states the monotonicity of the eigenvalues of
A(®) versus a:

Theorem 2.16. The eigenvalues A, (a) of the operator A have the fol-
lowing properties
i) Ap(a) < Ap(d) for0<a’' <a<m n=01,..
ii) §tanhmn = A\p (1) < Ay(a) < Ap(0) = § tanh27n, n=0,1, ...
Proof. It follows from (2.79), (2.80) that for all u,4 coupled by (2.80)
(A(a)u,u) = (A(“)u,u) — (Biu+ (L — By, ) =
= (Au,u) = (L — B2)¢h,¢) =

2w 27 00
/ / Z n tanh nz cos ? cos —dsdw+ (2.82)

2m—a 2m—a e
1 ne ns
— — —dzd
+ 7T/a /a w(z)p(s) nEZI osh o €08 5 ¢0s -dads

1 /2 " 1 nr  nT
; /0 u(r) [§+Zcoshmr cos - cos 5 | dr—
4 [Pm-a >, coth 2nm ne né
-2 y T cos —d —ap = 0.
/a »(&) - COS — COS £ — ag

2
n=1

Let H,, be a finite-dimensional subspace of H = L»(0, 2), i.e

(a)
An(a) = sup inf M
H, CHuEH, (u7u)

We denote by (u%a), £f)) the pair, for which

o (ADu) (AU, W)
inf =
weH,  (u,u) (s ul)
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Then it follows from (2.82) for 0 <a' <a <7

(A(a (a) (a))

( (a) (a))

inf ( 2 )—_
Unp ", Unp

neH, (u,u)
< (.A(a)u%‘l')7 ugla ))
T @i ul)

(A W) - inf (A u, u)

(u%“’),u%a’)) ~ ueH, (u,u)

0<d <a<m n=0,1,.., specifically,

from where \,(a) < A\, (a'),

gtanh ™ = A () < An(a) < Ap(0) = gtanh 2mn.

O
An interest is to investigate dependence of the eigenvalues as functions
of vertical position of the baffles characterised by b. In this case, we get

the kernels

oo
nr
K hhted ik
11.(13'7' Zcoshn 271___) COS 2 COS 2,
n=1
> cosh 27n nx né
Koo (x,€) = COS — COS —
22(@,¢) n2=:1 nsinh 2 coshn(2r — %) 2 2

instead of (2.67) as well as the operator

27 oo
(A(a,b)u) (z) = 1 / u(&) Z gtanhn (27r — g) cos % cos %fd&—
0 —_

T
n=1
1 2m—a S 1 §
+ — _ cos cos —d
™ /a # (&) r; coshn(2r — %) 2 ¢

instead of the operator A(®). Similarly,

1 27 27
(A(“’b)u,u =—/ / u(z)u(s)x

2m—a p2T—a
X Zntanhn (27r — é) cos — cos —dsdx+ / /
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oo

cosh 2nm ne ns
X E CcOS — COs 7dsda:

—2n sinhn% coshn(2r — %) 2

replaces (2.82).

Theorem 2.17. The eigenvalues \,(a,b) of the operator A*®) have the
following properties:
i) for a fized a € (0, 7], it holds

An(a,b) < Ap(a,b), 0<b <b<d4m, n=0,1,..

ii) Ztanhn (2r—2) = A (7,0) < An(a,b) < An(a,0) = A, (0) =

5 tanh 27n,
iii) ntanh § / coth 2w < Ay (a,4m).

(For a fixed b, Theorem 2.16 holds for \,(a,b) as a function of a).

Proof. The first two estimates are owing to the decrease of the kernels
versus b and the proof of Theorem 2.16.

In order to obtain the third estimate, when b = 4x, we need to for-
mulate the eigenvalue problem in this special case. The integral equation
(2.66) leads to

- )

2 [Im—a coth 27n ne né
—— [ — —dé—ag=0,a<z<2m—
/a p(&) E €08 - COs E—ag a<z<22r—a

1 o

nx nr
B + nZ: cos o> cos ?‘| dr—

=1

™
n=1

or, accounting for representation of u(z) via the Fourier series, we have

2 [Im—a 2. coth 27n ne né
u(z) = —/a @(E)ZTcos7cos 7d§—a0.

™ n=1
Since

(A(a,47r)u) (m) — 68% = QO(Z'), a S €T S 27 — a,
2

z2:47r

the eigenvalue problem Ay = \u can be written as
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2\ [0 o= coth2
p(r) = ?/a p(§) Z co - ™ cos % cos %é-df—a(], a <z <2r—a.

n=1

Multiplying this equation by ¢(z), integrating over [a,27 — a] and ac-
counting for f;”ia p(€)dE = 0 give

27m—a 2\ 0 h2 2n—a 2
/a goz(:c)dmz FZM |:/a p(€) cos %d&] >

n
n=1

2
. h 2m—a
1 SUPH@ o 1nf<p€H£a) 2y o othirn [fa T%(&) cos %Edd

N 27—a S
An 7 P (x)dx
. o0 27— 2

2 coth 2r8UP (@ ¢ gt 0 ey 2002 [fa “p(€) cos %gdg] _

— 2r—a -
7T [ e (w)de

_ 2coth2x
B D L

where Hr(ba) is a n-dimensional subspace of H(® = Ly(a,2m — a). The
numbers A} are solutions of the problem

2n—a oo 2m—a 2
/ ©*(x)dr = \* Z % [/ ©* (&) cos %gdg] =

n=1
. 27 27 . . st 1 né- ne
=A /0 /0 ©* (&)™ (z) Z - €08 = Cos Tdmdf. (2.83)

n=1
Changing variables in accordance with (2.68) leads to

1 —cos? § cos? 0

e
0 cos § sin 6

27 4 _
==\ ¥(8)1(7) In - sin® -7
o Jo e 2

dbdr,

& (&); w(r)=¢" (2 arccos(cos g cos 7')) .

By using the estimate
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1 —cos? § cos? a
> tan —
cos § sin 6 2

and the minimax principle, we see that the eigenvalues of the problem
(2.83) are majorized from below by eigenvalues of the problem

2m 2w p2w _
tang/o [¢*(6)]?dd = / Y* (0 ()ln—sm b

This problem has the solution

T d0dr.

Yy (0) =cosmb, A= Ttang, m=1,2,..
s 2
i. e.
> AT S Apm _ mtan g ‘
™= 2coth2r = 2coth27r  2coth2w
O

To establish a finite-dimensional approximation, we use the following
quadrature rules based on the trigonometric interpolation (2.57) (for even
with respect to the point 7 functions ¢) and Eq. (2.55):

1 27

(L)) =5 [ 9 (g sin2 ¥ - T) dr ~

0

Q

4 0—T T
2 [ It ) (; sin’ T) dr =3 RV (O)d ()

2 Jo pard
= (Ln)(8),

2 [e’s}
(Au)(x) = 1 i u(§) thanhj (271- - g) cos 2F cos ’Ed.f —

27 = 2
1 = b\ jr  j¢
% IN(§,u)jZIJtanhg (277— 5) €08 - €08 = df =~

2N-1

~ 3 BN (z)u (xgm) = (Aun)(2),

p=0
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(Biu)(z) = % /0 " w() Ky (1) dr ~ % /0 " () K (o, 7)dr =

2N -1
= Rg,Nk)("’”)“ (xéN)) = (Biun) (),

k=0

(B)0) = 5 [ woE. )~ o [ It Kal0, ) =

0

= ZR O, m) = (B2yn)(0),

B0 = 5 [ oK = 5 / " In(r ) K (r, O)dr =

= ZR‘N’ M) = (Biyw)(6),

where

un(€) = In(&u) = Pyu; 9w (1) = In(139) = Prdp,

. . 2N — k)m
RV 0) = B0+ BN 0 o, = CEIT —araf),

N-1
(V) gy — _ 1 1 (N)
Ry (0)——N{1+2m2_:lacosm0cosmwk +
1
+NcosN@cosinN)},k:1,2,...,N—1,
r{V0) = B{V©), RY0) = BV 0),

. 1 [ 4 . ,0—
R/EN)(H) = %/ ll(cN)(T) In (E sin? 5 T> dr =

1 N-1 ™
- N
=-oN {14—22 —cosm(@—xk )+

1
+ +—cosN(0—x§cN))} ,k=0,...,2N -1,

N
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: L e & by g j
(V) —— (V) ; ; _Z JZ IS ge —
R;Y () 27r/0 S (§)j:21j tanh j(27 2)cos 5 CO8 d¢
N .
1 . . b 27 —1
N ;(23 —1)tanh(2j — 1)(27 — 5) c08 ——5—1, p=0
N 123! b jpm jx
— ) jtanhj(2nr—= 2 4 (1) P cos T p=1,...,2N-1
ZNJ-;]tan j2m 2) [cos 2N+( ) €08 5P e ey ,

1 27
R (@) = o /0 I\ (1) Ky (@, T)dr =

1 a
— Top—1(cos = cosb), k=0,
2N = cosh(2p — 1)(2r — ) 2
1

1 2= km 1 a
— cos 28 (=Pt~ T (cos - cosf)—
_JanN 2N b 2
] cosh p(2m — 5)
N-1
1 [ pkm kl] 1
- cos — + (— _ X
AN = N cosh 2p(2m — %)
| X [Pp(cosa) — Pp_i(cosa)], k=1,...,2N —1,
(N) 1 - M) (o5 EY"
RN (9) = E 2-9§ cosmzt™ (cos=) x
2,k ( ) N(]. +50,k +5N,k) mZI( m,N) k ( 2)

y { cosh 2mm — sinh 2mz — sinh m(b — 27)

2m sinh me coshm(2r — &)

T (cos g cosf)—
2

cosh4mm — sinh 4mm — sinh 2m(b — 2r)
8m sinh mb cosh 2m (27 — &)

3
[P,(,?’m) (cosa) — P{%™ (cos a)] +

[P (cosa) — Py,—1(cosa)]

i cosh4jm — sinh 4jm — sinh 25 (b — 2)
47 sinh jbcosh 2jj(2m — £)
Pj(cosa) 4 P;_1(cos a)] y
2 2
x [Pjp’m(cos a) — P?™ (cos a)] } +

J

j=m+1

X [TQJ- (cos % cosf) —
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_ oo cosh4jm—sinh 4j7—sinh 2;(b—27)
1+ ijl 4jsinh jbcosh 25(2r—%)
+ X
N(l + 50,19 + 5N,k)

Pj(cosa) Pj_q(cosa)
2 + 2

X [sz (cos g cosf) — ] [P;j(cosa) — Pj_1(cos a)]} ,

N
(N g\ — L 9 (V) aym
R3,/(0) IN(L T 0k + O p) (2 — 0, N) cCOSTUT, (cos 2) x

m=1

mé ot

cos = cos jo
.. E— + _ X
coshm(2r — &) j:;rl cosh 2j(2m — &)

) ) N km
X (P].(O m)(cosa) —Pj(glm)(cosa))] , :1:2 ) — R k=0,1,..,2N — 1.

Using these numerical quadratures, we define the following discrete
approximation .Agf;’b) for the operator A(®b):

(A070x) (57) = 3 17 (7)o a)
k=0

+ gRé,Nk) (M) n (27, 5=0,1,.,2N 1, (2:84a)

3 [0 () - L2 (o) o (o) -

k=0
k=0

In view of the inclusions Auy € TN, Byyn € Ty, Lyy € Ty for
un € Ty, ¥n € Ty, we can rewrite (2.84) in the following form

(A%”’)w) (mE.N)) = (Aun + Biyw) (w§-N’) ;o J=0,1,..,2N -1,

[(L — Bs) ¥n] (ng>) = —(Biun) (mgM) . i=0,1,..,N,

or in the following operator form
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b — > P
AePuy = Auy + PyBigw, (L — PyByPy) ¢y = —BiPyun,

from where A" = A — PyB;(L — PyByPy)"'B; Py on T.

It is easy to see that Ag\‘;’b) is a symmetric operator. Since A, L, By
are non-negative definite, we get from the line

(AS\‘;”’)uN,uN) = (Aun,un) + (PNBf¢N,uN) + (Py BaPytbw, dn)—

— (LN, ¥N) — (BiPyun,¥n) = (Aun,un) — (LN, YN )+
+ (B2 PNy, PNYN)

that the operator Ag\[f’b) is also non-negative definite. The dependence of
(Ag\‘;’b)u N uN) on b is only due to the kernels, therefore, we can analo-
gously as above prove the following result:

Theorem 2.18. The eigenvalues AN (a,b) of the operator Ag\?’b) have
the properties:
i) for a fized a € (0, 7], it holds

AN (a,b) < XV (@, b)if 0< b <b<4m, n=0,1,..,2N -1
i) 0 <A™ (a,b) < A (a,0) = 2tanh 27n, n=0,1,..,2N - 1.
Let us consider the operators
B=B;(L-By) 'B, and By = PyxB;(L—- PxByPx) 'BiPy

and show that ||(B — Bn)vllq < eNT7P||v||p.

Since Bj, Bj, By are integral operators with infinitely-differentiable
kernels, they are bounded from HP? into H? for an arbitrary pair p, q. The
operator L is an even pseudo-differential operator of the order § = —1.
Because ker(L — By) = () in HP Vp € IR, the operator L~1B, : H? — HP
is compact. By using the Rietz-Fredholm theory, the operator L — Bs :
HP — HP*! i an isomorphism. Analogously, the operator L — Py By Py :
HP — HP*! is also an isomorphism. Hence, the operator B is bounded
from H? into HY for any p,q € R.

In the following, the original theorem 2.3 by Kress & Sloan (1993)
[97] for the operator A(®?) 4 eI = A+ eI — B with a positive ¢ will be
implemented. To do that, we need to estimate ||Bv — Byv||q—p, where
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is the order of the pseudo-differential operator A and, in our case, § = 1.
We have

1Bv—Byollg_r < H(I — Py)BX(L - Bz)*leH n

qg—1

+ HPNBT [(L - B2)71 - (L - PNBQPN)?l] BlUHq *

+ HPNB;‘(L — PxByPy)"'Bi(I — Py)v

1EJ1+J2+J3.

.
Using the estimates (2.56), (2.58), one gets

J = H(I — Py)BI(L - Bg)_lBlvH <

q—1
< eNTPH2 | B (L — By) ' Byo|| | < eNTPF2 o]l

J» < ¢|(L = By) "' (By — PNByPy)(L — PNB?PN)ABW”(;A <
< c||(B2 — PxB2Py)(L - PNBQPN)’IBqu_Q <
< c[ |(I = Pn)Bs(L = PxByPy) ' Buol| _, +
+ || PvBa(I — Py)(L - PNBQPN)*lBlqu_Z} <
< NP ||By(L — Py BoPy) ™' Buol| _, +
+eNT7P |[(L = Py ByPy) "' Bio|| _, < eNTP|loll,s,
Js < NP2 ol
Therefore, we have
1Bv — Bywll,_, < eNT=P*3[u]|,. (2.85)

The operator A + I, € > 0 is an even pseudo-differential operator of
the order 8 =1 from HP into HP~!, B maps boundedly HP into HY for
any p,q. Hence, we can deduce that all the assumptions of Theorem 2.3
by Kress & Sloan (1993) [97] are fulfilled for the operator A(®) 4T =
A+el —Bwith 8 =1, a =2 and we derived the following result on the
approximation of the solution of the equation

(A(“’b) + EI) u=f
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by the solution of the projection equation

Theorem 2.19. For sufficiently large N and for each v € H? with f =
(A@b) 4 e — B)u € C[0,2n], there exists an unique solution ux € Tx

[(A(“’b) +EI)’LLN] (mg.N)) =f (mgN)) ,

j=0,.,2N—1, uy € Tn:

of (2.86) and we have the asymptotic error estimate

5
lu—unlly < NP 2 flull,, 2<q<p, 5 <p.

Table 2.1. Numerical example 1.

Init.function w01 Init.function w2
t  N=M z=0 T=7 z=0 T=7
32 1.99935470 (0.667135941| 0.999984739 |0.707095979
0.0/ 64 2.00000645 [0.666559303| 1.00000004 |0.707106779
128 | 1.99999997 |0.666684459| 0.999999989 |0.707106767
32 1.84602194 (0.684517612| 0.921055934 |0.651284961
04| 64 1.84625296 |0.684398403| 0.921061753 | 0.651288992
128 | 1.84625472 |0.684364133| 0.921061384 |0.651288681
32 1.45377950 (0.736305259| 0.696714448 |0.492651612
0.8/ 64 1.45352783 (0.736473071| 0.696709841 |0.492648153
128 | 1.45352783 |0.736485387| 0.696708112 |0.492646979
32 |0.984628650(0.820270975| 0.362357462 |0.256225428
1.2| 64 ]0.984886538|0.819979388| 0.362363433 |0.256229676
128 |0.984885574|0.819970732| 0.362360429 |0.256227522
32 ]0.604350837|0.929137928| -0.029197610 |-0.020645888
1.6 64 |0.604368983|0.929258949| -0.029191373 |-0.020641384
128 |0.604365633|0.929290539(-0.0291955889(-0.020644423
32 |0.401562094|1.055552539| -0.416132328 |-0.294250044
2.0l 64 |0.401175985| 1.05599311 | -0.416137522 |-0.294253594
128 10.401175858| 1.05593659 | -0.416142381 (-0.294257120

Now, let us consider the linear sloshing problem for a tank with baffles

0?u(z,t)

ot?

+ (A(“’b)u) (z,t) =0, u(z,0)=wug(z),

Ou(z,0)

ot

=0. (2.87)
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Analogously to § 2.3.3, we define a fully discrete model for (2.87) as
follows

27
u(z,t) & upy (7, 1) = up pr(2,t) + Go; o = Pyugdz,
0
(2.88)
ullps (2, 1) “ZL‘“’ ) liik () — g1 (2)],
[AE&”” + (6 - 1)21] fiprs =
(a,b) . A (a,b) 27| A
2 [AN +6( 1)1] s [AN +6 1] fp_1, 250

[AGY + (6 = 121 iy = [AG" +6(5 = DI o
k=1,.., o= Pnio.
For the error 2]y = iy, — uy, we have the equations
[Agg’b) +(0- 1)21] 2kl =
=2 [0 4006 - I 21— [ARY + 0] 2es + 0, k=1,
I:.Ag\?’b) + ((5 — 1)21] 21 = [Ag\(;’b) + (5((5 — 1)] z0 +%; 20 = 13N1:L0 — ﬁo,
where
wk = (A(ayb) _ AS\?,I))) (Uk+1 _ 2Uk +uk71) =
_(B—BN)(Uk+1 —2Uk+Uk_1), k:1727
@y = (A — AG") (w1 = uo) = (B = Bw) (w1 - w),

in view of u;, € ’i‘n.
The solution to (2.89) is

oo k—1 h1—j

oo
2k :/ Tk(XQ dE,\Zo+/ le 2
A1

A1 ] 0

Tr—1-j(x2)dE\Y;,

where x1, X2 are given by (2.59) and Ej is the spectral family of Ay b

Now, we obtain the estimate
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Table 2.2. Numerical example 2.

Init.function w01 Init.function  wg2
t N=M| zz=0 =7 z=0 T=7
32 |1.99973741]0.665822571|0.999998413(0.707112122
0.0/ 64 [1.99998758|0.666772062|0.999871225(0.707050394
128 [1.99999950|0.666670902|0.999992879(0.707123463
32 |1.92617202(0.667551049(0.984525031(0.696184567
0.4 64 [1.92453411|0.667946195(0.972940151|0.694437271
128 [1.92452998|0.667979826|0.972897148|0.694421946
32 |1.73454538|0.671862594|0.938595726|0.663704146
0.8] 64 [1.72761319|0.672072730(0.893652081|0.658601141
128 |1.72761549|0.672056915|0.893671869|0.658592867
32 |1.49316318(0.677594719|0.863633023(0.610685201
1.2| 64 |1.47796014(0.679210401|0.768119107|0.605395965
128 [1.47795799|0.679226274|0.768098848|0.605423247
32 |1.26913832(0.686991619|0.761946428|0.538784993
1.6] 64 |1.24173157(0.689794784|0.604610604|0.541510470
128 [1.24173645|0.689759249|0.604658022|0.541486437
32 |1.09617648(0.700770528|0.636684139(0.450215771
2.0| 64 [1.05292316|0.703513532(0.413966893| 0.47038831
128 [1.05291576|0.703571717|0.413888784(0.470375459

with

gN =

k—1

=0

k—1—j
lzkllg < aillzolly + D an "~ 11llg,

1-2§

\/1_

Using the estimate (2.85), we get

ZN=L tanh 2 (2N — 1) + (6 — 1)

_ 1 .
||!p]||q < c¢N? Pt ||’LLj+1 — 2’LLj +u]',1||p,1, 1=12, ..,

[1@olg < eNTP+5 ||uy — ugl|p-1.

Substituting (2.91) into (2.90) we have

_ 1 2 _
lzlly < NP3 Lk ldll, + g llus — wollp 1+

1o

(2.90)

(2.91)
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— k—1-j
+ ) an T e — 2u + Uj—1||p—1}-
In the following, we use the estimate

gl < e ARV diollp1 < il
p

and get
L k— 1qk 1—j k qk 7
lzslly < eN“7039 gk D “o pllfolly < eNF5S ) S foll,
j=0 j= 0‘7

For the error

M
ur,ar(@,) = ullp (2,1) = e 3" LY () [zrs1 — 21,
k=0

one can obtain the estimate

sup [lurm(8) = ul ()l < eNT™ ”+2ZZ

t€(0,T] k=0 j= 0’ +1

_ M 1 M—j+1 _1

M M
= cNIP+3 fig||, = cN9—Pt2 - v tol|p <
gkgj 0||p ;J““l pr— lltoll, <
1 R A
< NP In Mo |ldoll, < eNT7*E In MJiol-
— 4N

When performing other estimates similarly to those of Theorem 2.15, we
arrive at the following statement:

Theorem 2.20. For the error of the fully discrete approximation (2.88),
the following estimate holds true

sup.[u(-,6) = ullyy (1) = iolly < ¢ (MIPH% 4 NP+ 10 M ) [juo] .
tefo,T]
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2 4 6 8 10 12

Fig. 2.4. The eigenvalue )\5128) (%,b) as function of b.

2 4 6 8 10 12

5128) (%1

Fig. 2.5. The eigenvalue A b) as function of b.

2.3.4 Numerical examples

Let us consider the problem (2.87) with the initial functions (Ryshik &
Gradstein (1963) [150])

oo

Z coskz  2(2—cosx)

= , x €][0,2n]

uor(#) = 2k 5—4cosz

k=1

and
uo2(z) = cosz, =z € [0,2n]

Using our numerical method for the case 0 = 0,a = §,b = 27, we
present numerical results in Table 2.1. These show that the doubling of
M provides the doubling of the significant digits. This indicates the expo-
nential convergence, which we expected from our error analysis. Further,
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Z1
0.0175
0.015
0.0125
0.01
0.0075
0.005
0.0025

2 4 6 8 10 12

Fig. 2.6. 21 (b) = |u (7, 0.4) — wo1 (7) | versus b.

Z2
0.5

b

2 4 6 8 10 12

Fig. 2.7. 22 (b) = |u (%,1.2) — uo2 (%) | versus b.

Table 2.2 presents numerical results for the case 0 = 0,a = §,b = 4n—{¢,
i.e. when the baffles are situated near the fluid surface. One can also ob-
serve the exponential convergence as well as the decay of the potential
downward from the free surface.

Figs. 2.4 and 2.5 present dependence of the first two eigenvalues
)\§N) (a,b) )\gN) (a,b) of the discrete operator Ags’b) (for b = 27) on the
baffle length a. These demonstrate the monotonic decaying of both eigen-
values, which is predictable from the physics of sloshing. Finally, Figs. 2.6
and 2.7 show the difference of the surface potential from the initial surface
potential versus b.
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Nonlinear modal theory

3.1 Modal equations

3.1.1 Free boundary problem

Let an incompressible perfect fluid occupy partly a rigid tank (cavity)
@ of a moving solid body as shown in Fig. 3.1. Motion of the body is
described in an absolute Cartesian coordinate system O'z'y’z’ by the
given pair of time-dependent vectors vo(t) and w(t) implying instan-
taneous translatory and angular velocities, respectively. The inner fluid
flows are described in a non-inertial Cartesian coordinate system Oxyz
rigidly framed with the body. Since any absolute position vector r'(t) =
(z',y',2") can be decomposed into the sum of r,(t) = O’O and the rel-
ative position vector r = (z,y, 2) (see, Fig. 3.1), the gravity potential is
a function of (z,y, z) and ¢, namely, U(z,y,2,t) = —g -7/, ' =1, +r,
where g is the gravity acceleration.

Henceforth, we assume irrotational flows and introduce the velocity
potential &(x,y, z,t), which describes the absolute velocity as function of
(:U; Yz, t)a ie.

v,=V &.

Derivations of the corresponding free boundary problem, which cou-
ples &(z,y, 2z,t) and the free surface motions, are for instance given in the
books by Moiseev & Rumyantsev (1968) [130], Narimanov et al. (1977)
[135] and Lukovsky (1990) [114]. The problem takes the following form

AP =0 in Q(t), (3.1a)
g—fzvo-l/+w-[rxu] on S(t), (3.1b)
6—qs=1:0-1/+w-[rxu]—i on X(t), (3.1¢c)

v V¢
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Fig. 3.1. Sketch of a moving tank and adopted nomenclature.

b
86_t+%(vq5)2_V¢-('u0+w xr)+U =0 on X(t), (3.1d)

d@ = const, (3.1e)
Q(t)
where S(t) is the wetted walls/bottom, v is the outer normal to 0Q(t) =
S(t) U X(t) and &(z,y,2,t) = 0 determines the free surface X'(t).
The last integral condition (3.1e) expresses the fluid mass (volume)
conservation and appears as the resolvability condition of the Neumann
boundary value problem (3.1a)—(3.1c)

d/ &
il dQ = — / St g5+
dt Jou) () V¢
ob

+/ (vo-v+w-[rxv])dS = —dS=0 (3.2
S(H+E(D) S +5(t) O

~

v

=0

(see, detailed discussion of this point by Lukovsky & Timokha (1995)
[117] and Faltinsen & Timokha (2002) [51]). Eq. (3.1c) is often called the
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kinematic boundary condition. Eq. (3.1d), the so-called dynamic bound-
ary condition, is obtained by using Bernoulli’s integral for the pressure
written in the moving coordinate system Ozyz (see, Kochin et al. (1964)
[93]). Physically, Eq. (3.1d) states that the pressure on the free surface is
equal to an “atmospheric” constant pg. The hydrodynamic pressure p in
Q(t) can be computed via the Bernoulli integral as follows

¢ —
86_t+%(v¢)2—v¢-(vo+wxr)+v+p =0 in Q). (33)

where 0®/0t is calculated in the moving coordinate system, i.e. for a
point rigidly connected with the system Ozyz.

The evolutional free boundary problem (3.1) should be completed by
either initial or periodicity conditions. The initial (Cauchy) conditions
must define the initial shape of the free surface, X (), and the initial
normal velocity of X(t):

€($,y,2,t0) Z&](w:yaz): i _¢0($,y72), (34)

oz
where & and ¢ are given functions.
An appropriate periodicity condition, which is associated with steady-
state wave regimes, may read as follows

£(m7y7z7t+T) =§($7y7z7t)7

V(a5 +T) = Vo(z,y,2,1) in QE+T)=Q@). )

Here, the latter condition is mathematically justified by the first condi-
tion, which can be interpreted as the identity of instantaneous fluid shapes
at t and t+ 7T, namely, the first condition postulates that Q(t+1') = Q(¢).

3.1.2 Modal system by Miles-Lukovsky

Perhaps, Narimanov (1957) [134] has been first, who proposed an algo-
rithm for reduction of the free boundary problem (3.1) to an infinite-
dimensional system of nonlinear ordinary differential equations, the so-
called modal system. The modal system couples generalised coordinates
and impulses, which are associated with the time-dependent coefficients
in Fourier expansions of the free surface and the velocity potential, re-
spectively. Later on, in 1976, Miles [125] and Lukovsky [113] have in-
dependently proposed a variational procedure for deriving the modal
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system. This variational procedure was recently modernised by Faltin-
sen et al. (2000) [45]. Following Lukovsky (1990) [114] and Faltinsen et
al. (2000) [45], we should consider the boundary value problem (3.1), in
which the unknowns are ¢ and &, and, in the parallel way, the following
Bateman—Luke variational principle, in which the pressure is treated as
the Lagrangian.

PRESSURE-INTEGRAL LAGRANGIAN (BATEMAN-LUKE) VARIATIONAL
PRINCIPLE. The boundary value problem (3.1) can be described by exam-
ining the necessary conditions for the extrema of the functional

to
w=[ Ldt, (3.6)
t1

where the Lagrangian L is the pressure-integral

L= (P - Po)dQ =
Q(t)

=—p/ [6—¢+%(V¢)2—V¢-(vo+wxr)+U dQ (3.7)
Q()

and the test functions satisfy

5¢($7yazati) = 07 66(3],3],2’,7:1') = 0) i= 152 (38)

The idea of using the pressure integral as the Lagrangian in hydro-
dynamic problems was first proposed by Hargneaves (1908) [79]. The
canonical formulation of the principle was given by Bateman (1944)
[15], Luke (1967) [111] (for gravity surface waves in infinite basins) and
Lukovsky (1990) [114] (sloshing in mobile tanks). The latter author gave
the proof of the formulation (3.6)—(3.8).

The original derivations of a nonlinear modal system following from
the Bateman-Luke principle, which were given by Lukovsky (1990) [114]
and Faltinsen et al. (2000) [45], are restricted to the tank shapes () having
vertical walls in a neighbourhood of the free surface (see, Fig. 3.2). Under
assumption that no overturning occurs, one can express & as

‘s(way;zat) =Z= f(xayay)

and, therefore, the normal velocity component on X(t) in the body-fixed
system is
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Fig. 3.2. Sketch of admissible shapes, for which the Miles-Lukovsky system
can be derived. X is the unperturbed (hydrostatic) free surface.

& e _
Vel ie g

Further, in accordance with Lukovsky (1990) [114], the velocity po-
tential is expressed as

¢($ayazat):UO'r+W‘n+Q@. (39)

Here, the vector—function £2(z,y, z,t) = ({21, 22, 23) (Stokes-Joukowski
potential) is the solution of the following Neumann boundary value prob-
lem

. on
AR =0 in Q(t); 8—1/1\5(15)+2(t) =yv3 — 2Vy,

%| =zv —wu'%| = zvy — YV
5y |SO+EW) = 2 33, S+ = Tv2 —yv1,

(3.10)

where vy, 15, v3 are projections of the outer normal v onto the Ozyz-axes
and the function p(z,y, 2, t) is a solution of the Neumann boundary value
problem

h
I+ B+

Owing to (3.2), the Neumann boundary value problems for 2 and
¢ are to within a constant uniquely resolvable. The solution depends

‘ 8 )
Ap=0 in QW); Folswy =0 Aolz =

5 5 (3.11)
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parametrically on t. Besides, by using (3.9) and the boundary problems
for £2 and ¢ it follows that & satisfies the Laplace equation and the
Neumann boundary conditions of (3.1). The dynamic condition (pressure
balance) on X(t) gives the final equation connecting f, £2 and ¢.

Let the function f(z,y,t) be expressed as

i=1

where f;(z,y) is a complete (to within a constant) system of functions
satisfying the condition of volume conservation | 5, fi(z,y)dzdy = 0 and
Bi(t) are defined as the generalised coordinates. Henceforth, Xy is the
unperturbed (hydrostatic) free surface.

Further,

o
o(z,y,2,t) = Y Ru(t) on(,9,2), (3.13)

n=1
where the complete system of functions {¢,(z,y, 2)} satisfies the Laplace
equation in the whole domain () and R, (t) are interpreted as the gener-
alised impulses. Since the system {yn(z,y, 2)} is complete on any single-
connected surface drawn inside the tank domain, it is also complete on
Y. The Stokes-Joukowski potentials are assumed to be known functions

of ,Bz

Remark 3.1. The representation (3.13) needs a set of harmonic functions
{¢n}, which are complete in the whole @) or, at least, in all the admissible
instantaneous fluid domains Q(t). Because () has cylindrical shape in
vicinity of the mean free surface Xy, such a family of harmonic functions
{¢n(z,y, 2)} can under certain limitations coincide with solutions of the
following spectral boundary problem with spectral parameter sz,:

Opn

0
— =0 on S; ﬂ:xncpn on Xy,
ov

App, =0 in Qo; o

/cpnd5=0. (3.14)
Yo

This is the same as the eigenvalue problem for the natural linear sloshing.
Its solutions can be found analytically only for a limited class of tank
shapes. Examples are a vertical circular cylinder or a rectangular three-
dimensional tank. A numerical method should be used to find ¢,, for more
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general shapes as it was demonstrated by Solaas & Faltinsen (1997) [158]
for the two-dimensional sloshing. A different approach is to use a patching
procedure. Solution in cylindrical portion of @ (see, Fig. 3.2) can then be
expressed as

on(z,y,2) = Z(bnk exp(—Akz) + ank exp(Ax2)) o (z,y) (3.15)
k

with unknown coefficients b, and a,. Here, 3¢, and ¢y, are solutions of
the following two-dimensional spectral boundary problem

%%k _ 0 on 0%0; érdS =0, (3.16)

Qs (z,y) + Ngdr = 0 in Xo; o
n o

where 90X is the intersection line between Xy and S. When the aux-
iliary problem (3.16) is formulated in circular (ring-shaped) or rectan-
gular cross-sections Yo, {¢r} are expressed by Bessel functions and/or
sinusoidal functions. Otherwise, a numerical procedure is required. Solu-
tion in the remaining non-cylindrical part can be found by a numerical
method; it should be matched with (3.15) on a transmission surface.

Remark 3.2. What are mathematical limitations in using the eigenfunc-
tions of (3.14) as a harmonic basis in (3.13)7 First, the eigenfunctions
must be smoothly expandable over the mean fluid surface Xy up to an
artificial boundary X implying an upper bond of the admissible wave
elevations (see, Fig. 3.2). The patching procedure, which is described in
Remark 3.1, provides this expansion. Second, more demanding limita-
tion consists of the completeness of {¢,} for any admissible shapes of
Q(¢). Timokha (2002) [163] showed that the eigenfunctions constitute a
complete set of harmonic functions in (g, but not in @ (the latter is
formed by the artificial X{). This fact is true even for simple cylindrical
@s, in which (3.14) has an analytical solution. In view of this difficulty,
the most authors interpret {¢,} of (3.14) as an “asymptotic” harmonic
basis, namely, assume that X (t) is to some extent asymptotically close
to its unperturbed state Y. Implicitly, this assumption implies that only
asymptotic solutions of the Miles-Lukovsky system are mathematically
correct, if (3.14) is used.

By substituting (3.9) into (3.7) the Lagrangian L takes the following
form
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L:—p/ ['uo 7'+gt(w-!))+%V(w-ﬂ)-V(w-ﬂ)—
Q)
—w-(rxV(w-2) - v —w- (r xvo)—
—w-(rxVe)+V(w-2)-VeldQ + L., (3.17)

where

dp 1
L, = —p/ 92 L (V)2 +U|dQ. (3.18)

The two last integrand terms in square brackets of (3.17) cancel each
other from Green’s formula, i.e.

Viw-902) - Vo — (wxr) - VpdQ =

Q)
:/ (M—(wxr)-u>cpd5:0.
sw+z@ \ v

We also introduce the quadratic symmetric inertia tensor J'(t) with
components Jilj defined by the equality

—p/ (AV(w-2) V(w -2)—w-(r xV(w-2)))dQ =
Q)
%walll — %wgJQIQ - %w§J313 — wiwa iy — wiwzJis — wawsJas.

The components Jilj can be calculated as follows

on on on
J111=P/(ya—;— 1)dQ_ / !21 Ld

Q(t) S(t)+2(t)
a0, 0N N
J212:p/ (za—;— 2)dQ_ / nza—jds
Q1) S(H)+(t)
J;3=p/ ( 58_!;3_ 693) dQ = p / 058 as,

Q(t) S(t)+Z(t)

o, an 00, 8N
J112:J211=p/(z8—$1— 6Z1>dQ=p/<6—;— 8y“’)dQ:
Q) Q)
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S(H)+Z(t) S(t)+E(t)
o o 0123 0123
1 _ 71 _ el A =
J13—J31—P/( 6y yam>dQ—P/( B2 6y>dQ
Q(t) Q(t)
=p / (0 %d&' = / 23 %dé’
S(H)+Z(t) S(t)+E(t)
of2y 012y 0823 0123
1 _ 71 _ i N ) _ gl _ —
J23—J32—p/(way yax)d"? /(z(% az)dQ
/ (P %ds = / 03%d5’
S(H)+3(t) S(t)+E(t)

The Lagrangian L (3.17) can be rewritten as

L = —[0o1l1 + o2la + D03l + wiliw + walay + walzy +wiliwe + walowi+
+ walswr — L(WiJE + w3 T3y + wiJis) — wiwa iy — wiwsJls—
— wowsJyg — Sm(vg, + Vg + v33) + (Waves — w3ve2)l1 +
+ (w3vo1 — w1vg3)la + (W1ve2 — wave1)l3] + Ly, (3.19)
where

o1
mi=p [ dQilw=p[ OdQili=p | “da
Q(t) Q) Q)

l1=p/ zdQ; l2=p/ ydQ; l3=p/ zdQ.
Q(¢) Q%) Q%)
The vectors I = {lx},l, = {lkw},lut = {lkwt} depend only on S;(t) and

Bi(t).
It follows from (3.13) that

/Q(t)

[ZA Ru+ %Y AuRnBi — gil — golo — g3ls —mug - To] ’

n, k

(3.20)

n, k

(3.21)
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where
Ay =p / ondQ,
o) 5 (3.22)
Ank = Apn =p / (Von, Vor)dQ = p / a(pk ds
Q) 2(t)+S(t) v

are functions of §;(t).

The Lagrangian L is originally a function of two independent variables
f(z,y,2,t) and &(x,y, 2,t). The independent variables become the time—
varying functions S;(t),7 > 1 and R,(t),n > 1 after substituting (3.9),
(3.12) and (3.13) into the Lagrangian. The variations of the functional
(3.6) by B;(t) and R, (t) for given v (t) and w(t) are

to [Z AnéRn + Z AL RLOR, + Z (Z Rn%
31 n n, k i n ‘

A1 s, ls., OAr . O, . Ol
Fwr o w2 b s St + LS Ra R i Gt

0p; 9B; 08 2 op; 0B " 0p;
o5 2832 1 (301 — g1+ w03 — wtion) Sk + (i — g3+ wsvor — wrtes) o2
3 96 01 — g1 T WaUp3 — W3Vp2 8,81 Vo2 — g2 T W3Vp1 — W1V03 6ﬂ,
ol 5 OJ} 0.J3
+ (o3 — g3 + wivo2 — wwm)ag L2 651 L2 652 -
0.Ji 0JL, OJ1 aJ.
e e - e 2 ) 9

+ (wl Ot |, Ot 8’“) 5,3,] dt =0. (3.23)

0p; 0p; 0p;

The following infinite system of nonlinear differential equations with
respect to the modal functions R, (t) and §;(t) has been called the Miles-
Lukovsky modal system. It is obtained by integrating by parts in
(3.23) and using the condition (3.8) for the test functions:

d

EAH—;R,EAM =0, n=1,2,...; (3.24)

0A ol ol ol
1 nk . lw . 2w . 3w
En n i+2§n Ek 95, —a— BnBi +w 155, T, T T
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alluut al2wt 6l3wt d ( 6l1wt 6l2wt 6l3wt>
+ + ++w - \wi— twe—— tws—— | +
“op T ap T e @t \"ap, T Top ok
+ (D01 — g1 + - v)%—}—(i) — g2 + w3V —wv)%+
Do1 — g1 + Wave3 — W3vo2 ap; 02 — g2 + w3vo1 1903) 53
) ol oJ} 0J3 aJ3
OJ} OJ} 0J3
— wiws 6,5,-2 — wiws 631,3 — waws 8,82,-3 =0. (3.25)
The values 0l /0p; are given by
ol
55 =0 [ 1246 = xass,
Bi o
a1 Py (3.26)
2 1
5. =0 |, 45 =i = [ afidS =

Concluding remarks

Miles [125] and Lukovsky [113] showed that the Bateman-Luke varia-
tional principle makes it possible to derive an infinite-dimensional sys-
tem of nonlinear ordinary differential equations (modal system (3.24) +
(3.25)) describing the nonlinear sloshing of an incompressible perfect fluid
with irrotational flow. The infinite-dimensional system is fully equivalent
to the original free boundary problem (3.1) for arbitrary rigid body mo-
tions; it does not include assumptions about the smallness of surface wave
amplitudes and can be used for modelling different ‘luid—structure’ prob-
lems including the problem on coupling the ‘ship—fluid cargo’ motions.
Tts limitations are that the admissible instantaneous free surface shapes
should allow for the normal form z = f(z,y,t) and the contact lines
must belong to an upright cylindrical portion of the tank. This means
that plunging breakers cannot be described.

The system (3.24) + (3.25) couples nonlinearly the generalised coordi-
nates §;(t) and impulses R, (t), which appear as the Fourier coefficients in
expansions of the free surface and the velocity potential, respectively. The
Fourier functional sets, for both surface {f;} and domain {¢,} modes,
do not generally need to be the linear sloshing modes (natural modes)
in the variational procedure, but these must have analytical structure.
Nevertheless, practical choice for cylindrical tanks consists of utilising
the natural sloshing modes (eigenfunctions of (3.14)). As a consequence,
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in view of Remark 3.2, to guarantee the completeness of {¢,}, an asymp-
totic technique should be suggested.

Assuming asymptotic relationships between 3;(t) truncates the modal
system to a finite-dimensional form. Such an asymptotic truncation may
be based on the so-called Moiseyev asymptotics (see, Moiseev (1958)
[129], Ockendon & Ockendon [139], Ockendon et al. (1996) [141], Faltin-
sen (1974) [43], Miles (1984) [126, 127], Lukovsky (1990) [114], Faltinsen
et al. (2000) [45]), whose applicability has been justified in the case of
finite fluid depths. Asymptotic relationships of “shallow sloshing” were
reported by Chester (1968) [36] Chester & Bones (1968) [37], Ockendon
& Ockendon (1973,2001) [139, 140] and Faltinsen & Timokha (2002) [51].

Perko-like modal systems (see, the original paper by Perko (1969)
[145]), in which truncation of the modal system is not associated with
asymptotic relationships, are rare exceptions in the literature. Recent
simulations by the Perko-like systems are reported by La Rocca et al.
(2000,2002) [99, 100] and Shankar & Kidambi (2002) [155].

In the forthcoming analysis, the system of ordinary differential equa-
tions (3.24) will be considered as a linear system of algebraic equations
with respect to Ry, i.e.

> Awk (BB = A8, n=1,...
k

By using an asymptotic technique we can then find R, as a function of
B:i and f;. After substituting R, into (3.25), one gets a system of the
second-order nonlinear differential equations with respect to ;.

3.1.3 The Miles-Lukovsky system for non-cylindrical tanks

The Miles-Lukovsky technique is based on the Fourier representation of
the free surface (3.12) in the Ozyz-coordinate system rigidly fixed with a
moving tank. The technique is applicable only if the tank walls are vertical
in vicinity of the mean (hydrostatic) free surface. Otherwise, {fi(y, 2)}*
have time-dependent domains of definition.

The present section is devoted to the case of strongly non-vertical
walls. The study is based on a spatial transformation technique proposed
by Lukovsky (1975) [112] and developed by Lukovsky & Timokha (2002)

! Following the original publications, sloshing in non-cylindrical tank will be
considered under assumption that Oz is the vertical axis.
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[120]. This assumes that the original tank cavity can be transformed to
an artificial cylindrical domain (in curvilinear coordinates (x1,%2,3)),
where the free surface allows for the normal parametrisation

§*($1,!L‘2,$3,t)=$1—f*($2,$3,t)=0 (327)

and -
F*(m2,33,t) = const + Bo(t) + Y Bi(t) f; (2, m3)- (3.28)

i=1

Strategy. Let us consider an open artificial cylindrical domain Q* =
(0,d) x D in the Oz x223-coordinate system and let @ be the interior of
a rigid tank in the Ozyz-system. We define smooth transformations that
map @ to Q* and back as follows

Iy =T, T2 = :I"?(:L.:y:z): I3 = .’1,'3((1,',:1/,2);

(3.29)
z =21, y=y(@1,22,23), 2z=2(w1,T2,23).

Here, (3.29) does not change the maximum height d, the Oyz-plane has
to be tangent to S = 0Q and = > 0 for (z,y,2) € @ and the Ozyz3-plane
should be superposed with the bottom of @* (Fig. 3.3). The transforma-
tions (3.29) are also obligated to have the positive Jacobian

D(z,y,z)

J*($1,$27$3) = ma
) b

(J(z,y,2) =1/J7) (3.30)
inside of Q* and, except a limited set of isolated points, on the boundary
S* = 0Q*. Such a single point with J* = 0 invertible appears for con-
ical, parabolic etc. domains, because (3.29) maps the bottom of Q* to
the origin O (the situation is schematically depicted in Fig. 3.3). These
singular points are assumed to be bound away from the mean free surface
Z() :x=h.

Linear natural modes. If v = w = 0, the free boundary prob-
lem (3.1) can be linearised relative to the trivial solution & = z+const,
& =const, which determines a hydrostatic fluid shape Qo (Fig. 3.3). The
linearisation implies the smallness of V@ and Vf (X (¢) : = = f(y, z,1)),
and, apparently, becomes mathematically justified only in a curvilinear
coordinate system. The procedure includes transformation (3.29) (admit-
ting (3.27)-(3.28)), considers (3.1) in the (2122, z3)-coordinates, assumes
|8*| ~ |f* — h| ~ |[V*®| ~ |V*f*| = O(e) < 1 and, finally, neglects
the o(e)-term. After linearising (3.1), we set up &* = i,/gsp* (21, ¥2,23)
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X
y a | ;1\
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Z

Fig. 3.3. Sketch of an admissible transformation.

Z] xl
Lo L,
X10 ‘
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‘L
z X,
o : L Xz

2

Fig. 3.4. Transformations of the meridional cross-section.

exp(i/gt); f* = exp(iy/gst)F(x1,22) and obtain the following spec-
tral boundary problem in Qf = (0, h) x D with spectral parameter s on
ES LI = h
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* 8 *
A*e* =0 in Qg; %:0 on S§; xp* = 6(5* on X7,
oo . (3.31)
J dSEQd.Zg = 0,
I 81/*
0

where Qg is the transformed mean fluid domain, S5 and Xg are the
transformed mean wetted walls and surface, respectively, and
62Q0* 6(,0* 6(,0* --&p*
— Fk 3 = V -V = 7 1/-’
O0x;0x; " Oxy ov* 14 g oxz; "

where v;(x1,22,23),7 = 1,2,3 imply projections on the covariant unit
vectors in the (z1, z2, z3)- coordinates and I'}; are the Christoffel symbols

1 ok (3gia 0gia 891’]’

(9.’Ej 6.’17, a.’L'k

pi’;:_g

: ) ik =1,2,3

based on the metric tensor

_ Or Or

ii = o— 1,0 =1,2,3 3.32
9ij 6.73, 6:1}3" (2% )4y 9y ( )

which keep invariant the metrics
ds? =
(dz)? + (dy)? + (dz)? = g (21, T2, 23)dzidzy; dQ = J*dQ*. (3.33)

The following theorems establish that the spectral problem (3.31)
is equivalent to the well-known spectral problem (3.14) in the zyz-
coordinates (appropriate theory may be found in Feschenko et al. (1969)
[563]), but for non-cylindrical domains Qq:

Ap =0 in Qo;
Oy Oy Oy
W 0 on Sp; 5y — ¥ on Xo; /61/ dydz =0. (3.34)
o

Theorem 3.3. Let functions ¢, € C?(Qo) be square integrable together
with their first derivatives and ¢*,0* € C*(Qg) be the tensor images of
these functions defined by (3.29). The closure of {©*} in the metrics
[lo*||? = {¢*, ¢*)« defined by the scalar product
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(0, ) = / (V. Vi) + ip)dQ =
Qo
- / (V"9 V%) + " §*)J*dQ" = (9", 4%),  (3.35)
Q5

constitutes the Hilbert space Wj. ,(Q5) = {¢* : |l¢*||2 < oo}, which is
isometrically equivalent to the Sobolev space W4 (Qq) and

(@, ) =/E (W)dydz=/Z*(<p*¢*)J*dwzd:c3 = (¢*,9")x,

(3.36)
et = [ (Ve v0iQ = [ (v v tae = o' v).
Qo Q6
Besides, the following Green identity
6 *
/ (" A* " + V*o* V™) dQ* = " d}* do, (3.37)
* BQ*\G 61/

holds for the smooth functions ¢*,* € Wj. ,(Q) (G = {(z1,22,23) :
J* =0}).

Proof. The two metric spaces Wy (Qo) and W. ,(Q5) are isometrically
equivalent as closures in the equivalent metrics. The formulas (3.35) and
(3.36) hold true for smooth functions, therefore, the metric spaces have
equivalent scalar products, i.e. (3.35).

The following derivation line proves Green’s identity (3.37)

/ (0" AY* + V* @ V**)T*dQ" = / (pA + VpVih)dQ =
Q Qo

;
oY / o
= p—do = p—do =
/8Qo ov 8Qo\(J*=0) OV

_/BQS\{(ml,mg,mg):J*:O} ov*
O
Theorem 3.4. The spectral boundary problems (3.31) and (3.34) are
equivalent on an admissible pre-compact sets Dp. = {¢* € W}*,Q(Q(’;) :
9" € L(Z3); J5; " J*dwadas = 0} and Dr = { € W7 (Qo) : e ¢
Ly(Zo); 5, pdydz = 0}, respectively.



o.1 Modaal equations 990

Proof. Let us consider the operator 7™ defined by the Dirichlet-Neumann
problem

*

dyp

A*p* =01in Qf; ¢* =wu* on Xj; B

=0on S

so that T*u* = %bg,cp* € Dr-.
The spectral problem (3.31) has the following operator statement
T*u* = seu*, u* € Ly(Zg) = {¢*|x; : ¢* € D1}
and, due to (3.37), the variational problem
[¢*, 0]« = 2(¢",n")» =0, 0" € Dy~ (3-38)

is equivalent to [y, 7] — (p,n) =0, n € Dr.
O

Linear natural modes for axial-symmetric tanks. If () is of an
axial-symmetric shape, admissible transformations of Qo to Qg can be
combined with separation of spatial variables. This leads to an infinite
series of two-dimensional spectral problems in a rectangular domain. Re-
duction to these two-dimensional problems includes two steps. The first
step implies the substitution

T =21, Y= 23C0823, 2 = z8inz3 (3.39)

together with expression for ¢:

©om (21, 22,23) = ¢m(z1,z2)§i()rls(mz3), m=20,1,2,... . (3.40)

Inserting (3.39)-(3.40) into (3.34) leads to the following family of spec-
tral problems in the meridional plane Ozs21:

&, MWmy, 0, Wy, m>
95 2o )t o, ", )~ 5, Ym=0nG,

B;bym =0on Ly; |¢m(21,0)| <oo, m=0,1,2,..., (3‘41)
6¢m = %¢m on LO; ¢022d22 — 07

6252 Lo

where Lo and Ly are the boundaries of G (see, Fig. 3.4); v is the outer
normal to L; (theory of (3.41) is given in [115]).
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The second step assumes

21 =m1, 22 =((x1,22), (23 =u13), (3.42)

which maps G to G* as shown in Fig. 3.4 (Lo — L§,Li — Lj). In the
Oz z9x3-coordinate system, the spectral problems (3.41) take the form

2 2 2
0%hm 5 6¢m+ 6¢;+<0p 8q>6‘¢m+

P Ox? * 192102, *° o2 71 + dzs ) 01
0s Oq 5¢m 9 . . «
+(6w2+6rc1> Oxs omm =0 in G7,
P(?;bm q _%lbm = upy, on Lg; s—%wm q(?;pm =0 on Lj,
o o oo (3.43)

doc Lty =0 m=0,1,2,...,
0 Oz

where

0
par2) = (s g, ) = pai s(a1,a2) = pla® + ),

61}2 . 81‘1 . 1 8C
a¢c’ a¢’ ¢ Omy’

As follows from Theorems 3.3 and 3.4, the problem (3.43) does not
need any boundary conditions on the artificial bottom L3 and along x5 =
0. However, 9,,, should be bounded at z; = 0 and z2 = 0, simultaneously.

The modal system. We employ the Bateman-Luke variational for-
mulation (3.6)—(3.8). Lukovsky & Timokha (2002) [120] have mathemat-
ically established that the Lagrangian (3.7) is invariant relative to trans-
formations (3.29), namely,

(3.44)

a(z1,22) = b(z1,22) = c(z1,22) =

d* 1
L=L"=—p / [88t + §(V*¢*)2 —V*¢* - (vg+wxr) +U*| J*dQ*,
Q*(t)
(3.45)
where Q*(t) is the transformed domain,

U* =U(x(x1,%2,23),y(x1, T2, 23), 2(21, T2, 23), 1),
" = &(x(21, 22, 73),y(T1, T2, T3), 2(T1, T2, T3), 1),

15927 2 0P 5, 0F
33]]‘ ’ 6.’L’j ’ 63}j

Vo =V"d* = (g
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(stars in (vg + w X 7)* denote projections on the unit vectors of a curvi-

linear coordinate system).
By adopting derivations from § 3.1.2 with the modal solutions

" =10+ Bo(t) + Z/Bz ; (2, x3), (3.46a)

=vy-T+ Z Zn () pn(x1, T2, T3), (3.46b)

where z19 = h, {f}(22,23)}, {cpn(xl,x2,w3)} are the basic systems of
functions on X and in @, respectively, and, for brevity, w = 0, we get
the following infinite-dimensional nonlinear modal system

d
ZAn - ;Ankzk =0, n=1,2,... , (3.47a)
; Z ZnZk + (V01 — gl)aﬂz’
) 6l ) ols =~ .
+ (Vo2 _92)6_& + (o3 —gg)a—ﬂi =0,i=1,2,.... (3.47b)

This system couples the generalised coordinates Z,(t), 5;(t) and A,(8;),
Ank(8:), Ik (B;) defined by the integrals

f*
A, = p/ (/ gan*dm) dzadzs,
D 0

. (3.48)
Ani = p/ (/ (V*QD:L,V*QO;;)J*CZ.’Lj) drodrs,
4 \Jo
ol
L=p Fi[z, J" (%1, %2, %3)]2, =+ dx2dzs3,
ABi =
ol
2 =p | Filylas,ze,z3) 0" (@1,22,23)]0, = dzodrs, (3.49)
oBi o
ol
— = p/ Fi[2(z1,22,23)J" (21, T2, %3)|o, =+ dT2dz3
9B; =3

(the upper limit f* in the integrals (3.48) depends on 3;(t) owing to
(3.46a)).
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3.2 Two-dimensional sloshing in a rectangular tank

Undisturbed
water plane

/ z=h x=12 /

Fig. 3.5. Coordinate system.

We consider a mobile rectangular rigid tank filled partly by an inviscid
incompressible fluid. The mean fluid depth is h and [ is the tank breadth
(see, Fig. 3.5). The flow is two-dimensional in the (x, z)-plane. Then

Vo = (UOE)OJUOZ); w = (O,w(t),(]),
r= (IE,O,Z), Q(.CL',O,Z) = (O,Q(.’I,',Z,t),O) (350)
and (2(z, z,t) is the solution of the following boundary value problem

. on
AN =0 in Q(t); E'S(tHE(t) = zv1 — TV3. (3.51)

Owing to (3.9), the velocity potential &(x,0, z,t) takes the form
b(z,0,2,t) = vopx + Vo2 + w(t) 2z, z,t) + Z R, (t) pn(z,2), (3.52)
n=1

where {¢,(z,2)} is a complete system of two-dimensional harmonic func-

tions. Further, the origin lies on the mean free surface at the centerplane

of the tank and z = f(x,t) determines the perturbed free surface X(t).
The fluid domain is

Q) ={(z,2) : —h < z < f(z,t);—-l/2 <z < 1/2} (3.53)

and f(z,t) is expressed by (3.12). The complete (to within a constant)
orthogonal system of functions {f;(x)} should satisfy the volume conser-
vation condition
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1/2
fi(z)dz = 0. (3.54)
—1/2
The general infinite-dimensional modal system (3.24) + (3.25) has in
two dimensions the following form

d

aAn—zk:RkAnk =0, n=1,2,...; (3.55)
- aAn 1 aAnk . 6120.) al2wt
2 g + 522 T Tl gt wy
d Ol . ol . ol
% (w 6}:) + (P01 — 91 +w“°3)651i + (P03 — g3 —wvm)a;i—
1
- éwzaai;; =0. (3.56)

3.2.1 Asymptotic modal system

As shown by Faltinsen et al. (2000) [45], the modal system (3.55) + (3.56)
can be approximated to surface waves with one primary dominating mode
corresponding to the first natural mode. This approximation holds true
when the small-magnitude body motions are horizontal and/or rotational
and quasi-periodic with average frequency close to the first resonance
frequency. It is also necessary that the fluid depth is not shallow and the
fluid does not hit the tank ceiling (see, physical arguments presented by
Faltinsen (1974) [43], Mikishev (1978) [122] and, recently, by Faltinsen &
Timokha (2001,2002) [49, 51]). The smallness of the rigid body motions
is assumed relative to the tank breadth and water depth.

Derivation of the finite-dimensional asymptotic analogue of the system
(3.55) + (3.56) requires an asymptotic relation between the dominating
mode amplitude and the excitation amplitude. It is assumed, as in the
theory by Faltinsen (1974) [43] that

o(M)=o(T)=0(2)~e s

where € < 1. Here, H is translatory (surge) motion magnitude and g
is angular (pitch) magnitude. Further, we deduce (see rigorous math-
ematical details by Hermann & Timokha (2005) [81]) that B2/l =
O(€*/3), B3/l = O(e) and B;/1 < O(e), i > 4.
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The modes f;(x) in (3.12) as well as p;(z, ) in (3.13) must be chosen
as the solutions of the spectral problem (3.14), i.e.
Ap; =0 (-l/2<2<1/2,-h<2<0),

O Opi dp; (3.58)
Eh;:fz/z,z:z/z =0; E|z=—h =0; B Aipi (2 =0).

This implies

xi= T tanh(Th); i) = cos(C(z +1/2),
B cosh(Z(z + h))
vi(z,2) = fz(x)m (3.59)
Egs. (3.12) + (3.13) take the following form
= (5 (2 + 1) 00
cosh(*T (z
o(x,2,t) :;Ri(t)fi(w)m.

By accounting for the asymptotic relationship (3.57), the smallness
of H relative to [ and keeping only terms up to € in the modal system
(3.55), (3.56) we get

d
A, - Ay =0, n=12...; 61
i An ;Rk k=0, n (3.61)

- 0An | ~— OAnk Ol Ol
2 Fnggl + 32, Tg, nfle gt +w g

d Olay, . .
- % (w 323:) + (Y01 — g1)Xi1 + (P03 — g3)Bidiz = 0. (3.62)

Asymptotic expansions of the integrals A;, A,k,law, l2,: have to be
used in (3.61) and (3.62). Here A;, Apng,law,low: are defined by (3.22)
and (3.20) as integrals over the instantaneous fluid volume position. The
integrals are divided into integrals over the fluid volume g, and over the
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remaining part Q5. 5 is determined by ;. Further, the integrand of the
integrals over (5 can be expanded in Taylor series by §; ~ [ €. Keeping
terms up to € gives

A = %l(ﬁl + Ev(B152 + Bafs) + Eo(B7 + 2153 + 7 3)),
Ay = B8 + BB+ 26155) + 8FoB1 ), (3.69)

l
As = %(53 + 3E381 82 + 3Eo83);

A = pl(By + 8B Eoff} — (2Eo — E3)ps),
Aig = Aoy = pl((4Ey + 2E1 E») 1 + (—4Ey + 2E?)6s),
Ayg = Az = 3Ip(2E + E1E3) (B2 + 2E4f37), (3.64)
Asy = pl(2E3); Asz = Aszs = 3lp(4Ey + 2E>E3) b
Aszs = pl(3E3),
where

1 /m\2 T ¥}
= — — ;= — —_— ) > . .
Ey 3 (l) , E; 5 tanh( ] h), i>1 (3.65)

Further, we express R,, as

Z%ﬂ’ + Z%Jﬂjﬁz + Z%Jkﬂ,ﬂjﬂk + ..

ijk

and substitute it into (3.61). Explicit values of +;,;;,vijr are found by
gathering similar terms. The result is

61 Ey, Eqy 1 4E0
R, = 28, E2 ,BLBZ B, 5, ——B261 + 7, 5 + Bip,
E Ey .
3 = 63 9 5152 2 —— BB+
6Es B>y (3.66)
e 3E2 2FE,4 N 4E} 2EEs '
1P E,E; ‘T E F.E; | E Fs
: 4E0 Bi .
_ = >4
Ry (ﬁz ﬂlﬁl) R; %E |2

and



o Nomnlinear modal theory

. B Ey .. (Ey Ep
R, =3E + —5152 - 25251 + 152 fo5) T EE,
E (1 4E0 EO 1 4E,
+E_1(_§+ >ﬂ161 —1 (—54- )61,817
R Zﬁ — = BB - —0ﬂ2ﬂ1—
6Fs  F1Fs (3.67)
E,
(e + e )ﬂlﬂz (B + 28360
@ _ 2FE0E, B+ 4E§ 2FEyE,
2E3 E1E3 ‘ E1E2E3 E1E3
. 1 . 4Eo . B )
R, 15, (B2 — (ﬂlﬂl +8D); R il 2 4
By calculating A;; we get
1/2 i l 2 )
da=p [ voos(Tlat2)z=p (1) (-1 D),
7[/2 1T
(3.68)

1/2 ,
iz = p/ cosQ(Z—ﬂ(erl/Z))dm = p_l
—1)2 l 2

low and lo,: (see, (3.20)) depend on (2(zx, z,t) which is the solution
of the boundary value problem (3.51). 2(x, z,t) depends parametrically
on B3;(t) due to the free surface X(t). Since Ola, /0B; and dla,:/08; are
multiplied by terms of O(e) in (3.62), it is sufficient to include only linear
terms by §; in the integrals Iy, and ls,¢. The problem (3.51) takes the
following form

on on l

AN =01in Q(t); a:—x(zz—h); — =z (z=

on_ 1 e (3.69)
v VI+ ()2 1+ (fe)?

The solution can be found by a Joukowski-type substitution with addi-
tional terms for fluctuations of the free surface. This gives

sinh(7i(z + h/2))
-2 Z aifi cosh (3ih)
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xR @

The coefficients a; are found from the condition x;(t) =0, ¢ > 1, if and
only if, 8; =0, ¢ > 1. Substitution of (3.70) into (3.69) gives

N in 212 .
D aifig =z or a= W[(—l)’ —1]. (3.71)
=1

The functions x;(t) follow from (3.69) after substitution of (3.70) and
(3.71) and performing the Taylor series technique for the free surface

X(t) (with respect to 8;). The linear terms of Iy, and la,+ do not depend
on x;(t). To show this we set up (3.70) in the corresponding integrals
%} . /2
i
o = =29 astanh(Emyg [ f2d
low p;az tan (21 h)Bi s [idz+
oo I . /2
+p Z xi(t) — tanh(l—ﬂh) fidz;  (3.72)
= 17 l —l/2
1 i 12 d
Lot —pgx(t)ﬁtanh(Th) i fidz. (3.73)

It follows from the volume conservation condition (3.54) that

> 1\? i ur
lowe = 0; lay = —2p;,8,- (E) [(=1)! — 1] tanh (2—lh> . (3.714)
The derivatives with respect to 3; give

Ous _ o O __, (1
6,82 R 8,31 - T

Finally, by defining the angular position of the mobile coordinate sys-
tem Ozyz with respect to O'z'y'z' as 1(t) we obtain correctly to O(e)
that

)3 [(—1)* —1] tanh (Z—"h> , i>1. (3.75)

g3 =—9; g1 =gy¥(t). (3.76)

The terms in (3.62) 1&%’5‘” + (—93)BiA3i + (—g1)A1; caused by the forced

pitch excitation can be rewritten as
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1\ ; 21 i
~o(2) -0 =1 (2 cnn(Gri0 + 960 +8i. G0

s

When substituting the above formula in (3.62), we get the following sys-
tem of ordinary differential equations describing oscillations of a fluid in a
rectangular tank performing arbitrary small-magnitude motions (keeping
terms up to O(e) in the nonlinear equations):

(B1 + 01B1) + di(BrBe + PrBa) + da(B1 BT + B3 B1) + dsfPafPr+

+ Pi (Y0, — S100 — g2) + Q190281 =0,
(Ba + 02B2) + dufr b1 + ds 7 + Qa2 = 0, (3.78)
(Bs + 03B3) + deP1B2 + dr 1 BT + ds BB + doP1 B2 + d1o i Br+

+ P3(00; — S3w — g1) + Q300283 = 0.

The linear equations describing higher modes read as
Bi + 02 Bi + Pi(0z — Sico — gu) + Q0028 = 0, i > 4. (3.79)
Here vo, and vg, are projections of the translational velocity onto axes

of Ozz, w(t) is the angular velocity of the coordinate system Ozyz with

respect to O'z'y'2’.

The introduced coefficients are calculated by formulae

8E5;_1l
w2(2 — 1)’

21
Si = — tanh (
™

0} =2giB;; Py = — Py =0; Qi =2E,

LT

il i >1, (3.
2lh>, i>1, (3.80)

where o; is the natural frequency of mode 4. Further,

dy =2§—(1) +Ei; dy=2FE, (—1+ ngEOQ) :

d3 = _25—2 +E1; di= —45—? + 2Ey;

ds =E» 2E%?2 - %; dg = 3E5 — %,

dy = — 3B — 9E?ElE3 + 24;22, ds = —6%’ +3E;,
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EOE3 Eg E§E3
dy = — 6F, — 24 4 24
9 =~ 05 B 5 T E2E,’

EsEy, _EoB; _E,

E\E, E\E, B,

d10 :3E3 —6

(note, that expressions for some coefficients responsible for the highest-
order terms differ from the reported by Faltinsen et al. (2000) [45], but are
consistent with the further investigations by Faltinsen & Timokha (2001)
[49]; the numerical difference is negligible and effect less than 0.1% in all
the simulations).

The first two nonlinear equations of (3.78) couple §; with 82 and do
not depend on 3. The third mode component is excited by rigid body
motions and the first and second modes. The first mode will be finite, if
it is excited at the natural frequency for the first mode. This is caused
by nonlinear effects and will become more evident in the next subsection
on the steady—state resonant regimes.

3.2.2 Steady-state resonant waves

The theory of steady-state solutions of the nonlinear sloshing problem in a
rectangular tank was created by Faltinsen (1974) [43] based on Moiseev’s
[129] method. The constructed asymptotic modal system (3.78) makes it
possible to generalise results of this theory.

Let us first consider the surge excitations expressed by v =
(—=Hosin(ot),0,0) and set up w = ¥ = 0. The steady-state wave are
associated with periodic solutions of (3.78) satisfying

Bi(t+2n /o) = Bi(t), Bilt+2m/a) = Bi(t). (3.81)

To construct the asymptotic periodic solutions of (3.78), we impose
the first approximation of the primary mode in the form

B1(t) = Acosot + o(A) (3.82)

and substitute it into (3.78). Accounting for the periodicity condition
(3.81), this yields

Ba = A2(ly 4 hg cos(20t)) + o(A2), (3.83)

where
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Fig. 3.6. Amplitude (A)—frequency (o) response curves Py for nonlinear slosh-
ing due to surge excitation (6/o1 = T1/T). h is the mean water depth, [ is the
tank breadth, H is the surge amplitude. (2, h) is defined by (3.89) and implies
the secondary resonance prediction.
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Fig. 3.6 (continued):

_di—ds _ ds+dy 5=t i_19 (3.84)

l — o ™
07 7252 T 0T 2(2—4) o

The amplitude A ~ €!/3 of the primary mode can be found by sub-
stituting (3.82) - (3.83) into the first equation of (3.78) and collecting
Fourier terms of the lowest order. The non-dimensional secular equation
coupling the primary mode amplitude A, the forcing frequency o, the
breadth ! and the fluid depth h (normalisation implies dividing of all
length variables by 1) takes the following form
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Fig. 3.6 (continued):

II,(51,52,A) = (67 —1)A+my (52, h)A® — PLH =0, (3.85)

ml(a'z,il) = Jl(—l_o(a'z) + %}_10(62)) — %JQ — 2(73710(&2), (386)
where the overbar denotes non—-dimensional values.

The coefficient m; in Eq. (3.85) depends on the depth/breadth ratio
and the excitation frequency (5;,i = 1,2). The latter dependence has not
been presented by Faltinsen (1974) [43] for frequency—amplitude secular
equations, but only appeared in the paper by Faltinsen et al. (2000) [45].
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Fig. 3.7. Amplitude (A)-frequency (o) response curves Py for nonlinear slosh-
ing due to pitch excitation (0 /o1 = T1/T). h is the mean water depth, [ is the
tank breadth, 1) is the pitch amplitude, (0, —2¢) is the position of pitch axis.

i(2, h) is defined by (3.89) and implies the secondary resonance prediction.
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Fig.3.7 (continued):

The earlier theory gave m; to be only a function of h/l. In order to
compare both results we need to give the following remark.

Remark 3.5. For any asymptotic sloshing theory with one dominating
mode, the nonlinear secular equation describing the dependence of the
amplitude/breadth ratio A versus the excitation frequency o has the same

general form
o

J

Hh( 72514):07
g

g
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Fig. 3.7 (continued):

where o7 is lowest natural frequency and the function I is expanded
in a Taylor series. The approach by Moiseev (1958) [129] and Faltinsen
(1974) [43] gives the expansion near the point (51, 22,0) (for a fixed h).
The present modal approach has no asymptotic restrictions on the value
of o and, therefore, includes only power series in A4, i.e.

g

I, (—

’
g

=
| 9

27"4) :H(27270)+

g 0

Q
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L2

g1 02 - 8317 01 09
290 o'

oIl g1 02 2 1 3 3
—(—=,—= A+ —(—,=,0)=A A°).
+ 047+ S (D22 0) A0 4 o(4%)
Simple analysis shows that, if m; = 0 for certain o and h/l, Eq. (3.85)
leads to infinite A and, therefore, our third-order theory fails. The reso-
nant condition with o = o7 implies the critical depth h = h/l = 0.3368...,
which appears as the single root of

’ 70)A+ (_7 )
g O g O g 0

mi (22, h) = 0.
o1

The response curves change from being a ‘hard—spring’ to a ‘soft—spring’
behaviour at this critical depth. Detailed asymptotic analysis of the re-
sponse curves near this critical depth was done by Waterhouse (1994)
[169] by a fifth-order theory based on Faltinsen—Moiseev’s technique. He
showed that the curves coincide with a third order theory only for rela-
tively small A, but new turning points on the branches occur at a critical
value of the amplitude/frequency. Sloshing at the critical depth is also
affected by the secondary resonance (Faltinsen & Timokha (2001) [49]).

One should note, that our case suggests m; = m; (%2, h). This implies
that if a fixed o is close to the natural frequency o1, but o # o1, the
equation

mi(Z2,1) =0 (3.87)

g
gives a different value of the critical depth, namely, the critical depth is
a function of o. If a pair (o, h) satisfies (3.87), then A tends to infinity.
This is illustrated in Figs. 3.6 and 3.7 by vertical asymptotes for all the
branches.

Fig. 3.6 shows the positive and negative solutions (branches Py, P )
of the secular algebraic equation (3.85) for different values of the water
depth h and fixed amplitude of excitation H. The choice of H corre-
sponds to the experimental values reported later. Branch O is the set of
solutions of (3.85) for H = 0 (no excitations of the tank). This can be
interpreted as the amplitude—frequency dependence for a subset of the
nonlinear free-standing waves. The branches differ from curves follow-
ing from Faltinsen’s theory only for large values of |A|/l and far away
from the main resonance d; = 1. The last difference is due to the change
of my when varying o. The results agree with the fifth order theory by
Waterhouse (1994) [169] for sufficiently small amplitudes.

Similar results on the resonant steady-state solutions are obtained for
the sinusoidal pitch excitation. Let us assume the tank is pitching around
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the point (0,0, —zp) of the mobile coordinate system. We can correct to
O(e) express that

h(t) = Yo cos(ot), Bos = 209(t), bos = 0.
The secular equation for response curves takes the following form

o S, 9
l I lo?
It differs from Eq. (3.85) only by the last inhomogeneous term.
Secondary resonance. All the earlier results of § 3.2.2 are based on
the assumption that O(8%) = O(/32). However, analysis shows that one
can find a critical value of o/0y (slightly away from 1), for which ampli-
tudes of the second mode tend to infinity. This is called the secondary
resonance and may happen as 53 — 4 (see, the asymptotic solution (3.83)
(3.84)). In terms of o, the secondary resonance condition takes the form

(5’% — 1)A + ml(ﬁg, E)AS — Pl’(po( ) =0 (388)

Uil 5 %&Z% =i(2,h). (3.89)

The value (2, h) characterises the applicability of our theory (see, Figs. 3.6
and 3.7). The ratio T4 /T = o/o1 must be close to 1 and not close to
i(2,h).

Similarly, we can introduce for the third mode

o 7y [ tanh(3wh/l)
i(3,h) = Mm. (3.90)

However, since i(3, h) < i(2, h), the secondary resonance owing to (3.89)
is more dangerous.

The trend of the distribution of (2, h) shows for h small enough (but
large for shallow water theory) that i(2,h) — 1 as h — 0. This means that
the secondary resonance can occur for small depths and the asymptotic
theory is not applicable for shallow water.

The stability analysis for surge/pitch excited waves in a rectangular
container was done by Faltinsen (1974) [43]. We can give reliable new
treatment of the stability by introducing branches O and S in Figs. 3.6
and 3.7. The branch O is defined by the equation

branch O: (67 — 1)+ my (G2, h)A% = 0; (3.91)
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it is the asymptotic curve for P_ and P} as A — oc.

The branch S is the set of all the turning points on Py for various
excitation amplitudes H (surge excitation) or v (pitch excitation). The
turning points correspond to when (3.85) has only two solutions. The
condition of the two roots of Eq. (3.85) can be found by differentiating
(3.85) by A. It takes the form

branch S: (7 — 1) + 3m (G2, h) A% = 0. (3.92)

The branch S does not depend on the excitation amplitude and is only a
function of the depth/breadth ratio.

Owing to bifurcation theory, the turning point divides the branch P,
or P_ into stable and unstable sub-branches. This was shown by Faltinsen
(1974) [43] that the upper sub-branch of P, /P_ corresponds to unstable
solutions and the lower sub-branch to stable solutions. The branch P_/P,
without a turning point corresponds to stable solutions. When repeating
the stability analysis by Faltinsen for our solutions, we arrive at the same
result if A < 1. When varying the excitation amplitude, the sub-branch
situated between S and O will always correspond to unstable solutions.

3.2.3 Transient regimes. Comparison with experiments

A series of experiments on nonlinear sloshing in a smooth rectangular
tank due to horizontal (surge) excitation were conducted and documented
by Faltinsen et al. (2000) [45]. The tank had a front plate made of plexi-
glass which is stiffened by two vertical L-beams. The tank was placed on
a wagon that could slide back and forth controlled by a hydraulic cylin-
der. The hydraulic system was strong enough to ensure that the motion
inside the tank had little or no effect on the tank motions.

The tank height, breadth and length were respectively 1.05m, 1.73m
and 0.2m. The observed free surface elevation did not vary in the length
direction. The amplitude of surge excitation was between 0.02 and 0.08m.
The water depth was varied between 0.2 and 0.6m. The tank was
equipped with three wave probes, referred to as FS1, FS2 and FS3 (see,
Fig. 3.8). Wave probes FS1 and FS2 consist of adhesive copper tape di-
rectly placed on the tank wall. FS3 is made of steel wire and is standing
0.05m from the left wall. The tank position was measured by a position
gauge. The sampling frequency was 50Hz and the time series were 50
seconds long. Video recordings and visual observation of longer simula-
tions, up to 5 minutes, showed that steady—state oscillations with the
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Fig. 3.8. Tank dimensions and wave probe positions used in the experiments.
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Fig. 3.9. Measured tank position and free surface elevation at wave probe FS3
(h =0.6m,T = 1.5s).
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Fig. 3.9 (continued): Calculated tank position and free surface elevation at
wave probe FS3 (h = 0.6m,T = 1.5s). The curve ‘Zero’ corresponds to zero-
initial conditions, ‘Impulse’ means initial impulse condition.

forced oscillation period were not achieved. This implies that the dissipa-
tion in the smooth tank is very small even relative to the small damping
predicted by Keulegan (1959) [91]. A reason may be that the boundary
layer flow is laminar in Keulegan’s experiments while it is likely to be
turbulent in our case. Because transients do not die out, a beating ef-
fect occurs. The most interesting stage of transient waves occurs during
the first 50 s, when the beating parameters are not stabilised yet. After
this time the typical behaviour of the sloshing is repeated. The prelim-
inary analysis has shown that for beating waves of small amplitude the
modulated wave is stabilised for even shorter time.

The free surface elevation had small amplitudes in the initial period
after the tank was excited. In some of the tests the water was in small-
amplitude motion before starting the excitation. Since the proper initial
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Fig. 3.10. Measured tank position and free surface elevation at wave probe
FS3 (h = 0.6m,T = 1.3s).

conditions are unknown, two different sets are used to investigate the
influence of initial conditions. One set of initial conditions is

Bi(0) = B;(0) =0, i>1. (3.93)

The other is based on the impulse conservation. If v,, = o H cos ot, this
gives )
Bi(0) =0, B;(0)=—-cPH, i>1. (3.94)

The numerical time integrations were done by a fourth-order Runge-
Kutta method and 11 equations of (3.78) were used. The simulation time
on a Pentium I1-366 computer was 1/300 of the real time scale.

The examples of Figs. 3.9-3.11 exhibit influence of the initial condi-
tions on the free surface elevation for different forced excitation periods
T, water depth h and excitation amplitude H. So, for example, in Fig. 3.9
the effect of initial conditions is not important. However, for the case in
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Fig. 3.10 (continued): Calculated tank position and free surface elevation at
wave probe FS3 (h = 0.6m,T = 1.3s). The curve ‘Zero’ corresponds to zero-
initial conditions, ‘Impulse’ means initial impulse condition.

Fig. 3.10 the condition of impulse conservation leads to more reasonable
description of free surface elevation. Figs. 3.12 and 3.11 also demonstrate
good agreement between theory and experiments. The agreement is not
perfect in Fig. 3.12, but the difference between experimental and numeri-
cal simulation decreases when initial conditions are based on the impulse
conservation.

Better agreement between theory and experiment can be achieved by
realising that the forced surge oscillation is not harmonic and does not
have a constant amplitude during the initial period. This is illustrated in
Fig. 3.12 where the excitation period 7" was not a constant during the first
12 s; it varied from 1.76 s to 1.875 s. This is caused by transient rigid body
motions. We assume that these transient motions decay exponentially.
This effect was simulated by varying the period and the amplitude of
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Fig. 3.11. Measured tank position and free surface elevation at wave probe
FS3 (h = 0.5m,T = 1.4s).

forced excitation in the initial phase. Fig. 3.13 shows the effect of only
varying the excitation period. A better agreement with the experiment
is then achieved. Separate numerical results showed that the amplitude
fluctuations have less effect than variation of the forcing frequency. The
latter can be evident by examining the steady—state response in Fig. 3.6.

Our theory assumes that the fluid does not hit the roof. The fluid
touches the roof in the case of Fig. 3.12, but this does not have an im-
portant effect on the fluid motion. When comparing theoretical and ex-
perimental results for a case when heavy impact occurs, it is evident that
they do not agree. A possible reason is energy dissipation due to impacts.
The impacts cause the ceiling to vibrate which represents energy loss for
the fluid motion. Because the tank ceiling is very stiff in the model tests,
this is unimportant in the comparative study with experiments. Further-
more, whereas the water hits the ceiling, a jet is formed and eventually
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Fig. 3.11 (continued): Calculated tank position and free surface elevation at
wave probe FS3 (h = 0.5m,T = 1.4s). The curve ‘Zero’ corresponds to zero-
initial conditions, ‘Impulse’ means initial impulse condition.

the free surface overturns and water hits the free surface. This also causes
energy dissipation. An estimate of this energy loss can be calculated by
using a generalisation of Wagner’ (1932) [166] theory (see, Faltinsen &
Rognebakke (1999) [44]) and assuming that the kinetic and potential
energy in the jet is dissipated. An equivalent linear damping based on
energy conservation can then be included in the differential equations for
the generalised coordinates, i.e. the linear damping terms a; B> and
a3f3 are incorporated in (3.78). Because the average forced excitation is
close to the lowest natural frequency, it is only oy that matters. Fig. 3.14
shows satisfactory agreement between theory and experiments by includ-
ing the damping quantify. The damping will vary from cycle to cycle
depending on the severity of the water impact. In the presented case we
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Fig. 3.12. Measured tank position and free surface elevation at wave probe
FS3 (h = 0.5m,T = 1.875s).

calculated approximately 40% loss of energy in the tank for every cycle
due to the two impacts occurring.

The theory will break down for small fluid depths. Fig. 3.15 presents
experimental data and numerical simulation for h/l = 0.173 and T} /T =
0.96. Because i = 0.9, the effect of secondary parametric resonance is im-
portant. We note that the wave crest is well predicted, while the theoreti-
cal values for the trough is clearly lower then in the experiments. In order
to improve the theoretical predictions we have to assume that at least the
two lowest modes have the same order of magnitude. This means a com-
plete change of the equation system implying that higher modes have to
be introduced in the nonlinear equations. The introduction of the higher
modes to be nonlinearly coupled in the nonlinear modal system will effect
the difference between trough and crest so that the agreement with ex-
periments may improve. The difference between theory and experiments
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Fig. 3.12 (continued): Measured and calculated tank position and free surface
elevation at wave probe FS3 (h = 0.5m,T = 1.875s). The curve ‘Zero’ corre-
sponds to zero-initial conditions, ‘Impulse’ means initial impulse condition.

are more evident in Fig. 3.16, where T} /T = 1.17 and h/l = 0.173. The
reason is once more that the primary mode is not dominating and this
contradicts to our asymptotic postulation. The interested readers are re-
ferred to Faltinsen, Rognebakke & Timokha (2001-2005) [49, 51, 47], in
which the secondary resonance, amplification of higher modes and cor-
responding modifications of asymptotic modal systems are extensively
elaborated.

Concluding remarks

Under certain circumstances, the two-dimensional sloshing in a rectangu-
lar smooth tank with a finite fluid depth can be theoretically studied by a
Moiseev-based modal theory. The tank oscillates with a small magnitude
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Fig. 3.13. Calculated tank position and free surface elevation at wave probe
FS3 for h = 0.5m. Effect of varying excitation period exponentially from 1.77s

to 1.875s.

and with frequencies, whose average values are close to the lowest natu-
ral frequency of the fluid motion. This modal theory is associated with
a finite-dimensional system of nonlinear ordinary differential equations
(3.78). Its derivations were based on the Miles-Lukovsky modal system
under assumption that the lowest mode is a dominant, but higher modes
have a higher asymptotic order than the dominant. An important fea-
ture of such asymptotic modal modelling is that it makes it possible to
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describe both steady-state and transient waves. Because the theory is
expressed in terms of a simple system of nonlinear ordinary differential
equations, it is considerably simpler than a direct simulations by means
of a CFD method.

The asymptotic modal system facilitates studying the steady-state
solutions. This can be done by combining variational and asymptotic
methods in manner of Faltinsen et al. (2000) [45]. The result consists of a
secular equation with respect to the primary amplitude, which gives the
sloshing amplitude—forcing frequency response. The latter can be drawn
as the response curves that are consistent with the fifth order steady-
state solution by Waterhouse (1994) [169] and, for small amplitudes, with
results by Faltinsen (1974) [43]. Owing to a singularity in the secular
equation, one can establish the critical depth h = 0.3368.. ., at which the
response curves changes from a ‘soft’-spring to a ‘hard’-spring behaviour.

In contrast to all the previous theories, the model system captures the
secondary resonance phenomena, i.e. amplification of higher modes due
to combinatoric internal resonances in the system caused by nonlineari-
ties (Faltinsen & Timokha (2001) [49]). It is from comparative analysis
with experimental data that the modal theory is not valid when the wa-
ter depth (h) becomes small relative to the tank breadth (7). This is due
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to the secondary resonance, which activates a tandem of higher modes
and forces them to interact nonlinearly with the lowest, primary excited
mode. A series of the higher modes should therefore be considered in
similar modal analysis to have the same order of magnitude. We demon-
strated this point for a tank with h/l = 0.173. Faltinsen & Timokha
(2002) [51] conducted a series of special studies on what happens when
the depth/breadth ratio tends to zero. They placed special emphasis on
the so-called intermediate depths, 0.1 < h/l < 0.28, and showed that
accurate description of the resonant waves needs in that case the forth-
order Boussinessg-type asymptotics. Importance of the damping was also
pointed out.

Experimental studies by Faltinsen et al. (2000) [45] demonstrate that
it takes a very long time for transient fluid motion to die out. This does
not occur during observation period of 5 minutes, which corresponds
to the order of 150 — 200 oscillations in terms of the excitation period.
The consequence is that the steady—state nonlinear analysis in a smooth
tank can have limited applicability. Modulated (‘beating’) waves occur
as a consequence of transient and forced oscillations. Since we could not
exactly state what the initial conditions were in experiments, a sensitivity
study can be performed with different initial conditions in the theoretical
model. This fact is especially important for the three-dimensional sloshing
(Faltinsen et al. (2005) [47]). For the two-dimensional case, the results are
not strongly dependent on this, but better agreement between theory and
experiments was in general obtained by using initial conditions based on
the impulse conservation. For several model tests we observed fluctuations
of the exciting frequency in an initial period up to approximately 10 s.
This effect was important to be included in the theoretical model. There is
good agreement with experimental free surface elevation when h/l > 0.28.
The latter is the limit of applicability of the finite depth theories.

The theory of this section was compared with experiments when heavy
water impact on the tank ceiling occurred. The experimental free surface
elevations showed a clear influence of the impact. It was speculated that
this is due to energy dissipation and phenomenological linear damping
terms are introduced in the discrete modal system. Good agreement with
the experiments may then be demonstrated. This is an area of future
research.
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3.3 Sloshing in a circular cylindrical tank

The modal methods can be developed to describe three-dimensional slosh-
ing in a circular cylindrical tank (see, Abramson (1966) [1], Narimanov
(1957) [134], Hutton (1963) [80] and Dodge et al. (1965) [40]).2 These are
based on an asymptotic procedure, in which the functional sets {f;} and
{¢n} are associated with the linear sloshing modes

fT :fnm (67 77) = fam (&) Sin[cos]m?;

Fom(©) =% T () = 0.

written in the cylindrical coordinate system (z, &, 7).

Miles (1976) [125], Lukovsky (1976,1990) [113, 114] showed that
derivation of asymptotic modal systems may start from the general modal
system (3.47) and use Moiseev’s asymptotic technique. The latter selects
the lowest natural modes fi1(§)sin(n) and f11(€) cos(n) of (3.95) to be
dominating and having the lowest asymptotic order ~ H'/3  where H is
the forcing amplitude (see, Eq. (3.57) and a similarity to the resonant
sloshing in a rectangular tank). The primary modes should be coupled
nonlinearly and implicitly depend on secondar-order modes. Experimen-
tal and theoretical studies by Abramson et al. (1962) [4], Abramson et
al. (1966) [3], Mikishev (1978) [122] and Faltinsen et al. (2000) [45] have
shown that contribution of the second-order modes cannot be neglected.
These nonlinear modal systems are valid when the forcing frequencies are
close to the lowest natural frequency.

(3.95)

3.3.1 Asymptotic modal system

By using similar technique as described in § 3.2.1, Lukovsky (1990) [114]
have derived a five-dimensional nonlinear modal system for sloshing in
a circular cylindrical tank. This modal system accounts for two primary
and three secondary modal functions. The system was applied to re-
derive several results on steady-state regimes by Dodge et al. (1965) [40],
Lukovsky (1976) [113], Narimanov et al. (1977) [135] and Miles (1984)
[126, 127]. Gavrilyuk et al. (2000) [65] showed that the model system by
Lukovsky (1990) [114] may be a good alternative to the CFD methods
for simulating the transient waves and visualising the fluid flows.

2 Henceforth, we consider the scaled problem, which assumes the radius R; =1.
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In accordance with Lukovsky (1990) [114], we express the free surface
by the following five-modes anzatz:

z = f(&m,t) = [ri(t) sinn + p1(t) cosn] f11 () + po(t) for (§)+
+ [r2(t) sin(2n) + pa(t) cos(2n)] f21 (). (3.96)
Further,we assume harmonic sway excitation, i.e. w = 0; vg; = 0; v, (t) =
—o H sinot. Lukovsky (1990) [114] showed that the modal equations cou-

pling p1,71, 2,72, po take the following form (we refer interested readers
to the original derivations)

1+ oty + df (riF + riff + ripapr + ript) + ds (pii + 2pifipi—
—Tip1p1 — 27‘11’1) — d3(pai1 — o + F1P2 — P1t2) + dy(riPe — prfe)+
+ di (poF1 + F1po) + dgrifo — o° Py cosat = 0, (3.97a)

P1+ oip + di (pip1 + pupt + ripiFy + piri)+
+ d; (T’%ﬁl + 2r17p1 —rip1t1 — 2]717.'%) + d; (p21-7.1 + rofy + r17o+
+ p1p2) — dy(p1P2 + r172) + di (poP1 + P1po) + dgpiPo =0, (3.97b)

Po + 08po + dio(rii + pipr) + ds (] + p3) = 0, (3.97¢)
Po + o3 + di (T — pipr) + di (73 — pT) =0, (3.97d)
Ty + 0arg — dy(rifr + p1i1) — 2diFipr = 0, (3.97e)
where
dl d2 d3 d4 d d6
di = —,ds=—,d}y=—,d; = —, d ,dy = —,
1 ™ 2 = ™ 3 = ™ 4 = ™ 5 = n’ 6 n
dr ds dy deg H\
d* = — d d* = —, * = —, P* = —, i
! p2’ 87 po’ ° M2 10 Ho ! a1 (3.98)

A= p/%/ sin’p ”?dgd =0.9267..

and
0’? = ilﬁ,’ tanh(mh/Rl),
Ry
where h is the fluid depth and g is the gravity acceleration. The numbers
k; are the minimal roots of the equations J(k;) = 0. The interested
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Table 3.1. Computed coefficients of the modal system (3.97).

h |po | |p2 |di |d2 d3 |da  |ds |d¢ |d7 |ds

0.20]1.272(1.707|0.539(9.287|4.99 [1.821|1.502 |4.714(-1.625|2.412|-3.982
0.25]1.103|1.398|0.457|5.024|2.312 |{1.370(0.903 |3.312|-1.023|1.588|-2.679
0.30(1.003|1.197|0.406|3.106|1.157 |{1.126|0.579 |2.551|-0.696|1.42 |-1.972
0.4010.900/0.959|0.350|1.541|0.277 |0.885(0.260 |{1.800{-0.373|0.702|-1.273
0.45|0.874(0.885|0.334(1.189|0.096 |0.820{0.175 |1.599(-0.287|0.585|-1.086
0.50]0.856(0.828]0.323(0.959|-0.015(0.775(0.115 |1.457(-0.225|0.503(-0.954
0.55(0.845|0.784|0.315|0.802|-0.086|0.741(0.072 |1.354|-0.181|0.443|-0.857
0.60]0.837(0.750/0.309(0.691|-0.133(0.717|0.040 |1.276(-0.147|0.398|-0.785
0.70]0.828|0.700|0.302|0.551|-0.189|0.683(-0.003|1.171|-0.101|0.338|-0.687
0.80/0.824|0.668|0.298]|0.471|-0.217(0.662(-0.029(1.107{-0.073|0.302|-0.626
1.00{0.821{0.633(0.295|0.392{-0.242|0.640(-0.056{1.039|-0.043|0.264|-0.563
1.20]0.820{0.616{0.294(0.359(-0.250{0.631|-0.068 |1.009|-0.030(0.248|-0.535
1.60{0.820{0.605(0.294|0.337{-0.255|0.624(-0.075|0.989|-0.021|0.237|-0.516
2.00{0.820)0.602|0.294|0.332|-0.256|0.623|-0.077|0.985(-0.019|0.235|-0.511
2.50(0.820]0.602|0.294|0.332|-0.257|0.622|-0.077{0.983|-0.019|0.234|-0.510

readers may find the hydrodynamic coefficients d;, u; in Table 3.1. These
were calculated by Lukovsky (1990) [114]. The asterisk “*’ will further be
omitted.

The system (3.97) is linear in 7, p;. By inverting the matrix A =

1+d, 73 +dapi—dspa+dspo diripy — doripy +dsry  dery dary —dapr
dirip1 — daripr + dgry  14+dip2+der?+dzpat+dspo depr —dapr—dary

diom1 diop1 1 0 0
dor1 —dop1 0 1 0
dgp1 dor1 0 0 1

it can be formally reduced to the normal form

d’p

5z = f&p,p) = AU, p, D), (3.99)

where p = (r1,p1,po, p2,72)"
The initial conditions (3.4) take for (3.99) the following form

NO

r1(0) =15 pi(0) =p7; po(0) =pd; p2(0) =pd; r2(0) =19, (3.100)
71(0) =705 p1(0) = pY; Po(0) = pY; p2(0) = p2; 72(0) = 79.

NS
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3.3.2 Free nonlinear oscillations

Free oscillations of the fluid (the tank is Earth-fixed) are described by
solutions of the Cauchy problem (3.97) + (3.100) as H = 0. Depending
on the initial conditions, these solutions can have periodic or aperiodic
structure. The (27 /0)-periodic solutions with ||p|| = 0 as ¢ — o7 imply
nonlinear free-standing waves.

Asymptotic analysis of the free-standing waves. In accordance
with Lukovsky (1990) [114] and Faltinsen et al. (2003) [46], the primary
modal functions are approximated by the periodic terms

r1(t) = Acosot + Asinot, pi(t) = Bcosot + Bsinot. (3.101)
Setting (3.101) in Eqgs. (3.97¢)-(3.97¢) gives

po(t) = co + ¢1 cos 20t + co sin20t, pa(t) = s + 81 cos 20t + $5 sin 207,

r2(t) = eg + €1 cos 20t + ey sin 20, (3.102)
where
B — dyo + dsg By — dy + dy I _dlo—dg I _dg—d7
0720624 * 202-4)° 202 7 22’

G =™ m=0,1,2 ¢ =lo(A? + A2 + B% + B?),
g

¢1 = ho(A? — A2 — B2 + B?), ¢, = 2ho(AA + BB),

so = l2(A% + A2 — B — B?), s, = hy(A? — A% + B> — B?), (3.103)
s3 = 2ha(AA — BB), ey = —2l2(AB + BA),

e; = 2ho(AB — AB), ey = —2hy(AB + AB).

By substituting (3.101) and (3.102) into (3.97a), (3.97b) and using the

Fredholm alternative fo(%/ N cos[sinjotdt = 0, k = 1,2, we get the fol-
lowing system of algebraic equations of the unknown variables A, A, B, B

Al6? —1—m (A% + A% + B?) — maB?] + m3ABB = 0,
A2 —1—m (A% + A% + B?) — myaB?] + m3ABB = 0,
o o (3.104)
Bl6? — 1 —my (B* + A2 + B?) — myA%] + mgBAA = 0,
( )

B[&% —1- mi A2 + 32 + B2 - mzAz] + m3f_1AB = 0,
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where

h h d
my = —ds (?0 - lo) +ds (72 - l2> +2d6h0+2d4h2+?1; m3 = mi—ma,

3 h d
mo = ds (l2 + 5’12) +ds (lo + ?0> —2dghg+6dshs — 71—}—2(12 (3105)

Remark 3.6. The time-shift substitution ¢ := t + ¢ changes the initial
time, the meridian-shift substitution 7 := 1+ 7 implies a rotation of the
cylindrical coordinate system around Ox. One interesting point is that
these substitutions can be considered as physically invariants, because
they do not give rise to physically different waves. In particular, this
means that the time substitution can reduce the primary term (3.101) to
have the pure cosine form r; (t) = A cos(o(t+tp)), i.e. one can assume A =
0in (3.101) and (3.104) as H = 0. Further, when analysing (3.104) with
A=0,A#0,B%+ B? #0 and m4 # 0 (see, derivations by Faltinsen et
al. (2003) [46] for similar systems), we get that B B = 0. However, for the
free-standing waves, the case B = 0, B # 0 can be omitted because, for
this case, the meridian-shift substitution reduces the free surface equation

to the following form f(n,&,t) = Acos(n)% cos(ot) +...,i.e. B=

B =0.

Accounting for very detailed algebra by Faltinsen et al. (2003) [46]
and Remark 3.6, we deduce that when m,4 # 0 the physically different
nonlinear free-standing waves can be associated with solutions of the
cubic algebraic system

A2 —1-m1A®—myB?) =0, B(6i—1-miB*—myA?) =0. (3.106)

It has the two solutions:
1. ‘Planar’ waves (A # 0,B = 0):

ri(t) =Acosat, pi(t) =0, r(t) =0,

3.107
pr(t) =A%(l, + hy cos20t), k=0,2, ( )

where
72 —1

(62 —1) —m A2 =0; A% =

(3.108)

my
2. ‘Swirling’, the so-called rotary waves (4 # 0, B # 0):
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r1(t) = Acosot, pi(t) = Bsinot,
po(t) = lo(A? + B?) + ho(A? — B?) cos 20t, (3.100)
pa(t) = lo(A% — B?) + hy(4% + B?) cos 20t, '
’f'z(t) = — 2h2AB sin 20’t,
where
7 -1
5’%—1 —m4A2 =0; mg4 =mq+mg; A? = 1—; B2 = 42, (3.110
m
4

When h/R; = O(1), the secular equations (3.108) and (3.110) make
it possible to draw the response curves (backbones) in the (o/o1, A/R1)-
plane. The backbones are drawn for ‘planar’ and ‘swirling’ waves in
Fig. 3.20 as the branches ‘O1’ and ‘O2’, respectively.

The coefficients m; and my4 are functions of h and the asymptotic
analysis is invalid as these vanish, i.e. m; = 0 or my = 0. These zeros
at a certain h implies the change from a ‘soft’-spring to a ‘hard’-spring
behaviour of the backbones. Either a fifth order theory or a secondary
resonance analysis is then required (see, the example, Waterhouse (1994)
[169] and Faltinsen & Timokha (2001) [49]) to deal with these critical
depths. In the forthcoming simulations, we centres around the case m; >
0, m4 < 0, which is true for finite fluid depths, e.g. h/Ry > 1.0.

Simulations. For simulations of the free-standing sloshing, suitable
initial values may be associated with asymptotic approximations (3.107)
and (3.109). This means that

r1(0) = A; pr(0) = A*(Ix + hi), £=0,2; p1(0) =r2(0) =0, (3.111)
7£(0) = pp(0) = 0; k=1,2; po =0 '

for ‘planar’ waves and
r1(0) = 4; p1(0) = 0; p2(0) = A%(Iy + ho) + B?(ha — Io),
po(0) = A*(lo + ho) + B*(lo — ho), 71(0) = 0; (3.112)
p1(0) = 0B; 73(0) = —40hyAB; p2(0) = 0; po(0) =0

for ‘swirling’.

‘Planar’ waves. Abramson et al. (1966) [1, 3, 4] and Mikishev (1978)
[122] have experimentally shown that the linear sloshing theory in a cir-
cular cylindrical tanks with a finite depth is valid only for the wave am-
plitude/radius ratios that are less than 0.1. In terms of our analysis,
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Fig. 3.17. Free-standing waves for H =0, h/R; = 2. A small-amplitude ‘pla-
nar’ regime. A/R; = 0.0602626; o = 4.24[rad/s]. The non-zero initial conditions
are 1(0) = 0.0602626; po(0) = 0.0011363446; p2(0) = —0.00157382.
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this implies |A|/R; < 0.1. However, the smallness of A does not mean
that the nonlinear phenomena disappear (Funakoshi & Inoue (1991) [60],
Miles (1984) [126] and Gavrilyuk et al. (2000) [65]). We can show this by
using the Cauchy problem (3.99) + (3.100).

A series of pictures in Fig. 3.17 is produced by our animation grid
program based on the modal system (3.97), (3.111) and Eq. (3.96). A
fourth order Runge-Kutta numerical integrator and a Pentium-II 366
computer were used to simulate by (3.99) + (3.100). The simulation time
depended on excitation parameters. It varied between 1/50 to 1/200 of the
real time scale. Fig. 3.17 visualises nonlinear wave patterns and, thereby,
confirms the complicated character of sloshing, even if it is of small am-
plitude. Nonlinear behaviour is especially evident during a short time
(At = 0.01 s), at which a winding of the so-called nodal curve (cross-line
of the free surface and the mean free surface z = 0) becomes quite clear.
This is in contrast to the linear sloshing theory, which always attributes
the nodal lines as a fixed intersect of a straight line. The curvature of the
nodal curve changes when the anti-nodal points (maximum and minimum
surface elevations) change their positions and the peak moves between
diametrically opposite points of the vertical wall forming a ‘“travelling’
wave. Importance of the second-order modes increases with A. For larger
A, the ‘travelling’ wave may be clearly visible for the whole period 27 /o.
We have also found that the use of asymptotic approximation (3.111)
becomes incorrect for A/R; > 0.38. In that case, simulations based on
(3.111) show aperiodic solutions.

‘Swirling’. Each column of Fig. 3.18 presents instant views on the
free surface shape and the graph (ri(¢),p1(t)). The latter has clearly
circular shape and, therefore, confirms the theoretical predictions |A| =
| B| following from (3.110). Considering an animation from the columns
gives an impression that a ‘frozen’ surface shape rotates together with
the nodal curve. The nodal line has nonzero curvature and does not
pass through the cylinder axis. This behaviour was also experimentally
observed by Mikishev (1978) [122] and Abramson et al. (1966) [3]. Note,
that these authors reported that ‘swirling’ is not stable and breaks down
when the wave elevation to the radius ratio is larger than 0.45. In our
calculations, this critical ratio has been estimated at 0.43.

Transient waves. The modal functions (r1,p2) and (p1, 72) imply longi-
tudinal and transversal wave components, respectively. The modal func-
tion py corresponds to axial-symmetric derivations. The transient waves
in Fig. 3.19 are calculated for p; = ro = 0, which means that the transver-
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Fig. 3.18. Free-standing waves for H = 0, h/R1 = 2. A large-amplitude
‘swirling’. A/R; = 0.425. The non-zero initial conditions are ri(0) =
0.425; po(0) = 0.056676; p2(0) = —0.04; p1(0) = 1.8828; 72(0) = 0.347646.
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Fig. 3.19. A transient wave for H =0, h/R; = 2. The non-zero initial condi-
tion r1(0) = 0.4695.

sal waves are not excited at t = 0. Fig. 3.19 is completed by a series of
columns containing three pictures (windows). The first window shows an
instant view on the graph (r1(t),po(t)). The graph 71 = r1(t) and a cam-



o Nomnlinear modal theory

—‘HI“II‘FIIHIIHL Jl\\‘l\\\l\\\l‘\\lL
Bttt d Bt biareliii'd
_A\\I‘\II\FII\\II\\I_ J\ll‘\ll\‘ll\\l\\\L
Bttt d Biagadsirs bioebiiid
Jll\‘l\\\}\\\l‘\\l\\ J\\\l\\\l‘\\l\‘ll\L
Bttt d Badeins b e britd
Jll\‘l\\\}\\\l‘\\l\\ _l\\\l\\\l‘\\l\‘ll\t_
Bttt d Bcdeeig byt

Fig. 3.19 (continued):

era view displaying the corresponding instantaneous free surface shapes
are shown in the second and third windows, respectively. The graph of
r1(t) shows that transient motions imply the beating (slow fluctuation of
the amplitude).

In addition to the travelling wave, two nonlinear surface waves were
discovered in Fig. 3.19. The first is observed as a pair of symmetric crests
sliding around the circular wall clockwise in the first instance and coun-
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Fig. 3.19 (continued):

terclockwise in the second. Their interferences give rise to a new surface
shape with a single peak. Furthermore, we will treat this wave as a ‘trav-
elling hollow’, because its minimum wave elevation runs along the diam-
eter of the mean free surface. The second wave is similar to the ‘planar’
regime, but it does not lead to runs of a peak. The minimum wave ele-
vation (hollow) oscillates near the axis of circular cylinder. Nodal curves
are non-connected. The two surface peaks coexist in diametrically op-
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Fig. 3.19 (continued):

posite positions of the free surface. Elevation of the one peak increases,
while the other decreases. The physical treatment of this wave may be
as an ‘underwater stream’. These three wave motions imply the three
possible modal energy re-distributions. Denoting the travelling wave as
T, the travelling hollow as H and the ‘underwater stream’ as S, we ob-
serve the following sequence of wave motions S T T SHT T HHT T



2.9 oloshing 1n a circular cylindarical tank 141

Jll\‘ll\\.f.J.\\l‘\\lL _Al\\‘l\\\l\\\l‘\\|‘_
c 3 e:s

mEENEN! Ll Bt b el
J\\I‘\\l\._f-{'\\'l\\L J\\ll\\ll‘\ll\‘ll\L
B DO b d Bodad v b beitd
_l\\\l\\\lf.J_\l\‘\l\L J\\ll\\ll‘\ll\‘ll\L
R Tl d Bagad e biee (7
Jll\‘ll\\_.f.J.\\l‘\\lL J‘\||\\||‘\||\‘||\L
B il b d Bl e b o7

Fig. 3.19 (continued):

HSS TTSHTTS ...for the case in Fig. 3.19. This sequence can
be considered as a visual characteristics of the present transients.
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Fig. 3.19 (continued):

3.3.3 Resonant sloshing due to sway excitations

When H # 0, the modal system (3.97) describes the nonlinear slosh-
ing due to sway (horizontal) excitation, whose (27)/o-periodic solutions
imply steady-state wave regimes.

Asymptotic analysis of steady-state regimes. When repeating
the asymptotic scheme developed in the previous paragraph and account-
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Fig. 3.19 (continued):

ing for the algebra by Faltinsen et al. (2003) [46], we get the following
simplified secular system
=2 2 2 * A
A(G; —1—m1A®* —myB*) =P =H— = HA,
i1 (3.113)
B(6? =1 —mB? —myA%) =0
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Fig. 3.19 (continued):

for the dominating amplitudes A and B in (3.101). The condition 4 =
B = 0 appears as the resolvability condition (see, Lukovsky (1990) [114]
and Faltinsen et al. (2003) [46]). Here, Py is the non-dimensional ampli-
tude, which is for brevity assumed to be positive.

In addition, we impose

[ma| ~ [mz| ~ |m1 +ma| ~ |m; —ma| ~ 1,




2.9 oloshing 1n a circular cylindarical tank 149

7P1+: —
7P—-7
| | | | | |
094 096 0.98 1.02 104 1.06 1.08
o/o1

!
0.92

0.9

0.8
0.7

Fig. 3.20. Response curves for ‘planar’ waves (B = 0). Sway excitations with
h/Ry =2, H/Ry = 0.01.

which holds true for the finite fluid depths and focus only on the case
my > 0,ms < 0,14 = my +ma < 0,ms = ——2 >0 (3.115)
mi1 — Mo

(the inequalities were numerically verified for h/R; > 1). After denoting
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Fig. 3.21. Response curves in the (0 /01, |A|/R1)-plane for sway excitations.
The branches P;", P, P~ show ‘planar’ waves, the branches D", D~ imply
‘swirling’. h/R; = 2, H/R; = 0.01.

>06%>10r0>01,

'=s>-1=
o1 {<00%<lora<01,

we also introduce the following norm
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Fig. 3.22. As in Fig. 3.21, but in the (o/o1,||f||)-plane, where ||f|] =
VAZ T B2 h/R =2,H/R; = 0.01.

If[l« = VA% + B?/Ry. (3.116)

‘Planar’ waves. When B = 0 the system (3.113) is reduced to the
algebraic equation
A —m, A% = P} (3.117)
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This equation defines A versus 6; = o1 /0, or, physically, the maximum
wave elevation versus the excitation frequency (correctly to O(A4)). The
branches P* yielded by positive and negative roots of (3.117) express the
response curves shown in Fig. 3.20. In order to draw these branches we
considered the following cases:

e I'>0:Eq. (3.117) can have a single (negative) root, two (one negative
and one positive) or three (one negative and two positive) roots. Let
I, be a critical value, for which Eq. (3.117) has the two roots. It
should belong to

branch R1: (A(I' —myA?) — P})y =T, —3m A2 =0. (3.118)

The turning point R can be found from the system (3.117) + (3.118)
as dividing P* into the two sub-branches P and P;. The branch
R1 collects all the turning points for various Py.

e ' < 0: Eq. (3.117) has the single negative root, which belongs to P~ .
The branch P~ decreases monotonically with increasing o/oy and
does not intersect PT.

‘Swirling’. If B # 0, the system (3.113) can be re-written in the fol-
lowing form

A(F - m4A2) = msPl*, mg = L, mg = My + ma, (3.119)
mi1 — Meo

0<B?= —i(m2A2 -T). (3.120)
mi
We demonstrate solutions of (3.119) + (3.120) in the branches DT (posi-
tive roots) and D~ (negative roots). Here, Eq. (3.119) determines A and
Eq. (3.120) defines B? through A2. Because m; > 0 and my < 0, as it
is seen from Eq. (3.115), the necessary conditions B? > 0 is fulfilled for
I' > 0. When I' < 0, we should consider

branch Bl: I'—=myA? =0, I <0. (3.121)

The system (3.119) + (3.120) has no any real solutions as I'—m2 A2 < 0.
This means that there are no real sub-branches of D+ and D~ under B1
in the response plane. We analyse (3.119) for the following cases:

e I' < 0: Eq. (3.119) has the single positive root and can have one
(turning point) or two negative roots. The set of the turning point
(for arbitrary P;*) may be presented by
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Fig. 3.23. Comparison between theory and experiments by Abramson et al.
(1966) [3]. ‘Planar’ steady-state sloshing, h/R; = 2. Calculated and measured
values are present for H/Ri: A — H/R; = 0.0454;0 — H/R: = 0.0344; O —
H/R: =0.023; 0 — H/R: = 0.0112.

branch R2: (I'A —mgA® —msP}) =T —3mgA2 = 0. (3.122)

Numerical study shows that the branch R2 is always situated under
the branch Bl. This means that both D~ and D* have no joint
points with R2 and, therefore, there are no turning points. However,
D~ shaves the generic point C' with B1.

e I'>0: Eq. (3.119) has a single positive solution. The necessary con-
dition B? > 0 is then satisfied. The branch Dt (for arbitrary I) is
shown in Fig. 3.21.

Because A # B for the resonantly excited waves, we present in
Fig. 3.22 the amplitude response curves, where the norm of periodic
solutions is approximated by Eq. (3.116). Another expression for this

amplitude norm is
1 Py
«=1/—@2I = =1)/R,. 3.123
11l =/ == @T = =) /s (3.123)

In Fig. 3.22, F and P are the turning points. In accordance with the
analysis done by Lukovsky (1990) [114] and Miles (1984) [126, 127], the
sub-branches P;, P;" and D} imply stable steady-state motions.
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Fig. 3.24. Breakdown of ‘rotating’ wave. h/R; = 2, H/R; = 0.01.

Validation by experiments. Abramson et al. (1966) [3] conducted
a series of experimental measurements of the steady-state wave amplitude
response due sway excitation. In their experiments, h = 2m; Ry = 1m.
The experiments were done for several amplitudes of excitation. Abram-
son et al. (1966) [3] presented the measured data as the half-sum of two
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Fig. 3.24 (continued):

diametrically opposite wave elevations near the wall in the plane of exci-
tation Ozz. In our modal treatment, this implies

Al = %(lpo(t) +r1(t) —p2(t)] + [po(t) — r1(t) — p2(t)])/ Ra.
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Fig. 3.24 (continued):

We use these experiments to validate our modal approximation. Fig. 3.23
confirms good agreement.

Simulations. Our potential model neglects the viscosity. The damp-
ing, however, may be important on the long-time scale, because it causes
the free surface oscillations to decay. This means that for a sufficiently
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Fig. 3.24 (continued):

long time period the actual surface wave may be close to a stable
steady-state wave. When analysing the fluid response in Fig. 3.22, we
find a frequency domain, in which no stable steady-state waves occur.
This frequency domain is bounded by abscissas of the points P and
F. In this domain, beating and chaotic waves never die out. Funakoshi
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& Inoue (1991) [60] used the two-dimensional modal system by Miles
(1984) [126, 127] to study resonant sloshing in this domain. Influence
of second-order modes onto the corresponding wave patterns was nev-
ertheless ignored. Our modal system accounts for that. We conducted a
visualisation of sloshing phenomena associated with breakdown of ‘pla-
nar’ waves and ‘swirling’. One was established that effect of the second-
order modes cannot be neglected because of exotic wave patterns and
amazing nodal curves shapes. The simulations demonstrate the break-
down of ‘swirling’. It is in good agreement with experimental observa-
tions. Since F' implies the Hamiltonian Hopf-bifurcation point (hence-
forth, Hopf-bifurcation), the steady-state ‘swirling’ corresponding to F'
can be found from our modal system. At h/Ry; = 2, H/R; = 0.01, this
implies the excitation frequency o = 4.1332231 and non-zero initial con-
ditions r1(0) = 0.091064535; p;(0) = 1.3292305; r5(0) = 0.057897668.
When changing o to 4.1, we drift the excitation frequency into the men-
tioned frequency domain between P and F'. The result of numerical sim-
ulations is present in Fig. 3.24. Here, the parametric graph (r1(t),p1(t))
shows the longitudinal r; and transversal p; components, respectively.
The camera view shows the grid animated surface shapes.

Initially, the surface waves are physically close to ‘swirling’, in which
the transversal component exceeds the longitudinal component (B > A
in context of the introduced approximation). Physically, this means that
the fluid mass centre oscillates mainly in the Oyz-plane, i.e. perpendic-
ular to the forcing plane Ozz. Such wave motions cannot be stable and,
we believe, this causes the break down. Further simulations confirm that.
The transients are shown by the (ry,p;)-trajectories. During two peri-
ods, the (ry,p1)-trajectories have nearly elliptical shapes with a vertical
focal axis. Latter on, this axis rotates counterclockwise (see, the graph
in the last column of Fig. 3.24). Because the one semi-axis of the ellipse
becomes smaller with rotation, the (r1, p1)-trajectories in Fig. 3.24 imply
waves that are similar to slowly azimuthally-rotated ‘planar’ waves. A
considerable contribution of the three second-order modes to instanta-
neous waves patterns is confirmed by the grid visualisation, e.g. nodal
curves have no a fixed shape and substantially fluctuate. Dynamics of
the nodal curves gives also a good treatment of the breakdown: ‘swirling’
breaks down because a travelling wave emerges. This is demonstrated in
the columns 6 and 7 of Fig. 3.24.
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Concluding remarks

Asymptotic modal systems may provide time efficient and robust numer-
ical simulations of the tree-dimensional sloshing in mobile tanks. These
may combine numerical and analytical methods to approximate the free
surface motions and calculate hydrodynamic loads onto the tank. Ad-
vantages of the modal modelling are demonstrated in this section for a
circular cylindrical tank by using the modal system derived by Lukovsky
(1990) [114]. The system couples both the two primary and three second-
order modes. Influence of the three second-order modes on wave patterns
was investigated for the two test situations: the free oscillations and the
resonant sloshing due to sway (horizontal) sinusoidal resonant excita-
tion of the lowest natural frequency. By accounting for the multimodal
character of both the steady-state and transient nonlinear waves, various
nonlinear phenomena were for the first time described and visualised. Ex-
amples are the travelling wave and the hydrodynamic instability implying
a passage from ‘swirling’ to chaotic motions. Simulations by means of the
modal system may highlight limitations when the maximum free surface
elevation is in the order to the tank radius or the mean fluid depth.

3.4 Sloshing in a conical tank

As it was stressed in § 3.1.3, sloshing in a conical tank will furthermore
be considered under assumption that Oz is the vertical axis. Lukovsky
(1975) [112] combined the non-conformal mapping technique in manner
of § 3.1.3 with Narimanov’s asymptotic algorithm and derived, probably
at first in the literature, a Duffing-like equation describing the weakly
nonlinear behaviour of a single natural mode mode in conical and spher-
ical tanks. Effect of higher, first of all, second-order modes has been
neglected. Later on, Lukovsky (1990) [114] generalised the derivations to
get a two-dimensional modal system, which couples the pair of primary
(longitudinal and transversal) natural modes having the same natural
frequency. Once again, the higher modes were not included into analysis.
Previous section of this book showed that even in the cases of rectangu-
lar and circular cylindrical tanks, accounting for the second-order modes
may substantially improve quantitative prediction of steady-state and
transient waves. This motivated Lukovsky & Timokha (2000) [120] and
Gavrilyuk et al. (2005) [67] to generalise earlier Lukovsky’s results. These
new results are extensively described in the present section.
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3.4.1 Natural frequencies and modes

Numerical solutions of the spectral problem (3.34) in a conical domain
Qo can be found by diverse methods based on spatial discretisation (see,
Solaas (1995) [157], Solaas & Faltinsen (1997) [158]). However, because
these discrete solutions {¢,} are not expandable over the mean free sur-
face Xy, their usage in (3.48) is generally impossible. To the authors
knowledge, the current scientific literature contains only two numerical
approaches to (3.34) which give satisfactory approximations of eigenfunc-
tions {¢n} to be used as a basis in the variational scheme of § 3.1.3. The
first approach is based on the Treftz method with the harmonic polyno-
mials as a functional basis. Results by Feschenko et al. (1969) [53] showed
applicability of this approach for computing both eigenvalues and eigen-
functions. The approximate eigenfunctions are harmonic in space and,
therefore, expandable over Xy. However, because the approximate {p,}
do not satisfy zero-Neumann condition on conical walls over X, insert-
ing them into (3.48) can lead to a numerical error for certain evolutions
of Q(t). Physically, the error may be treated as inlet/outlet through the
rigid walls over Xj.

Another appropriate analytically-oriented approach to (3.34) in a con-
ical domain was reported by Dokuchaev (1964) [41], Bauer (1982) [18§]
Lukovsky & Bilyk (1985) [116] and Bauer & Eidel (1988) [19]. It consists
of replacing the planar surface Xy by an artificial spheric segment. In that
case, the problem (3.34) has analytical solutions which coincide with the
solid spheric harmonics. Bauer (1982) [18] has shown that an error caused
by the replacement is small for relatively small o, his numerical examples
agreed well with model tests for a < 7/12(rad) = 15°.

Combining these two approaches, we will adopt the solid spheric har-
monics appearing in the papers by Bauer (1982) [18] and Dokuchaev
(1964) [41] as a functional basis in the variational method by Feschenko
et al. (1969) [53] (instead of the harmonic polynomials). The method will
be elaborated in the (x1,z2, 3)-coordinates appeared in section 3.1.3, so
that the linear natural modes (eigenfunctions) can be substituted into
(3.46), (3.48) and (3.49).

In accordance with definitions in Fig. 3.25, we superpose the origin O
with the apex of an inverted cone and direct the Ox-axis up-wards. In
that case, the cone is determined by the equation £ = cot ay/y? + 22 and
the mean free surface Yo(x = h) is a circle of radius 7o = htan a, where
h is the fluid depth. By substituting = := z/rg,y := y/ro,2 := 2/r¢, We
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Fig. 3.25. Sketch of a conical tank, its meridional cross-section G and the
transformed domain G*. £10 = h, Z20 = tana.

get a non-dimensional formulation of the spectral problem (3.34). Finally,
the resulting transformation (3.39) + (3.42) is proposed,

T =1T1; Y =1T1XT3C08x3; 2 = X1X3Sinzxs, (3.124a)
z 21 ,2 P

T =—; X2 = Y —Z ; T3 = arctan —, (3.124b)
To X Yy

so that (3.43) takes the following form

:cfa:ga;% — 23173 6(3:21?;2 + z2(1 + 3) agfgn +
+(1+ 21‘%)%12_? - ?—:wm =0 in G*, (3.125a)
22, 6615: - mlwg% = %pmTiToYm on L, (3.125b)
z2(z3 + l)aalpT;n - 125 %ﬁ’: =0 on L}, m=0,1,2,..., (3.125¢)

20
/ ’Lbo.%’zd.’ll’g =0 as m= 0, (3125d)
0
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where G* = {(z1,22) : 0 < 21 < 01,0 < 22 < Zag}, T20 = tana, 19 =
h/’f'() = ]./.7320 and

1 1
. _ . 2 _ 2. _ 2 . _
a=—"; b=—"—; p=2xixe; ¢q=-—-x125; S=1mza(z5+1); c=—.
Z1 Z1 Z2

Each nth eigenvalue of (3.125), st,,,, computes the natural circular

frequency
= = . 3- 126
Tmn V' 7o V htana ( )

The surface sloshing modes are defined by 1),,, as follows

71 = Fn(22,23) = @mn(T10,22,73); 0 <35 <290, 0< 23 < 27,
(3.127)
where
Pmn (21, T2, 23) = ¢mn($1;$2)§ionsm$3 (3.128)

is the nth eigenfunction of (3.125) corresponding to 3¢y,

Separation of spatial variables. As proved by Eisenhart (1934)
[42], the Laplace equation allows for separation of spatial variables only
in 17 inequivalent coordinate systems. The Oxqzsx3-coordinate sys-
tem defined by (3.124a) belongs to the admissible set. The separabil-
ity of (3.125a) and (3.125¢) leads to the following particular solutions

Ym[V)(1,22) = W™ (21, 72) = (szlo)V”'(’m) (z2), where

2
za(1+a3)of™" + (1+ 23 = wad)ol™ + (v = Doz = " Jof™ =0,
2

[{™(0)] < 00, (3.129a)

20
o m30v5m>(x20)7 m=0,1,..., v>m. (3.129b)
Egs. (3.129a) + (3.129b) constitute the v-parametric boundary value

problem, which has non-trivial solutions only for certain values of v. If we

!
input a test v in the differential equation (3.129a) and output oim™ (z20)

and v{™ (z20), the boundary condition (3.129b) plays the role of a tran-
scendental equation with respect to v. This transcendental equation can
be solved by means of an iterative algorithm.

In order to get an approximate ©.;,,(21,22), we should fix m and

calculate g lower roots {vm1 < Vm2 < ...Unq} of this transcendental

’l),(,m) ' (.’Ezo) =V



V11

Viz

V13

V14

Vis

Va1

V22

Va3

Va4

Va5

Y01

VY02

Vo3

Vo4

Y05

104.99
34.674
20.616
14.594
11.252
9.1279
7.6593
6.5842
5.7637
5.1174
4.5955
4.1656
3.8056
3.4999
3.2374
3.0096
2.8104
2.6347
2.4787
2.3395
2.2146
2.1020
2.0000
1.9073
1.8229
1.7456
1.6747

304.97
101.33
60.599
43.145
33.450
27.281
23.010
19.879
17.485
15.596
14.078
12.804
11.743
10.840
10.062
9.3846
8.7895
8.2626
7.7930
7.3717
6.9918
6.6474
6.3339
6.0472
5.7842
5.5420
5.3183

488.60
162.53
97.322
69.375
53.849
43.970
37.131
32.115
28.281
25.253
22.803
20.779
19.079
17.631
16.383
15.296
14.341
13.496
12.742
12.065
11.455
10.901
10.397
9.9359
9.5125
9.1225
8.7620

670.205
223.060
133.643
95.3180
74.0267
60.4780
51.0984
44.2202
38.9607
34.8086
31.4476
28.6712
26.3392
24.3529
22.6406
21.1494
19.8391
18.6787
17.6438
16.7151
15.8772
15.1173
14.4251
13.7918
13.2104
12.6746
12.1794

851.121
283.375
169.826
121.163
94.1276
76.9239
65.0138
56.2799
49.6012
44.3287
40.0607
36.5350
33.5735
31.0509
28.8764
26.9825
25.3183
23.8444
22.5299
21.3503
20.2858
19.3205
18.4410
17.6365
16.8977
16.2170
15.5876

174.50
57.847
34.525
24.536
18.991
15.466
13.029
11.245
9.8833
8.8104
7.9440
7.2301
6.6322
6.1246
5.6885
5.3102
4.9791
4.6872
4.4282
4.1970
3.9895
3.8025
3.6332
3.4795
3.3394
3.2114
3.0940

383.74
127.58
76.357
54.405
42.212
34.454
29.084
25.147
22.138
19.763
17.841
16.255
14.923
13.789
12.812
11.961
11.214
10.554
9.9647
9.4368
8.9609
8.5297
8.1373
7.7788
7.4500
7.1474
6.8681

570.710
189.907
113.749
81.1110
62.9802
51.4435
43.4573
37.6016
33.1244
29.5904
26.7300
24.3677
22.3837
20.6942
19.2381
17.9703
16.8565
15.8704
14.9913
14.2027
13.4913
12.8464
12.2592
11.7222
11.2294
10.7756
10.3562

754.108
251.039
150.427
107.308
83.3547
68.1122
57.5604
49.8230
43.9067
39.2363
35.4560
32.3335
29.7110
27.4773
25.5520
23.8755
22.4025
21.0980
19.9349
18.8913
17.9498
17.0961
16.3186
15.6074
14.9545
14.3531
13.7972

936.145
311.717
186.833
133.312
103.579
84.6588
71.5606
61.9557
54.6112
48.8133
44.1201
40.2434
36.9872
34.2138
31.8231
29.7411
27.9118
26.2917
24.8470
23.5507
22.3810
21.3203
20.3541
19.4704
18.6589
17.9113
17.2203

219.04
72.682
43.411
30.867
23.899
19.465
16.395
14.145
12.424
11.066
9.9664
9.0585
8.2960
7.6467
7.0871
6.5999
6.1719
5.7930
5.4552
5.1521
4.8788
4.6310
4.4053
4.1990
4.0097
3.8353
3.6742

401.46
133.49
79.894
56.926
44.165
36.046
30.424
26.302
23.150
20.662
18.648
16.984
15.586
14.396
13.370
12.476
11.691
10.996
10.376
9.8193
9.3172
8.8619
8.4471
8.0677
7.7194
7.3984
7.1017

582.397
193.700
116.080
82.7725
64.2682
52.4930
44.3410
38.3630
33.7917
30.1829
27.2615
24.8483
22.8213
21.0946
19.6062
18.3099
17.1708
16.1619
15.2621
14.4547
13.7261
13.0653
12.4633
11.9126
11.4069
10.9409
10.5101

762.892
253.964
152.179
108.557
84.3227
68.9010
58.2245
50.3952
44.4082
39.6816
35.8554
32.6947
30.0398
27.7782
25.8287
24.1307
22.6386
21.3171
20.1384
19.0807
18.1263
17.2606
16.4719
15.7504
15.0879
14.4773
13.9128

943.198
314.066
188.240
134.315
104.357
85.2922
72.0939
62.4152
55.0139
49.1708
44.4408
40.5334
37.2513
34.4554
32.0452
29.9460
28.1014
26.4675
25.0104
23.7027
22.5226
21.4524
20.4773
19.5852
18.7660
18.0110
17.3131
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Table 3.3. Lowest eigenvalues sy, versus ¢ in (3.130).

a = 7/20(rad) = 9%, 210 = 6.31375151

11

21

201

231

41

12

251

oUW N

1.69161543
1.69160732
1.69160621
1.69160595
1.69160589

2.84573497
2.84570219
2.84569706
2.84569576
2.84569533

3.74094126
3.74076336
3.74073562
3.74072859
3.74072625

3.94077378
3.94070620
3.94069466
3.94069154
3.94069046

5.00952743
5.00941953
5.00939994
5.00939438
5.00939237

5.25067415
5.24048147
5.24003415
5.23995717
5.23993624

6.06300500
6.06285390
6.06282517
6.06281672
6.06281356

a = w/18(rad)

=107, 210 = 5.67128182

11

21

201

231

41

12

251

O TR W NR

1.67435468
1.67434599
1.67434484
1.67434459
1.67434451

2.82105616
2.82102046
2.82101505
2.82101372
2.82101328

3.72911626
3.72891966
3.72888985
3.72888247
3.72888006

3.90948949
3.90941564
3.90940338
3.90940015
3.90939904

4.97211760
4.97199965
4.97197880
4.97197301
4.97197094

5.24157514
5.22929910
5.22880337
5.22871995
5.22869768

6.01980161
6.01963662
6.01960605
6.01959722
6.01959396

a = n/12(rad)

=157, 219 = 3.73205081

11

21

201

231

41

12

251

DU AW N

1.58619607
1.58618696
1.58618598
1.58618578
1.58618573

2.69306046
2.69301939
2.69301414
2.69301301
2.69301267

3.66367923
3.66343768
3.66340610
3.66339915
3.66339710

3.74577897
3.74569200
3.74567963
3.74567673
3.74567583

4.77506958
4.77493018
4.77490880
4.77490348
4.77490175

5.19312284
5.16902518
5.16841246
5.16831969
5.16829723

5.79104137
5.79084720
5.79081567
5.79080746
5.79080469

a =

177/180(rad) = 17°, @10 = 3.270852

62

11

21

201

231

41

12

251

DT AW N

1.55008753
1.55007920
1.55007837
1.55007822
1.55007819

2.63970945
2.63967004
2.63966537
2.63966442
2.63966415

3.63425999
3.63402305
3.63399393
3.63398785
3.63398613

3.67685337
3.67676884
3.67675761
3.67675511
3.67675437

4.69150407
4.69136817
4.69134857
4.69134392
4.69134247

5.17167976
5.14256261
5.14196335
5.14187598
5.14185572

5.69346536
5.69327620
5.69324717
5.69323994
5.69323759

a

= 7/6(rad)

=307, 219 = 1.73205081

11

21

231

201

41

12

251

DT AW N

1.30439611
1.30439483
1.30439477
1.30439476
1.30439476

2.26316175
2.26315048
2.26314977
2.26314968
2.26314966

3.18028027
3.18025142
3.18024922
3.18024890
3.18024884

3.38567547
3.38560609
3.38560054
3.38559979
3.38559965

4.08059072
4.08054108
4.08053671
4.08053602
4.08053587

4.97694361
4.92289813
4.92276719
4.92274743
4.92274426

4.97189506
4.97182421
4.97181725
4.97181607
4.97181580

a =7/4(rad) =457, 210 = 1

21

31

01

H41

51

12

DT W N

1.76737703
1.76737699
1.76737699
1.76737699
1.76737699

2.50492882
2.50492828
2.50492827
2.50492827
2.50492827

2.92657505
2.92657446
2.92657445
2.92657445
2.92657445

3.23112279
3.23112114
3.23112108
3.23112108
3.23112108

3.95154112
3.95153797
3.95153783
3.95153782
3.95153782

4.52585644
4.48306268
4.48301859
4.48301858
4.48301858

a = 7/3(rad) = 60°,z19 =

0.577350269

11

21

31

01

H41

51

12

DT W N

0.67768281
0.67767985
0.67767981
0.67767981
0.67767981

1.21443214
1.21443185
1.21443185
1.21443185
1.21443185

1.73205081
1.73205081
1.73205081
1.73205081
1.73205081

2.20645863
2.20645754
2.20645754
2.20645754
2.20645754

2.24265397
2.24265392
2.24265392
2.24265392
2.24265392

2.74980966
2.74980956
2.74980956
2.74980956
2.74980956

3.25499111
3.25499099
3.25499099
3.25499099
3.25499099
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equation. The nth (1 < n < ¢) approximate solution of (3.125), which
corresponds to ., can then be posed as

q Umk
_ T
Ymn (1, T2) = D :afgy (x_) o™ (z,), (3.130)
k=0 10
where coefficients &5:,?) have to satisfy the supplementary conditions
_(m) 0, m # 0, 2 (" (0
a,, = Coor = —5— w,, ) (10, T2)T2dx
" {_ z=1 agbn;)clfoka m = 0; o '7"30 0 Ok( o 2) ? 2

(Vmo = 0, 0™ = 1) to agree with (3.125d).

One should note, that comparing v,(,o) with the Legendre function P2

deduces .
vl (z3) = (\/1+x§> PO(1/4/1 + 23). (3.131)

In view of this point,

e} p
-p+1)(v—p+1)...(v+p) 1 1
PO\ 11 a2)=5 =P — -
/ i (p!)? 2/1+a2 2
(3.132)
(Bateman & Erdelyi (1953) [17]) and recurrence formulae for PJ* (Lukovsky
et al. (1984) [115]) re-written in the (z2,z3)-coordinates as
(m)

v—1>

(v +m + Dzaof™ = 2(m + D[ + 23)ol™) — ™),

p=1

(v +m+ 1)l = 20+ 1)pf™ — (v —m)(1 +23)v

o v—1" "% (3.133)
dvy™ 1. m m
B = o e = = mp)

!
facilitate computing oi™ (z2) and o™ (z2) for arbitrary o, m and v >

m. We give some of roots for m = 0,1 and 2 in Table 3.2.

The Treftz method based on (3.130). Representation (3.130) and
the Rayleigh-Kelvin minimax principle for the spectral problems (3.125)
make it possible to compute approximate eigenvalues s, . The numerical
scheme implies

0Jm

W:o, i=1,2,....,q; m=0,1,2,..., (3.134a)
n
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_ W\ | O O MW\’
Jm_/*[p(axl) +2q8$1 6:13’2 +s(61’2 +

2
+ %'gbfn]dazldxg - . p2.drs, m=0,1,... (3.134b)
0

and, as a consequence, leads to the spectral matrix problem
detl {af"} = (b} =0, ii=1,....q, (3.135)

where the symmetric positive matrices {ag”)} and {bz(]m)} are calculated
by the following formulae

20
bgn) = xfo/o w2w,(,723w,(,:3dx2, i,j=1,...,q, (3.136)
Z20
wi™) Wi | (m
az(;") =T / T2 { [mlo oy T2 s w,(,mj)_ dza,
0 T1=T10

ij=1,...,q. (3.137)

The spectral problem (3.135) gives not only approximate eigenvalues,
but also eigenvectors expressed in terms of coefficients {ai’,’j), k =
1,...,q}, n = 1,...,q. Being substituted into (3.130), these eigenvec-
tors determine eigenfunctions ¥, (21,22), n =1,...,q.

Furthermore, positive eigenvalues {sp,, n =1,...,q} of (3.135) are
posed in ascending order. Fixing m and evaluating some of the lower
approximate s, versus ¢ (see, Table 3.3), one displays convergence of
the Treftz method. Our numerical experiments with s¢,,1, m > 0 showed
that 5-6 basis functions (¢ = 5 or 6) guarantee 5-6 significant figures, in
general, and 10-12 significant figures for a > 45°, in particular. Weaker
convergence for smaller a can be treated in terms of the mean fluid depth
19 = h and geometric proportions of ()¢ versus a. If @ — 0 then z19 = o©
and @)y becomes geometrically similar to a fairly long circular cylinder.
The linear sloshing modes (eigenfunctions of (3.34)) in a circular cylindri-
cal tank are characterised by exponential decaying from X to the bottom
(see, Lukovsky et al. (1984) [115]), but, in contrast, the functions (3.130)
have power asymptotics.

Natural frequencies versus a. Fig. 3.26 shows that s,,,, and, there-
fore, omn, which are defined by (3.126), decrease monotonically with in-
creasing . Besides, a general tendency consists of 3¢, — 0 as a — 90°,



0.4 dloshing 1n a conical tank 1690

0.05 0.1 0.15 0.2 0.25 0.3 0.35

/180

Fig. 3.26. Lowest eigenvalues sz;; versus a(deg).

Table 3.4. Eigenvalues 51, 2c11 and s2; versus a.

0 0
01 711 21 Q| 701 711 21

3.8228(1.8251(3.0323 (|29 | 3.4088 |1.3239|2.2939
3.8042)1.7925(2.9874||31 (3.3616|1.2848 |2.2321
3.7844(1.7594|2.9414 (|33 |3.3110|1.2452|2.1691
3.7633|1.7258(2.8941 (|35 | 3.2569 | 1.2052|2.1049
3.7407|1.6916|2.8457 (|37 |3.1991 |1.1649|2.0396
11(3.7166|1.6570|2.7960|39 | 3.1374|1.1242 {1.9732
13(3.6909(1.6218|2.7451 (|41 |3.0715(1.0831|1.9056
15(3.6634|1.5862|2.6930(|43 |3.0013(1.0417|1.8370
1713.6340(1.5501|2.6397 (|45 |2.9266 | 1.0000|1.7674
19(3.6025|1.5135|2.5851||47|2.8471(0.9580|1.6967
2113.56891.4765|2.5293 (49 [2.7628|0.9156 [1.6250
23(3.5328|1.4390|2.4723 |51 (2.6734|0.8730|1.5524
25(3.4943|1.4011|2.4140(/53 [2.5789|0.8300|1.4788
2713.4530|1.3627 (2.3546

© N w0

but each eigenvalue sz,, has a proper decaying gradient. As a result,
some of the natural frequencies may become equal at an isolated a. We
demonstrate this fact by points A and B in Fig. 3.26. The point A cor-
responds to a ~ 19.2°, where 031 = 01, and B occurs at a ~ 30°, where
012 = 051-

In accordance with theorems by Feschenko et al. (1969) [53], the prob-
lem (3.34) has a denumerable set of real positive eigenvalues and each sz,
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continuously depends on smooth deformations of (Jy. Both appearance
and ‘split’ of multiple eigenvalues are consistent with these theorems.
Moreover, the matrices {a%")} and {bg;")} are symmetric and positive
and, therefore, the crossings in Fig. 3.26 do not yield a numerical diffi-
culty in solving (3.135) (see, Parlett (1998) [143]). On the other hand,
Bauer et al. (1975) [20] and Bridges (1987) [31] showed that ‘split’ of a
multiple eigenvalue into simple eigenvalues may lead to secondary bifur-
cations of nonlinear sloshing regimes.

Shapes of the natural surface modes. Fig. 3.27 shows surface
modes defined by (3.127). Normalisation of these modes, which is usually
accepted in nonlinear analysis (to interpret each generalised coordinate in
(3.46a) as a generalised amplitude of F,,), requires ¥mn(Z10,%20) = 1.
It revises (3.130) to the form

q mk
Ymn(@1,22) = Y aliy (m) oi™) (), (3.138)

k=0

where
(m) q
5:1?) = N—; Nimn = Ymn (210, T20) Z J(z20)  (3.139)
mn

and {d(n?:)} are eigenvectors of (3.135).

Experimental validation. Bauer (1982) [18] has performed ex-
perimental measurements of the lowest natural frequency o;; for a =
7/6(rad) (= 30°) and a = 7/12(rad) (= 15°) and distinct fluid fillings
(depths h). In order to compare our results with his experimental data,
we note that o1; = \/m\/% and, therefore, /711710, which is an
invariant for a fixed «, determines a proportionality coefficient between
o11 and \/g/h. Fig. 3.28 (011 versus /g/h) shows good agreement be-
tween our theoretical prediction and experimental results by Bauer (1982)
[18]. A statistical experimental estimate of /3c11210 = 1.63 for a = 100
was also published by Mikishev & Dorozhkin (1961) [123]. This value is
consistent with our numerical prediction 1.67.

Numerical results in Fig. 3.26 show that the natural frequencies 7,,,1
are approximately in proportion to « (rad) and to \/g/ro, namely,
V#m1Z10/c is a constant. This deduces the following formula o,,; =
Cman/g/ro (our calculations give, for instance, C; = 0.6158). Engineer-
ing of conical tanks may also be based on the formula (3.126) and nu-
merical results in Table 3.4.
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Standing wave with 011 Standing wave with 021

Standing wave with oo: Standing wave with o3;

Standing wave with g4; Standing wave with 12

Fig. 3.27. Natural surface modes for 7/4(rad)=45°. The asymmetric modes
(indexes 11,21,31,41,12) have double multiplicity, their shapes differ from each
other by azimuthal rotation of 90°.

3.4.2 Asymptotic modal system

We normalise the original free boundary problem (3.1) and its modal
analogy (3.47) by r¢. This implies
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Fig. 3.28. The lowest natural frequency o11 versus \/g . Experimental mea-
surements by Bauer (1982) [18] are compared with our theoretical prediction.

g=2; b0:= 2 pit) = Bi—(t); Ry(t) = Fall)

L i>1. (3.140
ro ro ro T8 = ( )

Furthermore, we consider the horizontal harmonic excitations
91=—9, 92=93=0; vo1(t) =vo2(t) =0, woz = —eosinot, (3.141)

where € < 1 is the non-dimensional forcing amplitude and o — o13.

The nonlinear modal system, which is presented in this section, is
based on the Moiseyev asymptotics and, therefore, it fails for shallow
fluid flows characterised by progressive amplification of higher modes
(see, Ockendon & Ockendon (2001) [140] and Faltinsen & Timokha (2002)
[51]). The Moiseyev asymptotics (Moiseev (1958) [129]) assumes that the
lowest natural modes Fi1(z2,%3) = ¥11(%10,72)30523 are of the domi-
nating character. By analysing this asymptotics for tanks of revolution,
Lukovsky (1990) [114] proposed and justified the five-dimensional ap-
proximate solutions

F*(22,23,t) = 210+ f (@2, 23,1) = T10+B0(t)+po(t) fo(x2)+[r1(t) sinzz+
+ p1 (t) cos .’L’3]f1 (.’L'Q) + [7'2 (t) sin 2x3 + pa (t) (e} 2.%'3]f2 (.’L'Q), (3142)

go(:cl , L2, .733) = P() (t)’(ﬁ(n (IBl, $2)+[R1 (t) sin .233+P1 (t) COs IL'3]¢11 (.’171, $2)+
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+ [R2 (t) sin 223 + P (t) Ccos 2$3]¢21 (5[31 , .’132), (3143)

where f;(x2) = ¥ (210, 22), ¢ = 0,1,2 (¢;1 are normalised) and
2/3.
(3.144)
When inserting (3.142) and (3.143) into the infinite-dimensional modal
system (3.47) and accounting for (3.144), we can get (correctly to O(e))
a nonlinear modal system coupling p;,71,pg, 72 and po. B
Derivation. Solutions (3.142), (3.143) deal with {fi(x2,23)},
{¢n(z1,22,23)} and modal functions B;(t), R;(t), i > 1 of (3.46) as fol-
lows

1/3.
'rINRleerPING/’ pONPONr2NR2Np2NP2~6

Y1 = Yo1; P2 = Y118inT3; 3 = P11 COST3; P4 = 1Pg; Sin 23,
<p5 = 1)91 COS 223,

= fo(x2) = Yo1(z10,22); Fo = fi(x2)sinzs = ¢11(10, 22) sinzs,

= fi(z2) cosxzz = 11 (210, 22) COS T3,
F4 = f2(.’1}'2) sin 2x3 = 21 (210, T2) sin 2z3,
Ja(2) cos 2x3 = 191 (210, 22) cOS 223;
Po(t) Zy(t); Ru(t) = Z2(t); Pi(t) = Zs(t),

Ry(t) = Zu(t); Pa(t) = Zs(t),
Bi(t) = po(t); B2(t) = ri(t); Ba(t) = pi(t); Balt) =r2(t); Bs(t) = pa(t),

q
fm(@2) = alg? + 3700 (@) 0™ (22) = @l (22), m=0,1,2.

vmk

The time-dependent $o(t) = O(€*/3) is a function of pg,r1,p1,rs and po,
i.e.

ff=z10+k (T% () + p%(t)) + po(t) fo(z2) + [r1(t) sinzz+
+ 1 (t) cos .CE3]f1 (LEQ) + [7‘2 (t) sin 2z3 + po (t) cos 2£L'3]f2 (LEQ), (3145)
where the coefficient
k]_ = _;2 /Om20 :L'2f12($2)d$2

Z10T5g
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is derived from the volume conservation condition
27 T20
QOI- 1@l = [ [ @t + 2i0f + 1 )aadradas = 0
0 0

considered correctly to O(e?/?).

The integrals Ay, Anr and 01, /08; are linearly incorporated in (3.47)
and, moreover, these integrals are linear in p. The density p can therefore
be omitted. The integrals can be expanded in series by pg,r1,p1,72 and
py correctly to O(e). Accounting for ¥a = Y° 24 3. and pursuing

) dt =1 9p;
O(e) in B2 B;, B4n 7, and Ak 2y, Zn 2522 Z), we get

Ay = as(r} + p?) + ar7po,

Ay = asry + agri (17 + pi) + a1s(pir2 — T1p2) + a1471p0,

5 5 (3.146)
Az = aspr + agp1(py + 1) + ais(r1ira + pip2) + araprpo,
Ay = a13rs — 2a7r1p1; As = arzpa + ar(r] — py)
and
An = 2ay; A = A = a1sT1; As1 = Az = a15P1,
Agy = 2a19 + 2a1177 + 2a12p; + 2a9py — 2a16p2,
Azs = Agz = agripi + 2a167a; Ass = Agq = 2az, (3 147)

Azz = 2a10 + 2a11p7 + 2a127} + 2a16p2 + 2a9po,
A = Aoy = aspi; Asy = Ao = —asri; Ay = Asy = asri,
Ass = Ass = asp1; Agr = A1s = As1 = Ay = Asy = Ag5 =0,

where coefficients a4, ..., a1s are given by the following integrals
Z20
0,0
ay =7T/ FO( )(.’L'Q).Z‘Qd:ﬂz,
0

20 4
= / (F™® (22) + — B (w2))rads,
0

2

NS NN

Z20 2
| @) + ZBD @) fu(e)radas,
0 2

asz =
0 p) (1)
a4 =7T/ (BO ($2)f12(.'172) + 2k1B0 (.’L‘Q))IL‘Qd.’L‘Q,
0

20
as :7‘(’/ B%l)(xz)fl (.’L‘Q).’L'Qd.’l?z,
0
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as=r [ (B (2y)f2 2k; B 2)Tod
6 =T (1B (z2) fi (72) + 2k1 By (22)) f1(22) T2d2,
0
T 20
ap =— 5/ B§2) (x2) f2(x2)xadas,
0

T Z20 1
as :5/0 (F2(1,1) (1-2) — EBél’l)(wQ))flz(fL?)l'Qdﬂ?Q,

Z20 1
Qa9 :g/o [Fl(l’l)(wg) + z_—gB;l’l) (xz)]fo(x2)$2dw2,

m [0 1
a0 :_/ (Fo(l,l) (z2) + FB(()LI)(-'L'2))5L'2d$2;
0 2
20 1
aii :g/ (kl[Fl(l’l) (.732) + —2B§1’1)($2)]+
0 T3
1
HIFD @) + B )] ) ) 2ad,
2
20 1
w=3 [ (A @) + 5B )] +
0 T3
1
B @) + B @) o)) and,
20
ais :71”/ Bél)(wz)fz(.’l’fz)wgdl'z,
0

20
ai4 :27T/ B§2) (.’Ez)fo(ﬂ}z)fl (.732)$2d.’172,
0

20
a5 =7 Fl(o’l) (HZ'Q)fl(SL'Q)IIIQdIL'Q,
0
w [0 1
ao =] [IF @) = B @) fa(o)oadan
0 2

20
air :27T/ B(()l)(JEz)fo(ﬂ?Q)ﬂﬁzde,
0
0 @)
a1s =7F/ By” f1(x2) f2(x2)z2das.
0
Here, we introduce the functions B(gl) , B(()2) , Bfl) ,

B® B® BO pY, R gAY pan gy g
FOO MY D ROD S DY EMY depending on b{™ (z,) and
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alm dvn(z:f;)c

™ (z2) = alT Gt m=012k=0,1,....q

These functions are expressed as follows

q q
m T m
B (w2) = a3y Db (@2); B (@2) = 50D (vt + 2™ (32),
k=0 k=0

q
BO (@) = 13" (i + 2) (wmi + D™ (22), m =0,1,2;
k=0

q b(m) b(")
B(mn)(mz _37102 ( ) ( )

i,5=1 Vi + Vg +1 7
B(m n) _ Z b(m) .’L'Q)b( )($2)
3,j=1
mm) _ 1% () (m)
B;™" b;™ b " =12
21_10 le(VmZ'i‘VnJ) , M,N y 45

10 (a,) _,,m,,wb(m)bm) (,,mb(m) () 4 1 b)) 4

(m.m) Loy n)( 2) (m.m) ~ pmn)
m,n _ i m,n _ m,n
Ey (z2) = 710 ;1 m Fy (z2) = ”zz:l Hij (z2),
F(m") = Z Vmi + Vnj) H(m")( 2), m,n=0,1,2
4,y=1

The relationship (3.144) and g = —g,92 = g3 = 0 mean that the
terms 222 and 2l 8l > of (3.47) should be calculated correctly to O(1) as

0Bi
follows
20
612 07 IB'L ¢ D1 6l3 0, ﬂz ¢ 71 3 /’ 9
- Y ;A= dzs.
9Bi {/\; Bi=p1 0B A, Bi=m o7 [ @2f1(z2)dzs

0
(3.148)

The scalar function l; reads as

L=10 + V02 +pD) + 108 + 10 (F +p2) + 10 (2 + 2)%+
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1) (L2, 1,2 1p0(r2 + p2)], (3.149
+ 17 (5P1p2 — 37riP2 + rapir2) + 1y po(ri + pi)],  (3.149)

where

l§0)= 4,2 l§1)_1

™ . 1
17107205 )

l§4) = %Gnn + %fﬂlolell; l§5) = 2210G211; l§6) = 2z10Gon

l§3) _1

2 g2 1,2 . 2
r10G1; I = §$10G007 = §$10G22;

and
20 2 20 5
GOO = 271'/ Z’zfod.’ﬂz; G11 = 7T/ Z‘zfl d.’L’Q,
0 0
20 9 20 9
Gay = 71'/ £U2f2 d$2; Goi1 = 7T/ f0f1 $2d$2,
0 0
20 9 20 4
Goi = 7T/ T2 fofrdra; Griinn = 7T/ T2 frdzs.
0 0

Consider (3.47a) as a system of linear algebraic equations in Z(t).
Accounting for (3.146) and (3.147) and solving (3.47a) correctly to O(e),
one obtains

Ri(t) =Q171 + Caorivy + Dapiry + Ciripipr+
+ Da(r2p1 — por1) + C3(p17a — rip2)+
+ Bopor1 + Bzripo,
Pi(t) =Q1p1 + Copip1 + Daripy + Cipiriii+
+ Da(r2f1 + pap1) + Cs(ri72 + prp2)+ (3.150)
+ Bopop1 + Bspipo,
Po(t) =Co(r171 + p1p1) + Dopo,
Ry (t) =Qa272 — D1(r1p1 + p171),
Py(t) =Q2p2 + D1(r1%1 — p1p1),

where
aq asays arr
Co=—— i Do=5—,
ai 4&1&10 2&1
2
Ch = 1 asa1s  Gsdag asaiy
1= —(as — - )
aio 2(11 40,10 8a1a10
a3 1 asaxs
Q2 = ; (ai1g — )s



172 o Nonlinear modal theory

1 asag as
By = —(a14 — ) Q1= 5,
2a10 aio 2a10
1 aisair ar azas
By = -—(a1a — ——); Di=— ,
2a10 2&1 as 4&2&10
1 asQ1e
Dy = —(a1s — )s
2a10 aio
2
ag as ai9 asay
D3: - —)7 02=D3+Cl.

+ Q1
2a10 daza10 a0 azas

Substituting (3.146), (3.147), (3.148), (3.149) and (3.150) in (3.47b)
and gathering the terms up to O(e) lead to a modal system with the
coefficients

d d d d d
Di=—; Doy=—; Dy=—; Dy=—; Dy=—,
251 21 141 141 141
d d d d d
DG:,U_?; D7:M_Z; D8=M—z; D9=M—Z; Dw:u—ﬁ;
dk 2dk Qdk dk (3'151)
Gi=——; Go=—2— Gg=—"—; Gy=—>
M1711 M1711 H1711 221
dk
Go= B 4=,
Mo o1 J251

where

po = a17Do; p1 = asQ1;  po = a13Q2,

dy = 2a4Cy + 2a7 D1 + a5Cs + 3a6Q1; do = asDs + ag@Q1 + 2a7 D1,
d3 = asDy + a18Q1; dy = 2a7Q2 — a5C3; ds = a5 By + a14Q1,

d¢ = 2a4Dg + a5B3; dy = d4 + %d(;; dg = dg — %d5,

di =4V df = 3 =1

The modal system takes the following form:

#1 + oiry + Di(riFy + rif2 + g + rpd)+
+ Dy (piit + 2p1iap1 — ripipi — 2r1p7) — Da(paft — rofn +F1p2 — Pria)+
+ Da(r1p2 — p17°2) + Ds(poit + 11Po) + Deribo+
+ 07 [Gir1(r? + p}) + Ga(pir2 — r1p2) + Gsripo] + Aves =0, (3.152a)
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P14+ 0ip1 + Di(pipr + pupt + ripiiis + prif)+
+ Da(ripr + 2r171p1 — r1p1iis — 2p173) + Ds(papy + 1oy + 172 + P1p2) —
— Da(p1p2 + r172) + Ds(pop1 + p1po) + Dep1ho+
+ Uf [g1p1 (Tf +p%) + Ga(rir2 + p1p2) + 93P1p0] =0, (3.152b)

o 4+ o319 — Do(pr1#y + r1P1) — 2D71p1 + 03 [2Garip1] = 0, (3.152¢)

P2 + 02Dy + Do(r1y — p1jpr) + Dr (73 — p2)—
— 03 [Ga(r} —p})] =0, (3.152d)

Po + ogpo + Dio(ri1 + pijn) + D (7] + p3)+
+ 02 [Gs(r? +p})] = 0. (3.152¢)

Here 01 = 011, 02 = 021 and 09 = 0¢; are defined by (3.126). In order to
help readers we give approximate values of the hydrodynamic coefficients
A, D; and G; (versus «) in Table 3.5. The modal system (3.152) differs
from (3.97a)-(3.97e) (circular cylindrical tank) and Faltinsen et al. (2003)
[46] (square-base tank) by terms in the square brackets. These terms
appear due to non-vertical walls, the coefficients G; vanish as a — 0.
Because to the authors knowledge the nonlinear fluid sloshing in a
conical tank has never been studied and, as matter of fact, the modal
system (3.152) has no analogies in the scientific literature, we tried our
best to quantify its applicability. The quantification can be based on re-
sults by Ockendon et al. (1996,2001) [141, 140] and Faltinsen & Timokha
(2002) [51] that associate failure of the Moiseyev ordering (3.144) with
the secondary (internal) resonance. The secondary resonance has also
been discussed by Bryant (1989) [32] (circular basin), it was examined
for large amplitude forcing by Faltinsen & Timokha (2001) [49] (rect-
angular tank) and La Rocca et al. (1997,2000) [98, 99] and Faltinsen
et al. (2003,2005) [46, 47] (square base tank). Quantification of critical
semi-apex angles «, which yield the secondary resonance phenomena,
can be done by analysing the dispersion relationship and higher periodic
harmonics of steady-state solutions as ¢ = o1. Because of dramatical
growth of the damping for higher harmonics and modes (Faltinsen et
al. (2005,2006) [47, 48]), our analysis can be limited to the second-order
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Fig. 3.29. R0: and R2i versus a.

terms. In that case, influence of the secondary resonance is associated
with the equalities
#0; 1 [0y

1
ROZZ— =17 RZ@:—

2 11 2 11

=1, i>1. (3.153)

Fig. 3.29 shows the graphs of R1i and R0:i versus «. Using the resonance
conditions (3.153) we predict the secondary resonance about o = 6° (by
mode 02) and a = 12° (by mode 22). When assuming R0i, R2i close,
but not equal to 1, for instance, |R2i, R0i — 1| < 0.1, we deduce that the
Moiseyev-based modal system (3.152) is applicable for 25° < a < 60°.

3.4.3 Resonant sloshing due to sway excitation

By using (3.144) and accounting for results by Gavrilyuk et al. (2000)
[65] Faltinsen et al. (2003) [46], we pose the dominating modal func-
tions of (3.142) in the form (3.101), where, as earlier, A, A, B and B are
unknown constants (dominating amplitudes) and o is the excitation fre-
quency. Representation (3.101) defines steady-state sloshing. By substi-
tuting (3.101) into (3.152¢) - (3.152¢) and gathering primary harmonics,
the Fredholm alternative deduces (3.102) - (3.103), where

e — Dio + Ds — 5355 _ Dig — Ds — 5355
0 2062-4) 252 ’
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Table 3.5. Coefficients of the nonlinear modal system (3.152) versus a.

a’[ Dy Do D3 Dy Ds D¢ D7 Dsg Dg Dig

251-0.1165|-0.4152|1.6116 |-0.54282.0291|0.6715|0.6055|-0.3634|-1.2498|0.7113
271-0.19271-0.4287|1.6707|-0.5790|2.0773|0.7271(0.5954|-0.3428 |-1.3445|0.8001
29 (-0.2744)-0.4447(1.7330(-0.6163|2.1288|0.7833|0.5860|-0.3217 (-1.4432|0.8964
31 (-0.3623|-0.4635|1.7990 (-0.6550|2.18380.8402|0.5773|-0.2999 (-1.5465 | 1.0009
33 [-0.4575]-0.4853(1.8691 (-0.6953|2.2427|0.8980|0.5694 |-0.2772 (-1.6548 |1.1146
35 [-0.5609|-0.5106|1.9438 (-0.7375|2.3060|0.9571|0.5623|-0.2536 |-1.7689 |1.2387
37 (-0.6740|-0.5397(2.0236 (-0.7818|2.3742|1.0177|0.5560|-0.2287 (-1.8893|1.3742
39 1-0.7984|-0.5731|2.1093|-0.8285|2.4478|1.0802|0.5506 |-0.2026 |-2.0170|1.5225
41 1-0.9360(-0.6115|2.2015|-0.8780(2.5276|1.1450(0.5461|-0.1748 |-2.1527 (1.6851
43 1-1.0891(-0.6556|2.3011|-0.9308 (2.6145|1.2126|0.5426 |-0.1454 |-2.2978 (1.8636
45 [-1.2608 [-0.7064 (2.4092 (-0.9872(2.7093|1.2837|0.5402(-0.1139(-2.4532(2.0600
47 [-1.4546 (-0.7650(2.5270(-1.0480(2.8134|1.3588|0.5390(-0.0802 (-2.6207 [2.2763
49 1-1.6750(-0.8330(2.6559|-1.1136(2.9281|1.4389(0.5392|-0.0440|-2.8019(2.5153
51(-1.92771-0.9123|2.7976|-1.1851|3.0552|1.5248|0.5408 |-0.0050|-2.9990|2.7797
53 [-2.2200(-1.0052|2.9543(-1.2633|3.1967|1.6179|0.5442|0.0372 |-3.2146|3.0731

a’[G1 Go Gs Ga Gs A k1

25 (-0.25410.6810{0.7638(0.4550(0.1446 (1.3135|-0.1324
27 1-0.2981|0.7388|0.8314(0.4965|0.1604 (1.2872|-0.1425
29 [-0.3469|0.7983|0.9007 (0.5395|0.1774(1.2597|-0.1529
31 (-0.4009|0.8597|0.9717(0.5841|0.1957(1.2311|-0.1634
33 (-0.4607|0.9233|1.0448(0.6307|0.2155(1.2013|-0.1743
35 [-0.527210.9896|1.1202(0.6795|0.2370(1.1704 |-0.1855
371-0.6012|1.05881.1984|0.7307(0.2603|1.1384|-0.1972
39 (-0.6840|1.1316|1.2797(0.7848|0.2857(1.1054 |-0.2094
41 (-0.7768(1.2084(1.3647|0.8420(0.3136(1.0713 [-0.2221
43 (-0.8815(1.2899(1.4539|0.9028|0.3440(1.0361 (-0.2356
45 (-1.0000(1.3767|1.5482|0.9678|0.3774(1.0000 (-0.2500
47 (-1.1350(1.4697(1.6483|1.0376|0.4142({0.9629 (-0.2653
49 (-1.2897(1.5700(1.7552(|1.1128|0.4548(0.9249 (-0.2818
51 [-1.4683|1.6787|1.8703(1.1944|0.4996(0.8859 |-0.2997
53 [-1.6760|1.7972|1.9951(1.2834|0.5493(0.8461 |-0.3192

D9+D7+5%g4 Dg—D7+5§g4 _ o

by — - © Fm= -2 m=0,1,2.
2 2065 -4) 7 » Im=

203
By inserting (3.101), (3.102) into (3.152a), (3.152b) and using the Fred-
holm alternative, we derive the following system of nonlinear algebraic
equations coupling A, A, B and B

A[o? —1—m (A% + A% + B?) — myB?*| + m3ABB = HA,

)
A[6? —1—my (A% + A% + B?*) — myB?| + m3ABB = 0,
o o (3.154)
Blo} — 1 —my(B* + A% + B?) —myA?] + m3BAA =0,
( )

B[} —1—my(A? + B> + B?) — ma A% + m3AAB =0,

where
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Fig. 3.30. m;(o1, @) as functions of a.

my = —Ds(3ho — lo) + Ds(3ha — I2) + 2Dsho + 2Dshy + 5D1—
— 57 [3G1 — Ga(lz + Sho) + Ga(lo + Sho)] ,

mo = Dg(l2 + %hz) + D5(l0 + %ho) — 2D6h0 + 6D4h2 — %Dl + 2D2—
— &7 [1G1 + Ga(lo — 3ho) + G3(lo — ho)],

m3 = MM — Mj.
(3.155)

The system (3.154) is similar to the original eq. (14) by Gavrilyuk
et al. (2000) [65] (sloshing in circular cylindrical tanks); its resolvability
condition is mg3 # 0. Solutions of (3.154) depend on the actual values of
m; which are functions of o and a (m; = m;(o,a)). Taking into account
that ¢ ~ o1, we can consider m;(o1,a) (see, the graphs in Fig. 3.30).
These graphs establish that ms > 0 for a < 60° and o — 0.

Using derivations of the previous section and Faltinsen et al. (2003)
[46], the system (3.154) can be re-written in the equivalent form

A(&% —-1- m1A2 - szZ) = HA,

L 3.156
B(Gi —1—miB* —myA®) =0, A=B=0. ( )
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Vanishing A and B makes it possible to treat A and B as dominating
longitudinal (along oscillations of the tank) and transversal (perpendicu-
lar to the oscillations) amplitudes of steady-state waves, respectively. The
system (3.156) has only two classes of solutions. The first class suggests
B = 0 and describes ‘planar’ regime. Egs. (3.156) take then the following
form

A(? —1—-m1A?) = AH; B=0. (3.157)

The second class (B2 > 0) describes ‘swirling’ (wave patterns imitate
a rotation of the fluid volume around axis Ox). The algebraic system
(3.156) falls then into the single equation with respect to A

A(G} —1-myA?) = msAH, ms = —%, ma=my+my  (3.158)
3

and the auxiliary formula for computing B

1 1 AH
1 1

Lukovsky (1990) [114] and Faltinsen et al. (2003) [46] showed that
response curves of ‘planar’ and ‘swirling’ depend on m; and my, respec-
tively. Zeros of m; and my4 at isolated semi-apex angles o imply a passage
from a ‘hard-spring’ to a ‘soft-spring’ behaviour. If a < 60°, response
curves of the ‘planar’ regime are always characterised by the ‘soft-spring’
behaviour (similar to the case of circular cylindrical tanks, Lukovsky
(1990) [114]). However, the response curves of ‘swirling’ change their be-
haviour at o ~ 41.1° (210 = h/ro = 1.14...). Fig. 3.31 and Fig. 3.32
show the typical branching for & = 30° and a = 45°, respectively. The
stability analysis used technique by Faltinsen et al. (2003) [46].

The system (3.152) is linear in #;, ;. By inverting the matrix 4 =

14Dy 124+ Dap?—Dapa+Dspo (D1 — Da)rip1 + Dara —Dasp1r Dayr1 Der:
(D1 — D2)rip1 + Dara 14D1p24+Dori4+Dapa+Dspo —Dar1 —Dap1 Depi
—Dgp1 —Dor1 1 0 0
Dg'r‘l —Dgpl 0 1 0
Dior1 Diop1 0 0 1

it can be re-written in the normal form (3.99), where p = (r1,p1,72,P2,00)7

and

U = —oi(r1 + Gir1(r] + pi) + Ga(para — r1p2) + Gsripo)—
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Fig. 3.31. Longitudinal (A) and transversal (B) amplitudes of steady-state
resonant motions versus o /a1. The results are given for o = 30° and H = 0.02.
Branches P, P, and P3P, imply ‘planar’, D; D, denotes ‘swirling’ waves. R is
the turning point, which divides the branch P+ into stable (P; R) and unstable
RP5 subbranches. C is the Poincaré-bifurcation point. Here P4C denotes the
stable ‘planar’ solutions and C P; presents unstable ones. ‘Swirling’ is associated
with the branches D— and D+. The Hopf-bifurcation point F' divides D+ into
D1 F and FD,, where D1 F implies unstable solutions, but F D> denotes a
stable ‘swirling’. There are no stable steady-state solutions for /o1 between
abscissas of R and F.

—Dir1 (7 + B2) — 2D2p1 (p171 — r1p1) + Ds(F1p2 — Prria) — Dsirpo+
+ AHo? cos ot;

Us = —oi(p1 + Gip1 (r} + p}) + Ga(r172 + pipa) + Gapipo)—

— Dip1 (B +77) — 2Dt (ripy — prvt) — D3(F1ra + p1p2) — Dspipo;
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Fig. 3.32. The same as in Fig. 3.31, but for o = 45°.

Us = —03(r2 + 2Gar1p1) + 2D77 1 p1;
Us = —05(p2 = Ga(r} — p1)) — D (i — pY);
Us = —og(po + Gs(r +p7)) — Ds(F} + pY).

The initial conditions should be defined from (3.100).

We solved the Cauchy problem (3.99), (3.100) by the fourth-order
Runge-Kutta method. The simulations were made by a Pentium-II 366
computer. The simulation-time depended on the parameters of excita-
tion. It varied between 1/10 to 1/300 of the real time-scale. Solutions
(3.101), (3.102) made it possible to get initial conditions (3.100) to sim-
ulate steady-state regimes. These initial conditions were
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Fig. 3.33. Visualisation of ‘swirling’ for o« = 30°, H = 0.02, o/o1 =
0.9967, A = 0.35, B = 0.419 with r1(0) = 0.35,p2(0) = 0.122, po(0) = 0.469,
p1(0) = 0.1494, 75(0) = 0.316.
r1(0) = 4; pi(0) = A% (I + hw), k=0,2; p1(0) =r2(0) =0, (3.160)
7(0) =pe(0) =0; k=1,2; po =0

for ‘planar’, and
r1(0) = A; p1(0) = 0; p2(0) = A*(Iz + ha) + B*(he — 1),
po(O) = A2(l0 + ho) + Bz(lo — ho),

71(0) = 0; p1(0) =0B; 72(0) = —4ohaAB; p2(0) =0; po(0) =0
(3.161)

for ‘swirling’ regime, respectively.

Typical three-dimensional wave patterns are presented in Fig. 3.33,
3.34 and 3.35. In particular, Fig. 3.34 and 3.35 illustrate the travelling
wave phenomenon (see, movements of the peak C), which is explainable
by contributions of the second-order modal functions 3, ps and po.
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Concluding remarks

Linear and nonlinear sloshing of an incompressible fluid in a conical tank
was analysed within the framework of inviscid potential theory. Using a
domain transformation technique by Lukovsky (1975) [112] and a func-
tional basis, which satisfies both the Laplace equation and the Neumann
boundary condition on the tank walls, we found the approximate lin-
ear sloshing modes. The method guarantees 5-6 significant figures of the
linear natural frequencies with only 5-6 basis functions. The numerical
results were validated by experimental data.

By utilising the approximate linear natural modes and results by
Lukovsky (1990) [114] and Faltinsen et al. (2000) [45], we derived a non-
linear finite-dimensional asymptotic modal system. The derived modal
system is a novelty in the scientific literature. It couples five natural
modes and makes it possible to analyse resonant sloshing due to a hori-
zontal harmonic excitation with the forcing frequency close to the lowest
natural frequency. Applicability of the modal system is limited by possi-
ble progressive activation of higher modes caused by the secondary reso-
nance. This was predicted for the semi-apex angles 6° and 12°. Besides,
shallow fluid sloshing (Faltinsen & Timokha (2002) [51] and Ockendon
& Ockendon (2001) [140]) was quantified for a > 60°. Our nonlinear
modal theory should be applicable in the range 25° < a < 60°. Passage
to a > 60° needs significant revisions of the present modal technique
towards the Boussinesq asymptotics, in the manner of Faltinsen et al.
(2002) [51].

The analysis finds ‘planar’ and ‘swirling’ steady-state regimes as well
as a frequency domain, where ‘chaotic’ waves (there are no stable steady-
state regimes) are realised. Advantages and possibilities of the modal
system in engineering and for visualising realistic wave patterns were
demonstrated. A further perspective can be a detailed study of “chaotic”
waves. The papers by Funakoshi & Inoue (1990,1991) [59, 60] are useful
in this context.



Nonlinear modal theory

Fig. 3.34. Visualisation of ‘planar’ regime for o = 30°, H = 0.02, o/01 =
0.936, A = 0.2 with 71(0) = 0.2, p»(0) = —0.0117, po(0) = 0.00314.

Fig. 3.35. Visualisation of ‘planar’ regime for o = 45°, H = 0.02, o/o1 =
0.9463, A = 0.2 with r1(0) = 0.2, p2(0) = —0.011, po(0) = —0.1137.
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Compressible potential flows with free
boundaries

Surveys by Nevolin (1984) [137], Perlin & Schwartz (2000) [144], Faltin-
sen & Timokha (2001, 2002) [49, 51], Ibrahim et al. (2001,2005) [83, 82]
and La Rocca et al. (2002,2005) [100, 101] as well as previous chap-
ter outline theoretical and experimental results emphasising nonlinear
gravity /capillary-gravity waves of the contained fluid due to resonant
forcing. Incompressible potential flow is common and the forcing fre-
quency is close to the lowest natural frequency. The interfacial waves
occur relative to a static hydrodynamic equilibrium caused by surface
tension and gravitation, which plays the role of a zero-order approxima-
tion in suitable asymptotic schemes (Faltinsen & Timokha (2002) [50]).

Contactless technology in chemical industry and material science may
utilise acoustic loads for positioning the fluid, e.g. droplets, within the
container (see, experiments on-board the Second United States Micro-
gravity Lab by Wang (1996) [167], Apfel et al. (1998) [9] and Lie et
al. (1998) [104] as well as model tests obtained within the framework
of the NASA KS-135 space program by Wanis et al. (1999) [168] and
the MICREX experimental program of the European Space Agency,
Lierke (1991) [106]). This requires to account for the compressibility. The
same is true for the high-frequency vibrations of the container that have
been examined by Lubimov & Cherepanov (1981, 1986) [109, 110], Bezh-
denezhnikh et al. (1991) [27], Khenner et al. (1999) [92] and Ivanova et
al. (1998, 2001) [84, 85, 86]. These vibrations yield a variety of prominent
physical phenomena and change the time-averaged fluid shapes, e.g. saw-
tooth (between two-layer fluids of similar densities) and inclined (fluid-gas
system) reliefs were detected by Wolf (1969) [171], Bezdenezhnikh et al.
(1984) [26] and Ganiyev et al. (1977) [61]. Theoretical studies are as a rule
based on either equivalent pendulum-like mechanical models, or CFD-
methods, or asymptotic schemes (Lubimov & Cherepanov (1986) [110],
Beyer et al. (2001) [24]).
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The time-averaged interfacial shapes owing to high-frequency loads,
have been called the vibroequilibria. First observations of the vibroequi-
libria were reported by Faraday (1831) [52]. Experimental series 39-52
of his manuscript describe the flattening of fluid drops hanging beneath
a vibrating plate. New era in studying the vibroequilibria have started
with experiments by Wolf (1969, 1970) [171, 172] and, later on, by Lyubi-
mov & Cherepanov (1981, 1986) [109], Bezdenezhnikh et al. (1991) [27],
Khenner et al. (1999) [92] and Ivanova et al. (1998, 2001) [84, 85, 86].
Many physical phenomena observed in these works may methodologically
be explained in terms of ‘vibrational forces/energy’ concept proposed by
Kapitsa (1952) [90] and developed by Blekhman (1999) [29] for simple
mechanical systems.

Analysis of the vibroequilibria was mainly conducted for relevant
problems, in which convectional flows are of principal concern, e.g. in-
fluence of the modulated gravity field on melt crystallisation has been
studied by Anilkumar et al. (1993) [8] and Lee et al. (1996) [104]. How-
ever, the fluid behaviour can in some cases be considered within the
framework of an inviscid fluid model with irrotational flows. This occurs,
for example, when the fluid density significantly larger than of the sur-
rounding gas. Corresponding experiments were presented by Wolf (1969)
[171], Ganiyev et al. (1977) [61] and Bezdenezhnikh et al. (1984) [26].
Assuming a perfect fluid with irrotational flow makes it possible to adopt
Lagrangian (Hamiltonian) technique (Lukovsky & Timokha (1995) [117])
and, as a result, to derive a variational theory of vibroequilibria.

4.1 Variational principles

Lichtenstein (1929) [105], in his classical textbook, seemingly was the
first, who gave a general formulation of Hamilton’s principle for the
motion of compressible fluids under various boundary conditions. Later
on, Friedrichs (1934) [57] recognised the variational characterisation of
free boundaries in steady potential flows. Since then, in a large num-
ber of contributions by Bateman (1930) [14], Bateman et al. (1956) [16],
Berdichevskii (1983) [21], Luke (1967) [111], Lukovsky (1990) [114], Miles
(1976) [125], Petrov (1964) [146] further types of variational principles
were employed to characterise the non-stationary motion of a free bound-
ary flow. Despite of a success in the mathematical treatment of com-
pressible flows with the fixed boundaries (see, Lions (1998) [107]), strong
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mathematical results on the fluid motion, e.g. long-time existence, blow-
up, remained rare as long as the free boundaries are involved. Even for
the local initial value problem, rigorous theories have reached only lim-
ited success. For diverse existence results compare e.g. Beyer & Giinther
(1998) [23], Myshkis et al. (1986) [132], Nishida (1986) [138], Ovsyannikov
et al. (1985) [142] and the literature cited inside. The difficulties origi-
nate in the nonlinearity and complicated coupling between the boundary
conditions and the governing differential equations. On the other hand,
due to their practical relevance, the corresponding free boundary prob-
lems continue to challenge numerically-interested mathematicians to test
new algorithms and software, see e.g. Cai et al. (1998) [33]. Numerical
schemes based on variational formulations have proved useful in this con-
tents (Wendlandt & Marsden (1997) [170]).

In this section, we centres around Hamilton’s principles applied to
non-stationary compressible fluid flows with the free boundary. It is aimed
at formulating a variety of the principles governing the compressible po-
tential flows driven by volume forces as well as by the surface tension and
acoustic loading along the free and fixed (container-) boundary parts, re-
spectively. A part of these principles (Theorem 4.1) requires the solution
of a time-dependent family of the Neumann problems for computing the
Hamilton action, the so-called kinematic subproblems. This preliminary
step may be avoided at the expense of introducing additional state vari-
ables. The latter is performed in detail in Theorems 4.3 and 4.4.

4.1.1 Definitions

Let © = (x1,22,73) be Euclidean coordinates in R® and let ¢ denote the
time. We consider the unsteady motion of a compressible fluid occupying
a time-dependent bounded domain Q(t), which contacts the walls of a
rigid container Q = {z € R3|5(z) < 0}, where 7 is a smooth function. Let
dQ(t) = S1(t)U S» U X(t) with Sy, > C 8Q, where Sy denotes the (time-
independent) location of an acoustic source and X(t) = {z € Q|&(x,t) =
0} is the moving free boundary. Further, V¢ is always assumed to point
out to the exterior of Q(¢). If ¢ = p(z,t), p = p(z,t) and p = p(x,t) are
velocity potential, pressure and density of the fluid, respectively, then the
free boundary problem considered here reads as

v (¢+§|Vso|2+v)=—w in Q) (4.1)
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p+div(pVe) =0 in Q(1) (4.2)
subject to the boundary conditions
Onp =0o0n S1(t); Onp = —|VE| 1€ on Z(t); pOnp =V on Sa, (4.3)

where U = U(z,t) is the potential of the volume forces and V = V (x, )
implies the normal velocity on the acoustic vibrator S,.

Throughout this section, 0, is the derivative relative to the outer
normal n = (ny,n2,n3) of dQ(t) and the dot denotes differentiation with
respect to the time. On X'(t) and 0X(t), respectively, the free boundary
conditions

p—20H =py on X(t), (4.4)

—VnV¢§ = BIVn|[VE|l on 8X(t) (4.5)

have to be fulfilled. H denotes the mean curvature of X', po is the outer

atmospheric pressure, which we assume to be constant, o is coefficient of

the surface tension and § is the relative adhesion coefficient between the
fluid and the bounding walls.

The equations above are completed by a barotropic pressure-density
relation

p = p(p)- (4.6)
Additionally, to guarantee mass conservation we impose
VdS=0 (4.7)
Sa

as an constraint to V.

4.1.2 Variational formulations

To establish Hamilton’s principle for (4.1)-(4.6), we temporally fix £ and
p and let ¢ be a solution (defined to within a constant) of the Neumann
problem

div(pVe) = —p in Q) (4.8)
A =0o0n S1(t); pBup =V on So; B = —|VE[ L€ on Z(t). (4.9)

As long as p is bounded positively against zero, Eq. (4.8) is uniformly
elliptic. To guarantee the resolvability of the Neumann problem (4.8),
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(4.9), we must impose Eq. (4.7) and restrict £ and p, which we choose as
state variables, to satisfy the constraint

[ pda-[ vegiéas=o.
Q(t) X(t)

This implies
/ pdQ = const, (4.10)
Q)

i.e. conservation of the total mass. Letting W = W(p) the inner energy
density of the fluid, then

p=p"W(p) (4.11)

gives the inverse function to (4.6). With this notation

o [ _ _
L(tagapafap) _/Q(t)p(2|v(’0| W(p) U) dQ (412)
~ (12| - B1510)]) - pol Q)

defines the Lagrangian of (4.1)-(4.6). In (4.12) the term o|X(t)| corre-
sponds to the free surface energy and §|S; (t)| measures the wetting en-
ergy. Due to the compressibility we have to include the work pg|Q(t)| of
external pressure.

Theorem 4.1. For a fized time interval [t1,t2] let

A(E, p) = /t " Lt (4.13)

denote the action corresponding to (4.12), considered under the restriction
(4.10), and subject to

6lts b =0,  0pltyt, = 0. (4.14)
Then any sufficiently reqular solution &, p of the variational equations
e A(&, P){0€} + 6, A, p){dp} = 0 (4.15)

— for all variations 0&,0p compatible with (4.10), (4.14) — satisfies the
equations of motion (4.1)-(4.6) in [t1,t2] (with the velocity potential ¢
computed from (4.8), (4.9) and the pressure given by (4.11)).
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Proof. Our starting point is the weak formulation of the Neumann prob-
lem (4.8) defining ¢ in dependence on &, p:

/ pipdQ = / pVoVpdQ — [ Vids+ / pEg|VE "t dS
Q(t) Q(t) X(t)

Sa

for all sufficiently smooth functions ¢ = (-, t) on Q(t). Remembering the
general differentiation rule for integrals over a time-dependent domain

d . .
— aQ = — A1l ) dQ, 4.16
il 7 L ,Jave sy /Q e (4.16)

(note that V¢ is directed toward the exterior of Q(¢)) deduces

d )
— dQ — dQ = VovydQ — | VodS. (4.17
dt/Q(t)‘"/’ Q /Q(t)m/l Q /Q(t)p eV dQ /52 (] (4.17)

The functional (4.12) is subject to (4.10) and, therefore, computing
its derivative requires

[ seaa- [ psvetaz—o
Q(t) X(t)

for the variations d¢, §p. In the following, partial derivatives d¢ 4,6, A are
computed under that assumption. We start with variations of A with
respect to p. From the definition of L and A we get immediately

to
§,A = / dp (1|V<,0|2 - i(pW) - U) + pVpViéyp dQdt. (4.18)
noJow  \2 dp

On the other hand, setting 1) = ¢ in the p-variation of equation (4.17)
and using (4.14) yields

to to
/ / pV Ve dQdt = —/ 5p(@ +|Vel?) dQ dt.
t1 JQ(1) t1 JQ(t)

Substituting this into (4.18) finally gives

t2 1 d
5,A = —/ / p (¢+—|V<p|2+—(pW)+U) dQ.
t1 Q(t) 2 dp

Similarly, by computing variations of A with respect to &, we get
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2]

0cA = {/ pVeVipdQ—
Q(t)

t1

- / 5evel™ (81l — pW — pU — po — 20H) d5+
(b

+ 0/ SE(IVE™ V|~V VE + B) dl} dt, (4.19)
ox

(concerning the variation of the surface area see, e.g. Giusti (1984) [76]).
Furthermore, variation of (4.17) with respect to £ implies

t2 tz
[ [ ovevipdqar==-[" [ e+ IveP)igve asar
t Q(t) t1 X(t)

hence
[ 2

1
SeA = {/ (p(gb+—|ch|2+W+U) +p0+20H>6§|V§|_1dE+
=(8) 2

t1
+ a/ 5¢(IVn =Y V€[V VE + B) dl} dt. (4.20)
ox
Obviously, the integrals on the right-hand sides of (4.19), (4.20) can
be thought of as linear functionals, in which the variables d¢, dp are not

coupled. Adopting this point of view, comparison of (4.19), (4.20) with
(4.15) via the Lagrange multiplier rule leads to

to
0,A{dp} = —/t A o opdQ dt,

ta
Se A{5E} = / )\/ poE|VE|~L dS di
t =(t)
for all 0&, dp with a time-dependent Lagrange multiplier A = A(¢), i.e.

1 d
¢+ 3IVel + (W) +U =X in Q)
) p (4.21)
p <<p+ §|V<p|2 +U+ W) +po+20H =Xp on X(t),
and, as a result of variation along 0%,

V|~ VEITIVnVE+ B = 0.
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When computing the pressure p from (4.11), the latter implies (4.1)-(4.6).
O

Remark 4.2. From (4.11) and (4.21) it follows
.1 2
p cp+§|ch| +U+W | +p=2Xp

along any extremal. Without loss of generality, by adding a suitable time-
dependent constant to ¢ we can assume A = 0. According to this nor-
malisation of ¢, we get

to

A= {/Q(t)(p—po) dQ — o (|Z(t)| _5|51(t)|)}dt

t1

to
+/ /Vgodet+/ ppdQ
t1 JSa Q(t)

(along an extremal). Here, the kinetic energy is expressed as an integral
over the pressure, cf. also Hargreaves (1908) [79].

ta

t1

In Theorem 4.1, the velocity potential appears as a solution of the
Neumann problem (4.8)-(4.9). Generally, for numerical purposes it is de-
sirable to exclude this constrain. Following ideas by Bateman et al. (1956)
[16] and Luke (1967) [111], we furthermore consider ¢ as an additional
independent variable. In that case, Eq. (4.8) as well as the boundary
conditions (4.9) turn into natural optimality conditions, which may be
derived from the ¢-variations of the functional

T(E.pro) = /ttQ{/Qm o(¢+ 5IveP) d@ + /S chdS} d.

Indeed,

t2
dpd = {/ —p(6p + VpVip)dQ + | Vip dS} dt
Q(t)

t1 Sa

and, after integration by parts
to

0,J = {/ (p + div(pVe))dp dQ—
Q1)

t1
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- / POrpdpdS — | (pOnp — V)dpdS—
S1(t) Sa
ta

?
t1

-/ p(3n¢—§|V§|1)590dS}dt— | wsedq
X(t) Q(t)

0, J (&, p, 0){dp} = 0 for all d¢ with dp|¢, 1, = 0 implies ¢ to be a so-
lution of (4.8), (4.9). The resolvability condition for (4.8), (4.9) is met
automatically. With this independent velocity potential ¢, one obtains

to 1
1= [ GeIvePdqdi+ [ ppda
tr JQ) 2 Qt)

The &, p-variations of the second term on the right-hand side vanishes
if 0&, dp satisfies (4.14). Thus, we get after comparison with (4.12) and
Theorem 4.1:

2]

t1

Theorem 4.3. Any sufficiently regular critical point (&, p,¢) of the func-
tional

Bere = [ | [, ol el 40+ W) da-

t1

~ o150 - plsi(o)) + |

[ Vioas - mia) |

subject to
68ltits =0, 0pltr,to =0, 6pltst =0
satisfies (4.1)-(4.6). O
The following Theorem 4.4, where ¢ and ¢ have been introduced as

independent variables, can be viewed as a counterpart to Theorem 4.3.
Let P be a primitive of 1/p:

dr
P(r) = / o) + const,

where the constant is chosen such that

d

g, P (e) =P (P*W'(p))- (4.22)

Because P is strictly monotone, the inverse function P~! exists. With
this function we have:
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Theorem 4.4. Under the constraints

Ot1 6o =0, 0@ty 0 =0

any sufficiently regular critical point (€, @) of the functional C = C(&, )
with

t . 1 2
cer=[ {[ P(-p-3IVeP -V)da-
t1 Q(t)
~o(I2@] - S0 + [ Veds - miQ]} d
Sa

satisfies (4.1)-(4.6).
Proof. For given (&, ) we determine p = p[€, ¢] with

L1 .

¢+ SIVel +U+W(p)+pW'(p) =0 in Q).
This is equivalent to

0p,B(&, p,0){0p} =0 forall ép (4.23)

with the functional B = B(£, p, ) from Theorem 4.3. In view of (4.22),
this means

(45176 +V) = Z (W) = PEPW )
= P(—p<¢+ %|Vg0|2 +U+ W))

hence, C(&,p) = B(&, p, p[€, ¢]) and Theorem 4.3 gives the assertion. O

4.2 Variational vibroequilibria

When a high-frequency vibrational loading is included, compressible po-
tential flows may behave in an unexpected way, so that the time-averaged
shapes of the free surface become far from the capillary meniscus. These
time-averaged shapes are called the vibroequilibria. By transformation to
non-dimensional variables and introduction of a small parameter charac-
terising the high-frequency contributions of the excitation we construct,
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via truncating the Hamilton action, a class of oscillatory solutions. Their
time-averaged free boundaries turn out to be critical points of a func-
tional, which can be considered as a quasi-potential for the vibroequi-
libria, a vibropotential. This is outlined in Theorems 4.6 and 4.7. To get
further information about the principal symbol and the mapping prop-
erties of the corresponding Jacobi operator in Theorem 4.10 we compute
the second variation of this potential. This makes it possible to prove
that local minima of the vibropotential imply vibroequilibria, which are
stable relative to small perturbations.

In the following, the free boundary problem (4.1)-(4.6) is considered
with a time-dependent potential

U(z,t) = —grs — w?a;z; sin(wt)
(usual summation convention over repeated indexes is used), in which
w — 00, wl|a| = const, (4.24)

i.e. under the influence of a time-periodic volume force with an amplitude
increasing proportionally to the forcing frequency. Further, we disregard
any additional acoustic source at the boundary, hence, we may set V' =0
and S(t) = Si(t) + Sa, and (4.6) is specified to the adiabatic pressure-
density relation

p=po(p/p0)"/"  (v>1).

For our purposes it is advantageous to rewrite the system (4.1)-(4.6) in
a non-dimensional form. Letting [ be a representative length, we replace
the original domains and variables according to

Qnew(t) = l_lQ(t)a Enew(t) = l_lz(t)a Tnew = l_lma thew = Wi,
as well as

Prnew = @/lzwa Pnew = p/p0l2w2> Pnew = p/p0>

DPo,new = pO/P0l2w2; Anew = a/|a|‘
Then, introducing the non-dimensional parameters
€ = |aorigl/l, 1= 0/w|aorig|’lpo, b= gl®po/o (“Bond number”),

and retaining the original notation, the system (4.1)-(4.6) takes the form
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oV (c,b + %|Vc,0|2 + pue’bxs + ea;x; sin t) = —Vp, (4.25)
p+div(pVe) =0 in Q(t), (4.26)

subject to the boundary conditions
=0 on S(t), o =—|VEE on X(t), (4.27)
p—2ue’H =py on Z(t), —VnVE=pB|Vn||VEl on 8Z(t). (4.28)

With respect to the new variables the pressure-density relation reads as

p=®/po)"". (4.29)

According to (4.24), we consider (4.25)-(4.29) under hypothesis that ¢ «
1 and u,b are fixed. Attention is paid to a cylindrical container é =
B x [0,00) over a fixed bottom B C R? and the free surface is assumed
to be a graph over B:

D(t) ={z € R® | 23 = {(x1,72,1), (x1,22) € B},
i.e. g = T3 — C
According to Theorem 4.1, which is referred to in the following ex-

clusively, we obtain (4.25)-(4.29) as the Euler-Lagrange equation of the
action-functional

to 1
Ame)=/1{/ p(5IV6P =W = by — o sint) dQ—
t1 Q(t)

—m%wwrwwwo—mmm@m (4.30)

under the mass conservation condition. As a consequence of the adiabatic
pressure-density relation, the inner energy density is given by

W (p) = const +pop™ ™" /(v — 1).

In the following we construct the 27-periodic asymptotic solutions (in
the sense explained below) of the variational equation

0A((,p;e) =0 subject to ¢ pdr = 0. (4.31)
Qt)
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Accordingly, the time varies in S = R/27. Choosing t; = 0,ty = 27, we
have to replace (4.14) by the periodicity conditions

C(:O) = C(',ZW), p(ao) = p(-,27r).

In the zero-approximation, when £ = 0, any pair ({p,1) with a time-
independent shape (o = (o(x1,22) of the free surface is a solution of
(4.31), which simply reflects the fact that an isolated fluid at rest is in a
neutral equilibrium. Let

QO = {.Z’ € RB | (m17x2) S BJO <z3z < CO(:Eer'Z)}:

then
A(Co,1;0) = —2m (po + W(1))|Qo| = 0, (4.32)

if the inner energy density W is suitably normalised: W (1) + W'(1) = 0.
A closer look at (4.30) shows, that

8A({p,1;0) =0 for arbitrary variations 6¢,dp (4.33)
under this normalisation. Therefore it is reasonable to choose the solution
G = Co(w1,22) + €1 (w1, 22,t), p- =1+epi(z,t) (4.34)

as the starting point for our construction. Here (; is normalised by the
mean value zero in time, i.e.

27
Cl ('Z.17:E27 t) dt = 0. (435)
0

The side condition in (4.31) requires
|Qo| = / Co(z1,22) dB = const, (4.36)
B
/ p1(z,t) dQ+/ ¢ (21, 22,t)dB = 0. (4.37)
Qo B

In view of (4.32), (4.33), inserting (4.34) into (4.30) gives

A(CEJ Pe, E) = EZX(CO; Clapl) + 0(83) (438)

with
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1 o 1 2 P% .
A= /0 {/QO §|V901| o2 — pbxs — a;z;ip1 sint dQ—
- /2 a;z;C1 sintdB} dt —2mp(|Xo| — B|Sol).  (4.39)
)

Here, the wave number k = (fypo)_l/ 2 has been introduced, Xy, Sy denote
the free and wetting parts of 9Q)y, respectively, and ¢; is the first order
term in the expansion

©(Ce, pe) = €p1(Co, C1, p1) + O(E?).

As may be read off (4.26), (4.27), the velocity potential ¢; is solution of
the Neumann problem

A(pl Z—ﬁl in Qo, 67,,@1 =0 on SO,

. 4.40
Bipr =(1 + [VGo) %G on o, (4.40)

The expansion (4.38) makes it possible to define the pair ({, p:) as
an e-approzimate solution of (4.31) if (o, 1, p1) is a critical point of the
truncated action, i.e.

5A(Go,C1,p1) =0 (4.41)

for all variations d(p, 0¢1,0p1 compatible with (4.35)-(4.37). To determine
solutions of (4.41), first, we have to compute the (i, p1-variations of A.

Proposition 4.5. For a fized (o, solution of the Euler-Lagrange equa-

tions _ B
¢ A(Cos C1y p1){0C1} + 0y A(Cos €1y p1){0p1} =0

— for all variations §¢;,0p1 compatible with (4.35), (4.37) - leads to a
time-periodic boundary value problem for an inhomogeneous wave equa-
tion:

@1 — k_zA(pl = —a;T; Ccost m Qo X Sl, (442)
On1 =0 on Sy % St p1 = —a;xz;sint on Xg X St (4.43)
2w
Onp1(-t)dt =0 on Xy (4.44)
0

After solving (4.42)-(4.44) we get (1, p1 from

G =0+ V)01 on T x S, (4.45)
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p1 = —k*(¢1 + azz;sint)  in Qg x S*. (4.46)

In view of (4.35), (1 is determined uniquely by (4.45).
Proof. Any stationary point of 64 = 0 subject to (4.35), (4.37) satisfies
O1 +k72p; = —azzssint + A(t) in Qg x S*, (4.47)
01 = —azzisint — A(t) +c(z) on Xy x S* (4.48)

with two Lagrangian multipliers A and c. Since

27
A(t) dt = 2me(z)
0
by (4.48), it follows ¢(z) = ¢ = const. After normalising ¢;, we may
assume X\ = const = ¢. In that case, integration of (4.47) yields

2 2m
2’627I'C|Q0| = / / P1 det = —/ / Cl dBdt =0
0 Qo 0 B

because of (4.35), hence ¢ = 0. Now, after differentiation with respect to
t, (4.47), (4.48) imply (4.42), (4.43).
O

To outline the resolvability of the boundary value problem (4.42)-
(4.44), let A((p) denote the spectrum of the Neumann-Dirichlet problem
for the Laplace equation:

Au+du=0in Qo; Gpu=0 on Sy, u=0 on Xj. (4.49)

Under mild regularity assumptions on ¥y and 8B, the embedding of the
Sobolev space H'(Qo) into L?(Qo) is compact and the trace operator u ~
u|s, maps H'(Qo) into H'/?(Xy) continuously, see e.g. Necas (1964)[136].
Then the set A((p) consists of a countable number of positive reals with
the unique limit point +oc. For k% ¢ A({p)

p1(z,t) = ¢¥(z) cost (4.50)
is a solution of (4.42)-(4.43) if ¢ is chosen according to

A+ k*p = k?a;z; in Qo; 0,0 =0 on Sp; ¢ =a;z; on Xo. (4.51)
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Then, in view of (4.50), we get via (4.45), (4.46)
G (z1,22,t) = (21, 22) sin t, p1(z,t) = pi(z)sint, (4.52)
with
G =0+ Vo) P, s =K -am). (453

Moreover, if n?k? ¢ A((p) for all n € Z, then (4.50) is the unique solution
to within a constant. This is easily seen from the Fourier separation
method. _

Concerning the remaining derivative of A by (o we get, after calcula-
tion along the lines followed from the proof of Theorem 4.1,

- 27 1 5 p2
6<0A=/ / —SIVer? + G851 — 1oy — o5
o Je, L 2 2k

— puebxs — (aizipr + asly) sint} 0(o dB dt+

+2mp / divT¢odCo dB — 2mp / (v-T G — B)oCod,
B oB

where the variation d(p is compatible with the side conditions (4.36),
(4.37). To shorten the notation, the nonlinear operator

T = (1+|VEé|?) Y2V

and the outer normal v to 0B have been introduced. Evaluating 64011 at
the extremal (1, p; of Proposition 4.5 leads to

Theorem 4.6. If k? ¢ A((o) and 1, (f, pf are taken from (4.51), (4.53)
then the pair

(CE; ps) = (CO + EG( sint, 1+ 6p; sin t)

defines an e-approzimate solution of §A =0, if and only if,

H 4 V0 —am) ~2ubrs =X on To,  (454)

with a Lagrange multiplier A\ = const. 0O
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The principal part H = 1divT( of (4.54) is the mean curvature of
Yo; hence, the problem (4.54) generalises the equilibrium condition for
a fluid-air interface in a vertical gravity field known from the capillarity
theory. In our setting, due to vibration, an additional nonlinear first-order
pseudo-differential operator appears in the equilibrium condition. Alter-
natively, (4.54) can be viewed as a counterpart to Bernoulli’s equation
for incompressible fluid flows. We call any surface Yy given by a solution
Co of (4.54), (4.55) the vibrocapillary equilibrium.

An integration of (4.54) by parts yields

2u(B10B| - b|Qol) < [BIA,

which means that the Lagrange multiplier A in (4.54) is bounded from
below in terms of the given data. In the pure capillary case there holds
equality.

As is clear from the above reasoning equations (4.54), Eq. (4.55) must
appear as a variational equation.

Theorem 4.7. Under the assumptions of Theorem 4.6 any solution (
of the equilibrium equations (4.54), (4.55) is a critical point of the time-
independent functional

1~ . .
H(CO) = _;A(COJ Cl smt,pl Sin t)

under the volume conserving variations. The explicit expression of IT
reads as

() = 20(150] = BlSo) + 5 [ (V0 = 120 = auei) + dubes) dQ.0

Henceforth, IT is called the quasi-potential of vibroequilibria or vibropo-
tential. In order to gain an insight into diverse mapping properties of the
quasi-potential IT, we study its second variation 62II. This may be of
particular interest in the stability analysis as well as in various numerical
approaches. We identify functions originally defined on Xy by constant
continuation along xs3-direction with functions on B. Obviously, the sec-
ond variation of the capillary term ITo(¢o) = |Xo| — B|So| in IT reads
as

5% Io(Go){h h} = /B (IVAE = (T¢o - Vh)?)ng dB.

Since admissible variations A must have mean value zero, this implies
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*ITo(Go){h, h} > pos.C*“||hlI3

in view of Friedrich’s inequality and |T(p| < 1. Here and in the following
[|-]]s denote the norm in the Sobolev space H?. Introducing the tangential
gradient Vy, = (D1, D2, D3) and the Laplace-Beltrami operator Ay, :

VZ]O =V - n@n, AEO = DzDz

there holds |Vh|? — (T¢o - Vh)? = |Vx,h|? and an integration by parts
implies

82 Io(Co){h, h} = — | hdivs, (n2Vs,h) dS
Xo

if h = 0 on 0B. Remembering the relation
AEOTLJ' = —CZ’rLj — 2DjH,

where ¢? is the sum of the squares of the principal curvatures of Xy, see
e.g. Giusti (1984) [76], we infer

diVEo (nszO) = diVZ}O (n3szo (n;;h)) - dinjo ('I’L3thjo (ng)) =
= n3(Ax,(nsh) + (2DsH + ¢*n3)h).

Hence
Lh = —TLgAEO (TLgh) — TL3(2D3H + 02n3)h

gives the Euler-Lagrange operator to §211,.
According to Theorem 4.6 the first variation of the nonlocal part

_1

T, (¢o) 3

/Q IV — B (¢ — agz:)?) dQ.
of IT reads as

ST, (Go){h} = —1/ V(4 — as:)2h dB.

2 /s,
This implies
8* 1Ty (Go){h, h} =
= —/ (V(’(ﬂ —a;x;)Voy + hV (¢ — aiz;)V (Y, — a3))th.
Xo
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Here, 61 has to satisfy the Dirichlet-Neumann problem
A+ k*0p =0 in Qo; 0,0 =0 on S, &Y = (az — z;)h on .

Considering the expression for the Laplacian relative to normal and tan-
gential derivatives along Xy

A=02—-2H3, + Ay, 02 = n;n;0;0;
and ¢ — a;z;| g, =0, AY|x, =0, we get
02 (¢ — a;x;) = 2HO, (¢ — a;x;).
In view of 93 = n3d, + D3, there holds
On03 = n36i + n;D30; = n365 + D38, — (D3n;)0;
and consequently
On(zy — a3) = (2n3H + D3)0n (¢ — aiz;).

Thus, we have proved:

Proposition 4.8. Under the assumption k* ¢ A((o) let
Cuy : HY2(S0) = HY2(5),  Cuy(u) = Bl
be the “capacity operator” where u denotes the solution of
Au+k*u=0 in Qo; 0,u=0 on S, T=u on X
Then there holds

511, (Go) {h, ) = /E (s — a5)hCis, ((thay — az)h) dS—

1

~3 h?*(4nsH + D3)|V(¢ — a;x;)|* dB
Yo

for variations h with mean value zero. 0O

In view of
/ uCx,udXy = / |Va|* — k*u? dQ,
Xo 0

the principal part of the capacity operator is positive, hence Proposition
4.8 implies:
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Corollary 4.9. If the data are sufficiently regular, then 6*IT, ((o) is boun-
ded on the Sobolev-space H'/?(B):

—C*|Ihllg < M1 (Go){h, h} < C*|AIl3 -

If additionally
|¢23 —a3| >c>0 on Xy,

then 6211, (o) satisfies the Garding-type inequality
Ty (Go){h, h} = pos.C**||h|[3 — C*[|Al[5.
O

To collect the results of this section in a general statement, we intro-
duce the Jacobi operator J((o) of IT via

S211(Go){g, b} = /E 0T ()[R} S0 i glon = hlos = 0.

Theorem 4.10. Assuming the data to be sufficiently regular gives:
(i) The bilinear form 6%I1((o) satisfies the Garding-type inequality

(o) {h, h} > pos.C**||h|[} — C*||l[5.

(ii) J({o) reads as

J(Co)h = —2pn3 Ax,y (n3h) + (Y — a3)Cxy ((Wazy — az)h) + mnsh
with

m = —2uc’ng — 2n3H|V (¢ — a;x;)|* + 2bun3—
— Ds (4uH + %|V(’(/J —a;7;)|? — 2bu;v3).
In particular
m = —2uc*ng — 2n3H|V (¢ — a;z;)|* + 2bun3, (4.56)

if (o is a critical point of II.
O
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Note, that the nonlocal term in (4.56) may be replaced by
203 H|V (¢ — a;z;)|* = 2n3H (2 + 4ubxs — SuH).

Finally, we place emphasis on a simple stability criterion. Obviously,
for sufficiently small wave numbers k£ the capacity operator is nonnega-
tive. Therefore, if H < 0 and bnz > ¢2, then a vibrocapillary equilibrium
is stable in the sense that

8*11(Go) {h, h} > pos.C*||hll}.

for all “interior” variations h with mean value zero. This indicates that for
convex equilibrium shapes a “vibro-force” may cause a stabilising effect.

4.3 Two-dimensional vibroequilibria

The present section gives examples of numerical vibroequilibria for small
wave numbers k and two-dimensional fluid flows in basins of rectangular
shape. The quasi-potential IT(Qo) = II({p) from Theorem 4.7, whose lo-
cal minima coincide with the stable vibroequilibria, will be used. Main
advantage of numerical schemes resting the computations upon minimisa-
tion of the functional is that these are easily combinable with the stability
analysis. However, these are characterised by some difficulties. The first
one is associated with analytical description of the admissible vibroequi-
libria, on which the functional should be minimised, and their discretisa-
tion. The second consists in matching the minimisation with solving the
Dirichlet-Neumann boundary value problem for the wave function. Some
approaches, which make it possible to overcome these difficulties, were
proposed by Gavrilyuk et al. (2004) [66] and Timokha (2005) [164].

4.3.1 Statement of the problem

Earlier, we have mathematically studied the free boundary problem on
forced motions of a perfect compressible fluid Q;(t) (irrotational flows)
in a rigid tank ), which performs translatory harmonic high-frequency
vibrations with the velocity v = —vAsin(vt)a, ||a|| = 1. Following the
original assumptions we considered small amplitudes (amplitude/tank
size ratio ¢ = A/l <« 1) and the forcing frequency v, which exceeds
significantly the primary natural frequency of the linear sloshing vy (the
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Fig. 4.1. Sketch of a vibroequilibrium in the three-dimensional case (a) and
within the framework of two-dimensional flows (b). The unit guiding vector
a = (a1,a2,a3)T, the frequency v and the amplitude A are time independent
constants. The fluid domain Qy(t) is confined to the wetted surface S¢(t) =
0Q N 0Qy(t) and the free surface Xy (t), so that Qo = (Qy), Lo = (Xy) and
S = (Sy).

latter is caused by the gravitation and the surface tension), i.e. vy /v =
O(e). In that case, the mean (time-averaged) free boundary Xy = (Xy) is
governed by the free boundary problem (4.54) + (4.55). The mean (time-
averaged) domain Qo = (Q) bounded by Xy = (Xf) and S = (Sy) is
the vibroequilibrium (see, Fig. 4.1 (a)).

Along with the differential statement, Theorem 4.7 and the conse-
quent Jacoby operator analysis employ the variational formulation: the
vibroequilibrium Qq is dynamically stable, if and only if, it delivers a local
minimum of the following functional (vibropotential):

To(Qo) = m (|50 - cosalS]) — / (017 + goy + g52)dQ+

Qo

+ / (|VY|* = B2 () — a1z — asy — a32)?)dQ — min, (4.57)
Qo Qo

subjected to

Qo C Q; dQ =V = const (4.58)
Qo

and
A + k%Y = k*(a1x + azy + azz) in Qo,
(4.59)
o =0o0n S; Y =ax+ ay+azz on X.
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Here,! | - | is the area, 9, is the outer normal derivative to 8Qq, g =
(91,92,93), |g| = 1 is the unit guiding vector of gravitation, « is the
contact angle, k is the wave number of acoustic field modulated in the
fluid, V is the fluid volume.

The integral equation (4.58) defines the volume (mass) conservation
condition. The Dirichlet-Neumann boundary value problem (4.59) ex-
presses dependence of the [wave] function ¢ (z,y, z) on Qo. The function
1) appears in the first-order approximation of the steady-state fluid mo-
tions, namely, the velocity potential of the original evolutional problem is
posed in the form ey (x,y, z) cos(vt) + o(e) (mathematical details can be
found in the previous section). Physically, these high-frequency steady-
state fluid motions are induced by vibrations of the tanks (rigid struc-
ture) and can only be possible due to mobility of X';(¢) and compressible
(acoustic) fluid flows (incompressible flows imply k£ = 0).

We introduced also two dimensionless numbers 7; and 7 calculated
by the formulae n; = 4u, 72 = —4puBo, where u = o/(v?A%lp) > 0,
Bo=gl?p/o (£Bo is the Bond number; the sign depends on direction
of gravitation vector, see Myshkis et al. (1987) [132]), g is the gravity
acceleration, p is the fluid density and o is the coefficient of the surface
tension. The solution of (4.57)-(4.58) (shapes () depends on the five
dimensionless parameters V, a, k, m1 and 7ns. Further, the functional
(4.57) can be considered as the sum of three physically different terms.
The first and second terms (at m; and 72) express contributions of the
surface tension and the gravitation, respectively. The ratio |n /71| = |Bo|
is the gravitation/surface tension energy relationship (see, Myshkis et al.
(1987, 1992) [132, 133]). The third [integral] term of II, implies the so-
called vibrational energy (Blekhman (1999) [29]). The vibrational energy
implies both the averaged (per forcing period) kinetic energy of steady-
state fluid motions caused the surface/interface waves and the averaged
(acoustic) energy associated with the compressibility.

After assuming k = 0 (incompressible flows have early been postu-
lated by Lyubimov et al. (1981) [109], Bezdenezhnikh et al. (1991) [27],
in some exercises by Timokha (1997) [162], Khenner et al. (1999) [92]
and Ivanova et al. (2001) [85]), we focus on vibroequilibria in a par-
allelepipedal tank ) with the vectors g and a to be coplanar to the
Ozz-plane. When k = 0, the vibrational energy (the last summand of
Iy) coincides with the averaged kinetic energy of steady-state motions.

! For physical clarity, we denote (1,22, 3) = (z,y, z) and redefine the Bond
number as Bo=b.
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0, 0, ™ 0

(a) (b) (c)

Fig. 4.2. Three admissible vibroequilibria in a rectangular tank: (a) curvilinear
trapezoid, (b) curvilinear triangle and (c) drop upon a plate (bottom).

Further, admissible domains () are single-connected with a piece-smooth
boundary shaped as shown in Fig. 4.2. Let 2[ be the tank breadth (dis-
tance between walls parallel to the Oyz-plane) and 2L be the tank width
(distance between walls parallel to the Ozz-plane). Assumption /L <« 1
makes it possible to neglect the meniscus along the Oy-axis and reduces
the original problem (4.57)—(4.59) to the following formulation in the
Ozxz-plane

I1(Qo) = m (| Xo| — cosalS|)—

_772/ (g1 + g32)dQ —{—/ |Vzp|2dQ —min, (4.60)
Qo Qo Qo

subjected to the following two-dimensional boundary value problem
AYp=01in Qo; Op» =0 on S; ¥ =ajz+aszz = w(zr,z) on Xy (4.61)

and the volume conservation condition (4.58). Here, in accordance with
notations in Fig. 4.1 (b), Qo, S and X deal with their traces on the
Ozz-plane, such that | - | is the length of corresponding curves.

4.3.2 Numerical method

Faraday (1831) [52], Wolf (1969, 1970) [171, 172] and Bezdenezhnikh et
al. (1984) [26] have experimentally shown that high-frequency vertical
vibrations (al||g) of the tank can dynamically stabilise the Rayleigh—
Taylor interfacial instability of the planar potential equilibrium. Review
by Nevolin (1984) [137] treats this point as the vibration-induced sta-
bility by parametric excitation of a multidimensional nonlinear system.
One way to obtain corresponding theoretical conclusions is to involve
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the Mathieu analysis of small free surface perturbations. The use of the
variational formulation (4.60), (4.61), (4.58) is an alternative approach.
When the capillary meniscus has a planar shape and is perpendicular
to g = (0,0,93)%, g3 = 1 (gravity acceleration is directed upward) and
a = /2, it becomes unstable due to the Rayleigh-Taylor instability for
(Myshkis et al. (1987, 1992) [132, 133])
2 2 ™
Bo " >y, 5" (4.62)
Assuming a||g makes it possible to find the analytical solution of (4.60),
(4.61), (4.58). It is z = 0 (horizontal planar vibroequilibrium) and
1 =const By employing the positiveness of Jacobi’s operator of (4.60)
or, alternatively, the positiveness of its spectrum (explicit form of the
Jacobi operator was derived by Beyer et al. (2001) [24], but spectral
methods were developed by Lukovsky & Timokha (1996) [118]) we arrive
at the stability criterion of the planar vibroequilibrium as follows

N2 <M %% + tanh(;q h) (463)

Comparing (4.62) and (4.63) deduces that even if (4.62) holds true (unsta-
ble capillary surface), conditions (4.63) can be fulfilled (vibroequilibrium
is stable) for sufficiently small n; = O(1/v?) and 72 = O(1/v?) owing to
the passage v — .

Another analytical solution

1 =Ci =const; a1z +asz =Cy (4.64)

of (4.60), (4.61), (4.58) exists for 71 =2 = 0 (v = 00). Here, II possesses
its absolute minimum (IT = 0) and X, is as shown in Fig. 4.3.

Experiments by Wolf (1969, 1970) [171, 172] and Bezdenezhnikh et
al. (1984) [26] described also vibrational phenomena, which cannot eas-
ily be related to the vibration-induced parametric stabilisation. This
is for instance an ‘inclined’ stationary interfacial relief occurring in a
horizontally-vibrated tank (alg) along the Oz-axis. Wolf (1969) [171]
and Timokha (1997) [162] have intuitively explained this inclination by
using a pendulum phenomenological model. Details on the pendulum
modelling are presented in the book by Ibrahim (2005) [82]); analysis of
the pendulum dynamics due to a high-frequency external forcing is for
instance given by Kapitsa (1952) [90], Landau & Lifschitz (1962) [102]
and Blekhman (1999) [29].
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a * | a
Xy % L
9 [ (o)
(a) (b) (c)

Fig. 4.3. The sketch of possible stable vibroequilibria in the limit v — oo
(m ~ m2 — 0). The planar free boundary ¥y is perpendicular to the guiding
vector a.

In the most general case, the vibroequilibria should be found from
numerical minimisation of (4.60) subjected to (4.61) and (4.58). An al-
gorithm must consist in selecting an admissible class of Qg with its ap-
propriate parametrisation/discretisation Qo = Qo(dy,...,da1), d; € R
and in matching a robust numerical scheme for the Dirichlet-Neumann
boundary value problem (4.61). The solver of (4.61) must keep uniform
accuracy for any admissible Qo(dy,...,drs)-

For domains in Fig. 4.2, we assume that Xy allows either z = f(z) or
z = f(z) normal form presentation. The functions f(-) will in numerical
schemes be associated with the cubic splines by Forsyth et al. (1977) [54]

) =2 Ai(fe)+Bi(fe) (- — i) +Cilfe)(- — +)* +Ds(fe)(- — +i)?, (4.65)

where A;, B;, C;, D; are functions of fr = f(-x) defined in the mesh points
‘k, k=0,...,M, M > 4. Since this spline technique does not need any
additional conditions at the endpoints of [-o, -a], Qo becomes a function
of {fr,k = 0,...,M}. The variables {f;} are subjected to the volume
conservation condition (4.58). To avoid the latter restriction we will use
a re-parametrisation f, = fi(d;),k = 0,..., M aiming to satisfy (4.58)
for the independent variables {d;, € R, k¥ =0,..., M1}. Proceeding this
way, the functional IT becomes a function of {dy,k=1,..., M1}.

The minimisation needs both a solution 1 € W} (Qo) of (4.61) and
computation of the last integral term in (4.60). Using Green’s identity
for the integral term

/ V)2dQ = [ 8up wdl
Qo 2o

implies that its calculation needs only the Neumann trace 0,3 on Xj.
Hence, the boundary element methods for (4.61) seem to be the most
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efficient approach to match solution of the Dirichlet-Neumann problem
with minimising the vibropotential.

Let P(&,n) € 0Qo and P*(z.z) € Qg be two arbitrary points on the
boundary and in an open part of ()g, respectively. When using represen-
tation of a harmonic function via single and double layer potentials, we
get (Mikhlin (1977) [121] p. 207)

1 1 1
(@,2) = o 7{ [m F0np = Y0, In = | dp, (4.66)

0Qo

where R = R(§,m;2,2) = /(€ — )2 + (n — 2)%. Here, In & is the two-
dimensional free space Green function and np means a unit vector normal
from 0Q)p in the point P pointing out of the domain @g. In accordance
with the rules for the single and double layer potentials, the integral
representation (4.66) can be traced on the boundary and re-written as
follows

1 1
w(z,z)d)(z’, z) = ?{ [ln Eanplb — Y0On, In I dF(E:’ﬂ)’ (4.67)
0Qo

where P*(z,z) € 0Qo and w(,, ;) is the solid angle at P*(z,2) (W(g,) =™
for smooth pieces of the boundary).

The Dirichlet trace ¢ = w(z, 2) is known on Xy, while the Neumann
trace 0p% = 0 is given on the remaining part S. Then for P* € 0Q) the
integral representation (4.67) yields the integral equation on Qg

1 1 1
®ln— —wdy, . In—|dley — | $On,, In—dle,) =
/go [ nR WOn(e,y 11 R] (&mn) /s ) nR &m

_ w(z,2), (z,2) € So;
‘“‘z@{wx,z), wes, 468

where 05, = On , - This integral equation couples two unknown func-
tions

=0, on Xyp; ¥=1 on S (4.69)

and falls, in fact, into a system of integral equations defined on smooth
pieces of 0Qo.

0Qo in Fig. 4.2 consists at most of four smooth portions. The most
complex case (curvilinear trapezoid) is presented in Fig. 4.2 (a). The
integral equation (4.68) takes in this case the following form
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/11 B(E\/1+ F12(6) [In }lz] de +/Of(—l) o () [65 In %] dn—

n=F£(§) £=-1
1

-/ " w(e) oyt - F(©2e

-1

[
n=F£(§)

(1) 1 1 1
_/0 @, (1) [agm 1_2]521 dn+/1%(§) [a,,ln R]nzodg_

w(z, f(z), 2= f(z), -1<z<L
Uy (z), z2=0, -1l<z<1;
U_(2), z=-1, 0<z< f(-1);
v, (2), z=1, 0<z< f(1),

(4.70)

where the Neumann trace & = &(z) € W—/2[—1,1] was previously de-
fined in (4.69) and the Dirichlet trace ¥ is a continuous function on the
flat portions S_ (wetted left wall), S; (wetted right wall) and Sy (bot-
tom). When taking into account the regularity results by Grisvard (1985)
[78], ¥ falls into three functions (densities)

Uy (z), —1<z<1;
T =0 (2),0<2< f(-1); Ty(—1)=0_(0); To(1) =T, (0).
W+(z)7 0<z< f(]-)7
(4.71)
The system of integral equations (4.70) couples the unknowns &, ¥y, ¥_
and ¥, . The integral kernels of (4.70) can be explicitly calculated for
admissible domains in Figs. 4.2 (a,b). Several kernels are of regular char-
acter (or have removable singularities) in their closed domains of defi-
nition. Other kernels have either the logarithmic singularity (associated
with the single layer potential) or power singularity (associated with the
double layer potential) at the corner points (endpoints). Solution ¢ and,
therefore, the unknown densities @,¥,, ¥, and ¥_ almost always have
singularities at the corner points (Lukovsky et al. (1984) [115] and Gris-
vard (1985) [78]). Singular character of the double layer potential kernels
and densities depends on both the contact angle and the curvature of Xj.
This means that boundary element schemes may lead to a considerable
error and, therefore, a refining mesh procedure is needed for varying Q)q.
Generally speaking, this causes time-inefficient computations.
We survived the appropriate boundary element algorithms based on
integral systems similar to (4.70). Typical ones are exemplified by Mis-
uno & Kodama (1990) [128] and Landrini et al. (1999) [103] imple-
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menting the boundary element scheme for the time-stepping in an evo-
lutional fluid sloshing problem. As matter of fact, Misuno & Kodama
(1990) [128] ignored the mentioned corner singularities, while Landrini et
al. (1999) [103] have only discussed them. Since these papers considered
nearly-rectangular domains Q¢ with a nearly-right contact angle between
Yo and S (in terms of our definitions), the corresponding solutions are
only singular in the sense of higher derivatives. In the contrast, shapes of
Qo are more complicated and, therefore, 1) may have corner singularities
in the first derivatives. Their capturing becomes of primary concern. An
example of an appropriate boundary element scheme is given by Kress
(1990) [96]. He developed a numerical scheme for the Dirichlet boundary
value problem and showed that following this scheme makes it possi-
ble to produce a special mesh grading, which captures the singularities
automatically depending on (g, so that refining mesh procedure is not
required. Gavrilyuk & Timokha (2003) [74] have modified this scheme for
the Dirichlet-Neumann problems.

Fig. 4.4. The photos from the model tests by Ganiev et al. (1977) [61] posed
from left to right with increasing excitation frequency. Part (c) indicates sym-
metric vibroequilibria, (d) shows asymmetric vibroequilibrium.
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initial profile 2

initial profile 1

l—g’a

1

0.12

Fig. 4.5. The Oz-symmetric two-dimensional vibroequilibria for 1 = 0 (earth-
based conditions) and V' =4 (h = 2). The vibroequilibria are labelled by values
of 2. ‘Initial profile 1’ is used to calculate single-connected solutions (72 = 0.5
and 0.21). Disconnected domains are calculated with ‘initial profile 2' (52 = 0.12
and 0.05). The critical value of 72, at which vibration separates the fluid into
two equal subdomains, is predicted about 0.205.

4.3.3 Numerical results and discussion

Numerical results below have been obtained with the maximum dimen-
sions M = 20 (number of the mesh points for spline approximations
of Xy) and N; = ... = Ny = 50 (number of the mesh points on
the smooth portions of dQ)g). Numerical procedure required typically
N1 = ...~ Ny~ 30 and M = 10 to get 4-5 significant figures of the solu-
tion in an uniform metrics. The maximum dimensions were used to cal-
culate ‘critical’ vibroequilibria, at which )y splits into two sub-volumes.
Procedure of numerical minimisation adopted a quasi-Newton method by
Kahaner et al. (1988) [88]. The iteration number depended on the number
of the mesh points and was typically between 5 and 50. The calculations
have been done on a Pentium-II-366 computer. Calculation time has been
affected by 01, 72, M, Ny,..., Ny and initial shape of Xy. It was typically
(for our non-optimised FORTRAN-code) between 15-600 s.

Wolf (1969) [171], Ganiyev et al. (1977) [61] and Bezdenezhnikh et
al. (1984) [26] established experimentally two typical vibroequilibria oc-
curring in a horizontally vibrating tank filled by a fluid-gas system (‘gas
density’/‘fluid density’& 1). The first one consists in an ‘inclination’



4.9 l1wo-dimensional vibroequilibria z2lo

initial profile

0.05

'

Fig. 4.6. Asymmetric vibroequilibria under the terrestrial conditions (71 =
0) for V = 4. These are obtained with triangular ‘initial profile’ as an initial
approximation of ¥y. The vibroequilibria are labelled by values of 7,. Stable
asymmetric vibroequilibria do not realise for 1. > 0.302.

(re-orientation) of the fluid, i.e. Xy becomes geometrically close to an
inclined plane (Fig. 4.2 b,d). The second type of vibroequilibria deals
with the Oz-symmetric solutions, such that X, forms a ‘cavity’-like pro-
file (Fig. 4.4, ¢). The latter may also split into two equal sub-volumes
localised at the opposite walls.

Vibroequilibria under terrestrial conditions (7; = 0). A macro-
scopic fluid volume under terrestrial conditions is characterised by large
Bond numbers (Myshkis et al. (1987, 1992) [132, 133]). This implies
|1/Bo|=|n1/n2| < 1. Assuming |n2] = O(1) gives |n1| < 1. This means
that the surface tension gives negligible small contribution relative to the
gravitation and the vibrational energy. We will therefore adopt n; = 0.
In turn, terms containing « disappear from the functional IT. Solutions
of the variational problem (4.60), (4.61), (4.58) become then depending
on two parameters 72 and V (dimensionless mean fluid depth h = V/2).
We centre our numerical examples around the case h = O(1). Shallow
and intermediate fluid depth (Faltinsen & Timokha (2002) [51] estimated
them for h < 0.24) as well as fairly deep fluid depths are not analysed.
Depending on the initial shape of Xy, 72 and h, the computations give
either symmetric or asymmetric profiles Xy. There are also pairs (2, h),
for which these solutions co-exist. This means that the problem (4.60),
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08|

06|
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02}

Fig. 4.7. The pairs (h,n2) at which the symmetric single-connected vibroequi-
libria become disconnected. The surface tension is ignored (11 = 0).

(4.58), (4.61) may be not uniquely solvable (it has, at least, two local
minimay).

A typical strategy to distinguish the co-existing solutions consists in
performing the numerical minimisations with different initial boundary
shapes. Either initial shape can physically be treated as an instantaneous
wave pattern occurring during initial transients. We used the two tran-
sient scenarios. The first scenario suggested that there are no transients
at all (transient waves of negligible small amplitude). The second one
suggests asymmetric, triangular profile (see, Fig. 4.6) associated with in-
stantaneous wave profiles (bores, run-up etc.) mentioned and illustrated
by Faltinsen & Timokha (2002) [51]. Some numerical results presented
in Fig. 4.5 and 4.6 exemplify how these two scenarios lead to different
vibroequilibria.

The vibroequilibria with 7; = 0.5 and 0.21 in Figs 4.5 were obtained
by assuming the first transient scenario. The computations used 'initial
profile 1'. Whenever 1, > 0.205, this initial position of Yy in our iterative
minimisation procedure has led to an axial-symmetric Qgs. For 72 <
0.205, the numerical scheme can diverge due to intersection between Xy
and the bottom. The second transient scenario assumed triangular initial
approximations of Qg (‘initial profile’ in Fig. 4.6). Whenever 72 < 0.302,
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0.2t

Fig. 4.8. The Oz-symmetric two-dimensional vibroequilibria for 2 = 0 (zero-
gravitation conditions), & = w/4 and V = 4. The vibroequilibria are labelled
by values of #:. 'Initial profile 1’ (see Fig. 4.5) was used to calculate single-
connected solutions (71 = 10.0,0.5 and 0.1) 'Initial profile 2' was adopted to get
the non-connected vibroequilibria labelled by 0.2¢ and 0.1¢ (for 7; = 0.2 and
0.1 respectively).

this initial approximation in the iterative procedure has led to asymmetric
Y. Examples are presented in Fig. 4.6. These asymmetric solutions are
absent for 2 > 0.302 (due to their instability).

Hence, for 93 = 0,V = 4 and 7 > 0.302, the two initial transient
scenarios give exclusively symmetric stable vibroequilibria, but when
0.205 < 12 < 0.302 both symmetric and asymmetric vibroequilibria may
be established. Asymmetric vibroequilibria exist also for 72 < 0.205 (see
examples in Fig. 4.6). For 7 < 0.205, the fluid can also fall into the two
equal Oz-symmetric portions. The developed algorithm makes it possible
to find these vibroequilibria when starting iterations with ‘initial profile
2’ shown in Fig. 4.5 (see examples with 7, = 0.12 and 0.05 in Fig. 4.5).

This is of especial interest to find critical pairs (19, h), at which the
fluid splits in the Oz-symmetric way. This splitting occurs when z, = 0
as depicted in Fig. 4.2 (b). By using the last condition for each sub-
volume, we established 7, versus h and presented it in Fig. 4.7. The
graph demonstrates, that the critical 1, increases with decreasing h and,
therefore, the smaller fluid volumes are separated by vibrations with lower
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0.2t

Fig. 4.9. The same as in Fig. 4.8, but a = /6.

excitation frequency (because 2 = O(1/v?)). The splitting would hard
occur for fairly deep fluid, because the critical no — 0 as h — o0, and,
therefore, critical v — oo.

Vibroequilibria under zero-gravity conditions (72 = 0). Zero-
gravity (microgravity) condition implies |Bo|=|n2/m1| < 1 (Myshkis et al.
(1987, 1992) [132, 133]). In this case, the solution of (4.60), (4.61), (4.58)
depends on three dimensionless numbers V,n, (we assume 7; = O(1)
and, in turn, 175 = 0) and . When following the two transient scenarios
introduced above (starting minimisation from either planar or triangu-
lar initial profiles), the computations demonstrate both symmetric and
asymmetric solutions. These appear in the same way as it has been iden-
tified in the previous paragraph. There are only minor local geometric
differences at the contact points influenced by different contact angles.
The corresponding numerical examples are given in Figs. 4.8 and 4.9.
We should note that our previous strategy consisting of estimating the
critical pairs (h, 1), at which the fluid may split into two symmetric por-
tions, fails. This is owing to a hysteresis in the dependence of 1; on h.
Significant region of 71 has been found, where both single-connected and
disconnected symmetric solutions co-exist. The corresponding profiles in
Figs. 4.8 and 4.9 are exemplified by 0.1 and 0.1t. These profiles were ob-
tained with the same 9, =0,V =4,a = 7/4 (7/6) and m, = 0.1, but for
different initial approximations (transient scenarios). The hysteresis can
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be explained by a jump of the surface energy (due to the surface tension)
established in different capillary problems (Myshkis et al. (1987) [132]).

4.3.4 Faraday’s drops

B C
o 1 -
oz L capillary | l
-0.4 1.0 4 a
-0.6 = : -
o8 | : J
-1 A,
-5 -4 -3 -2 -1 o 1 2 3 a 5

Fig. 4.10. The flattening capillary drop with decreasing m = O(1/v?) (in-
creasing the forcing frequency v) on a vibrating plate. Zero-gravity conditions
(n2 =0), V=2 and a = 7/6. The curves are labelled by 7;.

o
_0.5 | i
"
-1 | - ag
1.5 i
= | i
_8 6 -4 -2 o 2 a 6 8

Fig. 4.11. Stabilisation and the flattering of a drop hanging beneath a vi-
brating plate. The surface tension is ignored (n1 = 0), V = 4. The curves
are labelled by values of 7. The critical value of 72, when the drop becomes
unstable is estimated near 72 = 0.73.

The capillary drops on a rigid plate were in details investigated by
Myshkis et al. (1987, 1992) [132, 133]. When these drops are modified by
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vertical vibrations (Faraday (1831) [52]) both the variational vibroequi-
libria and the proposed numerical technique can be used. The flattening
with decreasing 7, (increasing v) is exemplified in Fig. 4.10. The calcu-
lations are consistent with Faraday’s experimental observations.

Vibrations of the plate may significantly influence the drop extent
occurring with increasing Bond number (72) and prevent its fall from
the plate (the drop becomes unstable for non-small Bond numbers due
to the Rayleigh-Taylor instability). Our test computations emphasise the
limit case g1 = 0 and 72 = O(1) (this means an infinite Bond number,
ie. |m2/m| = |Bo[> 00). When there are no vibrations, the conditions
Bo> 1 and g3 = —1 (gravity acceleration is directed downward) lead
immediately to fall of the drop from the plate (Myshkis et al. (1987)
[132]). In contrast, the numerical vibroequilibria in Fig. 4.11 are stable.
The critical 72, at which the drop becomes unstable and falls from the
vibrating plate, is found near 0.73.

Concluding remarks

The two-dimensional vibroequilibria may occur in a parallelepipedal tank
forced harmonically with a high frequency. In our numerical examples,
the gravity acceleration and the guiding vibration vector are coplanar
and belonging to the Ozz-plane. The analysis is based on a variational
concept of the vibroequilibria. The vibropotential contains two quantities
associated with the surface tension and the gravitation, respectively, as
well as the third quantity implying Kapitsa’s vibrational energy. When
the first two quantities are negligible relative to the vibrational energy
(m1 = 12 = 0), there exists an analytical solution of the variational prob-
lem delivering its absolute minimum. The time-averaged free surfaces are
then perpendicular to the vibration. For vertical vibrations of the con-
tainer, the variational concept can explain the vibration-induced stability
(stabilisation of the Rayleigh-Taylor instability), which has been experi-
mentally observed by Wolf (1970) [172].

The vibropotential is subjected to the Dirichlet-Neumann boundary
problem. We approximate its solution by a modified boundary element
method, which captures the singular character at the corner points. The
method provides an automatic mesh grading.

Vibroequilibria under terrestrial (large Bond number) and micrograv-
ity conditions (small Bond number) in a horizontally vibrating rectangu-
lar container were numerically studied. It was shown that vibration may
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either split the fluid domain into two equal sub-domains or ensure the
fluid volume near a vertical walls (inclination, re-orientation). The vi-
broequilibria depend on the dimensionless numbers 7; and 72, the mean
fluid volume and initial approximations of the free surface. The initial
approximations can be treated as instant wave patterns occurring when
the vibroforcing starts. Experimental observations by Wolf (1969) [171],
Bezdenezhnikh et al. (1984) [26] and Ganiyev et al. (1977) [61] were qual-
itatively described. The vibrostabilisation and the flattening of a drop
hanging beneath a vibrating plate were described (Faraday’s (1831) [52]
drops).

Even if kK = 0 (incompressible fluid) and the problem is considered
in the two-dimensional statement, there are serious numerical difficulties
to classify the vibroequilibria. The first one gives rise from analytical de-
scription of the admissible vibroequilibria, on which the functional should
be minimised, and their discretisation. In particular, the fluid domain can
split into two and more subdomains (homogenisation). The second dif-
ficulty consists of matching the minimisation with solving the Dirichlet-
Neumann boundary value problem constraining a test vibroequilibrium
and the wave function. Some additional efforts are required to overcome
these difficulties for the three-dimensional case (see, Beyer et al. (2004)
[25]) and k # O (compressible flows).
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