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Steady-state liquid sloshing in a rectangular tank with a slat-type screen

in the middle: Quasilinear modal analysis and experiments
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Two-dimensional resonant liquid sloshing in a rectangular tank equipped with a central slat-type
screen is studied theoretically and experimentally with focus on nonsmall solidity ratios of the
screen (0.5=<Sn=0.95), nonlarge number of slots (N =< 50), and steady-state conditions. The tank is
horizontally and harmonically excited with frequencies in a range covering the two lowest
primary-excited natural sloshing resonance frequencies in the corresponding clean tank. The liquid
depth is finite. Theoretical analysis is based on the multimodal method with linear free-surface
conditions and a quadratic pressure drop condition at the screen expressing an “integral” effect of
the screen-induced cross-flow separation (or jet flow). New experimental data on the maximum
wave elevations at the wall are compared with the theoretical predictions. Very good agreement is
shown for the smallest forcing amplitudes (the forcing amplitude-to-tank width ratio is ~0.001).
Increasing the nondimensional forcing amplitude to ~0.01 leads to discrepancies due to secondary
resonance causing the energy context from the two primary-excited antisymmetric modes to other,
first of all, symmetric modes. A further increase of the nondimensional forcing amplitude to 0.03
leads to more complex secondary resonance effects. Specific surface wave phenomena, e.g., wave

breaking, are experimentally observed and documented by photographs and videos.
© 2011 American Institute of Physics. [doi:10.1063/1.3562310]

I. INTRODUCTION

Rectangular tanks with screens are used for antirolling
tanks of ships and tuned liquid dampers (TLDs) of tall build-
ings. Properly tuned sloshing is an efficient tool for suppress-
ing oscillations of the carrying structure. For these applica-
tions, a design requirement is that the lowest resonant
sloshing frequency should almost not be affected by screens,
i.e., it must remain almost the same as for the clean tank and
relatively close to the most important structural natural fre-
quency and the roll natural frequency. A rough guideline is
then that the screen solidity ratio Sn, i.e., the ratio of the area
of the shadow projected by the screen on a plane parallel to
the screen to the total area contained within the frame of the
screen is relatively small, Sn=<0.5. The free-surface nonlin-
earity may be import.amt.1 This especially matters for anti-
rolling and ship tanks when the nondimensional tank motion
magnitudes (scaled by the cross-dimensional tank length /)
are clearly larger than for TLDs.

The cargo ship liquid tanks with swash bulkheads is an-
other application dealing with sloshing in rectangular tanks.
A swash bulkhead is a bulkhead with holes and has from a
hydrodynamic point of view similarities with a screen. The
objectives are to provide sloshing damping as well as to
change the lowest resonance frequency to a higher frequency
range where the wave-induced ship velocity and acceleration
are less severe. The consequence is that, in contrast to TLDs,
slotted swash bulkheads are characterized by a higher solid-
ity ratio, e.g., Sn=0.9. The optimum solidity ratio is not the
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highest value Sn=1 which means that the screen becomes a
solid wall dividing the liquid domain into independent com-
partments. Similar devices as swash bulkheads are, for in-
stance, used in fuel tanks of rockets and oil-gas separators on
floating platforms.

Bearing in mind the swash bulkheads in rectangular ship
tanks, we focus in the present paper on the steady-state two-
dimensional liquid sloshing in a rectangular tank with a cen-
tral slat-type screen and the specific geometric and physical
parameters which are, in contrast to earlier TLDs studies,
characterized by

* 0.5=Sn=0.95;

* a limited number of openings (slots, gaps) in the
screen (N=<50);

* finite liquid depths;

 a wider forcing frequency range covering not only the
lowest natural sloshing frequency for the correspond-
ing clean tank, o}, but also the next primary excited
natural sloshing frequency o3.

The latter frequency range is needed because, in contrast
to a TLD with lower solidity ratios, frequencies correspond-
ing to the resonant sloshing responses with 0.5=Sn=<0.95
are expected to be away from those for the corresponding
clean tank. The lateral excitations are considered. A particu-
lar goal is to understand the physics of liquid sloshing dy-
namics versus the input parameters, the solidity ratio Sn, the
forcing frequency o, and the forcing amplitude 7,, with em-
phasis on the resonance frequencies as a function of Sn. Un-
derstanding the role of the free-surface nonlinearity is an-
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other particular goal. Three different nondimensional
amplitudes, 7,,/[=0.001, 0.02, and 0.03 were tested in the
experiments.

To the best of the authors’ knowledge, the literature on
the liquid sloshing dynamics in tanks with screens of solidity
ratio higher than 0.5 is rare. Typical examples in the papers
by Kaneko and Ishikawa,2 Tait et al.,3 Love and Tait,1 and
Warnitchai and Pinkaew” are associated with TLDs and Sn
=0.5. They extensively employ the fact that the natural
sloshing frequencies and modes remain almost the same as
for the corresponding clean tank (without screen). The focus
is mainly on the resonance response with the forcing fre-
quencies close to the first natural frequency of the corre-
sponding clean tank, o). For analyzing this resonance,
Kaneko and Ishikawa,2 Tait et al.,3 and Love and Tait' use
different linear and nonlinear modal methods in which the
corresponding modal equations are derived (Love and Tait'
takes the nonlinear modal system by Faltinsen and
Timokha® ) based on the natural sloshing modes of the corre-
sponding clean tank. These modal solutions make it possible
to estimate the pressure field at the screen and, using the
pressure drop condition, derive quadratic damping term in
the corresponding modal equations. The pressure drop con-
dition appears as a generalization of the viscous drag term in
Morison’s equation. This condition requires empirical infor-
mation on the so-called pressure drop coefficient which, for
instance, is well-known for an orifice meter device and the
modeling of the screen effect in air ventilation systems. Re-
views on usage of this condition can be found in Refs. 6 and
7. Additional examples of using this condition for liquid
sloshing dynamics and external surface wave problems can
be found in the papers by Molin® and Faltinsen et al.’

When Sn—1, the screen becomes a rigid wall. The
modal solution employing the natural sloshing modes of the
corresponding clean tank used in the aforementioned TLD
analysis is then not more applicable. The resonant peaks are
then expected not at o5, ; (odd natural sloshing frequencies
of the clean tank). This fact was first documented in the
famous NASA Reportlo for a circular sectored tank. An at-
tempt to describe the general frend in changing the resonant
sloshing frequencies with increasing Sn in a rectangular tank
with two-dimensional flows is given in Sec. 6.8 of Ref. 11.
The screen was installed in the middle of the rectangular
tank. Linear sloshing theory was employed. The idea was to
consider the modal solutions in the two screen-separated
compartments and, thereafter, match these solutions at the
screen by using continuity of the mean flux velocity and the
averaged pressure drop condition which should play the role
of transmission boundary conditions. An extension of this
approach was done by Faltinsen et al’ Realizing this idea
showed success in describing (i) the resonance response am-
plitude for o close to o (the first natural frequency for the
corresponding clean tank), and (ii) the general qualitative
fact of disappearance of the resonance peaks at o and o
and appearance of the resonance peak at o5 (which is the
lowest natural sloshing frequency for the compartments) as
Sn— 1. Due to quadratic nature of the pressure drop condi-
tion, the results on the resonance peaks depend on the forc-
ing amplitude. Furthermore, working on Ref. 9, we found out
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that this approach is not precise in identification of the reso-
nance peak positions as the forcing amplitude becomes
smaller and Sn tends to 1. Even though the experimental
forcing amplitude was sufficiently small (the forcing
amplitude-to-tank width is about 0.001), this theoretical ap-
proach gave wrong resonance peak position in a frequency
range about o3. Explanation comes from the fully linear
analysis by Faltinsen and Timokha'> who study the linear
natural sloshing frequencies and modes neglecting flow sepa-
ration (jet flow) at the slotted screen in the spirit of earlier
papers on either surface-piercing barriers"? or baffles.'* Fal-
tinsen and Timokha'® showed in their linear analysis that,
when Sn= 0.5, the screen-corrected natural sloshing frequen-
cies remain almost the same as for the corresponding clean
tank (consistent with earlier TLD analysis), but, when Sn
increases in the range 0.5=Sn<(1, the first natural sloshing
frequency o, (and the corresponding mode) in the screen-
equipped tanks continuously vanishes, o;— 0, but the third
one, 0'3—>0'§, as Sn— 1. Because Faltinsen and Timokha'”
do not use the nonlinear pressure drop condition, this result
on the natural sloshing frequencies and modes is independent
of the forcing amplitude, i.e., it is the limit case on the reso-
nance frequencies when the forcing amplitude tends to zero.
The change of the theoretical natural frequencies by this lin-
ear theory is quantitatively consistent with experiments con-
ducted with their smallest forcing amplitude 7,,//~0.001.

The transformations of the natural sloshing modes and
frequencies within the linear approximation by Faltinsen and
Timokha'? are an important factor which should be ac-
counted for in description of the forced resonant liquid slosh-
ing and accurate identification of the resonance sloshing fre-
quencies for 0.5=Sn<1. As we will show in the present
paper, accounting for both these transformations and the
pressure drop at the screen makes the multimodal technique
much more complicated. The transformations are, however,
not important for TLDs, thus, when 0 <Sn=0.5, the inter-
ested reader can use, e.g., the modal theories Kaneko &
Ishikawa,2 Tait et al.,3 and Love and Tait,l instead of follow-
ing the present analysis.

The experimental setup, measured wave elevations at the
walls, and video observations are reported in Secs. III and
IV. The latter section includes also comparison with quasi-
linear multimodal theory constructed in Sec. II. The quasi-
linear multimodal theory is constructed based on the natural
sloshing modes by Faltinsen and Timokha'? and the well-
known linear multimodal method whose description is given,
e.g., in Chap. 5 of Ref. 11. A novelty is that we also account
for the pressure drop condition by selecting the approach-
velocity component from the singular (at the sharp slot
edges) natural sloshing modes by Faltinsen and Timokha."
The quasilinear theory accounts therefore for the change of
the natural sloshing modes (frequencies) versus the screen
geometry as well as an “integral” effect of the local flow
separation (or jet flow) by means of the pressure drop con-
dition. However, this theory neglects the free-surface nonlin-
earity. Adopting the pressure drop condition implicitly as-
sumes that the liquid motions in the whole tank are generally
well described by the potential incompressible inviscid hy-
drodynamic model and that flow separation (or jet flow) at
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the screen is only localized in a relatively small neighbor-
hood of the screen.

Even though we postulate the linearized free-surface
conditions, the nonlinear pressure drop condition introduces
the (|- |)-type quadratic quantities in terms of the general-
ized velocities in the corresponding modal equations. For
TLD-related applications with resonant excitation at the low-
est natural frequency, one can, e.g., follow Tait er al’ to get
simpler expressions depending only on the dominant modes.
These quantities can then be interpreted as quadratic damp-
ing terms causing finite resonant response at o, (see a review
on the quadratic damping for linear oscillators in Ref. 15).
An alternative approach is to use a Morison-equation formu-
lation instead of the pressure drop condition at the screen
with 0<Sn=0.5 (see Sec. 6.7 of Ref. 11). The latter ap-
proach provided very satisfactory agreement with experi-
ments by Warnitchai and Pinkaew." In the present paper, the
hydrodynamic coefficients of the modal equations, including
the natural frequencies o;, change with Sn, the number and
position of the slots. The quadratic terms should then include
all the generalized coordinates and, along with damping,
cause an energy redistribution between different screen-
modified natural sloshing modes.

Agreement between the quasilinear theory and experi-
ments is almost ideal for the smallest forcing amplitude-to-
tank width ratio equal to 0.001 (the liquid depth-to-the tank
width ratio is 0.4). The results are reported in Sec. IV A.
Discrepancies for the lowest and largest tested Sn, Sn
=0.4725 and 0.95125, are explained by the free-surface non-
linearity causing a soft-spring type response behavior similar
as for theoretical steady-state sloshing in clean rectangular
tanks with a finite depth (see, e.g., Chap. 8 in Ref. 11). In-
creasing the nondimensional forcing amplitude to 0.01
(Sec. IV B) leads to a series of new experimentally observed
free-surface phenomena. The paper presents the correspond-
ing photographs and videos. Implicitly, these free-surface
phenomena, e.g., wave breaking, runup with jets at the walls,
indicate importance of the free-surface nonlinearities. The
observed free-surface phenomena are mainly documented in
the frequency range covering o, and o3. The latter is ex-
plained by the fact that resonance at o=~ g leads to a larger
cross-flow at the screen, and, therefore, causes a larger
damping due to flow separation (or jet flow). The experimen-
tal response curves are characterized by extra resonance
peaks in this frequency range. The modal analysis shows that
these peaks are a consequence of the secondary resonance
due to the second-order free-surface nonlinearity. According
to Faltinsen and Timokha,5 this kind of the secondary reso-
nance amplifies symmetric natural sloshing modes which are
not directly excited by the horizontal tank forcing. Theoreti-
cal description of the secondary resonance may require the
so-called adaptive nonlinear multimodal modeling elaborated
by Faltinsen and Timokha® for the clean rectangular tank.
However, the quasilinear theory describes the general trend
in changing the main resonance peak position.

In Sec. IV C, we present experimental data for the larg-
est tested forcing amplitude, 7,,/[=0.03, which were con-
ducted with the liquid depth-to-the tank width, h//=0.35.
The experimental observations show very steep waves with
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FIG. 1. The rectangular tank with a slat-type screen in the middle. Basic
geometric notations.

strong wave breaking, runup as well as overturning and for-
mation of gas pockets. Implicitly, this indicates amplifica-
tions of the higher natural modes via the free-surface nonlin-
earity mechanism. The quasilinear theory shows qualitatively
how the resonance frequencies change with Sn, but cannot
be used to quantify the steady-state wave amplitude re-
sponse. Further, the experiments detect the multiple reso-
nance peaks for 0.5=Sn=<0.9 as well as the multibranching
of the corresponding experimental response curves. In con-
trast to the case with ,,//=0.01, this cannot be easily ex-
plained by the secondary resonance phenomena due to the
second-order nonlinearity. A dedicated study is required.

Il. QUASILINEAR MULTIMODAL THEORY

A. Preliminaries
1. Basic notations and limit cases

Two-dimensional liquid sloshing is considered in a rect-
angular tank of width /=2a with a slat-type screen installed
at the tank middle as shown in Fig. 1. The figure introduces
geometric notations and the body-fixed coordinate system.
The rectangular tank is forced horizontally with displace-
ments 7,(7). The screen appears as a thin solid plate with a
series of perforated horizontal slots. The screen thickness is
neglected. In the linear free-surface analysis, we consider
only the mean wetted screen part Sc, and assume that it has
N submerged slots. When the set So, denotes all the wetted
rigid slats, and Op, is the total set of submerged slots
(Scy=0pyU Soy), this numerical sequence defines them as
follows:

Sop={(0.2):-h=z=z, zj=z=2.... y=2=0},

Opo={0,2):—h=z,<z<Z],..., 73 <z<zy=0},

where £ is the liquid depth. Based on definition (1), we can
introduce the solidity ratio of the mean wetted screen part as
follows:

h=3Y (-7
Sn=—;uh(2 z) 2)

As we see, the solidity ratio is a function of 4.

An inviscid and incompressible liquid with irrotational
flow is assumed everywhere in the mean liquid domain Q,
=0, U Q} except in a small neighborhood of the screen Sc,.
The linear sloshing theory is adopted, namely, the wave
slope is assumed asymptotically small (see Chap. 5 in Ref.
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FIG. 2. Schematic instant wave profiles for two-dimensional liquid sloshing
in a rectangular tank with horizontal excitation. Screen Sc, with 0<<Sn
<1 in the middle is installed [part (a)]. Parts (b) and (c) illustrate the first
antisymmetric wave profiles for the limit cases Sn=0 and Sn=I,
respectively.

11). The effect of viscous boundary layers at the tank walls
and bottom is assumed negligible (see Chap. 6 in Ref. 11)

Physically, there exist two limit cases associated with
Sn=0 (no screen) and Sn=1 (solid central wall). Typical
wave profiles are depicted in Fig. 2. Panels (b) and (c) are
related to the lowest natural sloshing modes for the two limit
cases. When Sn=0, the natural sloshing modes (within an
arbitrary nonzero constant C;) are expressed as

o;=¢ =C; cos(%(y + a))cosh(m'(z +h)/),

3)

. ih .
Ki=K; = Ttanh T , 0, =\gK;

where o7 are the corresponding natural sloshing frequencies
(see Sec. 4.3.1.1 in Ref. 11). Expression (3) introduces sym-
metric (even, i=2k) and antisymmetric (odd, i=2k—1)
modes. Inserting a slat-type screen at the tank middle does
not change the symmetric natural modes, but the antisym-
metric modes become discontinuous at the slats (Sop) and,
therefore, cannot be described by expression (3).

Passage to Sn=1 leads to the central rigid wall dividing
the whole tank into two equal symmetrically situated com-
partments. The corresponding natural sloshing modes in Q§
are then defined by the formulas

+

@ = =C; cos(ﬂ(y ¥ a))cosh(m'(z +h)la),
a

4)

i Tih N —
K= K;»k*= —tanh(—), o= \,gK;-k*, i=1,2,....

a a
Because [=2a, 0; =05, the case Sn=1 leads to vanishing of
the natural sloshing frequencies responsible for the antisym-
metric modes of the case Sn=0.

Faltinsen and Timokha'? describe evolution of the anti-
symmetric natural sloshing modes from Eq. (3) to Eq. (4) as
Sn changes from O to 1 with finite nondimensional depth A /1.
These modes remain very close to Eq. (3) for 0<Sn=<0.5.
The principal changes in the natural modes are detected in
the range 0.5=Sn<1.

2. Resonant steady-state response for a clean
rectangular tank

Damping of liquid sloshing in a clean tank without wave
breaking is small and mainly caused by the viscous boundary
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FIG. 3. Schematic response curves for a clean rectangular tank giving the
steady-state resonance wave amplitude response A vs /0%, based on
two-dimensional potential flow of an incompressible liquid. The dashed line
shows results following from the linear sloshing theory. The solid lines
represent response curves following from the nonlinear asymptotic theory,
where the bold solid line notes stable steady-state solutions. A hysteresis
effect is possible denoted by the points 7, T, T,, and T5. The point i marks
possibility of the secondary resonance whose concept for sloshing problem
is elaborated and studied in detail by Faltinsen and Timokha (Ref. 5). The
secondary resonance implies amplification of higher modes when a super-
harmonics becomes close to a higher natural sloshing mode. Depending on
the nondimensional liquid depth //1, we can have (a) soft-spring type be-
havior (0.3368...<h/l for k=1), or (b) hard-spring type behavior (/!
=0.3368... for k=1).

layer. Finite resonant harmonically excited liquid sloshing is
mainly due to nonlinear transfer of energy between primary
excited and higher modes. A review on the resonance steady-
state wave amplitude response can be found in Chap. 8 of
Ref. 11. According to asymptotic theory of nonlinear reso-
nant steady-state sloshing, the primary resonance is only
possible at the odd (antisymmetric) modes, i.e., when
o— 05,_;. The corresponding response curves are schemati-
cally illustrated in Fig. 3. Depending on the nondimensional
liquid depth, &/l, one can arrive at the soft-spring type re-
sponse curves in the panel (a), or at the hard-spring type
response curves in the panel (b). This change for the first
resonance o= g, happens for asymptotically small 7,,// at
the critical depth h/[=0.3368.... Nonlinear effects can also
cause secondary resonances meaning that multiples of the
forcing frequency is equal to a natural sloshing frequency.

B. Linear sloshing problem and the corresponding
linear modal equations

1. Boundary value problem

Henceforth in our theoretical analysis, we assume that
the liquid is inviscid and incompressible with irrotational
flow except in a small vicinity of the screen where flow
separation (or a jet flow) occurs. Let equation z={(y,?) de-
scribe the free-surface elevations and ®(y,z,) be the abso-
lute velocity potential defined in the tank-fixed coordinate
system Oyz. The linear sloshing theory involves the Laplace
equation and the boundary conditions coupling ® and {:

VZO=0 in Qy=Q}U Qy, (5a)
0P .

— =) on S;,. (5b)
dy

od .

—=0 on S, (5¢)
9z
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—=— on X,=>fU2q, 5d
0z ot 0 0 0 (5d)
dd
E+g§=0 on X,=3;U 2, (5¢e)
Ldy=0. (5f)
%

Geometric notations are explained in Fig. 1. The horizontal
displacement of the tank is 7,(¢) and g is the gravity accel-
eration. Equations (5d) and (5e) are the linearized kinematic
and dynamic boundary conditions formulated on the mean
free surface 2y=35U .

The linear boundary problem Egq. (5) should be com-
pleted by appropriate boundary conditions on the screen Sc,.
When we neglect flow separation (or a jet flow) at the screen
and, thereby, postulate the potential flow of an incompress-
ible liquid everywhere in Q, including the openings Op,, one
should add the following linear boundary condition:

aP

=1

S 6
o on Sop (6)

implying that the solid screen slats move horizontally to-
gether with the rectangular tank.

The problem Egs. (5) and (6) require initial conditions
which can be defined as

d
00=60), H0.0=40),

where {, and {; are the initial free-surface shape and veloc-
ity, respectively.

2. Linear modal solution when neglecting viscous
screen effect

The linear sloshing problem Egs. (5) and (6) have the
following modal solution (see details in Chap. 5 of Ref. 11):

(.0 =2 BAOf), (7)
i=1

o

D(y,2,1) = (0)y + 2 R{D@i(1,2), (8)

i=1

where ¢,(y,z)[f:(y)=¢;(y,0)] are the natural sloshing modes
appearing as the nontrivial eigensolution of the following
spectral boundary problem:

(9()0[ + +
—=0 on §;=35;, U Sy, U Sopy;

V=0 in Q;
on
©)
Jo:
ﬁ = K;Q; on 20.
Jz

The spectral parameter «;>0 determines the natural sloshing
frequencies
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o;= \e”gKi, i=1,2,.... (10)

According to general theorems on the spectral boundary
problem Eq. (9) (see, e.g., Refs. 16—18), the natural sloshing
modes are orthogonal on 2, i.e.,

L fifdy=0, i#j; fly)=¢dy,0). (11)

An accurate approximate eigensolution of the spectral
problem Eq. (9) was constructed by Faltinsen and
Timokha.'? Analyzing this solution shows that the natural
frequencies and modes are far from o3, ; for 0.5<Sn<1.
This means that, in contrast to earlier TLD analysis, we can-
not adopt the eigensolution (3) for these solidity ratios.

The modal solution Egs. (7) and (8) automatically satisfy
all the relations of Egs. (5) and (6) except the kinematic and
dynamic boundary conditions Egs. (5d) and (5e). Due to the
orthogonality condition Eq. (11), the kinematic condition Eq.
(5) couples R,(r) and B,(r) as follows:

Ri(t)='8’—(t), i=1,2,.... (12)

Ki

After adopting Eq. (12) in the modal solution Eq. (8) and
substituting this modal solution in the dynamic boundary
condition Eq. (5d), the orthogonality condition Eq. (11) leads
to the linear ordinary differential equations with respect to
Bi(1),i=1,2,..., the so-called linear modal equations. For
the considered tank shape, these modal equations take the
form

Pl Boio1 (1) + 05 Bt (D] + Nein (1) =0, k=1,2, .5

(13a)
Bo(t) + 05, Bo(1) =0, k=12, ..., (13b)
where
1 0 0
Mk=_f Foady, )\sz Vfoudy, k=1
Kop-1J —q —a
(14)

We see that the 7,-forcing term is present only in Eq. (13a)
responsible for antisymmetric modes, i.e., only antisymmet-
ric modes are primary, directly excited. Symmetric modes
depend in the linear approximation only on initial conditions.
The hydrodynamic coefficients o,;_;, ., and A, differ from
similar coefficients in linear modal equations for sloshing in
a clear rectangular tank (Chap. 5 in Ref. 11). Our hydrody-
namic coefficients are now functions of Sn, the number of
the submerged screen slots and their position.

C. Modification of the modal solution due
to the pressure drop condition

The linear modal Eq. (13) must be modified to account
for viscous cross-flow at the screen. The corresponding
modification can be done by using a pressure drop condition
at the screen. We will show, that this will lead to additional
quadratic terms in the modal Eq. (13a) associated with the
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antisymmetric modes. Because the symmetric modes do not
cause cross-flow through the screen, the modal Eq. (13b) for
symmetric modes will remain homogeneous within the
framework of the linear sloshing theory.

1. Pressure drop condition

The pressure drop condition at the screen can be formu-
lated as (see, e.g., Ref. 6)

P_—P,=3pKulu| on Sc, (15)

where K is an empirical pressure drop coefficient, p is the
liquid density, u is the so-called approach velocity to the
screen, and (P_—P,) is the pressure drop. The pressure drop
formulation Eq. (15) is based on that both sides of the screen
are wetted. It does not apply in the free-surface zone where,
due to different elevations at the screen sides, liquid goes
through the openings to the dry screen side with further fall
out. The falling liquid will then impact on the underlying
free surface and thereby cause an extra dissipation.

The pressure drop coefficient K depends on the solidity
ratio Sn. It may also depend on the Reynolds and Keulegan—
Carpenter numbers. For slat-type screens, the pressure drop
coefficient weakly depends on the Reynolds number (see de-
tails in Ref. 6, p. 314). Following Tait et al.® who referred to
formulas by Baines and Peterson'® and Weisbach,”® we will
adopt the following approximation of the empirical pressure
drop coefficient

1 2
K:<Cc(1 —Sn) B 1) ’

Cc =0.405 exp(— 7Sn) + 0.595 for Sn=0.3.

(16)

According to experimental studies by Tait et al.’* for slat-type
screens with Sn=0.42, different excitation frequencies close
to the first natural sloshing frequency, and for intermediate
and shallow liquid depths, formula (16) gives satisfactory
approximation of K for the Keulegan—Carpenter number
KC=u, T/D>15 where u,, is the amplitude of u, T is the
oscillation period, and D is a characteristic length (here, the
slot height). The pressure drop condition was originally for-
mulated in the literature for uniform, coordinate-independent
u=u(t) and P=P(z).

2. The horizontal approach velocity

The linear modal solution Eq. (8) based on the screen-
modified natural sloshing modes following from the linear
analysis by Faltinsen and Timokha'? is assumed a first-order
approximation of the relative horizontal velocity at the
screen, 1.€.,

U(y,z,t) = u(y,z,t) + iy, z,1)

— EDC: M%()&Z),

y #0, (17)
=1 Koio1 Oy

where ¢,;_; are the corresponding antisymmetric natural
sloshing modes. Because dealing with the linear natural
screen-modified sloshing modes by Faltinsen and Timokha'?
leads to a singular velocity field at the slot edges, the restric-
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tion y # 0 is important; formally, U is infinite at these edges.

In expression (17), & is the singular horizontal velocity
component and u is the regular horizontal velocity compo-
nent. The latter should be continuous at y=0 so that u(0,z,1)
is associated with the approach velocity in formula (15). Be-
cause the natural sloshing modes are defined within an arbi-
trary nonzero multiplier C,;_;, following Faltinsen and
Timokha'? leads to the expression

©2i-1(3,2) = Coiy (9(,2) + i(1,2)),  i=1, (18)
where the functions ¢, and ¢, are associated with @(y,z,7)
and u(y,z,1), respectively. Furthermore, Ref. 12 shows that
the functions ¢;(y,z) and ¢;(y,z) can be presented in a stan-
dard expansion adopted in many problems of the linear wave
theory13 and, therefore, take the form

¢:(y,2) = F cosh(k(z + h)/a)cos(k{(y F a)la), (19a)

~ S ; cosh(k(y T a)/
B0 = 7 3 AL cos(kz-+ hyia) s L))
=1 cosh(k;")

in Q(;:,

where {k(()i),iz 1} and {kﬁi),izl,jz 1} are the roots of the
equations '

(19b)

ki tanh(k{'h/a) = ky;a  and &Y tan(k"hia) = - Ky ya,
(20)
i=1, j=1.
Here, k,;_; are the eigenvalues of the spectral problem Eq.
(9) in which the screen effect is included so that they are not
equal to x5, , in Eq. (3).

The terms associated with ¢; are evanescent terms expo-
nentially decaying away from the screen; they capture the
local singular character of the linear natural sloshing modes
at the slot edges. The “wave components” of the natural
sloshing modes, ¢; determines the surface wave profile and,
thereby, the corresponding wave number kg). It is very im-
portant that the wave numbers kf)’) are mathematically not
equal to the wave number of the corresponding clean tank,
w(2i-1)/1 - Faltinsen and Timokha'? studied the screen effect
on Ky_y, kg), and k" as well as on the natural sloshing modes
Egs. (18) and (195. It follows from their analysis that the
values k(()i) are less than 7(2i—1)/l and kg) monotonically
decreases from 7(2i—1)/1to 2m(i— 1)/l as Sn increases from
0 to 1. The values k(()l) remain close to 7(2i—1)/1 only for
Sn=0.5, i.e., for a TLD-case. Furthermore, the values kﬁ.') for
lower natural sloshing modes rapidly tend to mj/h as j—
providing almost zero flux through the screen associated
with the function ;.

The approach velocity u should represent the velocity
flux through the screen without representing the local flow
details (here, singularities at the edges) at the screen. This
means that the approach velocity should be well approxi-
mated in terms of the “wave component” functions ¢; ex-
pressed by Eq. (19a). It follows from Eq. (17) that the ap-
proach velocity can then be determined by
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N,
u(z,0) = 2, @U,-(z),

-h<z<0, (21)
i=1 K2i-1
where N,, is the required number of antisymmetric modes
(N,,— ) and
d _C
Ui(z) = j) = 2= Cosh(k(l)(z + h)/a)sm(k('))
y

(22)

3. The pressure drop condition and the modified
modal equations

Using the linear modal solution Eq. (8) in expression for
the dynamic pressure

P 23

p==pr_ (23)
formally leads to a linear pressure drop at the slats, namely,
p-—p.7#0 on So, due to the discontinuous antisymmetric
natural sloshing modes ¢,; ;. However, the difference P_
—P, in the pressure drop condition Eq. (15) has another
physical nature. This pressure drop appears due to flow sepa-
ration (or a jet flow) which is not captured by the linear
modal solution.

We should first insert the approach velocity Eq. (21) into
the pressure drop condition and find the corresponding pres-
sure correction p,. When expressing p,, we use an analytical
continuation of the irrotational flow to the whole liquid do-
main. Formally, this suggests the modified velocity potential

< B 1
D(y,z,1) = Ty + 2, £l ¢(y,2) = | p2y,z.t)dt
1

=1 Ki o

in Q. (24)

Now, we should substitute Eqgs. (7) and (24) into the
problem Eq. (5) and satisfy the Laplace equation, the body-
boundary condition, and the pressure drop condition p,_
—p2.=(1/2)pKu|u|. Furthermore, we should also account for
Egs. (7) and (24) into kinematic Eq. (5d) and dynamic Eq.
(5e) boundary conditions. The latter conditions (see Appen-
dix A) give

%P2 =0 on 3, (25a)
on
“ B . 1
My + Z Mﬁ(y) + ;pz(y,O,t) =0
on 3. (25b)

It may look unphysically that, as the derivations in Ap-
pendix A show, the pressure-correction term p, satisfies the
Neumann boundary condition Eq. (25a) on the mean free
surface. However, one should remember the specific defini-
tion of p, in the modified velocity potential Eq. (24) imply-
ing that the integral over p, is also a correction of the veloc-
ity potential. The latter gives Eq. (A3) following from the
kinematic condition Eq. (5d), and because Eq. (A3) is true
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for any instant ¢, one mathematically gets the zero-Neumann
condition Eq. (25a) for the pressure-correction term.

Using Eq. (25a) together with relations in Eq. (A1) and
the pressure drop condition leads to the boundary value prob-
lem

Vp,=0 in Qp;
s _ + + +
=0 on Sy, U S, Uy (26)
on
1
Pr= Z pKulu| on Sc.

This problem has the following solution

K wk \ cosh(mk(y = a)/h)
P ( 0 2 kcos( h Z) cosh(rkalh)
(27)
where
0 Tk
kaf u|u|cos<7z)dz, k=0. (28)
—h

One must note that when introducing the approach ve-
locity via Eq. (21) we neglect the evanescent terms exponen-
tially decaying away from screen which are responsible for a
singular character of the linear natural sloshing modes at the
slot edges. We see that similar exponentially decaying terms
appear in solution Eq. (27) associated with Q;,k=1. These
terms do not contribute to the screen averaged pressure, but
are only responsible for a local nearly screen change of the
pressure field by p,. This local change has no physical mean-
ing, especially for larger k because the local field at the
screen is in reality viscous. Excluding these exponentially
decaying terms means an averaged (over the mean screen
height) pressure drop which will furthermore be adopted.
The modified velocity potential Eq. (24) should then be ap-
proximated by

D(y,z,0) = iy + E f¢,(y z

K t<J0
F —
anJ, \Jo,

u(z,t1)|u(z,t1)|dz> dt, in Qg

(29)
where u is given by Eq. (21).
Let us consider the dynamic Eq. (25b) and use the or-

thogonality Eq. (11). This gives the modified modal equa-
tions with respect to 3,;_;

(B (1) + 03, Bogo (1)) + Ngia(1)
0 m
_@f (EBZ, U()) S B,
4h )y \isi Kaict

i=1 K2i-1
k=1,2,...,N,, (30)

dz=0,
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where N,, is the required number of antisymmetric modes
[also see Eq. (21)], and

0
a’k=f Sarer(y)dy. (31)

Other hydrodynamic coefficients are expressed by Egs. (10)
and (14). The symmetric modes are governed by Eq. (13b),
i.e., they are not excited by the horizontal forcing 7,(¢)
within the framework of the linear free-surface theory.

Based on studies by Faltinsen and Timokha'? for a uni-
formly slotted screen with 0.5=Sn<{0.95 and relatively
small number of the openings N=350, the natural sloshing
frequencies and modes and, therefore, the hydrodynamic co-
efficients «;, o;, u;, \;, and ¢; become strongly dependent on
the geometric dimensions of the mean liquid domain, % and /,
and, in addition, on the two independent screen parameters
Sn and N. The hydrodynamic coefficients can also change
with the position of the slot nearest to the mean free surface,
i.e., due to the fact that the slot goes in and out of the mean
free surface. When 0 <Sn=0.5, the natural sloshing modes
and frequencies are close to those for the clean tank and the
latter additional dependencies can be neglected.

Henceforth, we consider steady-state liquid sloshing oc-
curring due to the harmonic sway excitation 7,(f)
=175, cos(ot), where 7,, is the forcing amplitude, and o is
the forcing frequency. The emphasis will be on the
m4-Scaled wave elevations which, according to the modal
presentation Eq. (7), is described by the formula

C0n =2 B0, B = B0 1. (32)
i=1

When [ (tank width) is the characteristic size and 1/ ¢ is the
characteristic time, the modal Egs. (30) can be rewritten to
the nondimensional form with respect to 5 (1):

(Bt (1) + 354 By (1) = Ny cos 1

— 0 Nm el
K f _(2 @a@)

hJ-n \i=1 K2i-1

Nm ‘o
> Bt

i=1 K2i-1

X dz=0, k=1,2,...,N,, (33)

where we have introduced the nondimensional parameters

&i = O'i/O', 7_72(4 = 7]241/1’ 0 = lU’
Ki=kil, E:h/l, z=17/1,
Be=wllP, N=NP, o @=ayl.

When o/ ch and h/l are constant values, 0.5=Sn, and
N =150, the steady-state solution of Eq. (33) strongly depends
on the nondimensional parameter [K7,,] (in the front of the
integral term), the independent parameters Sn, N, and, gen-
erally, the position of the slot closest to the mean free sur-
face. This is because, as we remarked above, all these input
parameters can change the hydrodynamic coefficients in the
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. A
Mswave probe

FIG. 4. (Color online) Experimental set-up and equipments.

modal equations. A simplification comes for smaller solidity
ratios, 0<Sn=<0.5 and 10=<N when (Ref. 12) the natural
sloshing modes and frequencies (and the corresponding hy-
drodynamic coefficients) are close to those for the clean tank
and, therefore, the steady-state solution of Eq. (33) is only
function of o/ O'T, h/l, and the nondimensional parameter
[K7,,]. Another simplification is possible for a porous-media
screen implying the limit case N— . During preparation of
Ref. 12, the authors established that, whereas 100=N and
0.5<Sn<0.95, the natural sloshing frequencies and modes
become only functions of Sn [or K because one can define
Sn=Sn(K) by inverting the monotonic function Eq. (16)].
Thus, the porous media limit implies that the steady-state
solution of Eq. (33) depends on the independent nondimen-
sional input parameters o/ o-’f, h/l, K1, and K.

The periodic steady-state solution has been found from
the system Eq. (30) by numerical time-integration following
a fifth-order Runge—Kutta method with arbitrary initial con-
ditions associated with initial free-surface shape and velocity.
This becomes possible because the modal equations imply a
dissipative mechanical system, i.e., transient waves die out
with increasing time.

lll. EXPERIMENTS

A Plexiglas-made rectangular tank was installed in a rig
located at the Marine Technology Center in Trondheim, Nor-
way. The tank’s internal dimensions are 1.0 mX0.98 m
X 0.1 m (width X height X breadth). The setup photograph is
shown in Fig. 4. The tank has been equipped with two resis-
tant wave probes. The measurement accuracy of the wave
elevations is about 1 mm. The measurement probes have
been installed at 1 cm away from the two opposite vertical
walls. Two considerations determined our choice of the tank
breadth. One is that we wanted to achieve two-dimensional
flow conditions and, hence, the breadth-to-width ratio has to
be small. The other criterion is that the tank breadth must be
clearly larger than the boundary layers at the tank walls and
the thin side-screen bracings “B” of 0.005 m (see Fig. 5).
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FIG. 5. Geometric parameters of the perforated plate (screen). All the numerical values are in meters. The plate thickness is 5 mm. The distance between the
two nearest slots, z,, takes the values z,=0.0027 m (screen a), 0.0065 m (screen b), 0.0112 m (screen c), 0.0158 m (screen d), 0.025 m (screen e), 0.032 m
(screen f), 0.0437 m (screen g), and 0.0623 m (screen h). Due to technical limitations in the drilling of the slots, the minimum possible slot height 3 mm was
used for all the screens. This causes eight different solidity ratios which, generally, change with the liquid depth as shown in panels (a)—(h). Effect of the rigid

side-screen bracings B of 0.005 m width is neglected in our analysis.

Meniscus effects occur at the intersection between the
tank walls and the free surface leading to three-dimensional
waves with very small wave height and wavelength relative
to the gravity waves. The error due to meniscus effects is
believed negligible.

The plate with perforated slots is mounted in the tank
middle (see Fig. 4). The plate thickness is 5 mm which is
neglected in our theoretical model. The geometric structure
of the perforated plate is illustrated in Fig. 5. Due to techni-
cal limitations in the drilling of the slots, the minimum pos-
sible slot height 3 mm was used for all the screens (a)—(h). It
has been controlled that the slot height is very close to con-
stant through the screen. If that was not the case, it could
cause a bias in the sloshing in the two compartments. The
latter fact was observed by originally using wrongly manu-
factured screens. For larger solidity ratios, there is only a
limited number of slots below the free surface.

Forced lateral harmonic tank motion n,=7,, cos (ot) is
studied. The steady-state wave elevation at the walls is re-
corded for different forcing frequencies in specified fre-
quency intervals. Because the shallow-liquid sloshing is not
adequately described by the linear sloshing theory except for
very small excitation amplitudes, our focus in the present
paper is on finite liquid depths. The frequency range is
[=0.6 Hz,~1.7 Hz] which includes the required resonance
frequencies o/2m, 05/2m, and o3/2 [see Eq. (3)] of the
corresponding clean tank for the tested liquid depths 0.4 and
0.35 m. An important consideration was to avoid tank roof
impact which would lead to an extra energy dissipation (see
Chap. 11 in Ref. 11). The latter fact implied that 7,,/! was

limited to slightly higher than 0.01 in tests with the 0.4 m
liquid depth.

In the experiments, the model tests started with the larg-
est test frequency. The forcing frequency was subsequently
decreased and kept fixed for a certain time interval. The rea-
son for decreasing the forcing frequency is to detect the
maximum wave elevation. The latter fact follows from the
possible soft-spring type nonlinear steady-state response for
a smooth two-dimensional rectangular tank with the tested
finite liquid depths (see Fig. 3). Each experimental series
with a fixed forcing frequency lasted, normally, for about
300 cycles. Some isolated tests were made with 400-500
cycles to confirm that the experimentally found steady-state
conditions remain stable on a long-time scale. The wave el-
evation usually reached the experimental steady-state condi-
tion after about 80-200 cycles and then the maximum wave-
elevation in the steady-state region is found. Then the forcing
frequency switched to a lower value and, again, to reach the
next steady-state responses. The step of frequency changes is
smaller around the peak points of the response in order to
have the precise value of the resonance frequencies. The
wave elevation is recorded with a sampling rate of 100 Hz
and measured relative to the unperturbed free surface.

IV. COMPARISON WITH EXPERIMENTS

For screens (a)—(h) in Fig. 5 and h/[=0.4, the corre-
sponding solidity ratios are computed to be Sn=0.4725,
0.6825, 0.786 25, 0.838 75, 0.891 25, 0.913 75, 0.936 25,
and 0.951 25 with N=70, 42, 29, 22, 15, 12, 9, and 7, re-
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spectively. Formula (16) gives the corresponding pressure
drop coefficients, K=3.09862, 15.2292, 41.4063, 79.8816,
191.550, 315.503, 597.750, and 1045.40. The forcing ampli-
tudes were 7,,/[=~0.001 and 0.01.

The larger forcing amplitude 7,,//=0.03 was used for
the model tests with /4//=0.35. For this liquid depth, the
solidity ratios are Sn=0.472857, 0.687 143, 0.790,
0.841 429, 0.892 857, 0.914 286, 0.935 714, and 0.952 857
with N=62, 37, 25, 19, 13, 10, 8, and 6, respectively. The
pressure drop coefficients are then evaluated by formula (16)
to be K=3.10666, 15.8448, 43.1960, 82.9828, 197.846,
319.727, 587.348, and 1120.55, respectively.

The tested forcing frequency range covers the lower
natural sloshing frequencies o7, o5, and o3. For h/1=0.4, the
ratios between these frequencies are o5/0,=1.524 and
o3/ 07=1.878 with 07=5.119 (rad/s). For h/1=0.35, 05/ 0}
=1.561, and 03/0)=1.933 with 07=4.966 (rad/s).

For all the experimental input parameters, the Runge—
Kutta integrations by Eq. (30) showed a fast convergence in
terms of the modal system dimension N,,. Four modal equa-
tions of Eq. (30), N,,=4, provided stabilization of four-five
significant figures of the numerical steady-state wave eleva-
tions. This means that, according to the quasilinear modal
theory, the global liquid motions are well described by the
four lower antisymmetric sloshing modes for the considered
frequency range.

A. Experiments with the lowest forcing amplitude
124/ 1=0.001 and h//=0.4

Comparison of the measured maximum steady-state
wave elevations at the walls (I cm away) and our theoretical
prediction by the modal system Eq. (30) is shown in Fig. 6.
The solid circles (@) denote the experimental values, but the
solid lines represent the corresponding theoretical values. In
the figure, these values are scaled by the forcing amplitude
7,4- Generally, the experimental forcing amplitudes were dif-
ferent (up to a 10%-change) for different forcing frequencies.
This is illustrated by the narrow horizontal graphs beneath
the panels (a)—(h) in Fig. 6. The calculations by our quasi-
linear theoretical model Eq. (30) accounted for the actual
experimental values of 7,,.

Results by the quasilinear theory is in very good agree-
ment with experiments in the panels (b)-(g) of Fig. 6. A
flat-type experimental response for certain frequency ranges
in the panels (e)—(f) may be due to the measurement error of
about 1 mm. In these frequency ranges, variations of the
theoretical response curves are comparable with this error.

In the panels (a)—(f), we see the two resonant peaks as-
sociated with the natural frequencies o and o3 (and the cor-
responding modes ¢, and ¢3) which remain relatively close
to o and 0. The theoretical peak at o3 is always higher than
the similar peak at . This is explained by the fact that the
natural sloshing mode ¢ [see its dominant component Eq.
(19a)] provides a faster decay from the mean free surface to
the bottom and, thereby, leads to a lower cross-flow. The
lower cross-flow through the screen for o= o3 implies a
lower damping due to flow separation (or jet flow) and a
larger wave amplitude response is, therefore, expected.
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Figure 6(a) shows discrepancies for the smallest tested
solidity ratio Sn=0.4725. First, we see a drift of the experi-
mental peaks to the left of their theoretical expectations. Sec-
ond, as we have explained above by the decreased cross-flow
through the screen, the theoretical wave elevations at o
=~ g3 should be higher of those at o= o but the experimen-
tal values do not confirm that. Because the experimental and
theoretical maximum wave elevations at the resonant peaks
are, at least, 25-times larger than the forcing amplitude, the
discrepancies can be explained by the free-surface nonlinear-
ity leading to a soft-spring type response outlined in Sec.
IT A 2. Furthermore, effect of the free-surface nonlinearity is
more important at o= g3 because, as we stated, the screen-
caused damping is of less importance for the second
primary-excited resonance.

The free-surface nonlinearity mechanism explains also
the difference between the quasilinear theoretical prediction
and experimental measurements in the panel (h) with Sn
=0.95125 (K=1045.45). For this solidity ratio, the screen
almost (but not completely) prevents the cross-flow between
compartments Q) and Qj so that the free-surface motions are
similar to those in Fig. 2(c), i.e., they occur almost indepen-
dently in Qf and Qj alike in the two corresponding clean
tanks with the liquid depth-to-width ratio #/a=0.8. The non-
linear soft-spring behavior of the response curves is then
expected (see Sec. IT A 2). However, sloshing in the panel
(h) cannot be modeled as fully independent resonant wave
motions in two compartments Qf and Q, with a rigid wall
between them. Assuming independent sloshing in the com-
partments with zero cross-flow at the screen implies that o3
%O'Z and, therefore, we should expect the linear response
peak at o/05~1.524 and the nonlinear resonance peak
should, due to the soft-spring behavior, be to the left of this
value. The panel (h) does not confirm such positions of these
peaks. This means that cross-flow is still not completely zero
and we arrive at the situation where both the cross-flow and
the free-surface nonlinearity matter.

The theoretical-and-experimental results in Fig. 2 help
judging on the general trends of the steady-state resonance
response curves with increasing Sn in the range 0.5=Sn
=0.95:

e For the smaller solidity ratios Sn=0.4725, 0.6825,
0.786 25, and 0.83875, the steady-state resonance re-
sponse in panels (a)-(d) shows two clear resonance
peaks associated with the two lowest antisymmetric
modes. The peaks remain close to o/oy=~1 and
o/ 0"; =~ 1.878, i.e., they occur in a neighborhood of the
natural sloshing frequencies Eq. (3). Furthermore, the
maximum nondimensional wave elevations in the con-
sidered frequency range becomes smaller with increas-
ing Sn. This means that increasing Sn between ~0.5
and ~0.85 increases the global damping in the me-
chanical system.

e Figures 6(e) and 6(f) with Sn=0.891 25 and 0.913 75
shows that further increase of the solidity ratio leads to
an increase of the global damping at o/ o} = 1, but the
theoretical and experimental steady-state resonance re-
sponse at the second resonance peak (associated with
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FIG. 6. The nondimensional experimental (@) and theoretical (solid line) maximum steady-state wave elevations at the vertical wall (at the two measurement
probes situated 1 cm away from the wall) vs the forcing frequency; 4//=0.4. The wave elevations are scaled by the forcing amplitude 7,,, but the forcing
frequency o is scaled by the lowest natural sloshing frequency for the clean tank (3). The nondimensional forcing amplitude 7,,/! is about 0.001. Change of
Ta/l vs o/ o] for experimental series is shown. The change is accounted for in the computations by the modal Egs. (30). (a) Sn=0.4725, N=70, K
=3.09862, (b) Sn=0.6825, N=42, K=15.2292, (c) Sn=0.78625, N=29, K=41.4063, (d) Sn=0.83875, N=22, K=79.8816, (¢) Sn=0.89125,N=15,K
=191.550, (f) Sn=0.91375, N=12, K=315.503, (g) Sn=0.93625, N=9, K=597.750, (h) Sn=0.95125, N=7, K=1045.40.

the second antisymmetric mode) remains almost the leads to vanishing of the first resonance peak, but the
same. Furthermore, we see a drift of this second reso- second resonance peak occurs at o/ o =1.6. The larg-
nance peak to the left of o/~ 1.878, i.e., from 1.87 est tested solidity ratio 0.951 25 in the panel (h) theo-
to 1.75. retically shows a clear linear resonance at o/

 Changing the solidity ratio to 0.936 25 in the panel (g) =1.59. The maximum theoretical 7,,-scaled wave el-
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FIG. 7. (Color online) Typical wave breaking occurring for all
the tested solidity ratios Sn<0.9 in the range of 1.25<0¢/0|<1.78
for the model tests with 7/[=0.4 and 7,,//=0.01. The photograph and
video recording are for the screen (a) with Sn=0.48125 and the
forcing frequencies o/o]=1.71 and 1.75, respectively (enhanced online).
[URL: http://dx.doi.org/10.1063/1.3562310.1]

evation is computed to be about 40; it is not shown in
the panel. Instead, experiments give much lower val-
ues with a local peak at o/ gj=1.54 which has earlier
been explained by a complex effect due to nonlinear
soft-spring type behavior and non-negligible cross-
flow through the screen.

B. Increasing the forcing amplitude to #,,//=0.01
with h/1=0.4

Increasing the forcing amplitude to 7,,/[=0.01 leads to
a set of specific free-surface phenomena documented by
means of photographs and videos in Figs. 7-12 These phe-
nomena are mainly observed in the frequency range 1.25
<o/07<1.78 and, for the screen (a) with the smallest tested
solidity ratio 0.4725, in the range 0.92<0c/0]=<1.04. The
free-surface phenomena can be classified in the following
way:

* Wave breaking (basically of spilling type) happens for
all the tested solidity ratios Sn=<0.9 in the range of
1.25<0/07<1.78. It is most severe for lower Sn.
Figure 7 exhibits the corresponding photograph and

FIG. 8. (Color online) Local wave breaking occurring for the screen (a) with
ol 0 ~0.98, h/1=0.4, and 7,,/1=0.01.
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FIG. 9. (Color online) A typical three-dimensional perturbations of the free
surface occurring for 0.7<Sn=<0.9 and 1.66<0/0|<1.73; h/I=0.4,
7,,/1=0.01. The video is for the screen (b) with Sn=0.6825 and o/ 07
=1.72 (enhanced online).[URL: http://dx.doi.org/10.1063/1.3562310.2]

video for the screen (a) with o/07=1.71 and o/0)
=1.75, respectively. The wave breaking occurs peri-
odically in the left and right compartments as a conse-
quence of collision between cross-flow going from the
screen and an incoming wave in the corresponding
compartment. For the screen (a) with the lowest tested
solidity ratio, a local wave breaking is also observed
for o/07=0.98 as it is seen in Fig. 8. The latter dis-
appears for other screens with higher solidity ratios.

e For 0.7=Sn=0.9, we established three-dimensional
wave motions in the frequency range 1.66<a/0)
= 1.73. Figure 9 displays the corresponding video for
the screen (b) with Sn=0.6825 and o/ 0|=1.72. These
three-dimensional waves are accompanied by a local
wave breaking. We were not able to identify what kind
of cross-wave resonance causes the observed three-

FIG. 10. (Color online) Video recording of a steep wave with the
double superharmonics elevations at the walls (enhanced online).[URL:
http://dx.doi.org/10.1063/1.3562310.3]
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FIG. 11. (Color online) Photo of the liquid jet through the screen for Sn
=0.891 25 and o/ 0}=1.48.

dimensional waves. A dedicated study in the manner
of Faltinsen ef al. is needed.”’

 The video in Fig. 10 illustrates the second Fourier har-
monics for the nearly wall wave elevations established
in our visual observations for the screens (b)—(d). In
addition, these cases are characterized by steep wave
patterns. The latter fact indicates an amplification of
higher sloshing modes. Mechanism of this amplifica-
tion in sloshing problems consists of the secondary
resonance yielding the energy content from a primary-
excited mode to higher modes via the free-surface
nonlinearity (see Chap. 8 in Ref. 11).

 Liquid jets through the screen openings over the free
surface with subsequent fallout on the opposite free
surface happened for the screens (e)—(h) in a frequency
range about o/ oy=1.524. Figure 11 shows the jet for
the screen (c) and o/ o;=1.48.

e Runup with a detachment of a liquid portion along the
screen happened for the solidity ratios 0.9 =< Sn. Figure
12 shows the corresponding photograph and video.

Even though the aforementioned surface phenomena in-

FIG. 12. (Color online) The photograph and video recording of the
runup at the screen occurring for 0.9<Sn (enhanced online).[URL:
http://dx.doi.org/10.1063/1.3562310.4]
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dicate importance of the free-surface nonlinearity, we used
the quasilinear modal theory to describe the steady-state
wave elevations at the walls. The results are compared with
experimental values in Figs. 13 and 14.

Figures 6(a)-6(d) and 13 demonstrate that increasing the
forcing amplitude leads to the experimental response curves
which cannot be fully quantified by the quasilinear theory.
The reasons are (i) additional resonance peaks about the ver-
tical dashed lines; (ii) a nonlinear soft-spring type behavior
in a frequency range covering the natural sloshing frequency
3.

When considering Fig. 13(a) with the lowest tested Sn
=0.4725 and comparing it with Fig. 6(a), a much clearer
soft-spring behavior of the experimental amplitude response
occurs at o= oj. The experimental resonance peak at the
first natural frequency, o= o, remains in these figures of a
linear character. Recalling that the aforementioned lower
cross-flow through the screen by the natural mode ¢; (asso-
ciated with exponential decay to the bottom) leads to a lower
screen-caused damping clarifies a stronger effect of the free-
surface nonlinearity which should yield for the tested liquid
depth the soft-spring type response curve. Our quasilinear
theory cannot capture this response as well as it cannot de-
scribe amplification of higher harmonics. However, it re-
mains applicable for prediction of the first Fourier harmonics
contribution in a local neighborhood of o= in Figs. 13
and 14. The vanishing of the first resonance peak with in-
creasing Sn is reasonably well predicted. This occurs for
Sn=0.786 25 [screen (c)] while the lower forcing amplitude
detected this vanishing only for Sn=0.936 25 [screen (g)].

Figures 13 and 14 show that the quasilinear theory is,
generally, not applicable in the frequency range 1.1 <o/
=1.9 for quantification of the steady-state amplitude re-
sponse. It describes only a general trend of the maximum
resonance peak position versus Sn. In the middle of this fre-
quency range, 1.3=<o0/0,=1.78, experimental observations
establish the aforementioned specific free-surface phenom-
ena which are of a clear nonlinear nature. Being invalid in
modeling the free-surface nonlinearity, the quasilinear theory
shows in Fig. 14 a linear-type amplitude response about o3
(note that this natural sloshing frequency decreases from o3
to o5 as Sn tends to 1) while the experimental measurements
show a soft-spring type response curves at the same fre-
quency. For smaller forcing amplitude in Fig. 6, this kind of
discrepancies was detected only for the maximum tested so-
lidity ratio Sn=0.951 25.

Remembering the video in Fig. 10 detecting the double
Fourier harmonics, we present in Figs. 13 and 14 the
1q-scaled contributions of the first (A) and second (V) Fou-
rier harmonics components of the 27/ o-periodic measured
steady-state signal. The sum of the first and second harmon-
ics contributions in the figures gives approximately the ac-
tual wave elevation for almost all the experimental data and,
therefore, relates appearance of the additional peaks to am-
plification of second harmonic response. Since the
(-] |)-nonlinearity can only yield odd harmonic terms, the
existence of the second Fourier harmonics cannot be ex-
plained within the framework of the quasilinear theory. To
explain amplification of the second Fourier harmonics, we
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FIG. 13. The same as for the panels (a)-(d) in Fig. 6, but for the larger forcing amplitude 7,,//=~0.01. Contribution of the first Fourier harmonics to the
measured wave elevations (scaled by 7,,) is denoted by A, but V denotes contribution of the second Fourier harmonics. The values o/ o|=iy, k=1 [see
Eq. (34) and the corresponding vertical dashed lines] indicate the frequencies where the secondary resonance due to the second-order free-surface nonlinearity

is expected.

should implement the adaptive multimodal analysis elabo-
rated by Faltinsen and Timokha.’ According to this analysis,
the second Fourier harmonics in the steady-state sloshing
solution can only be resonantly excited due to the second-
order free-surface nonlinearity when the forcing frequency is
close to the one-half of the corresponding natural frequency
of a symmetric mode, i.e., 20= 0;,k=1. The latter condi-
tion leads to
% ~ 0_2,; =y (34)
o, 20
Figure 13 shows that the values o/ O'T=i2k, k=1, 2,3, 4, and
5 well predict the frequencies of the resonance peaks associ-
ated with the second Fourier harmonics amplification.

C. Experiments with 7,,//=0.03 and h/I=0.35

Increasing the forcing amplitude makes the previously
described above free-surface phenomena much more severe.
Along with very strong wave breaking and runup, we ob-
served overturning waves and formation of gas pockets. A
representative video is given in Fig. 15. Formation of gas
pockets is demonstrated by the video in Fig. 16.

Even though strongly nonlinear free-surface phenomena
are observed for the larger forcing amplitude 7,,//=0.03 in

our experimental model tests done with h//=0.35, we at-
tempted to compare our quasi-linear prediction and the cor-
responding experimental measurements of the steady-state
maximum wave elevations at the walls. Results are reported
in Figs. 17-19.

The measured signal was not exactly steady-state for
several of the tested forcing frequencies. For the early-
reported experimental results, standard deviations of the
maximum wave elevation in the experimental steady-state
condition were comparable with 1 mm, i.e., with the mea-
surement error, but the experimental data for ,,/1=0.03
with h/1=0.35 demonstrated standard deviations comparable
with the forcing amplitude. The 7,,-scaled standard devia-
tions of the measured signal are presented in Figs. 17-19 to
identify the frequency ranges where they may matter. As it
follows from the previous analysis for lower forcing ampli-
tudes, the largest standard deviations are detected for o be-
tween o, and o} where the free-surface nonlinearity is espe-
cially important. Just about these values of the forcing
frequency, we observed most severe wave breaking. Further-
more, the change of the forcing amplitude for different forc-
ing frequencies has been negligible for this experimental se-
ries, less than 1%, thus, we neglected it in our quasilinear
modeling assuming 7,,/[=0.03.
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FIG. 14. The same as for the panels (e)—(h) in Fig. 6, but for the larger forcing amplitude 7,,//=0.01. Contribution of the first Fourier harmonics to the
measured wave elevations (scaled by 7,,) is denoted by A, but V denotes contribution of the second Fourier harmonics. The values o/ o} =iy, k=1 [see Eq.
(34) and the corresponding vertical dashed lines] indicate the frequencies where the secondary resonance due to the second-order free-surface nonlinearity is

expected.

We start our analysis with results in Fig. 17 which rep-
resents the case of the lower tested solidity ratios associated
with the screens (a) and (b). The figure shows that the qua-
silinear theory does not satisfactorily quantify the free-

surface elevations with increasing 7,,, but shows a correct
trend in how resonance frequencies change. Furthermore, the
case 7,,/[=0.03 brings, from experimental point of view,
several new physical phenomena. First of all, we note a

FIG. 15. (Color online) Representative video of the free-surface phenomena
in experimental series with #,,//=0.03 and //1=0.35. The video illustrates
free-surface phenomena occurring for o/ o;=1.328 and Sn=0.914 286 (en-
hanced online).[URL: http://dx.doi.org/10.1063/1.3562310.5]

FIG. 16. (Color online) Formation of a gas pocket at the vertical walls
occurring for 7,,/1=0.03 and &//=0.35. The photograph and video is given
for 0/0;=096 and Sn=0.472857 (enhanced  online).[URL:
http://dx.doi.org/10.1063/1.3562310.6]
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FIG. 17. The nondimensional experimental (@) and theoretical (solid line) maximum steady-state wave elevations at the “left” and “right” measurement
probes (1 cm away from the wall) vs the forcing frequency; 1//=0.35 and 7,,/[=0.03. The wave elevations are scaled by the forcing amplitude 7,,, but the
forcing frequency o is scaled by the lowest natural sloshing frequency o} for the clean tank (3). “Dev.” denotes the 7,,-scaled standard deviations of the
measured maximum wave elevations in the experimental steady-state conditions. Contribution of the first Fourier harmonics to the measured wave elevations
(scaled by 7,,) is denoted by A, but V denotes the 7,,-scaled contribution of the second Fourier harmonics. The dashed lines indicate the frequencies where
the secondary resonance due to the second-order free-surface nonlinearity is expected by Eq. (34). The dotted lines show the frequencies where the secondary
resonance due to the third-order free-surface nonlinearity is expected by Eq. (35). The shadow zones (with arrows) indicate two different experimental
steady-state solutions occurring in Qf and Qj. (a) Sn=0.472 857, N=62,K=3.106 66, (b) Sn=0.687143, N=37, K=15.8448.

multibranching of the experimental response curves which
appears as different experimentally detected steady-state
wave elevations at the opposite measurement probes (hence-
forth, “left” and “right” probes). We mark this by shadow
zones in Fig. 17. A hysteresis with the corresponding soft-
spring type multibranching (see Fig. 3) is possible in the two
limit cases, Sn=1 and 0. This hysteresis can, therefore, be
expected in the left of o/ o =1, 1.524, and 1.878. According
to Faltinsen and Timokha, > a central slat-type screen with
the tested solidity ratios in Fig. 17 can slightly shift this
hysteresis to the left of aforementioned frequencies, but it
cannot move it in the right direction along the horizontal
axis. The multibranching phenomenon in the shadow zone
occurs in other frequency ranges and, therefore, it cannot be
related to the nonlinear sloshing phenomena known for clean
rectangular tanks.

Furthermore, similar to the cases with 7,,//=0.01 and
h/1=0.4, we see many additional experimental resonance
peaks. Earlier, these peaks were well clarified by the second-
ary resonance with amplification of the second Fourier har-
monics. However, Fig. 17 shows that it is not the case for the
larger forcing amplitude. A reason is that the position of the
additional peaks is not clearly at o/ =i, and the actual
wave elevations cannot, generally, be approximated by the
sum of the first and second harmonics contributions. Because

increasing forcing amplitude may lead to the secondary reso-
nance by the third-order nonlinearity, we estimated the fre-
quencies where this kind of the secondary resonance occurs.
The corresponding condition 30 = g5, gives

O O+l

== T =l
o 30,

k=1,2,.... (35)
The values of i,;,; are marked by the vertical dotted lines in
Fig. 17. Summarizing the dotted and dashed lines gives a
‘net’” of possible secondary resonances (due to the second-
and third-order free-surface nonlinearities) in the studied fre-
quency range. A dedicated study is required to quantify the
reason for the experimentally detected multibranching and
additional resonance peaks.

Figure 18 demonstrates the theoretical and experimental
results for the screens (c)—(f) with larger solidity ratios. The
quasilinear theory shows a clear linear resonance at o/ o)
=1.6, but the experiments indicate a more complicated re-
sponse. The multiple-peak response structure continuously
disappears from the panels (c)—(f) with increasing the solid-
ity ratio so that the experimental case (f) shows a clear soft-
spring type behavior at the primary resonance o/oj=1.6
with an extra jump at o/o|~i,. Similar response curves
were detected by the adaptive modal sloshing theory for a
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FIG. 18. The nondimensional experimental (@) and theoretical (solid line) maximum steady-state wave elevations at the ‘left’ and ‘right’ measurement probes
(I cm away from the wall) vs the forcing frequency; h/1=0.35 and 7,,/1=0.03. The wave elevations are scaled by the forcing amplitude 7,,, but the forcing
frequency o is scaled by the lowest natural sloshing frequency o for the clean tank (3). Dev. denotes the 7,,-scaled standard deviations of the measured
maximum wave elevations in the experimental steady-state conditions. The 7,,-scaled contribution of the first Fourier harmonics to the measured wave
elevations is denoted by A. The shadow zones (with arrows) indicate different experimental steady-state elevations for opposite sides of the tank (for
different measurement probes). (¢) Sn=0.790, N=25, K=43.1960; (d) Sn=0.841429, N=19, K=82.9828; (e) Sn=0.892 857, N=13, K=197.846;
(f) Sn=0.914 286, N=10, K=319.727.
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FIG. 19. The nondimensional experimental (@) and theoretical (solid line) maximum steady-state wave elevations at the measurement probes (1 cm away
from the wall) vs the forcing frequency; h/1=0.35, ,,/1=0.03. The wave elevations are scaled by the forcing amplitude 7,,, but the forcing frequency o is
scaled by the lowest natural sloshing frequency o} for the clean tank (3). Dev. denotes the 7,,-scaled standard deviations of the measured maximum wave
elevations in the experimental steady-state conditions. The 7,,-scaled contribution of the first Fourier harmonics to the measured wave elevations is denoted
by A. (g) Sn=0.935714, N=8, K=587.348; (h) Sn=0.952 857, N=6, K=1120.55. The dashed line in (h) shows the first harmonics contribution by the
single-dominant modal theory (Chap. 8 in Ref. 11) for Sn=1 (solid screen).



042101-18  Faltinsen, Firoozkoohi, and Timokha

clean rectangular tank (see Sec. II). The trend continues in
Fig. 19. This figure shows that the liquid sloshing dynamics
becomes closer to that in the two compartments, Qg and Q,,,
with a solid wall between them. One should remark that,
starting with the case (f), the Runge-Kutta integration by the
quasilinear modal theory becomes unstable in a neighbor-
hood of the theoretical linear resonance o/ o= 1.6.

V. CONCLUSIONS

Studies of resonant sloshing in a rectangular tank with
screens are typically restricted to the screen solidity ratios
Sn=0.5, the forcing frequencies close to the lowest natural
frequency o of the corresponding clean tank, and relatively
small forcing amplitudes. For these input parameters, one
can assume that the global liquid motions are close to those
in the corresponding clean tank, and that the screen-induced
flow separation (or a jet flow) plays the same role as a qua-
dratic damping for linear oscillators (see a review on qua-
dratic damping for linear oscillators in Ref. 15). Higher so-
lidity ratios, 0.5=Sn=0.95, a limited number of the screen
openings, N=50, a wider range of the forcing frequencies,
and increasing forcing amplitudes that are relevant for ship
tanks with swash (perforated) bulkheads are studied in the
present paper experimentally and theoretically.

New experimental model tests were performed for finite
liquid depths, three forcing amplitudes #,,/l=0.001, 0.01,
and 0.03, and eight different slat-type screens installed at the
middle of a rectangular tank. The primary emphasis has been
placed on the two-dimensional steady-state sloshing and the
corresponding experimental wave elevation at the opposite
tank walls (1 cm away from the wall). The forcing frequency
interval covered the three lowest natural frequencies of the
clean rectangular tank, o}, 05, and o. In our measurements
of the steady-state maximum elevations, a larger number of
tests with small changes of the forcing frequency o was per-
formed in local ranges where the experiments detected a lo-
cal (resonance) peak.

In our theoretical analysis, we assumed the global flow
to be described by an inviscid incompressible liquid model
with irrotational flow. The screen-induced flow separation (or
jet flow) effect on the global flow was modeled by a pressure
drop condition. The formula for the empirical pressure drop
coefficient was taken from the literature. This condition
should be true not only for a porous media, but also, e.g., for
orifice meter device with a single hole. The letter fact is
important for higher solidity ratios of the experimental
screens leading to a limit number of slots below the free
surface. It is a matter of comparison with model test of, for
instance, wave elevation that the empirical pressure drop
condition makes sense. Our results for small excitation am-
plitude documented this fact. The multimodal method with
linearized free-surface conditions was employed, i.e., we in-
cluded into our theoretical model the screen-induced effect
on the global flow, but neglected the free-surface nonlinear-
ity.

Comparing the experimental and theoretical results for
the three tested forcing amplitudes made it possible to esti-
mate the effect of the free-surface nonlinearity. It is almost
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negligible for the lowest forcing amplitude 7,,//=0.001 with
0.5=Sn=0.95. Noticeable discrepancies between theory
and experiments due to the free-surface nonlinearity are only
established for the limit tested values, Sn=0.4725 and
0.951 25. An important conclusion for this forcing amplitude
is that the larger amplitude response is found not at the pri-
mary resonance of the corresponding clean tank, o}, but
rather at the natural frequency responsible for the second
antisymmetric mode. According to Ref. 12, the natural slosh-
ing frequency o; for the screen-equipped rectangular tank
monotonically decreases from o to o5 as Sn increases from
0.5 to 1. The reason is that the resonant excitations with o
away from o cause a lower cross-flow through the screen. It
is therefore understandable, that we should expect most se-
vere nonlinear sloshing effects around o3 when 7,,// in-
creases. Experimental measurements and visual observations
confirm this fact. Wave breaking, runups, transition to three-
dimensional motions, and other specific free-surface phe-
nomena were found just in a frequency range around os;.
Photographs and videos are presented to illustrate them.

Analyzing the results for ,,//=0.01 made it possible to
understand that the free-surface nonlinearity causes sufficient
energy content to symmetric modes due to the secondary
resonance. This is a novelty for the screen-equipped tanks
relative to the corresponding clean tanks for which amplifi-
cation of higher modes due to the secondary resonance re-
quires, normally, larger forcing amplitude. A possible reason
is that the symmetric modes do not lead to a cross-flow
through the screen and, therefore, are almost undamped, in
contrast to the antisymmetric ones. This implies that the
same-order forcing of symmetric and antisymmetric modes
should give a larger response of the symmetric modes. In
order to describe the associated nonlinear sloshing, we
should, in the future, employ the adaptive nonlinear multi-
modal method.>*

Multibranch experimental response curves are detected
for 7,,/1=0.03 in certain frequency ranges in a neighbor-
hood of ¢} and o; where we cannot expect the soft-spring
type behavior associated with nonlinear sloshing in a clean
rectangular tank. Our quasilinear theory is not able to explain
it. An explanation may come from analyzing possible sec-
ondary resonances due to the second- and third-order free-
surface nonlinearities. Indeed, a few possibilities for the sec-
ondary resonance are detected at a"lk and, as a consequence,
the quasilinear theory qualitatively well describes the main
harmonics contribution of the actual wave elevations when
o-zo"f. However, there exist numerous possibilities for the
secondary resonance in a frequency range covering o, and
o3 where the experiments detect the most severe free-surface
phenomena and the multibranching occurs.

APPENDIX A: RELATIONS IN EQS. (25) AND (26)

Remembering that the natural sloshing modes ¢; satisfy
the Laplace equation and the zero-Neumann condition on the
wetted tank surface, inserting Eq. (24) into the time-
independent relations Egs. (5a)—(5¢) gives
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ap2 + +
E:O on Sg, U S,

VZp,=0 in Qg, (A1)
for integrand p, in the modified velocity potential Eq. (24).
Inserting the modal solutions Eqgs. (7) and (24) into the

kinematic boundary condition Eq. (5d) and remembering that

3,00 = ki.0) = f0) (A2)
<

due to the corresponding boundary condition on X in the
spectral problem Eq. (9) leads to the relation

(A3)

Oé)Z

1 ("o
- f P2(y.0,1)dr, =0
PJy

to be fulfilled for any instant ¢. The latter means that the

integrand (%)(y,o,t) should be zero, and we arrive at the
zero-Neumann boundary condition Eq. (25a) which is further
used in the boundary value problem Eq. (26).

Finally, inserting the modal solution Egs. (7) and (24)
into the dynamic boundary condition Eq. (5e) with relation
Eq. (A2) gives the boundary condition Eq. (25b).
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