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Mounting a screen with a high solidity ratio (0.5 . Sn< 1) at the center of a rectangular tank

qualitatively changes the secondary resonance phenomenon for liquid sloshing. In contrast to the

clean tank, the steady-state sloshing due to lateral excitation is then characterized by multi-peak

response curves in a neighborhood of the primary resonance frequency. The present paper revises

the adaptive nonlinear multimodal method to study the secondary resonance phenomenon for the

screen-affected resonant sloshing with a finite liquid depth and, thereby, clarify earlier

experimental results of the authors. VC 2011 American Institute of Physics. [doi:10.1063/1.3602508]

I. INTRODUCTION

Faltinsen et al.1 studied experimentally and theoretically

the steady-state resonant liquid sloshing in a rectangular tank

with a slat-type screen installed at the tank middle. Their

application in mind was sloshing in ship tanks with swash

bulkheads. It has been extensively discussed in the introduc-

tion of Ref. 1, that, in contrast to the so-called Tuned Liquid

Dampers (TLDs), the swash bulkheads are characterized by

a relatively large solidity ratio Sn (the solidity ratio is the ra-

tio of the area of the shadow projected by the screen on a

plane parallel to the screen to the total area contained within

the frame of the screen). A consequence of the higher solid-

ity ratio of a central slotted (slat-type) screen in a rectangular

tank is that the antisymmetric natural sloshing modes and
frequencies change relative to those for a clean (without

screen) rectangular tank. These changes were quantified by

Faltinsen and Timokha2 versus Sn, the number of the screen

openings (slots) N, and the position of these openings.

In experiments by Faltinsen et al.,1 the tank was forced

horizontally with the forcing frequency r in a frequency

range covering the three lowest natural sloshing frequencies

of the screen-equipped tank (henceforth, r�i are the natural

sloshing frequencies in the clean static tank, but ri are the

natural sloshing frequencies in the screen-equipped tank and,

according to Ref. 2, r1 < r�1 < r2 ¼ r�2 < r3 < r�3 < r4

¼ r�4 < � � � ). It was ensured that no roof impact occurred.

The focus was on the liquid depth-to-tank width ratio

h=l¼ 0.4 and the two forcing amplitudes g2a=l¼ 0.001 and

0.01 (l is the tank width). Eight different screens with solid-

ity ratios from 0.47 to 0.95 were tested. Experimental meas-

urements of the steady-state wave elevation at the tank walls

and the corresponding video observations were documented.

The theoretical analysis was based on the linear multimodal
method assuming an incompressible liquid with irrotational

flow everywhere except in a local neighborhood of the

screen. An “integral” viscous effect of the nearly screen flow

separation on the globally inviscid liquid was governed by a

pressure drop condition.3 The latter condition yielded the

(�j�j)-nonlinear damping terms in the linear modal equations

and, thereby, transformed the linear modal theory to a quasi-
linear form. When the experimental forcing amplitude was

sufficiently small, g2a=l¼ 0.001, this quasi-linear theory

agreed well with the experimental response curves of the

maximum steady-state wave elevations. When g2a=l¼ 0.01,

the latter modal theory gave only a general trend in how the

experimental response changed versus Sn. Failure of the

quasi-linear theory could, in part, be related to specific free-

surface phenomena appearing as

(i) breaking waves,

(ii) nearly wall (screen) run-up, and

(iii) cross-flow through screen’s openings from water to

air with jet flow impacting on the underlying free

surface.

These phenomena were illustrated by photos and videos

and extensively discussed. The majority of them were estab-

lished for r > r�2, i.e., away from the (screen-modified) low-

est natural sloshing frequency r1 < r�1. When r was close to

the lowest natural sloshing frequency, the aforementioned

free-surface phenomena were not strong.

Another important difference between the quasi-linear

predictions and experiments in Ref. 1 appears as extra peaks

on the experimental response curves at which the measured

steady-state wave elevations were characterized by amplifi-

cation of the double harmonics, 2r. This amplification can-

not be captured by the derived quasi-linear modal theory

since the only (�j�j)-nonlinear quantities of this theory yield

the odd harmonics. Amplification of the double harmonics is

a necessary but not sufficient condition of the secondary res-
onance phenomenon in the nonlinear free-surface sloshing

problem. Faltinsen and Timokha,4 Hermann and Timokha,5

Ockendon et al.,6 Wu,7 and Wu and Chen8 (see, also

extended review in Chap. 8 of Ref. 9) gave theoretical and

experimental analysis of the phenomenon for the two-dimen-

sional steady-state resonant liquid sloshing in a clean rectan-

gular tank with finite, intermediate, and shallow liquid

depths. Normally, the secondary resonance is studied for the
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case when the tank is forced laterally and harmonically with

the forcing frequency r close to the lowest natural sloshing

frequency r�1. For the finite liquid depth (the depth-to-tank

width ratio 0:2. h=l) and an asymptotically small forcing

amplitude, the secondary resonances are mathematically

expected at 2r ¼ r�2, 3r ¼ r�3;…; nr ¼ r�n; n � 4. These

conditions imply amplification of the second, third, and

higher harmonics as well as the corresponding natural

modes. The harmonics are yielded by the free-surface nonli-

nearities of the corresponding polynomial orders. For

0.3368…< h=l (0.3368… is the so-called critical depth

where the soft-to-hard spring behavior of the response curves

changes with r ¼ r�1), the secondary resonance peaks on the

steady-state response curves are situated away from the pri-

mary resonance r ¼ r�1 as shown in Fig. 1. This fact and the

liquid damping cause that the peaks associated with higher-

order free-surface nonlinearities (fourth, fifth, etc.) are

extremely narrow and practically not realized. In contrast,

the second- and third-order nonlinearities matter4 and lead to

visible peaks on the experimental response curves, espe-

cially, with increasing the forcing amplitude. The situation

changes with decreasing liquid depth when the natural slosh-

ing spectrum becomes nearly commensurate. The passage to

shallow liquid depth causes finger-type response curves

which are discussed and quantified by Faltinsen and Timo-

kha10 by employing a Boussinesq-type fourth-order multi-

modal method.

Based on the experimental results by Faltinsen et al.,1

the aforementioned free-surface phenomena (i)–(iii) and the

multi-peak response curves indicate that the nonlinearity is

important for sloshing in the screen-equipped tanks, espe-

cially, with increasing the forcing amplitude. A way to

describe the nonlinear liquid sloshing can be Computational

Fluid Dynamics (CFD).11 The second author attempted to

model experimental cases from Ref. 1 by interFOAM, which

is an OpenFOAM code that solves the two-dimensional Nav-

ier-Stokes equations for incompressible laminar two-phase

flow using the volume of fluid (VOF) method for

free-surface capturing and the finite volume method (FVM)

for the governing equations. In these calculations, the mesh

number was about 150,000. Using the Intel(R) Core(TM) 2

Quad CPU (2.5 GHz) computer with parallel computations

for four sub-domains of the main domain, a computational

time of about 105 s was required to simulate 100 s of real-

time sloshing and to reach nearly steady-state conditions.

This means that, even though the CFD methods are generally

applicable, using them for a parameter study of the nonlinear

steady-state sloshing from experiments by Faltinsen et al.1 is

questionable. In the present paper, we show that an alterna-

tive could be analytically oriented (e.g., asymptotic multimo-

dal) methods based on potential flow theory and employing a

pressure drop condition to capture the viscous effect associ-

ated with flow separation at the screen. The nonlinear adapt-

ive multimodal method is not able to describe the phenomena

(i)–(iii). However, because the higher-order nonlinearities

(higher than three) do not contribute to the secondary reso-

nance phenomenon for the finite liquid depth, the method is

applicable to describe the multi-peak response curves.

The nonlinear adaptive multimodal method requires deri-

vation of the polynomial-type modal system, i.e., the system

of ordinary differential equations which keeps only up to the

third-order polynomial nonlinearities in the generalized coor-

dinates responsible for amplification of the natural sloshing

modes. The adaptive modal method is a generalization of the

third-order Moiseev-type theory.12–14 The method implicitly

assumes an incompressible liquid with irrotational flow, but

damping due to the boundary layer at the wetted tank surface,

roof impact, etc., can generally be accounted for. Considering

screens with a relatively small solidity ratio, Love and Tait15

and Love et al.16 adopted the polynomial-type modal system

by Faltinsen and Timokha4 with quadratic damping terms

due to viscous flow separation at the screen. Because the lat-

ter approach assumes implicitly that the natural sloshing fre-

quencies and modes of the screen-equipped tank remain the

same as those for the corresponding clean tank, it is applica-

ble only for relatively small solidity ratios. For slotted

screens, Ref. 2 estimates this fact for 0 < Sn. 0:5. Because

the natural sloshing modes are modified by the screens for

0:5. Sn < 1, the polynomial-type modal system by Faltinsen

and Timokha4 should be completely revised. Such a revision
is reported in the present paper (see Sec. II). The newly

derived modal system couples the generalized coordinates bi

responsible for the screen-modified natural modes by Faltin-

sen and Timokha.2 The multimodal method assumes an

incompressible liquid with irrotational flow except locally at

the screen. In addition, the method requires the normal repre-

sentation of the free surface and, therefore, it cannot directly

account for the free-surface phenomena (i–iii) described in

experiments by Faltinsen et al.1,14

To include an “integral” viscous effect due to flow sepa-

ration at the screen, we employ the (�j � j)-damping terms

derived in Ref. 1 from the screen-averaged pressure drop

condition. These damping terms involve an integral expres-

sion of the cross-flow at the mean submerged screen part and

neglect the damping caused by the free-surface phenomenon

(iii). Our formulation of the pressure drop condition implic-

itly assumes that the cross-flow dominates relative to the

FIG. 1. The schematic response curves for a clean rectangular tank repre-

senting the maximum steady-state wave elevation A versus r=r�1 for

0.3368…< h=l due to lateral harmonic excitation. The dashed line shows

results of the linear sloshing theory. The solid bold lines display stable non-

linear steady-state regimes. A hysteresis effect at r=r�1 ¼ 1 is possible and

denoted by the points T, T1, T2, and T3. The points i2 and i3 mark the most

important secondary resonance points occurring as the forcing frequency

satisfies the conditions 2r ¼ r�2 (amplification of the second mode) or

3r ¼ r�3 (amplification of the third mode), respectively. A hysteresis effect

at i2 and i3 is also possible but, due to sufficiently large damping, it was

detected in experiments4 only for a relatively large forcing amplitude.
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tangential flow component at the screen. In addition, we

neglect the fact that the tangential flow component implies a

tangential drag on the screen.

Based on the results in Sec. II B, we derive in Sec. II C

the required modal system keeping up to the third-order

polynomial nonlinearities in terms of the generalized coordi-

nates. Both antisymmetric and symmetric modes become

coupled due to the free-surface nonlinearity. However, the

screen-caused (�j � j)-damping terms appear only in modal

equations responsible for the antisymmetric modes. The rea-

son is that the antisymmetric modes determine the cross-

flow, but the symmetric modes contribute to the tangential

flow along the screen. In Sec. III B, the adaptive modal

method by Faltinsen and Timokha4 is generalized for the

case of the screen-equipped rectangular tanks. This includes

a generalization of the Moiseev asymptotic modal relation-

ships and accounting for a larger number of the secondary

resonances in a neighborhood of the lowest natural fre-

quency. The steady-state solutions are found by combining a

long-time simulations with the adaptive asymptotic modal

systems and the path-following procedure along the response

curves. Because the modal equations for the symmetric

modes have no damping terms, we have to incorporate linear

damping terms due to a viscous dissipative effect of the

boundary layer flow at the mean wetted tank surface. A

rough estimate of the corresponding damping rates are taken

from Chap. 6 in Ref. 9. However, except for the lowest tested

solidity ratio, the corresponding damping rates pass to zero

in the final calculations from Sec. III.

The theoretical results in Sec. III agree well with the experi-

mental measurements by Faltinsen et al.1 for h=l¼ 0.4 and the

forcing amplitude g2a=l¼ 0.01. The theory is supported by the

experimental fact that the secondary resonance peaks for

0:5. Sn < 1 are not only expected at i2 and i3 in Fig. 1, but

also at

i2k ¼
r
r�1
¼ r�2k

2r�1
ð2r ¼ r�2kÞ k ¼ 2; 3;… (1)

(due to amplification of the double harmonics) and

3r ¼ r2kþ1;
r
r�1
¼ r2kþ1

3r�1
¼ i2kþ1; k ¼ 1; 2;… (2)

(due to amplification of the third harmonics).

The multimodal method has to involve twenty natural

modes to describe the secondary resonance modes associated

with the experiments by Faltinsen et al.1 for h=l¼ 0.4 and

forcing amplitude g2a=l¼ 0.01. Moreover, many of these

modes, e.g., the 13th and 15th modes, should be considered

as giving the lowest-order contribution (along with the first

natural mode) to handle the secondary resonance sloshing

with increasing the forcing frequency to r=r�1 � 1:3 and

higher. The experimental observations confirmed the locally

steep wave profiles. The wavelength of the 20th natural

mode for the experimental 1 m tank is 10 cm, namely, the

theoretically involved modes have a wavelength larger than

the rough upper bound 5 cm for when surface tension matters

for linear propagating capillary-gravity waves. This means

that we did not make an error neglecting the surface tension

in our theoretical analysis.

A possible reason for quantitative differences between

our nonlinear theory and experiments in certain frequency

ranges for higher solidity ratios is the use of the simplified

“integral”-type pressure drop condition which neglects spe-

cific nearly screen flows. In particular, higher solidity ratios

lead to a jump in the free-surface elevation at the screen which

causes a cross-flow from water to air. The latter cross-flow is

associated with jet flows impacting on the underlying free sur-

face. The water-water impact is likely to represent dissipation

of the total energy. At the present time, we do not have a clear

strategy how to estimate contribution of this and other specific

nearly screen flows on the global liquid sloshing dynamics.

II. THEORY

An incompressible liquid with irrotational two-dimen-

sional flow is assumed everywhere in the liquid domain Q(t)
except in a small neighborhood of a screen as shown in Fig.

2. The surface tension is neglected. The two-dimensional

tank has vertical walls at the free surface R(t). The tank is

forced horizontally with displacements g2(t).

A. General modal equations

We follow the general scheme of the multimodal meth-

ods described, e.g., in Chap. 7 of Ref. 9 or in Ref. 17 imply-

ing the modal solution

z ¼ fðy; tÞ ¼
X1
i¼1

biðtÞfiðyÞ; (3a)

Uðy; z; tÞ ¼ y _g2 þ
X1
i¼1

RnðtÞunðy; zÞ (3b)

for the free-surface elevation and the absolute velocity poten-

tial, respectively. Here, bi and Rn are the generalized coordi-

nates and unðfnðyÞ ¼ unðy; 0ÞÞ are the natural sloshing modes

which are the eigenfunctions of the boundary spectral problem,

r2un ¼ 0 in Q0;
@un

@n
¼ 0 on S0;

@un

@z
¼ jnun on R0;

ð
R0

undy ¼ 0; (4)

FIG. 2. A general two-dimensional tank with vertical walls near the free

surface and, possibly, a perforated vertical screen. In our modal theory, the

liquid cross-flow at the screen part DSc with subsequent fallout of the

screen-generated liquid jet impact on the free surface is neglected; this can-

not be described by the modal solution (3a).
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where Q0 is the mean liquid domain, S0 is the mean wetted

tank surface including the solid screen parts, and R0 is the

mean free surface. The natural sloshing frequencies are com-

puted by the formulas rn ¼
ffiffiffiffiffiffiffi
gjn
p

; n ¼ 1; 2;… (g is the

gravity acceleration).

The multimodal method employs the modal solution (3)

with the normal presentation of the free surface (3a) and,

thereby, implicitly assumes that there are no overturning

waves. Since any breaking waves involve vorticity genera-

tion, they also cannot be described. Moreover, as it is shown

in Fig. 2, the modal solution (3a) cannot model the liquid

flow through the screen part DSc where one side of the

screen is wetted, but another dry contacting the ullage gas.

Experimental observations by Faltinsen et al.1 reported a

flow through DSc with forthcoming water fallout on the free

surface. The multimodal method neglects this flow.

Chapter 7 in Ref. 9 shows that using the modal solution

(3) together with the Bateman-Luke variational principle

leads to the following general [modal] infinite-dimensional

system of ordinary differential equations,

X1
k¼1

@An

@bk

_bk ¼
X1
k¼1

AnkRk; n ¼ 1; 2;…; (5a)

X1
n¼1

@An

@bl

_Rn þ
1

2

X1
n;k¼1

@Ank

@bl
RnRk þ gKð0Þll þ k2l€g2 ¼ 0;

l ¼ 1; 2;… (5b)

which couple the generalized coordinates bk and Rn intro-

duced by the modal solution (3). Here,

An ¼
ð

QðtÞ
undQ; Ank ¼

ð
QðtÞ
run � rukdQ;

k2n ¼
ð

R0

yfndS; Kð0Þnn ¼
ð

R0

f 2
n dS (6)

so that An and Ank are nonlinear functions of bi.

Generally speaking, the fully nonlinear modal system

(5) can be adopted for direct simulations. Going this way

means the so-called Perko’s18,19 method. La Rocca et al.20

used this method to describe nonlinear liquid sloshing in a

clean rectangular tank. Simulations by the Perko method are

less numerically efficient than the use of the adaptive modal

method. However, the main problem of the Perko-type meth-

ods is that the system (5) becomes numerically stiff for

strongly resonant sloshing. The latter fact has been discussed

by Faltinsen and Timokha.4,10

B. The polynomial-type modal equations

In accordance with the adaptive multimodal method by

Faltinsen and Timokha,4 we assume that the nonlinear inter-

modal interaction is primarily determined by the second- and

third-order polynomial terms in the generalized coordinates.

This means that one can reduce (5) by keeping the third-

order polynomial quantities. Using the Taylor series at z¼ 0

uðy; f; tÞ ¼ fn þ jnfnð Þfþ 1

2

X1
l¼1

an;l fl

 !
f2 þ � � �

in the expression

@An

@bk

¼
ða

�a

uðy; f; tÞfk dy

as well as in the expression on p. 173 of Ref. 4, i.e.,

Ank ¼ jnK
ð0Þ
nk þ

ða

�a

ðrun � rukÞjz¼0 f dy

þ 1

2

ða

�a

@ðrun � rukÞ
@z

����
z¼0

f2 dyþ � � �

gives the formulas

@An

@bj

¼Kð0Þnj þjn

X1
i¼1

Kð1Þnji biþ
1

2

X1
i;k¼1

X1
m¼1

an;mKð2Þmjik

 !
bibkþ��� ;

(7)

Ank ¼ jnK
ð0Þ
nk þ

X1
i¼1

Pð1Þnk;ibi þ
1

2

X1
p;q¼1

Pð2Þnk;pqbpbq þ � � � : (8)

Here, we used the following relations:

fnðyÞ ¼ unðy; 0Þ; jnfn ¼
@un

@z

����
0

;
X1
l¼1

an;lfl ¼
@2un

@z2

����
0

; (9a)

@fn

@y
¼ @un

@y

����
0

; jn
@fn
@y
¼ @

2un

@y@z

����
0

;
X1
l¼1

an;l
@fl
@y
¼ @3un

@y@z2

����
0

;

(9b)

where the coefficients an,l are introduced which imply a Fou-

rier expansion of @2un=@z2
��
z¼0

in terms of the orthogonal ba-

sis {fn}; ða

�a

fnfk dy ¼ Kð0Þnk ;

ða

�a

fnfkfi dy ¼ Kð1Þnki ;ða

�a

fnfkfifj dy ¼ Kð2Þnkij …; (10)

ða

�a

@fn
@y

@fk

@y
fi dy ¼ Kð�1Þ

nk;i ;

ða

�a

@fn

@y

@fk
@y

fifj dy ¼ Kð�2Þ
nk;ij ; …;

(11)

where, due to the orthogonality of the natural modes,

Kð0Þnk ¼ 0, n= k,

Pð1Þnk;i ¼ Kð�1Þ
nk;i þ jnjkK

ð1Þ
nki ; (12a)

Pð2Þnk;pq ¼ ðjn þ jkÞKð�2Þ
nk;pq

þ
X1
m¼1

an;mjkK
ð2Þ
mkpq þ ak;mjnK

ð2Þ
mnpq

h i
: (12b)

The comma is used between indexes which disallow their

position exchange. As long as there is no comma between

the indexes, these indexes can commutate.

Substituting

Rk ¼
_bk

jk
þ
X1
p;q¼1

V2;k
p;q

_bpbq þ
X1

p;q;m¼1

V3;k
p;q;m

_bpbqbm þ � � � (13)
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in the kinematic equation (5a), one can compute the

coefficients,

V2;n
k;i ¼

1

jnK
ð0Þ
nn

�
Pð1Þnk;i

jk
þ jnK

ð1Þ
nki

" #
; (14a)

V3;n
k;p;q¼

1

jnK
ð0Þ
nn

�
Pð2Þnk;pq

2jk
þ
X1
m¼1

1
2
an;mKð2Þmkpq�Pð1Þnm;pV2;m

k;q

� �" #
…:

(14b)

Finally, using Eqs. (7), (8), and (13) in the dynamic modal

equation (5b), one can find the following asymptotic modal

equation accounting for the third-order components in terms

of the generalized coordinates bi,

X1
n¼1

€bn dnl þ
X1
i¼1

d1;l
n;i bi þ

X1
i;j¼1

d2;l
n;i;jbibj

" #
þ

þ
X1
n;k¼1

_bn
_bk t0;l

n;k þ
X1
i¼1

t1;l
n;k;ibi

" #
þ r2

lbl þ Pl€g2 ¼ 0;

l ¼ 1; 2;…; (15)

where

r2
l ¼ gjl; Pl ¼

jlk2l

Kð0Þll

; (16a)

d1;l
n;i ¼ jl V2;l

n;i þ
Kð1Þnli

Kð0Þll

 !
; t0;l

n;k ¼ jlV2;l
n;k þ

jlP
ð1Þ
nk;l

2jnjkK
ð0Þ
ll

;

(16b)

d2;l
n;i;j ¼ jl V3;l

n;j;i þ
1

Kð0Þll

X1
m¼1

jmKð1ÞmliV
2;m
n;j þ

1

2

an;mKð2Þmlij

jn

" # !
;

(16c)

t1;l
n;k;i ¼ jl V3;l

n;k;i þ V3;l
n;i;k þ

Pð2Þnk;li

2jnjkK
ð0Þ
ll

 
þ 1

2Kð0Þll

X1
m¼1

� 2jmKð1ÞmliV
2;m
n;k þ

Pð1Þmk;lV2;m
n;i

jk
þ

Pð1Þnm;lV2;m
k;i

jn

" #!
:

(16d)

C. Modal equations for the case of a central slotted
screen

The two-dimensional liquid sloshing is considered in a

rectangular tank with width l¼ 2a and a slotted screen in-

stalled at the tank middle as shown in Fig. 3. The figure intro-

duces the geometric notations and the body-fixed coordinate

system. The screen appears as a thin solid plate with a series of

perforated horizontal slots. The screen thickness is neglected.

When the liquid is at rest, the wetted screen part Sc0 has N sub-

merged slots. The solidity ratio of the submerged screen part is

denoted by Sn which is a function of h and N.

Under assumptions of the previous section, we use the

modal equations (15) in which the hydrodynamic coefficients

are computed based on the natural sloshing modes by Faltinsen

and Timokha.2 For 0:5. Sn < 1, these hydrodynamic coeffi-

cients are functions of Sn and N as well as slot positions. The

modal equations do not account for a local viscous flow

through the screen. Following Faltinsen et al.,1 this can be done

by employing an “integral” (averaged) version of the pressure

drop condition3 defined on the mean wetted screen as follows:

P� � Pþ ¼
1

2
qKujuj on Sc0; (17)

where K is an empirical pressure drop coefficient, q is the

liquid density, u is the so-called lateral approach velocity to

the screen, and (P– – Pþ) is the pressure drop. A review on

using this condition in sloshing problems can be found in

Refs. 1, 9, and 21. This empirical condition comes from the

steady-flow case3 and, generally, can be employed for slosh-

ing problems with many screens installed at different places.

The space-averaged version of the pressure drop formulation

(17) assumes that both sides of the screen are wetted, i.e. the

jump DScj j ¼ f2 � f1 in Fig. 3 and the liquid flow through

DSc are neglected. The pressure drop coefficient K depends

on the solidity ratio Sn. It may also depend on the Reynolds

and Keulegan-Carpenter (KC) numbers. For slat-type

screens, the pressure drop coefficient weakly depends on the

Reynolds number. There is negligible dependence on KC
number for relevant KC numbers. Following Tait et al.21 and

Faltinsen et al.,1 we will adopt the following approximation

of the empirical pressure drop coefficient:

K ¼ 1

Cc ð1� SnÞ � 1

� �2

; Cc ¼ 0405 expð�pSnÞ þ 0:595

for Sn � 03: (18)

The formula (18) is applicable for different Sn-values.

According to experimental values of K by Blevins,3 its rela-

tive accuracy is less than 20% for Sn � 0.9, but may be

larger for Sn � 0.9.

FIG. 3. A schematic picture of a rectangular tank with a slat-type screen in

the middle. Basic geometric notations. Two measurement probes of wave

elevation are located at small distances Pl and Pr from the walls. The mean

wetted screen is Sc0. For higher solidity ratios, the free surface R(t) has a

clear jump at the screen formed by the “wet-dry” area DSc (here, the interval

(f1,f2)).

062106-5 Effect of central slotted screen Phys. Fluids 23, 062106 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



Faltinsen et al.1 showed that the “integral” pressure drop

condition leads to the following quantities:

KDmð _b2i�1Þ ¼ �K
a0mj2m�1

4hKð0Þð2m�1Þð2m�1Þ

ð0

�h

X1
i¼1

_b2i�1

j2i�1

UiðzÞ
 !

�
X1
i¼1

_b2i�1

j2i�1

UiðzÞ
�����

�����dz (19)

to be incorporated into the modal equations for the antisym-

metric modes (generalized coordinates b2m–1) responsible for

cross-flow through the screen. Here

a0m ¼ 2

ð0

�a

f2m�1dy;

UiðzÞ ¼ �
1

a
coshðkðiÞ0 ðzþ hÞ=aÞ sinðkðiÞ0 Þ;

with the constant k
ðiÞ
0 being the roots of the equations,

k
ðiÞ
0 tanhðkðiÞ0 h=aÞ ¼ j2i�1a:

Using the modal equations (15) and the pressure-drop

“integral” terms (19) leads to the following modal equations:

X1
n¼1

€bn

�
dnð2m�1Þ þ

X1
i¼1

D12m�1ðn; iÞbi

þ
X1
j¼1

Xj

i¼1

D22m�1ðn; i; jÞbibj

	

þ
X1
n¼1

Xn

k¼1

_bn
_bk T02m�1ðn; kÞ þ

X1
i¼1

T12m�1ðn; k; iÞbi

" #

þ KDmð _b2i�1Þ þ r2
2m�1b2m�1 þ P2m�1€g2 ¼ 0; (20a)

X1
n¼1

€bn dnð2mÞ þ
X1
i¼1

D12mðn; iÞbi þ
X1
j¼1

Xj

i¼1

D22mðn; i; jÞbibj

" #

þ
X1
n¼1

Xn

k¼1

_bn
_bk T02mðn; kÞ þ

X1
i¼1

T12mðn; k; iÞbi

" #

þ r2
2mb2m ¼ 0; m ¼ 1; 2;…; (20b)

where

D1lðn; iÞ ¼ d1;l
n;i ; D2lðn; i; jÞ ¼

d2;l
n;i;i; i ¼ j;

d2;l
n;i;j þ d2;l

n;j;i; i 6¼ j;

(

T0lðn; kÞ ¼
t0;l
n;n ; n ¼ k;

t0;ln;k þ t0;l
k;n ; n 6¼ k;

(

T1lðn; k; iÞ ¼
t1;ln;n;i; n ¼ k;

t1;ln;k;i þ t1;l
k;n;i; n 6¼ k:

(

As we remarked above, the hydrodynamic coefficients in the

modal equations (20) are computed by using the natural

sloshing modes from Ref. 2.

When 0 < Sn. 0:5, the natural sloshing modes are

close to those for the clean tank, i.e., these are approximately

governed by the trigonometric algebra implying

ukðy; zÞ � cos
pk

a
ðy� aÞ

� �
coshðpkðzþ hÞ=lÞ

coshðpkh=lÞ ; (21)

in expressions of Sec. II B. As a consequence, many of the

hydrodynamic coefficients at the polynomial-type terms of

(20) are zero. In particular, the quadratic nonlinearity in b1

(the generalized coordinate responsible for the first mode) is

only present in the first equation of (20b) governing the first

symmetric mode (b2). Analogously, the cubic terms in b1

exist only in the first and second equations of (20a). This

means that the secondary resonance due to the second har-

monics can only excite the second mode, but the third har-

monics can only lead to the secondary resonance for the

third mode.

When 0:5. Sn < 1, the trigonometric algebra represen-

tation for the natural sloshing modes (21) breaks down so

that the screen-effected antisymmetric modes become, gen-

erally, non-continuous in the center of R0 (see examples in

Ref. 2). This fact leads to additional nonzero hydrodynamic

coefficients causing a complex nonlinear energy redistribu-

tion between lower and higher modes. So, the nonzero quad-

ratic quantities in b1 appear now in all the equations for even

modes (20b), i.e., all the symmetric modes can be amplified

due to the second harmonics (the second-order nonlinearity)

but the nonzero cubic terms in b1 are present in all the

equations (20a). As a consequence, the higher solidity ratios

yield the secondary resonance due to the second and third

harmonics not only at i2 and i3 but also at ik, k � 2 defined

by Eqs. (1) and (2).

Incorporating the K Dmð _b2i�1Þ-terms in modal equations

(20a) adds a quadratic damping into a conservative mechani-

cal system with infinite degrees of freedom. Because we op-

erate with potential flow theory, the modal equations (20) do

not contain other damping terms, e.g., due to laminar viscous

boundary layer, tangential viscous drag at the screen, and

wave breaking. Moreover, because the symmetric modes do

not cause cross-flow through the central screen, the modal

equations (20b) do not have any damping terms at all. As it

will be explained in detail in Sec. III C, the latter fact can

make it difficult to find the steady-state solution due to a con-

tinuous beating by these symmetric modes. Artificial small

damping is therefore needed to reach the steady-state condi-

tion. For this purpose, it is standard procedure to incorporate

the linear damping terms,

2airi
_bi (22)

in the ith equation of (20) to account for other damping

mechanisms and prevent the aforementioned beating in the

computations. The actual values of ai are unknown and,

according to our theoretical model, should pass to zero in

final calculations after the steady-state condition is achieved.

A rough estimate of the initial ai-values adopted for our

steady-state calculations can be associated with the damping

rates ni for linear sloshing due to the laminar viscous bound-

ary layer at the mean wetted tank surface for the clean tank

evaluated in Secs. 6.3.1 and 6.11.1 of Ref. 9. The corre-

sponding numerical procedure on the steady-state solution

with decreasing ai is explained in Sec. III C.
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III. RESONANT STEADY-STATE SLOSHING DUE
TO LATERAL EXCITATION WITH THE FORCING
FREQUENCY AT THE LOWEST NATURAL
SLOSHING FREQUENCY

A. Nondimensional formulation

We assume that g2(t)¼ g2a cos(rt) with a relatively

small nondimensional forcing amplitude g2a=l and r being

close to the lowest natural sloshing frequency r�1 of the cor-

responding clean tank. The liquid depth is finite. Henceforth,

we will introduce asymptotic relationship between the

l-scaled generalized coordinates. This needs rewriting the

modal equations (20) in a nondimensional form. Introducing

the characteristic length l¼ 2a and the characteristic time

t�¼1=r�1, the normalization transforms the modal equations

to the form,

X1
n¼1

€�bn

�
dnð2m�1Þ þ

X1
i¼1

�D12m�1ðn; iÞ�bi

þ
X1
j¼1

Xj

i¼1

�D22m�1ðn; i; jÞ�bi
�bj

	
þ
X1
n¼1

Xn

k¼1

_�bn
_�bk

� �T02m�1ðn; kÞ þ
X1
i¼1

�T12m�1ðn; k; iÞ�bi

" #

þ 2a2m�1 �r2m�1
_�b2m�1 þ K �Dmð _�b2i�1Þ

þ �r2
2m�1

�b2m�1 � �g2a �r cosð�rtÞ ¼ 0; (23a)

X1
n¼1

€�bn dnð2mÞ þ
X1
i¼1

�D12mðn; iÞ�bi þ
X1
j¼1

Xj

i¼1

�D22mðn; i; jÞ�bi
�bj

" #

þ
X1
n¼1

Xn

k¼1

_�bn
_�bk

�T02mðn; kÞ þ
X1
i¼1

�T12mðn; k; iÞ�bi

" #

þ 2a2m �r2m
_�b2m þ �r2

2m
�b2m ¼ 0; m ¼ 1; 2;…: (23b)

Here, we have incorporated the linear damping terms (22)

and introduced the following nondimensional variables:

�bi ¼ bi=l; �g2a ¼ g2a=l; �r ¼ r=r�1; �ri ¼ ri=r
�
1;

�D1i ¼ l D1i; �D2i ¼ l2 D2i; �T0i ¼ l T0i; �T1i ¼ l2 T1i;

�Dmð _�biÞ ¼ l Dmðl _�biÞ

B. Generalization of the adaptive asymptotic modal
method

Working with the clean rectangular tank, Faltinsen and Tim-

okha4 proposed an adaptive asymptotic modal method for

the resonant steady-state liquid sloshing. They assumed that

the forcing amplitude is small, �g2a ¼ Oð�Þ; �	 1 and that r
is in a neighborhood of r�1. The method starts with the Moi-

seev12–14 third-order asymptotic relationships,

�b1 ¼ Oð�1=3Þ; �b2 ¼ Oð�2=3Þ; �b3 ¼ Oð�Þ; �bk.Oð�Þ;k � 4;

(24)

considering them as a priori estimate of the generalized

coordinates �bi.

Based on the asymptotic relationships (24), one can derive

the corresponding asymptotic modal equations by neglecting

the oð�Þ-terms in the polynomial-type modal equations (23).

This was done by Faltinsen et al.14 Further, Faltinsen et al.14

and Faltinsen and Timokha4 showed that the asymptotic rela-

tions (24) are not satisfied when r=r�1 in close to i2 and i3 (see

Fig. 1) on the asymptotic scale Oð�2=3Þ. The use of the asymp-

totic modal equations by Faltinsen et al.14 leads then to unreal-

istic amplification of the generalized coordinates �b2 and �b3.

When this happened, Faltinsen and Timokha4 proposed a pos-
teriori asymptotic relationships considering �b2 and=or �b3 to

have the dominant order Oð�1=3Þ. Neglecting the oð�Þ-terms in

(23) makes it possible to derive the corresponding asymptotic

modal equations based on these new asymptotic relationships.

References 4 and 22 demonstrate that the same forcing ampli-

tude and frequency can require different asymptotic modal sys-

tems (asymptotic ordering) for steady-state solutions belonging

to different response curves.

According to the Moiseev asymptotics (24) for the clean

tank, there is only one dominant mode ð�b1Þ and only one

mode �b2


 �
possesses the second asymptotic order. However,

as we have already commented, the non-zero second-order

polynomial terms in �b1 appear for 0:5. Sn < 1 in all the

modal equations (23b) but the nonzero cubic terms in �b1 are

now presented in (23a). This means that the Moiseev-type

asymptotics (24) should in the studied case change to

�b1 ¼ Oð�1=3Þ; �b2k ¼ Oð�2=3Þ; �b2kþ1 ¼ Oð�Þ; k � 2 (25)

and, in contrast to the clean tank with a finite liquid depth

considering only two possible secondary resonances for �r
close to the points i2 and i3, we should now expect the multi-

ple secondary resonances as �r is close to values from the sets

(1) and (2). Thus, we see that screens with 0:5. Sn < 1

change the Moiseev asymptotics (24) to (25) and, besides, the

secondary resonances should now be expected at ik, k � 2.

These facts modify the adaptive modal method.

We start now with (25) as a priori asymptotics. When

considering a frequency range �ra < �r < �rb, we should fur-

ther find out whether there are any ik belonging (being close)

to this range and change the ordering of the generalized

coordinates �bk in Eq. (25) to �bk ¼ Oð�1=3Þ for the corre-

sponding indexes k. This will be a posteriori asymptotics. To

obtain the corresponding asymptotic modal system, we

should exclude the oð�Þ-terms in modal equations (23). By

using direct simulations with these a posteriori asymptotic

modal equations, one must also validate whether we have

included all the dominant generalized coordinates on the

studied interval �ra < �r < �rb. If not, more dominant modes

should be added.

We must note that we have an extra term K �Dm in

Eqs. (23a) where, because �Dm is of the quadratic character

with respect to �b1, �Dm ¼ Oð�2=3Þ. The asymptotic modal

equations include the asymptotic quantities up to the order

Oð�Þ and, therefore, our asymptotic scheme requires

�1=3
.K. When the K �Dm-terms are of either comparable or

lower order with respect to the dominant �1=3, these terms

give a leading contribution to the nonlinear resonant slosh-

ing. This condition implies
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Oð��1=3Þ ¼ �g�1=3
2a .K: (26)

C. Numerical steady-state solution

Normally, the numerical steady-state solution of the nonlinear

adaptive asymptotic modal system is found by a long-time

simulation with appropriate damping terms (see Refs. 1, 4,

and 22). For the clean tank,4 the linear damping coefficients

(22) are used to get a numerical steady-state solution by

means of these simulations. Nevertheless, the first approxima-

tion is found with ai � ni but next approximations follow

from the long-time simulations with lower values of ai and

initial conditions following from the previous steady-state so-

lution computed with a larger ai. Faltinsen and Timokha4

report that such a numerical procedure with a stepwise

decrease of the damping ratios practically converges with

ai. ni=100 so that the corresponding numerical steady-state

solution obtained with ai � ni=100 can be considered as the

steady-state solution of the corresponding asymptotic modal

system without damping terms. Moreover, the experimentally

established secondary-resonance jumps between the steady-

state solutions for the clean tank (as in Fig. 1) were detected

for ai. n=100. This means that, due to possible nonlinear

character of damping, the adopted linear damping rates for

nonlinear steady-state motions can be lower than ni, but thes-

erates should be higher for the resonance-type transients.

In the studied case, the subsystem for antisymmetric

modes has, by definition, the unavoidable quadratic damping

terms. However, the subsystem (20b) describing the symmet-

ric modes has not any proper damping terms. This

“disproportion” between symmetric and antisymmetric

modes can affect the time-step simulations leading to a long-

time non-decaying beating by the symmetric modes. As a

consequence, whereas we can in the majority of cases postu-

late a2m–1¼ 0 in Eq. (23a), the damping ratios a2m in Eq.

(23b) should not be zero in simulations to describe the

steady-state sloshing.

In the next section, we will typically take a2m–1¼ 0,

a2m¼ n2m to get the first approximation of the steady-state

solution. The next approximations will be obtained by long-

time simulations with initial conditions following from the

previous steady-state solution and lower values of a2m.

Except for the case of lower Sn with K that, generally, does

not satisfy (26), this recursive procedure in a2m for getting

the numerical steady-state solution will practically converge

with a2m . n2m=10. Similar to numerical results by Faltinsen

and Timokha4 for the clean tank, the secondary-resonance

jumps become detected after the procedure converges with a

lower tested a2m. The subsequent decrease of a2m does not

influence the result (difference is less that 0.1%), but may in

some cases cause numerical instability on the long-time scale

due to the stiffness of the ordinary differential equations.

The Adams-Bashforth-Moulton predictor-corrector algo-

rithm of orders 1 through 12 is involved in our computations.

The algorithm handles mildly stiff differential equations.

The numerical recursive procedure in a2m is combined

with a path-following procedure along the response branches

by a stepwise change of �r in positive and negative directions.

This path-following procedure makes it possible to go along

the steady-state response curves and, thereby, detect jumps

between branches. However, it does not guarantee that no

more branches exist.

D. Theoretical and experimental secondary-resonance
response curves

Using the adaptive multimodal method we will study the

secondary resonance phenomenon in a screen-equipped rec-

tangular tank by considering the experimental case from Ref.

1 for �g2a ¼ g2a=l ¼ 0:01, �h ¼ h=l ¼ 0:4, and seven different

screens. The screens’ structure and experimental setup are in

some detail described in Ref. 1. Even though Faltinsen et al.1

tested the frequency range 0:7 < r=r�1 < 2:2, our primary

focus will be on the interval 0:7 < r=r�1 < 1:36. The upper

bond of the interval is chosen to be away from

1:52 ¼ r2=r�1 < r3=r�1. The reason is that the experimental

steady-state sloshing with r�2=r
�
1. �r (the forcing frequency

exceeds the second natural sloshing frequency) is character-

ized by the free-surface phenomena mentioned in Introduction

as (i-iii). The multimodal method is not able to describe them.

Within the framework of the experimental input parame-

ters, the calculation by the adaptive modal method estab-

lished stabilization of the numerical steady-state solution

(error is less than 0.01%) by twenty generalized coordinates

(describing amplification of ten symmetric and ten antisym-

metric modes). Further, to cover the frequency range

0:7 < r=r�1 < 1:36, we needed four different adaptive modal

systems (asymptotic orderings) whose domains of applicabil-

ity are overlapped and shown in Figs. 4, 6, 8, 9, and 11.

FIG. 4. The theoretical and experimental g2a-scaled maximum wave eleva-

tion at the walls; h=l¼ 0.4 and g2a=l¼ 0.01. The signs (
) and (D) denote

the experimental measurements done at opposite walls (1 cm away from the

walls, respectively). The submerged screen part has at rest 70 opening

(slots), Sn¼ 0.4725 with K¼ 3.09862 (according to (18)). The solid lines

denote results by the adaptive modal method involving four different asymp-

totic modal systems M1, M2, M3, and M4, whose frequency ranges are

shown on the top. The modal systems involve a2m = n2m in Eq. (23b) and

a2m–1 = 0 in Eq. (23a). The dotted line in the middle shows the results with

am = nm in Eq. (23). The dashed line (quasi-linear modal theory) is taken

from Faltinsen et al.1 The values ik are defined by Eqs. (1) and (2). They

imply possibility of secondary resonance due to amplification of the second

and third harmonics. The response curves are not connected between the

branches b1 and b2 (a combined i9-and-i4 resonance) and in the zoomed

zone caused by the secondary resonance at i7.
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A simple non-optimized FORTRAN code was written without

any parallelization in computation. The computational time

to reach a steady-state solution depended on the input physi-

cal parameters and the small nonzero damping rates a2m

which were employed to avoid beating in the symmetric

modes. Normally, the damping rates a2m–1¼ 0, a2m¼ n2m=10

caused the computational time to be from 0.5 to 50 s to

achieve a numerical steady-state solution within five signifi-

cant figures (Intel(R) Core(TM) 2 Quad CPU (2.66 GHz)

computer).

Our analysis starts with the experimentally lowest solid-

ity ratio Sn¼ 0.4725 leading to K¼ 3.09862 according to

formula (18). Comparing this value of K and

0.01�1=3¼ 4.6416, one can conclude that condition (26) is

satisfied only in an asymptotic sense. The adaptive modal

method “feels” this fact. For the forcing frequencies close to

r=r�1 ¼ 1 simulations by the corresponding asymptotic

modal systems were not able to get a clear steady-state solu-

tion with a2m–1¼ 0 and a2m< n2m. Physically, this means

that other (in addition to the screen-induced one) damping

mechanisms, including the viscous boundary layer at the

wetted tank surface, matter for the present physical and geo-

metric input parameters. The numerical results on the maxi-

mum steady-state wave elevation (1 cm at the wall) noted in

Fig. 4 by solid lines were therefore obtained with a2m–1¼ 0

and a2m¼ n2m. These results are in a good agreement with

experiments. For comparison, we present also the quasi-lin-

ear prediction from Ref. 1 by the dashed line.

For the case in Fig. 4, the adaptive modal method

requires the four asymptotic modal systems M1, M2, M3,

and M4 (see the ranges of their applicability on the figure

top) to capture different a posteriori asymptotic relationships

appearing on the whole interval 0:7 < r=r�1 < 1:36. These

systems involve the following dominant modes: M1¼ {1, 3,

5, 2}, M 2= {1, 5, 7, 9}, M3¼ {1, 9, 11, 4}, and M4¼ {1, 5,

7, 9, 11, 13, 15, 4, 6}. A requirement for being dominant is

clarified by the secondary resonance as i3¼ 0.625,

i2¼ 0.762, i5¼ 0.808, i7¼ 0.956, i9¼ 1.084, i4¼ 1.085,

i11¼ 1.198, i13¼ 1.303, i6¼ 1.328, i15¼ 1.400, i17¼ 1.491.

The dominant character of the corresponding modes was

also checked by direct numerical simulations.

Appearance of the secondary resonances is clearly seen

on the response curves at i2, i3, i7, i4, i9, and i6. Our primary

attention is on the secondary resonance at i7 where a hystere-

sis occurs with two non-connected branches (it is seen in the

zoomed view) and to the combined i9-and-i4 resonance (the

latter two resonances due to the second and third harmonics

are situated very close to each other). The combined i9-and-

i4 resonance leads to the two non-connected branches, b1

(lower) and b2 (upper). The branch b2 causes a narrow peak

which is not experimentally supported for this solidity ratio

while it is for higher solidity ratios, e.g., in Figs. 6 and 8,

where appearance of the peak agrees with experimental

measurements. Even though the experiments were performed

by decreasing the forcing frequency after a steady-state

sloshing with previous forcing frequency was reached, tran-

sients, most likely, caused the experimental values belonging

to the lower branch to end at C1. There are no serious free-

surface phenomena like (i–iii) (see, Introduction) in experi-

mental observation at the frequency range close to C1, thus,

the discrepancy cannot be related to the fact that the multi-

modal method does not capture specific free-surface

motions. This cannot also be explained by accounting for

the linear boundary layer damping for the antisymmetric

modes. Indeed, including the non-zero linear damping terms

(a2m–1¼ n2m–1) in modal equations (23a) improves agree-

ment with experiments for the forcing frequencies close to

the primary resonance r=r�1 ¼ 1, but these damping terms

do not effect appearance of the theoretical peak.

Another interesting point is in the frequency range C2

(the i7-zone with amplification of the third harmonics) where

we have a quantitative discrepancy with experiments. The

discrepancy can partly be explained by the local breaking

waves which are found in experimental observations. Fig. 5

demonstrates a plunging wave breaker appearing near to the

vertical walls for r=r�1 ¼ 0:9574 belonging to C2.

Figs. 6–11 deal with the pressure drop coefficients K
and �g2a for which condition (26) is satisfied. This means that

the screen-induced damping should play the leading role for

the antisymmetric modes. The linear damping terms play

then a secondary role and are only needed in computations to

reach the steady-state conditions. Later, they can pass to

zero. Theoretical modeling of the experimental cases in Figs.

6–11 is therefore performed with a2m–1¼ 0 and a decrease of

a2m from n2m to a2m< n2m=10 to get a numerical steady-state

solution which is not affected by linear damping terms (as

described in Sec. III C). Typically, the steady-state solution

obtained with a2m–1¼ 0 and a2m¼ n2m=10 does not change

(the difference is less than 0.1%) with subsequent decrease

of a2m. Furthermore, the same asymptotic modal systems

M1, M2, M3, and M4 are used in these figures. These sys-

tems employ the modified Moiseev asymptotic ordering (25)

revised due to the secondary resonance by the dominant

ordering O �1=3

 �

for the following modes: M1¼ {1, 3, 5, 2,

4}, M2¼ {1, 5, 7, 9, 2, 4}, M3¼ {1, 5, 7, 9, 11, 13, 4}, and

M4¼ {1, 5, 7, 9, 11, 13, 15, 4, 6}. The frequency ranges for

these models are shown in the figures.

The theoretical results for Sn¼ 0.6925(K¼ 41.4063) are

compared with experimental data in Fig. 6. For this screen,

FIG. 5. (Color online) Video of the surface wave phenomena for the case

in Fig. 4 with Sn¼ 0.4725, g2a=l¼ 0.01 and r=r�1 ¼ 0:9574. (enhanced

online) [URL: http://dx.doi.org/10.1063/1.3602508.1]
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the secondary resonances are expected at i3¼ 0.624, i2¼ 0.762,

i5¼ 0.807, i7¼ 0.955, i9¼ 1.084, i4¼ 1.085, i11¼ 1.198,

i13¼ 1.303, i6¼ 1.328, i15¼ 1.400, and i17¼ 1.491, i.e., they

are almost the same as for the previous screen. Because we

are able to test very small a2m, our nonlinear modal theory

shows four discontinuities (not two as in Fig. 4) in the

response curves associated with the secondary resonances at

i2, i7, i9-and-i4, and i6. Agreement with experiments looks

satisfactory. Experiments support the theoretical peaks at i7,

i9-and-i4, and i6. There are no appropriate experimental

measurements at i2. To demonstrate the damping effect on

the symmetric modes due to the laminar boundary layer at

the tank surface (the steady-state solution with a2m–1¼ 0,

a2m¼ n2m), we present the corresponding maximum theoreti-

cal wave elevations by the dotted line. This small damping

does not modify the results from a qualitative point of view,

but makes it possible to get fully connected response curves.

Thus the mechanical system is very sensitive to the damping

in a neighborhood of the secondary resonance points. Just

around these points (see C1, C2, and C3) we see a quantita-

tive discrepancy between our theory and experiments. As for

a small frequency range C1 (see also, zone C1 in Fig. 4), the

two experimental points in C1 do not belong to the theoreti-

cal branch b1 because this branch ends to the left of C1.

Here, the linear damping due to the boundary layer at the

wetted tank surface (dotted line, a2m–1¼ 0, a2m¼ n2m) moves

the branch end to the right. Thus, an improvement can be

expected if we will be able to get a more accurate estimate

of the global damping. The dotted lines show also a damp-

ing-related sensitivity in the zone C2. There is a discrepancy

in the frequency range C3 where the measurements at the

left and right measure probes differ from each other. In this

FIG. 7. (Color online) Video of the free-surface phenomena for the case in

Fig. 6 with Sn¼ 0.6825, g2a=l¼ 0.01 and r=r�1 ¼ 1:043329. (enhanced

online). [URL:http://dx.doi.org/10.1063/1.3602508.2]

FIG. 8. The same as in Fig. 6 but for Sn¼ 0.78625, K¼ 41.4063, N¼ 29

(upper panel) and Sn¼ 0.83875, K¼ 79.88.16, N¼ 22 (lower panel). The

frequency range C5 corresponds to the small-amplitude liquid sloshing

where our nonlinear free-surface theory gives results close to the quasi-lin-

ear prediction, whereas both theoretical results on the maximum wave eleva-

tion at the walls are slightly lower than the experimental values.

FIG. 6. The theoretical and experimental g2a-scaled maximum wave eleva-

tion at the walls; h=l¼ 0.4, g2a=l¼ 0.01. The signs (
) and (D) mark the ex-

perimental values. The submerged screen part has at rest 42 cross-openings

(slots), Sn¼ 0.6825, and K¼ 15.2292 (due to (18)). The solid lines denote

results by the adaptive multimodal method involving four asymptotic modal

systems M1, M2, M3, and M4, whose frequency ranges are shown on the

top. These adaptive modal systems employ the modified Moiseev asymptotic

ordering (25) corrected due to the secondary resonance by the dominant

ordering for the following modes: M1¼ {1, 3, 5, 2, 4}, M2¼ {1, 5, 7, 9, 2,

4}, M3¼ {1, 5, 7, 9, 11, 13, 4}, and M4¼ {1, 5, 7, 9, 11, 13, 15, 4, 6}. The

asymptotic modal systems adopt a2m–1 = 0 in Eq. (23a) but a2m = n2m=10 in

Eq. (23b) providing stabilization of the response curves as a2m! 0. The dot-

ted line shows the theoretical results with a2m = n2m in Eq. (23b). The dashed

line (quasi-linear modal prediction) is taken from Faltinsen et al.1 The val-

ues ik are defined by Eqs. (1) and (2). They imply possibility of secondary

resonance due to amplification of the second and third harmonics. The

response curves are not connected between the branches b1 and b2 (a com-

bined i9-and-i4 resonance), b3 and b4 (caused by the secondary resonance at

i7) as well as at i6 and i2.
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frequency range, the experiments show steep waves and a

local breaking (see, video in Fig. 7). These phenomena may

matter. A local wave breaking at the walls was also detected

in the frequency range C4.

The theoretical results for Sn¼ 0.78625 and

Sn¼ 0.83875 are compared with experimental measurements

in the upper and lower panels of Fig. 8, respectively. For the

screen with Sn¼ 0.78625, the most important secondary

resonances are expected at i3¼ 0.623, i2¼ 0.762, i5¼ 0.805,

i7¼ 0.952, i9¼ 1.080, i4¼ 1.085, i11¼ 1.194, i13¼ 1.299,

i6¼ 1.328, i15¼ 1.400, and i17¼ 1.491. The screen with

Sn¼ 0.83875 causes these secondary resonances at

i3¼ 0.621, i2¼ 0.762, i5¼ 0.803, i7¼ 0.950, i9¼ 1.078,

i4¼ 1.085, i11¼ 1.192, i13¼ 1.296, i6¼ 1.328, i15¼ 1.400,

and i17¼ 1.491. For these two screens, we have, generally, a

good agreement with experiments. A discrepancy appears in

the frequency range C5, where the free-surface nonlinearity

gives a minor contribution to the wave elevations except,

very locally, at the point j* so that the results by the adaptive

modal method is the same as for the quasi-linear theory

neglecting the free-surface nonlinearity. A narrow resonance

at j* is due to the fourth harmonics leading to the secondary

resonance amplification of the tenth mode (theoretically, at

r=r�1 ¼ 0:8574252). This amplification disappears when we

include the linear damping terms with a2m–1¼ 0, a2m¼ n2m

(dotted line). At the present time, we have no good explana-

tion of the discrepancy at C5, but, because the results are

almost the same as for the linear free-surface sloshing formu-

lation in Ref. 1, this discrepancy cannot be explained by the

free-surface nonlinearity. One interesting fact is a “knee” in

the response curves at i7 which is present for both linear and

nonlinear free-surface theories. The “knee”-behavior is asso-

ciated with the third harmonics yielded by the (ujuj)-nonli-

nearity in the pressure drop condition ( �Dm-quantities in Eq.

(23)) and, as we see, it is not influenced by the free-surface

nonlinearity. The literature on the pressure drop condition

does not give an answer on how precise this condition cap-

tures higher harmonics in the hydrodynamic pressure yielded

by the viscous flow separation for the sinusoidal approach

velocity. Normally, the literature discusses only the first har-

monics and deals with the associated equivalent lineariza-

tion. Furthermore, the terms K �Dm come from Ref. 1

assuming an average over the mean wetted screen. This

assumption may not be correct for higher solidity ratios caus-

ing a cross-flow through DSc (see Fig. 3).

Considering the experimental screens with higher solid-

ity ratios leads to the results in Fig. 9. In the upper panel

with Sn¼ 0.89125, i3¼ 0.617, i2¼ 0.762, i5¼ 0.798,

i7¼ 0.945, i9¼ 1.073, i4¼ 1.085, i11¼ 1.187, i13¼ 1.291,

i6¼ 1.328, i15¼ 1.399, and i17¼ 1.491, and the lower panel

with Sn¼ 0.91375 implies i3¼ 0.613, i2¼ 0.762, i5¼ 0.792,

i7¼ 0.938, i9¼ 1.063, i4¼ 1.085, i11¼ 1.176, i13¼ 1.278,

i6¼ 1.328, i15¼ 1.398, and i17¼ 1.490. One can see that,

because of the free-surface nonlinearity effect, the secondary

resonance peak at i6 moves to the left of its lowest-order pre-

diction i6¼ 1.328 into the zone of the secondary resonance

at i13. This leads to a more complicated branch b6 (see also

Fig. 11 to understand the tendency with increasing Sn)

affected by a complex nonlinear interaction of the 6th and

13th modes. Including additional nonzero linear damping

terms (here, a2m–1¼ 0, a2m¼ n2m) gives a better agreement

FIG. 10. (Color online) Video for the case in Fig. 9 (upper panel) with

Sn¼ 0.89125, r=r�1 ¼ 0:1288. (enhanced online). [URL: http://dx.doi.org/

10.1063/1.3602508.3]

FIG. 9. The same as in Fig. 6 but for Sn¼ 0.89125, K¼ 191.550, N¼ 15

(upper panel) and Sn¼ 0.91375, K¼ 315.503, N¼ 12 (lower panel). The fre-

quency range C5 corresponds to the small-amplitude sloshing where the

nonlinear free-surface theory gives results on the steady-state wave eleva-

tions close to the quasi-linear prediction and both theoretical results are

slightly lower than the experimental measurements. The frequency range C6

denotes a frequency range where a discrepancy occurs due to a larger double

harmonics contribution to the measured signal (crests) relative to the theoret-

ical prediction of this secondary harmonics (dashed-and-dotted line).
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with experiments for the branch b6, but not for the branch

b5. Fig. 10 shows the video for the steady-state sloshing

associated with the top experimental point on the branch b5

in the upper panel of Fig. 9. The video demonstrates steep

waves with local breaking and a pronounced jump in the

free-surface profile at the screen. It is also clearly seen a flow

from water to air through the screen area DSc. All these local

free-surface phenomena may, generally, cause an extra dissi-

pation which is not captured by the damping terms (22) with

constant values of am.

The flow through DSc was also observed for the model

tests conducted for the frequency range C6 (unfortunately,

we do not have appropriate video). In this frequency range,

the experimental signal (crests) contains a clearly larger sec-

ond Fourier harmonics contribution relative to that by our

nonlinear sloshing theory (dashed-and-dotted line). Our

theory fully accounts for the quadratic free-surface nonli-

nearity which, from a mathematical point of view, is respon-

sible for the second Fourier harmonics. Thus, we should look

for other physical mechanisms generating this harmonics.

For example, a dedicated analysis of the free-surface jump at

the screen and related flow through DSc can, possibly, lead

to the desirable second harmonics. We neglect the latter

flow. In our pressure drop condition (19), the integration is

not over the actual wetted screen (not from –h to f1(t) in Fig.

3) but over the mean wetted screen, i.e. from –h to 0, which

implies the lowest-order quantity in terms of small f1 and f2.

If we speculatively integrate from –h to f1 in Eq. (19) and

expand the obtained integral in a Taylor series by assuming

f1ðtÞ ¼ O �1=3

 �

, one gets

� K
amj2m�1

4hKð0Þð2m�1Þð2m�1Þ
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�h
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Because b1 ¼ O �1=3

 �

and b1 contains the nonzero first Fou-

rier harmonics, the underlined quantity in Eq. (27) yields the

second harmonics to appear in the modal equations for the

antisymmetric modes. A dedicated theoretical analysis of

whether the screen-induced free-surface jump causes a sec-

ond Fourier harmonics effect is therefore needed.

The same underprediction of the second harmonics in

the frequency range C6 is seen for the larger solidity ratio

0.93625 in Fig. 11. Again, it cannot be related to the free-

surface nonlinearity. Here, i3¼ 0.604, i2¼ 0.762, i5¼ 0.779,

i7¼ 0.921, i9¼ 1.063, i4¼ 1.085, i11¼ 1.158, i13¼ 1.262,

i6¼ 1.328, i15¼ 1.383, and i17¼ 1.487. The most interesting

in the figure is the appearance of a non-connected branching

at the i6-and-i13 secondary resonance. Here, we see the non-

connected branches b5, b6, b7, and b8, which, however,

become connected and sufficiently modified when we

include the linear damping terms for the symmetric modes

(a2m–1¼ 0, a2m¼ n2m).

IV. CONCLUSIONS

A theoretical approach was developed to describe sec-

ondary resonance in a rectangular tank with a central slotted

screen of high solidity ratio. The secondary resonance is well

known for two-dimensional steady-state resonant liquid

sloshing in a clean tank when the forcing frequency r is close

to the lowest natural sloshing frequency (see Chap. 8 in Ref.

9). For the finite liquid depth, the secondary resonance leads

to amplification of the second and third natural sloshing

modes caused by quadratic and cubic free-surface nonlinear-

ities, and the corresponding second and third harmonics (2r
and 3r), respectively. Because of the trigonometric algebra

for the natural sloshing modes, non-commensurate spectrum

and damping, one can find only two forcing frequencies

where the secondary resonance phenomenon occurs. These

frequencies are situated away from the primary resonance fre-

quency and, therefore, can matter only by increasing the forc-

ing amplitude. Inserting a central slotted screen with a high

solidity ratio, 0:5. Sn < 1, modifies the natural sloshing

modes and, as a consequence, the secondary resonance phe-

nomenon qualitatively changes. Because of the screen, the

secondary resonance amplification can, depending on the

input geometric and physical parameters, happen at a certain

number of frequencies close to the primary resonance and,

thereby, the resonance response curves would have a multi-

peak shape. Higher natural sloshing modes (not only second

and third) can now be excited. The present paper gives a

qualitative and quantitative prediction of these facts.

Our theoretical approach is based on the nonlinear

adaptive multimodal method which was first proposed by

Faltinsen and Timokha4 as a generalization of the Moiseev-

type asymptotic approach for clean tanks. The adaptive

modal method is an efficient numerical-and-analytical

approach for parametric studies of the steady-state resonant

sloshing and gives a rather accurate prediction and explana-

tion of the multi-branching and multi-peaks of the response

curves. The method requires derivation of a polynomial-type

nonlinear modal system which is a base for asymptotic

modal systems accounting for dominant contribution of

higher modes to the resonant liquid sloshing for certain fre-

quency domains. Such a polynomial-type modal system was

FIG. 11. The same as in Fig. 6 but for Sn¼ 0.93625, K¼ 597.759, and

N¼ 9.
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derived for two-dimensional and three-dimensional sloshing

in rectangular tanks. The present paper revises the adaptive

modal method for screen-equipped two-dimensional tanks.

The revisions require changes in the Moiseev-type asymp-

totic ordering and a new prediction of the forcing frequencies

at which the secondary resonance occurs. According to these

revisions, a relatively large number of dominant modes

should be included into the asymptotic analysis of steady-

state resonance sloshing. The method assumes an incompres-

sible liquid with irrotational flow except in a local neighbor-

hood of the screen. Following Faltinsen et al.,1 the viscous

screen effect for the antisymmetric modes (which determines

the cross-flow) is expressed by an “integral”-type pressure

drop condition which leads to the corresponding integral

quantities in the modal equations responsible for antisymmet-

ric modes. This situation can, of course, change when using

the proposed multimodal method and the pressure drop con-

dition for a non-central location of the screen, or for several

screens installed in the tank. Following Ref. 2 and the pre-

sented adaptive multimodal technique, one should then derive

a revised nonlinear adaptive modal system where, depending

on the number of screens and their position, the (�j � j)-integral

quantities can appear in all the modal equations.

For the central screen case, the symmetric modes are

theoretically not damped. This requires artificial linear

damping terms in the modal equations responsible for the

symmetric modes which help to reach steady-state solutions

in our calculations. For the model tests case, decreasing the

artificial damping rates a2m leads to convergence of the nu-

merical procedure with a2m . n2m=10 (n2m are the damping

rates for linear sloshing due to the laminar viscous boundary

layer at the mean wetted tank surface for the clean tank) so

that, as for the clean tank case by Faltinsen and Timokha,4

the secondary resonance jumps on the response curves are

clearly detected with the damping rates lower then ni. This

means that laminar viscous layer plays a minor role in damp-

ing the symmetric modes in the studied case.

Even though the theoretical approach gives very good

qualitative and, generally, good quantitative prediction of the

experimental steady-state elevations, there is a discrepancy

between theory and experiments in certain frequency ranges.

This can partly be explained by the free-surface phenomena

discussed in Ref. 1. Another possible reason for quantitative

discrepancies is that the “integral”-type pressure drop condi-

tion cannot capture effects of specific flows at the screen

with increasing solidity ratio when a free-surface jump

between left and right screen sides occurs. Unfortunately, we

were not able to measure this screen-caused jump DSc due to

due to local phenomena at the screen region accompanied

with the free-surface segmentation and jet flow through the

holes. Our adaptive multimodal theory detects the maximum

jump DSc at the primary resonance zone as well as at the sec-

ondary resonances by antisymmetric modes, i.e., when

r=r�1 � i2kþ1, k � 1. This is because of the central position

of the screen which implies continuous symmetric modes. A

dedicated study of these nearly screen flows is required. Fur-

thermore, we need to express the damping due to tangential

drag at the screen.
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