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Potential flows in a system consisting of compressible barotropic ideal fluids - a liquid and a gas with an interface and an acoustic 
high-frequency vibrator, placed in the gas, are considered. The system of two media completely occupies a bounded absolutely 
rigid vessel. The two-scale expansion method is applied to the problem in a differential and variational formulation in the 
Hamilton-Ostrogradskii form. This enables both averaged equations of motion and the principle of the minimum quasi-potential 
energy to be derived for averaged surface reliefs (capillary-acoustic forms of equilibrium). In the equations obtained and in the 
functional, terms appear corresponding to forces of vibration origin. The problem of the quasi-equilibrium of the bifurcation of 
quasi-equilibrium forms is discussed in the case when the plane interface is simultaneously a capillary and a capilla&acoustic 
equilibrium form. Spectral theorems are derived for the problem of normal oscillations about quasi-equilibrium, and spectral 
and variational criteria of stability are formulated. 0 2001 Elsevier Science Ltd. All rights reserved. 

The problem of the interaction of the interface between two bounded fluid media with acoustic fields 
is related to the description of technological processes where parasitic or deliberate high-frequency 
vibrations are present. These vibrations can change the character of the surface wave phenomena and 
lead to stabilization (destabilization) of the mobile boundary. The vibrational actions of mass forces 
(the vibration of a vessel) were considered in [l-3]. A similar class of problems arises when describing 
the behaviour of a bounded volume of liquid with a free boundary in standing acoustic fields. A number 
of experimental and theoretical investigations of a levitating drop [4-6] have revealed a number of new 
surface physical phenomena, described numerically and also using phenomenological approaches. 
Another way involves using asymptotic and variational methods, developed for finite-dimensional and 
infinitely dimensional conservative mechanical problems [3, 71. 

In this paper we develop a version of a combined asymptotic and variational theory for the problem 
of the slashing of a capillary liquid in a vessel due to the action of acoustic fields produced in a gas 
above the liquid [8]. The idea of this approach was proposed earlier in [9,10]$ and successfully developed 
in 12, 31 to describe surface reliefs in a vibrating vessel. The theory leads to a new class of non-linear 
stationary boundary-value problems with a free boundary, which are a generalization of the capillary 
problem. The stability of these equilibrium surfaces may be related to the fact that the spectrum of the 
problem of relative normal oscillations is positive or with the minimum stationary functional of quasi- 
potential energy [7]. 

1. FORMULATION OF THE PROBLEM 

Suppose an absolutely rigid vessel is occupied by a gas (of volume Ql(r)) and a liquid (of volume 
Q2(t)). The mobile simply connected interface Z(t) is under the action of acoustic fields, which are 
produced by a high-frequency vibrator, situated on the vessel wall and in contact with the gas. The 
pulsating acoustic motions of the fluid dynamic system can be described using the potential theory of 
ideal media.0 The corresponding non-linear evolution boundary-value problem relates the velocity 
potential cpi, the pressure functionpi and the density pi in the gas (i = 1) and in the liquid (i = 2) and 

tPrik1. Mat. Mekh. Vol. 65, No. 3, pp. 477485, 2001. 
*See also TIMOKHA, A. N., Direct methods of solving static and eigenvalue problems of the theory of the interaction of 

surface waves with acoustic fields. Preprint No. 93.15. Inst. Matematiki, Kiev, 1993. 
§For a more detailed discussion of the problem of choosing the hydromechanical model see: LUKOVSKII, I. A. and 

TIMOKHA, A. N., Non-linear dynamics of the interface between a liquid and a gas when the gas contains a high-frequency 
acoustic field. Steady motions. Preprint No. 88.9. Inst. Matematiki, Kiev, 1988. 
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can be written in dimensionless form (the linear dimension of the cavity 1 and the period of the pulsations 
27r/v are chosen as the characteristic dimensions and time) as follows: 

llyi 

in Q,(t) 
(1.1) 

aPi ar +div(PiV~~i) =O in Q,(t) (1.2) 
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The cavity of the vessel Q = Qi U Q2 is specified by the inequality W(x, y, z) < 0, <(x, y, z, t) = 0 is 
the equation of the interface, Si = aQ n aQi are the vessel walls, in contact with the gas and the liquid 
respectively, Ki are the principal curvatures of the surface X(t), v? = v2p021/~ is the square of the 
dimensionless frequency, B = gl*p&s is the Bond number, k = vllc is the wave number of the acoustic 
field in the gas, c is the velocity of sound in the gas, o is the surface tension coefficient, g is the acceleration 
due to gravity, yi are the constants of the Tait equation of state, v is the vibration frequency, 
V,(X, y, z) sin(vt) is the specified distribution of the normal velocities on the acoustic vibrator So c Si, 
poi are the mean densities of the gas and the liquid, and c1 is the wetting angle. The normal n to 
the free surface is the outward normal with respect to the volume of the liquid Q*(t). In addition 
I/ = Vd sup 1 V. 1, p. = O( 1) is a dimensionless coefficient of proportionality between the dimensionless 
amplitude E = sup 1 V. I/(cpo) 4 1 and the Mach number of the acoustic vibrations. 

Note that the media are barotropic and the first pair of equations admits of a Lagrange-Cauchy type 
integral. This enables us to get rid of the Tait equation of state, but it does not simplify the technique 
of two-scale asymptotic expansions used below. 

2. ASYMPTOTIC REDUCTION OF THE PROBLEM 

The ratio of the density of the gas to the density of the liquid pa1/po2 * 1 and vi2 + 1 will be assumed 
to be small quantities. The latter relation is because the frequencies of acoustic vibrations considerably 
exceed the fundamental mode of the natural oscillations of a capillary liquid in the vessel. 

We will assume that the following asymptotic relations between the small parameters are satisfied 

PlJi /PO2 = 6 = CL+, I PI I= O(1); vi2 = lw,E3, CL = O(1) (2.1) 

Using the method of two-scale expansions [ll] we will distinguish the pulsation and slowly oscillating 
components in problem (l.l)-(1.6). The first is related to the acoustic vibrations of continuous media 
and has a characteristic period O(2rc). The slow component is due to the mobility of the interface and 
depends on the reciprocal potential fields. In the case investigated, the characteristic time of the slow 
oscillations z is proportional to the square root of the absolute quantity standing at the potential terms: 
n: = &% = &$. 

Representing the solution of problem (l.l)-(1.6) and (2.1) in the form 

(24 
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we derive the averaged problem, which approximately describes the slow oscillations of the system 

Acp = 0 in (QJ (7) (2.3) 

(2.4) 

(2.5) 

cp,+~(V~)2+pp,(B~-((KI+KZ))+~(kZ92-(V@)2)=const on(Z)(z) (2.6) 

(vw’vc) = COSCL on a(X)(z); 
-IvwlKl 

j dQ = const 
(Qz) 

A4 + k*a = 0 in (Q,) (T) 

g = 0 on (S,)(z)u(C)(z); g=P, k 
W.YlZ) on S 

0 (2.7) 

Here (.) denotes averaging over the fast time t. 
Boundary-value problem (2.3)-(2.7) relates the principal terms of the asymptotic expansion (2.2) 

‘pI =E:~(x,y,z,z)sint+O(e:); ~=~(x,y,z,r)+o(E~) (2.8) 

Boundary-value problem (2.3)-(2.6) is identical in form with the problem of waves on the surface 
of a capillary liquid [12-151. The additional pseudo-differential terms in the dynamic boundary condition 
(2.6) have the meaning of the pressure (the acoustic radiation pressure), applied to the free surface. 
This ; ressure depends parametrically on the position of the surface @)(~)(a is the solution of Neyman 
problem (2.7) with a mobile boundary). 

3. THE PROBLEM OF THE CAPILLARY-ACOUSTIC EQUILIBRIUM FORM 

If the position of the average surface is independent of z, i.e. 

(C)=C,:r,=ro(x,y,z)=O, (Q,>=a, (p=O, ~=R,,~xyY,z) 

problem (2.3)-(2.7) is reduced to the stationary boundary-value problem 

-u(K, +K2)-pBx+$(k2@~-_(VC+,)2)=const on X0 

(VW~Vcl,) 
-IwlKll 

= cos on a&; j dQ = const 
(Q2 ) 

where OO satisfies the problem 

A@,,+k*@, =0 in Qc, 

acp 
s=O on (S,)u&; -$=ua 

an 

V(X,Y?Z) on so k 

(3.1) 

(3.2) 

Equation (3.1) expresses the balance between the capillary, gravitational and acoustic radiation forces. 
By analogy with the capillary form of equilibrium, we have called the surface CO, found from (3.1) and 
(3.2) the capillary-acoustic equilibrium form. For the asymptotic relations (3.1) the geometry of the capillary- 
acoustic surface may differ considerably from the geometry of the capillary surface. The nature of the 
sloshing of the liquid and the stability of the interface between the two phases changes correspondingly. 
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4. THE THEORY OF LINEAR NORMAL OSCILLATIONS ABOUT 
A CAPILLARY-ACOUSTIC EQUILIBRIUM FORM. 

THE STABILITY OF QUASI-EQUILIBRIUM FORMS 

We will linearize problem (2.3)-(2.7) with respect to the capillary-acoustic equilibrium form 
Co: x = HO(y, z) and seek normal oscillations of the form 

h = exp(im) H(y, z); cp = ice exp(ioz)yr(x, y, z); 

@ = io exp(iwr)\Y(x, y, z) 

This leads to the following eigenvalue boundary-value problem in H and w 

aw Aw=O in (Q2); $=O on &); -= H 
an (1 +(VH,,)*)% 

on C, 

-o*~+p,pAH=O on C, 

with spectral parameter e?. The linear operatorA = Ai + A2 has the form 

AH=[A,H]+[A,H]= -div 
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WyHo, + wzHQz (VH7VHo) 
IV,WI (1 + (VH,,)2)x 
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(4.3) 
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ay 
-= 
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We investigated the eigenvalue properties of the pseudo-differential operator A and we showed that 
it is self-conjugate and has a real point spectrum with a finite number of negative eigenvalues (see the 
publication cited in the footnote $ on page 463). 

The following theorem establishes the main properties of eigenvalue problem (4.1) (4.2) for the 
operator (4.3) (4.4). 

Theorem 1. Suppose H,, To is the solution,of the problem of the capillary-acoustic equilibrium form 
(2.3)-(2.7) where H, E C-(PC,,), Q0 E C-(Q. U Co) (PC0 is the projection of Co on Oyz). Then 
1) eigenvalue problem (4.1)-(4.4) has a real point spectrum consisting of eigenvalues and {H,} is the 
basis in factor-space L@,J/const; 2) the set of negative eigenvalues of is finite. 

Proof. We introduce the auxiliary operator T: H + w 1 xo, defined by the solution of Neyman problem 
(4.1). The operator T is precompact and reversible on the everywhere dense set in L?(P&)lconst. 
Boundary condition (4.2) leads to the eigenvaluc equation 

C,(W~)H=(~~L,A-W~T)H=O (4.5) 

with eigenvalue parameter w’. The set of its solutions is identical with the spectrum of the initial problem 
(4.1)-(4.4). 

Consider the operatorA ,, defined by (4.3). It arises when analysing the normal oscillations of a capillary 
liquid and is unbounded, self-conjugate and positive in L,(PC,,)/const [ 141. We will introduce the auxiliary 
operators C, and Cz as follows: 
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where Ct is obtained by the action ofA;’ from the left on operator Co of Eq. (4.5). The operator C2(02) 
is precompact in L2(PC0)/const. Hence, if o2 is a solution of Eq. (4.9, then up1 is an eigenvalue of 
operator C2 and, consequently, o2 is an eigenvalue of eigenvalue problem (4.1)-(4.4). Since T and A 
are self-conjugate operators, these eigenvalues are real. 

The regular set of eigenvalue problem (4.1)-(4.4) is not empty and contains at least complex numbers 
with a non-zero imaginary component. For the regular point 020, Eq. (4.5) is equivalent to an eigenvalue 
equation of the form 

(C+(w2 -c&‘E)H =o 

where C(o$ = Ci(w$-’ AI’T is a completely continuous operator in L2(m0). Since the operator C 
is compact, its point spectrum consists of eigenvalues and Assertion 1 of the theorem holds. 

All the eigenvalues of the operator A;‘T are positive like the eigenvalues of the problem of the 
oscillations of a capillary liquid, i.e. for all permissible H 

(A;‘TH, H) > 0 

Then 

0: = w~((H,, H,)+(A;‘A*H,.H,))l(A;‘TH,, 4,) 

where (H,, H,) = 1, (A;’ TH,, H,,) > 0. Since the operatorA;‘A2 is compact and {H,,) is a basis in 
L,(P&,), then (A;‘A2H,, H,) G= 0, n + 03. Consequently Assertion 2 is true. 

Corollary 1. Loss of stability of a capillary-acoustic equilibrium form can only occur by a finite number 
of linearly independent modes (perturbations). 

Corollary 2. A capillaty-acoustic equilibrium form is stable if and only if all the eigenvalues of the 
operator A are positive. 

The second corollary is identical in form with the eigenvalue principle of stability, used previously 
to analyse the stability of a capillary form of equilibrium [14] (the stability was investigated using the 
eigenvalue properties of an operator of typle Ai). 

5. A PLANE CAPILLARY-ACOUSTIC EQUILIBRIUM FORM 

A plane capillary surface in a straight cylindrical vessel is obtained when the wetting angle is right. This 
surface remains plane if the acoustic vibrator at the upper end produces a plane acoustic wave 

V&, y, z) = V, = const 

(& =- q 

csin(kh, ) ’ 
pG = - sin(kh, ), V(y, z) = 1) 

The problem of the capillary-acoustic equilibrium form then has the “trivial” solution 

Ho(y, z) = 0; @o(x, y,z) = k-* cos(kr) (5.1) 

This model case is convenient for comparing the properties of the capillary form and the capillary- 
acoustic equilibrium form. It is well known (see [14, 16]), that a plane capillary surface corresponds to 
the unique solution of the capillary problem in a vessel in the form of a circular cylinder, if B > xf,, 
where xl1 is the minimum root of the equationJ;(xii)= 0 (J,(.) are Bessel functions). We will expand 
the solution of non-linear boundary-value problem (3.1), (3.2) in a Fourier series in the complete system 
of functions 

sin 
h&,8) = Jp(xwd 11 WV 

cos 
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(in a polar system of coordinates). We obtain 

flo(r.e) = IE qwhpq(r,8) 
PWJO 

@o(x,y,z) = k-2cos(kx)+ C ~pqbw(x)$,Jr,~)+~oo Wk(x--h,)) 
W+QO 

(5.2) 

ch(W - h, 1) 

- 444 )Q MW+ ) ’ 
xw >k, 

b,(x) = cos($(x - h, 1) 
(l=J_ 

- cos(4h, )O @(4$ ) ’ 
x&k, 

Here rlw, h are unknown coefficients, where two unknown coefficients correspond to each subscript 
pq in the case of a non-axisymmetrical function h,,(r, 0) and one subscript in the case of a symmetrical 
function, i.e. 

~pqhWke) = 
~~qJp(xpqr)sinpt3+~~qJp(xWr)~~spe, p#O 

~0qJ0(xoqr)9 p=o (5.4) 

Substituting expansions (5.2) and (5.3) into Eqs (3.1) and (3.2) and using the Fredholm 
alternative, we obtain an infinite system of non-linear equations in TJ = (~~1. Up to terms o((lrll) we 
have 

cc@ = C,pQp + 001 rl II) = 0 (5.5) 

C pq =p(B+x,)+1/2b,(O), p=O,l,...; q=l,2 ,... (5.6) 

System (5.5) has a “trivial” solution 11 = 0 which corresponds to a plane form of equilibrium. 
In addition, C, are eigenvalues of the operator A. This means that when C, > 0 the “trivial” 
solution defines a stable capillary-acoustic equilibrium form. If a subscript pq exists such that 
C,(k) = 0, the “trivial” solution may be a non-unique solution of the problem of the capillary-acoustic 
equilibrium form. For eigenvalues with p f 0, then immediately two equations in (5) have no linear 
component in q. According to relations (5.4) the eigenvalues C,(q = 1, 2, . . .) have unit multiplicity, 
and Krasnosel’skii’s theorem (17, p.1351 gives the sufficient condition for bifurcation of the “trivial” 
solution. 

6. THE VARIATIONAL FORMULATION OF THE PROBLEM 
AND A MINIMUM PRINCIPLE FOR CAPILLARY-ACOUSTIC 

EQUILIBRIUM FORMS 

The example given above shows that the determination of stable capillary-acoustic equilibrium 
forms, starting from differential formulation (3.1), (3.2), can be effective when the forms investigated 
are identical with capillary forms. If the capillary-acoustic equilibrium form has a geometry differing 
from capillary, a more effective method of determining stable forms of equilibrium could be the boundary 
variation method [14, 151. However, unlike the problem of the capillary, problem (3.1), (3.2) has no 
variational analogue (the potential energy functional). It has been shown [3, lo], that a variational 
problem equivalent to (l.l)-(1.6) can be constructed by four independent methods, which can be 
conventionally related to the Hamilton-Ostrogradskii, Bateman, Berdichevskii and Luke functionals 
[18-211. The use of a variational problem in the Hamilton-Ostrogradskii form, averaged over 
fast vibrations, enables a variational principle of the stability of capillary-acoustic equilibrium 
forms to be constructed, which is identical in form with the minimum potential energy principle. 
The possibility of such an averaged variational formulation has been proved for Hamilton system 
[7]. Such a functional has been constructed for the case of a vibrating vessel [3]. We will use 
Theorem 1 from [3] (a Hamilton-Ostrogradskii variational problem), which asserts that the set 
of continuous solutions of problem (l.l)-(1.6) is identical with the set of stationary points of the 
functional. 
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with constraints (l.l)-( 1.3) and (1.6) and the conditions for continuous isochronous variations 

(6.1) 

(6.2) 

where pi = pfdUi/dpi. 
Using the two-scale expansion technique [3], it can be shown that 

(G(%cpi,Pi))=const+E: s((r.W)+O(Ef) 

where 

+Fl; )(k2@* -(V@)‘)dQ- pop1 2k j@W,y,z)ds dz (6.3) 
I so 

The following theorem expresses the minimum principle for capillary-acoustic equilibrium forms. 

Theorem 2. The problem of determining stable continuous solutions of the problem of a capillary- 
acoustic equilibrium form &: b = 0 is equivalent to the problem of finding strict minima of the functional 

I~oI+cosaI(~,)l+ j BxdQ + 
(Q2 ) I 

+ $;o(k2a$, -(V@o)2)dQ+s JV(x,y,z)@ods = -Wt;o(x.~vzh @o(x,Y,z)) 
so 1 

where or, is the solution of boundary-value problem (3.2), and the condition of conservation of volume 

] dQ=const 
(Q2) 

is satisfied. 
The proof is carried out by calculating the second variation of the function II when 50 = x -Z-It. 

The second variation with respect to X0 was calculated previously in [14, Chapter l] (the first variation 
with respect to cI+,, as can easily be shown, is equal to zero in the case of constraint (3.2), while the first 
variation with respect to co leads to Eqs (3.1)), which connects @s and &,. Here 

S21-I = p-l J (AUf,6H)dydz 
m0 

where_4 is operator (4.3) (4.4). The condition S211 > 0 is equivalent to the eigenvalue stability principle. 
Note that the use of the variational approach enables the idea of a generalized solution of the problem 

to be introduced. A rigorous mathematical solution of the problem of constructing a theory of generalized 
solutions of problem (3.1), (3.2) is the subject of additional mathematical investigations. 

We wish to thank the reviewer for useful comments. 
This research was partially supported financially by the German Research Society (DFG N 436 UKR 

113/33/00). 
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