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ASYMPTOTIC NONLINEAR MULTIMODAL MODELING OF LIQUID SLOSHING
IN AN UPRIGHT CIRCULAR CYLINDRICAL TANK. I. MODAL EQUATIONS

I. Lukovsky, D. Ovchynnykov, and A. Timokha UDC 517.9

Combining the Lukovsky–Miles variational method and the Narimanov–Moiseev asymptotics, we deduce
a nonlinear modal system describing the resonant liquid sloshing in an upright circular cylindrical tank.
The sloshing occurs due to a small-amplitude periodic or an almost-periodic excitation with forcing fre-
quency close to the lowest natural sloshing frequency. In contrast to the existing nonlinear modal systems
based on the Narimanov–Moiseev asymptotic intermodal relations, the derived modal equations (i) con-
tain all necessary (infinitely many) generalized coordinates of the second and third orders and (ii) include
exclusively nonzero hydrodynamic coefficients, for which (iii) fairly simple computational formulas are
found. As a consequence, the modal equations can be used in analytical studies of nonlinear sloshing
phenomena, which will be demonstrated in the forthcoming Part II.

1. Introduction

Taking account of liquid-sloshing loads is of importance for designing the engineering constructions carrying
a liquid cargo. Problems related to the safety, reliability, stability, and control analysis of liquid-containing struc-
tures were extensively studied in the context of aircraft and spacecraft applications, for cargo tanks of automotive
vehicles, for offshore platforms, and for the seismic analysis of elevated water tanks. The studies require the com-
prehensive quantitative and qualitative examination of the coupled fluid–structure dynamics and its modeling and
simulation on the real-time scale. The liquid-sloshing response becomes most severe under resonance conditions
when the carrying structure oscillates with a frequency close to the lowest natural sloshing frequency. These res-
onant free-surface motions are strongly nonlinear and must be described by solving an evolution free-boundary
problem in which both instant shapes of the free surface †.t/ and the velocity field in the liquid domain Q.t/ are
the unknowns.

Under certain circumstances, one can distinguish three different approaches to solving the nonlinear liquid-
sloshing problem. The first approach is computational fluid dynamics (CFD). A broad variety of numerical meth-
ods exist, which can be divided into two subclasses comprising the potential-flow method, the Navier–Stokes
method, and, sometimes, their hybrids, typically based on the domain decomposition method [8, 39]. The CFD
methods are universal, accurate, and efficient, especially on the short-time scale when the focus is on transient
waves. Their drawback is that they are, generally speaking, computational time consuming, especially for three-
dimensional problems. Furthermore, their applicability can be rather limited when the task is to simulate and
classify the so-called steady-state wave regimes occurring on the long-time scale and, therefore, requiring long-
time simulations with different initial scenarios.

The second approach is purely analytical. It was developed for studying the steady-state (periodic) solution
expected for prescribed small-amplitude harmonic tank excitations. The analytical approach employs asymptotic
methods created by great mathematicians of the 19th century in the theory of nonlinear ocean waves [3]. An ex-
tension of these methods to nonlinear resonant sloshing in closed basins is often attributed to the pioneering paper
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by Moiseev [32]. More mathematical details on constructing the steady-state asymptotic solution by solving a se-
ries of recurrence boundary-value problems and deducing the so-called secularity condition (necessary solvability
condition) that couples the forcing frequency and the dominant response amplitude can be found in [5, 36, 37,
11, 12, 8]. The asymptotic steady-state solution technique changes with the mean liquid depth. For finite liquid
depths, the Taylor expansion of nonlinear free-surface conditions with respect to the mean (unperturbed) free sur-
face leads to cubic algebraic secularity equations and yields the so-called third-order Moiseev asymptotics causing
the dominant response amplitude to be of the order O.�1=3/ where � is the nondimensional forcing amplitude.
The asymptotic solution methods are generally inapplicable to transient waves and to modeling the fluid–structure
interaction. Furthermore, the asymptotic steady-state solution is only valid within a matching forcing-frequency
range and for a relatively small forcing amplitude. Forcing frequencies out of this range and an increase in the
forcing amplitude can lead to the so-called internal (secondary, combinatory) resonance, thereby causing a failure
of the Moiseev intermodal asymptotic relations (Moiseev asymptotics).

The third approach is associated with nonlinear multimodal methods whose application assumes an ideal
liquid with irrotational flow and no overturning and breaking waves allowed. In this paper, we follow this ap-
proach to deduce an infinite-dimensional system of nonlinear asymptotic-type modal equations for sloshing in an
upright circular cylindrical tank by combining the Lukovsky–Miles variational multimodal method [19, 20, 29]
and the Narimanov–Moiseev intermodal asymptotic relations [34, 35, 32], which may follow from the second
approach or may simply be postulated. The specific features of this combined variational–asymptotic version of
multimodal methods and its difference from the others are outlined in [27, 11]. Readers interested in using other
versions of multimodal methods for liquid sloshing in an upright cylindrical tank are referred to [34, 4, 35, 20,
10] (the Narimanov modal-type perturbation method), [33, 38, 15] (a completely nonlinear (nonasymptotic) multi-
modal (Perko-type) method), [16, 17, 18] (a combination of the Lagrange variational principle and the perturbation
method), [20, 7, 8] (a combination of the Bateman–Luke variational principle and the perturbation method), and
references therein.

The sloshing of an ideal liquid with irrotational flow introduces a nonlinear free-boundary problem with two
unknowns, which are the instant free-surface shapes and the velocity potential. According to the concept of mul-
timodal methods for liquid sloshing in tanks with upright walls, the instant free-surface shapes should be de-
fined by a Fourier-type solution with unknown time-dependent coefficients qi .t/ (generalized coordinates) of
fi .y; z/ D 'i .0; y; z/; i.e.,

x D f .y; z; t/ D
X

i

qi .t/fi .y; z/; (1)

where 'i .x; y; z/ are the so-called natural sloshing modes. An analogous Fourier-type solution involving
'i .x; y; z/ is used for the velocity potential. Even though there exist different versions of nonlinear multimodal
methods, all of them are developed to transform the original problem into an infinite-dimensional system of nonlin-
ear ordinary differential (modal) equations that couple the generalized coordinates qi : However, since the deriva-
tion of nonlinear multimodal equations is a difficult mathematical task, each version proposes a proper analytical
way pursuing modal equations of desirable structure.

Except for Perko-type methods, the derivation requires a postulation of asymptotic relations between the gen-
eralized coordinates qi assuming a small set of dominant generalized coordinates. Neglecting the nonlinear terms
in qi whose order is higher than the forcing input signal associated with the highest-order term .O.�//; one
obtains the so-called asymptotic nonlinear modal equations. The asymptotic modal equations help one to avoid
physically-unrealistic higher harmonics, which give a negligible contribution to the liquid response but may cause
the stiffness of the differential (modal) equations as is observed in the case of Perko-type simulations [15].

The Narimanov–Moiseev asymptotics [34, 35, 32] is the most often accepted system of asymptotic relations
used for the derivation of asymptotic nonlinear modal systems. They follow from the Moiseev asymptotic solution
(second approach) or can be postulated as in the classical works of Narimanov [34, 35]. The application of asymp-
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Fig. 1. Sketch of an upright circular cylindrical tank and adopted nomenclature. The geometrical and physical characteristics are scaled
in our analysis by the dimensional tank radius R0 so that, e.g., h in the figure is the ratio between the mean liquid depth
and R0:

totic relations reduces the problem to the calculation of the nonzero hydrodynamic coefficients of polynomial-type
quantities in the asymptotic modal equations. Usually, the number of nonzero coefficients is rather limited. Tak-
ing account of analytical studies based on the asymptotic nonlinear modal equations, i.e., the consideration of
nonlinear sloshing as an object of either applied mathematics or theoretical mechanics, strongly requires one to
exclude the zeros from the modal equations as well as to provide simple and compact formulas for the nonzero hy-
drodynamic coefficients. Of course, the use of the asymptotic nonlinear multimodal equations as a computational
tool [18, 7], i.e., the consideration of the multimodal method as a CFD approach, does not require the analytical
extraction of the zeros.

For a rectangular cross-section, the Narimanov–Moiseev asymptotic relations lead, due to trigonometric re-
lations between the natural sloshing modes fi ; to a nine-dimensional nonlinear asymptotic modal system. This
system was explicitly deduced and analytically studied in [6, 8]. Other cylindrical tank shapes yield, generally
speaking, infinite-dimensional asymptotic multimodal systems. The latter is also true for the case of a circu-
lar cross-section. The literature presents various analytically given finite-dimensional asymptotic modal systems
[20–22], but these systems couple only a few of second-order and third-order generalized coordinates. To the
best authors’ knowledge, the present paper for the first time deduces the infinite-dimensional Narimanov–Moiseev
asymptotic modal system in an analytical form for a circle-based tank, providing modal equations that (i) contain all
necessary generalized coordinates of the second and third order that follow from the Narimanov–Moiseev asymp-
totic intermodal relations and (ii) include exclusively nonzero hydrodynamic coefficients, for which (iii) fairly
simple computational formulas are found. In the forthcoming Part II, we will present analytical studies of nonlin-
ear resonant sloshing based on the derived modal system and compare the analytical results with experiments.

2. Statement of the Problem

2.1. Free-Boundary Problem. We consider an upright circular cylindrical tank partially filled with an invis-
cid incompressible liquid with irrotational flow. Figure 1 introduces the basic notation. No overturning waves are
assumed. The time-dependent liquid domain Q.t/ is bounded by the free surface †.t/ and wetted tank surface
S.t/: The mean liquid depth is equal to h: In what follows, in all mathematical expressions, we assume that the
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liquid characteristics, including h and the gravity acceleration g; are scaled by the tank radius R0 so that the
theoretical radius of the tank is nondimensional and equal to 1:

The liquid motions are considered in the tank-fixed coordinate system Oxyz whose origin is located at the
center of the mean free surface †0: The Ox-axis is superposed with the tank symmetry axis. For brevity, we
concentrate on the case where the tank moves translatorily with velocity v0.t/ relative to an absolute Earth-fixed
coordinate system Ox0y0z0: Small-magnitude angular forcing terms can also be taken into account by assuming
that these terms are of the highest order in the Narimanov–Moiseev asymptotic ordering. The latter procedure was
extensively discussed in [8].

The absolute velocity potential ˆ.x; y; z; t/ and free surface †.t/ are the two unknowns that should be
found from the following nonlinear free-boundary problem:

r
2ˆ D 0; r 2 Q.t/; (2)

@ˆ

@�
D v0 � � C

ftq
1C jrf j2

; r 2 †; (3)

@ˆ

@�
D v0 � �; r 2 S.t/; (4)

@ˆ

@t
C
1

2
jrˆj2 � rˆ � v0 C U D 0; r 2 †.t/: (5)

Here, � is the outer normal vector, U D .g � r/ is the gravity potential with r D .x; y; z/; g D .�g; 0; 0/ is the
gravity acceleration vector, and x D f .y; z; t/ is the free-surface equation.

For the free-boundary problem (2), the typical initial conditions (at t D 0/ define the initial liquid shape and
velocity field and take the form

f .y; z; 0/ D �0.y; z/; ˆ.x; y; z; 0/ D ˆ0.x; y; z/; r 2 Q.0/: (6)

2.2. Variational Formulation. In 1976, Miles [29] and Lukovsky [19] independently proposed to use the
Bateman–Luke variational principle for the derivation of nonlinear modal systems. The history of the Bateman–
Luke principle dates back to 1908, when Hargreaves [13] noted that the pressure integral can play the role of
the Lagrangian in variational formulations of diverse hydrodynamic problems. The canonical formulation of this
principle for an incompressible ideal liquid was given by Bateman [1]. Later, this formulation was generalized by
Luke [28] for ocean waves and by Lukovsky [20] for liquid sloshing in a tank performing arbitrary spatial motions.
The Bateman–Luke principle for a compressible fluid can be found in [2, 24–26].

According to Lukovsky [20], the Bateman–Luke principle for (2)–(5) can be formulated as follows:

The free-boundary problem (2)–(5) is associated with the necessary extrema of the action

W D

t2Z
t1

Ldt; (7)
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where the Lagrangian L is defined by the pressure integral

L D

Z
Q.t/

.p � po/ dQ D ��

Z
Q.t/

�
@ˆ

@t
C
1

2
jrˆj2 � rˆ � v0 C U

�
dQ (8)

and the trial functions satisfy the conditions

ıˆ.x; y; z; t1/ D ıˆ.x; y; z; t2/ D ıf .y; z; t1/ D ıf .y; z; t2/ D 0: (9)

3. Nonlinear Multimodal Modeling

The nonlinear multimodal modeling is based on the Fourier-type solution (1) in which qi .t/ are treated as
generalized coordinates of the considered hydromechanical system. Here, fi .x; y/ is a complete orthogonal
system of functions satisfying the volume conservation conditionZ

†0

fi .x; y/dxdy D 0:

In addition, one should introduce the Fourier-type representation of the velocity potential

ˆ.x; y; z; t/ D v0 � rC
X

n

Qn.t/ 'n.x; y; z/; (10)

where the complete set of harmonic functions 'n.x; y; z/ satisfies both the Laplace equation in the whole tank
domain and the zero Neumann boundary conditions on the wetted body surface.

Normally, 'n and fn.x; y/ D 'n.x; y; 0/ are the eigenfunctions (natural sloshing modes) of the spectral
boundary-value problem

r
2'n D 0; Er 2 Q0;

@'n

@�
D �n'n; Er 2 †0;

@'n

@�
D 0; Er 2 S0; (11)

where Q0 is the mean liquid domain and S0 is the mean wetted tank surface. The natural sloshing frequencies
are defined by the eigenvalues �n via �n D

p
g�n:

The aim of multimodal modeling is to deduce a system of ordinary differential equations (modal equations)
with respect to the generalized coordinates qi .t/: There are different analytical schemes (multimodal methods)
for doing this; they are briefly outlined in Introduction. According to [19, 20, 29], the derivation can use the
Bateman–Luke principle instead of the free-boundary problem (2).

3.1. Lukovsky–Miles Variational Method. Lukovsky [20] showed how to use the Bateman–Luke principle
for the derivation of nonlinear modal equations that couple qi .t/ and Qn.t/: The result for translatory tank
excitations is the following infinite-dimensional system of nonlinear ordinary differential equations:

X
i

@An

@qi
Pqi �

X
k

AnkQk D 0; n D 1; 2; : : : ; (12)
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X
n

@An

@qi

PQn C
1

2

X
n;k

@Ank

@qi
QnQk C

3X
j D1

. PvOj � gj /
@lj

@qi
D 0; i D 1; 2; : : : ; (13)

where

@l1

@qi
D

Z
†0

f 2
i dS qi ;

@l2

@qi
D

Z
†0

yfi dS;
@l3

@qi
D

Z
†0

zfi dS; (14)

g D .g1; g2; g3/ D .�g; 0; 0/; and

An D

Z
Q.t/

'n dQ; Ank D

Z
Q.t/

r'n � r'k dQ: (15)

The nonlinear modal equations (12) and (13) are a complete analog of the original free-boundary problem.
Direct simulations using the modal equations (12), (13) imply the so-called Perko numerical method (see Intro-
duction). Lukovsky and Timokha [27] pointed out that these simulations can be stiff for resonant sloshing, and,
therefore, a certain numerical time integration becomes numerically unstable. This physically unrealistic stiffness
is caused by the amplification of higher harmonics, which, in reality, are highly damped due to different dissipa-
tive mechanisms. An alternative is to introduce an asymptotic relationship between generalized coordinates and
thereby exclude (“filter”) the unrealistically high harmonics.

3.2. Narimanov–Moiseev Asymptotic Intermodal Relations for a Circular-Base Tank. For a circular-base
tank, the modal solution (1) can be rewritten in the cylindrical coordinate system as follows:

x D f .�; �; t/ D

1X
mD0

1X
nD1

.rm;n.t/ sin.m�/C pm;n.t/ cos.m�//fmn.�/; (16)

where

fmn D
Jm.km;n�/

Jm.km;n/
;

Jm.�/ is the Bessel function, and J 0
m.km;n/ D 0: The zeros of the last equation define the eigenvalues �m;n and

natural sloshing frequencies �m;n by the formulas

�m;n D km;ntanh .km;nh/ and �2
m;n D g�m;n: (17)

The generalized coordinates qi ; as well as rm;n and pm;n; are nondimensional (scaled by the tank radius),
and one can introduce asymptotic relations between them. When the forcing frequency � is close to the lowest
natural frequency �1;1 associated with the two generalized coordinates p1;1.t/ and r1;1.t/; the Narimanov–
Moiseev asymptotics [32, 20, 30, 31, 27] requires the asymptotic relation

p1;1 � r1;1 D O.�
1=3/; (18)

where � � 1 implies the nondimensional forcing magnitude.
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Postulating (18) and using trigonometric algebra with respect to the angular coordinate �; one can establish
the second- and third-order generalized coordinates:

p0;n � p2;n � r2;n D O.�
2=3/; p3;n � r3;n D O.�/; n D 1; 2; : : : ;

p1;m � r1;m D O.�/; m D 2; 3; : : : :

(19)

The remaining generalized coordinates are of order o.�/ and can be neglected in our nonlinear asymptotic multi-
modal analysis.

4. Nonlinear Asymptotic Multimodal Equations

The most general analytical scheme for combining the Lukovsky–Miles variational method and the Nari-
manov–Moiseev asymptotics is described in [27]. With regard for (18)–(19), the scheme suggests the following
steps:

1. Using the Taylor expansion, one should find polynomial expressions (in terms of nondimensional gener-
alized coordinates qi / for @An=@qk and Ank keeping terms up to the order O.�2=3/ and @Ank=@qi keeping
terms up to the order O.�1=3/:

2. One should find the asymptotic solution Qi D F.qk; Pqk/ from the modal equations (12) by substituting
the previously found asymptotic expressions for @An=@qk and Ank : This solution should neglect the terms of
order o.�/:

3. One should substitute the expressions Qi D F.qk; Pqk/ from the previous step into modal equations (13)
and keep terms up to the order O.�/: This will give the desirable asymptotic modal equations.

The scheme was completely realized only for upright cylindrical tanks of rectangular shape. By generaliz-
ing [20], the paper [23] showed that this scheme can also be applied to a circular cylindrical tank. It is implemented
in the present paper to obtain the required analytically given asymptotic nonlinear modal equations.

The implementation of the analytical scheme with 3N .N !1/ generalized coordinates of the second or-
der and 4N generalized coordinates of the third order leads to the nonlinear asymptotic modal equations including
the following two differential equations for the lowest-order generalized coordinates p1;1 and r1;1 :

�1;1

�
Rp1;1 C �

2
1;1p1;1

�
C p1;1

NX
nD1

d
.2/
0;n Rp0;n C

NX
nD1

d
.3/
0;n

�
Rp1;1p0;n C Pp1;1 Pp0;n

�

C d1

�
p2

1;1 Rp1;1 C p1;1 Pp
2
1;1 C r1;1p1;1 Rr1;1 C p1;1 Pr

2
1;1

�
C d2

�
r2
1;1 Rp1;1 C 2r1;1 Pr1;1 Pp1;1 � r1;1p1;1 Rr1;1 � 2p1;1 Pr

2
1;1

�

C

NX
nD1

d
.3/
2;n

�
Rp1;1p2;n C Rr1;1r2;n C Pp1;1 Pp2;n C Pr1;1 Pr2;n

�

C

NX
nD1

d
.2/
2;n

�
p1;1 Rp2;n C r1;1 Rr2;n

�
D �

�1;1�1;1

k2
1;1 � 1

Pv01; (20a)
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�1;1

�
Rr1;1 C �

2
1;1r1;1

�
C r1;1

NX
nD1

d
.2/
0;n Rp0;n C

NX
nD1

d
.3/
0;n

�
Rr1;1p0;n C Pr1;1 Pp0;n

�

C d1

�
r2
1;1 Rr1;1 C r1;1 Pr

2
1;1 C r1;1p1;1 Rp1;1 C r1;1 Pp

2
1;1

�
C d2

�
p2

1;1 Rr1;1 C 2p1;1 Pr1;1 Pp1;1r1;1p1;1 Rp1;1 � 2r1;1 Pp
2
1;1

�

C

NX
nD1

d
.3/
2;n

�
Rp1;1r2;n � Rr1;1p2;n C Pp1;1 Pr2;n � Pr1;1 Pp2;n

�

C

NX
nD1

d
.2/
2;n

�
p1;1 Rr2;n � r1;1 Rp2;n

�
D �

�1;1�1;1

k2
1;1 � 1

Pv02: (20b)

These equations contain both the lowest- and second-order generalized coordinates, but the third-order generalized
coordinates are absent here. The notation for km;n (the roots of the equation J 0

m.km;n/ D 0/; �m;n [see Eq. (17)],
�m;n (natural sloshing frequency), and the translatory velocity components Pv01.t/ and Pv02.t/ has been explained
before. The nondimensional hydrodynamic coefficients of the nonlinear terms are defined at the end of this section.

The differential equations for finding the second-order generalized coordinates p0;n; p2;n; and r2;n take the
form

2�0;n

�
Rp0;n C �

2
0;np0;n

�
C d

.1/
0;n

�
Pp2
1;1 C Pr

2
1;1

�
C d

.2/
0;n

�
Rp1;1p1;1 C Rr1;1r1;1

�
D 0; (21a)

�2;n

�
Rp2;n C �

2
2;np2;n

�
C d

.1/
2;n

�
Pp2
1;1 � Pr

2
1;1

�
C d

.2/
2;n

�
Rp1;1p1;1 � Rr1;1r1;1

�
D 0; (21b)

�2;n

�
Rr2;n C �

2
2;nr2;n

�
C 2d

.1/
2;n Pr1;1 Pp1;1 C d

.2/
2;n

�
Rp1;1r1;1 C Rr1;1p1;1

�
D 0: (21c)

Here, n D 1; : : : ; N; i.e., there are 3N ordinary differential equations for these generalized coordinates. Note
that Eqs. (21) contain p1;1 and r1;1 defined by (21), and, therefore, one can say that the first- and second-order
generalized coordinates are nonlinearly coupled by our modal equations. However, the third-order generalized
coordinates p3;n and r3;n are absent from (21). The equations for these generalized coordinates take the form

�3;n

�
Rr3;n C �

2
3;nr3;n

�
C d3

�
r1;1 Pp

2
1;1 C 2p1;1 Pp1;1 Pr1;1 � r1;1 Pr

2
1;1

�

C d4

�
p2

1;1 Rr1;1 C 2r1;1p1;1 Rp1;1 � r
2
1;1 Rr1;1

�
C

NX
nD1

d
.1/
3;n

�
Pp1;1 Pr2;n C Pr1;1 Pp2;n

�

C

NX
nD1

d
.2/
3;n

�
p1;1 Rr2;n C r1;1 Rp2;n

�
C

NX
nD1

d
.3/
3;n

�
Rp1;1r2;n C Rr1;1p2;n

�
D 0; (22a)
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�3;n

�
Rp3;n C �

2
3;np3;n

�
C d3

�
p1;1 Pp

2
1;1 � 2r1;1 Pp1;1 Pr1;1 � p1;1 Pr

2
1;1

�

C d4

�
p2

1;1 Rp1;1 � 2p1;1r1;1 Rr1;1 � r
2
1;1 Rp1;1

�
C

NX
nD1

d
.1/
3;n

�
Pp1;1 Pp2;n � Pr1;1 Pr2;n

�

C

NX
nD1

d
.2/
3;n

�
p1;1 Rp2;n � r1;1 Rr2;n

�
C

NX
nD1

d
.3/
3;n

�
Rp1;1p2;n � Rr1;1r2;n

�
D 0; (22b)

�1;n

�
Rr1;n C �

2
1;nr1;n

�
C d5

�
Rr1;1r

2
1;1 C r1;1p1;1 Rp1;1

�
C d6

�
r1;1 Pr

2
1;1 C r1;1 Pp

2
1;1

�
C d7

�
Rr1;1p

2
1;1 � r1;1p1;1 Rp1;1

�

C d8

�
Pr1;1 Pp1;1p1;1 � r1;1 Pp

2
1;1

�
C

NX
nD1

d
.1/
4;n

�
Pp1;1 Pr2;n � Pr1;1 Pp2;n

�

C

NX
nD1

d
.2/
4;n

�
p1;1 Rr2;n � r1;1 Rp2;n

�
C

NX
nD1

d
.3/
4;n

�
Rp1;1r2;n � Rr1;1p2;n

�

C Pr1;1

NX
nD1

d
.1/
5;n Pp0;n C r1;1

NX
nD1

d
.2/
5;n Rp0;n C Rr1;1

NX
nD1

d
.3/
5;np0;n D �

�1;n�1;n

k2
1;n � 1

Pv02; (22c)

�1;n

�
Rp1;n C �

2
1;np1;n

�
C d5

�
Rp1;1p

2
1;1 C r1;1p1;1 Rr1;1

�
C d6

�
p1;1 Pp
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d
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d
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d
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d
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d
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k2
1;n � 1
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where n D 1; : : : ; N: Equations (22) are linear in p3;n and r3;n and contain nonlinear quantities in terms of the
first- and second-order generalized coordinates.
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The most important result of the present paper is that the nonzero hydrodynamic coefficients in (20)–(22) can
be effectively calculated by the following fairly simple formulas:
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where, by definition,
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and there are special indexing rules for i and j exemplified by the formula

j
.1;2/.0;1/.1;2/

.0;2/.2;2/.1;1/
D j
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!
d�:

Equations (22c) and (22d) contain the coefficients d5; d6; d7; and d8; which are computed by the formulas
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0:51201

h1;1
�
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;
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�
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;

d8 D �
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�
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;

where hm;n D tanh.km;nh/ depends on the nondimensional depth.
It may be important for applications that the modal equations (20)–(22) can be rewritten in the following

matrix form:

Q.Eq/ REq C C Eq C E‰.EqI PEq/ D V; (23)

where

Eq D .q1;1I q1;2I : : : I q1;nI q2;1I q2;2I : : : I q2;nI : : : I q7;1I q7;2I : : : I q7;n/
T :

5. Conclusions

Taking into account analytical studies of nonlinear resonant sloshing in an upright circular-base tank, the
present paper analytically deduces a system of nonlinear ordinary differential equations (modal system) that facil-
itates the approximate modeling of sloshing phenomena. The derivation uses the Narimanov–Moiseev intermodal
asymptotic relations, which cause, for this tank shape, an infinite number of generalized coordinates coupled by the
system. In contrast to the existing analytically given modal equations, the derived system (i) contains all necessary
generalized coordinates and (ii) includes exclusively nonzero hydrodynamic coefficients, for which (iii) fairly sim-
ple computational formulas are found. The use of the modal equations in analytical studies of nonlinear resonant
sloshing will be demonstrated in the forthcoming Part II.
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