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ied periodic (steady-state) solutions of an asymptotic nonlinear modal system which
describes two-dimensional resonant sloshing in a rectangular tank. The system was
derived by Faltinsen et al. (2000) under the assumption that the primary excited (low-
est) natural mode gives the largest contribution to the wave patterns. We found that
this assumption is not true in a certain frequency domain due to internal (secondary)
resonance leading to an amplification of the second mode. This frequency domain can
also be identified for the critical depth-to-breath ratio h = 0.3368 . . . which was dis-
cussed in Part I. In Part II, this secondary resonance is modelled by a double-dominant
modal system by Faltinsen and Timokha (2001). A comparative analysis with the results

from Part I is presented. The emphasis is placed on the case of the mentioned critical
ratio when a double turning point arises in the branching diagram. The appearance of
the double turning point explains why classical laboratory experiments by Fultz (1962)
underestimate the value of the critical depth.
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1. Introduction

In Part I of this work,16 we presented an extensive survey on mathematical and
numerical aspects of the nonlinear liquid sloshing in a rigid tank. Steady-state
(periodic) resonant wave regimes were emphasized as those which are not unique
for certain input parameters. We discussed difficulties which arise when bifurcations
of these regimes are analyzed by Computational Fluid Dynamics (CDF) methods.
To the authors’ knowledge, the only alternative to CDF is to use an asymptotic
modal technique which represents a subclass of the so-called multimodal methods.

The multimodal methods are typically used to solve the free boundary value
problem formulated with respect to the velocity potential. It is assumed that the
liquid is incompressible, perfect and characterized by irrotational flow. Discussions
on the applicability of this physical model are, for instance, presented in mono-
graphs by Abramson1 and Ibrahim.17 In Part I we remarked that the physical
model adequately describes sloshing of Liquefied Natural Gas (LNG), oil and other
relevant liquids, whereas viscosity, surface tension, flow separation and other spe-
cific features of the contained liquids play a secondary role. They are only of interest
in specific cases when, for instance, the liquid is shallow or vorticities are shed at
sharp edges of structures which submerge into the liquid.

The multimodal methods reduce the original free boundary problem to a system
of ordinary differential equations (modal systems), which couple the generalized
Fourier coefficients (modal functions βi(t)) in the normal representation of the free
surface Σ(t):

z = f(x, y, t), where f(x, y, t) =
∞∑

i=1

βi(t)fi(x, y). (1.1)

Here {fi(x, y)} (fi = fi(x) for a two-dimensional sloshing) imply the natural slosh-
ing modes.

A truncation of the multimodal systems (with respect to βi(t)) is needed for
practical use. This reduction can be accomplished by a naive truncation of the sum
in the expression (1.1) which will obviously lead to finite-dimensional modal sys-
tems (see the description of the corresponding Perko26, 30 multimodal technique in
Part I). Following the Perko-like technique, we must recognize that all the nonlinear
expressions containing lower as well as higher natural modes (modal functions βi)
give a comparable contribution to the liquid sloshing dynamics. This technique has
extensively been elaborated in recent publications by Ferrant and Le Touze,11 La
Rocca et al.,18–20 and Shankar and Kidambi.31 The dimension of the correspond-
ing modal systems is rather large. The systems are typically employed to solve
the Cauchy problem, i.e. to simulate a nonlinear transient surface wave. Numeri-
cal aspects of these simulations, e.g. stiffness, robustness and requirement in linear
damping terms, are, for instance, discussed by La Rocca et al.19, 20 Because of
their large dimension, these multimodal systems are not appropriate for analytical
studies.
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Part I shows that a simplification and a related truncation of the nonlinear
infinite-dimensional modal systems are also possible if we recall that the higher
modes give a higher-order asymptotic contribution to the sloshing relative to that by
the lowest modes. In terms of the infinite sum (1.1) this means that the modal sys-
tems may, from the asymptotic point of view, contain unnecessary quantities asso-
ciated with nonlinearities in the higher modal functions βi(t). In order to account
for this asymptotic fact, we should introduce an intermodal relation between the
βi(t) and distinguish leading and driven modal modes, which cause lowest- and
higher-order contributions, respectively. The procedure suggests to associate with
the highest-order contribution a small non-dimensional parameter δ and to neglect
the o(δ)-terms. Thus, the multimodal systems are reduced to small-dimensional
systems of nonlinear ordinary differential equations, namely, to asymptotic modal
systems. The latter systems can be studied both analytically and numerically. An
example is given by Faltinsen et al.8 for the case of two-dimensional sloshing in a
rectangular tank. The adopted intermodal ordering is as follows

β1 = O(δ1/3); β2 = O(δ2/3); βi ≤ O(δ), i ≥ 3. (1.2)

Moiseyev24 proved that the relation (1.2) is a necessary solvability condition for
a certain class of steady-state sloshing with a finite liquid depth. The (1.2)-based
asymptotic modal system couples nonlinearly the two leading modal functions β1(t)
and β2(t).

In Part I we have presented a bifurcation analysis of the steady-state solutions
of the system by Faltinsen et al.8 Here, the main focus was laid on lateral harmonic
excitations of the tank so that δ ∼ τ , where τ is the non-dimensional forcing ampli-
tude. From a mathematical point of view, the steady-state solutions are associated
with a two-point boundary problem using periodic boundary conditions. We showed
that this problem can be formulated as a parametrized nonlinear operator equation
in suitable Banach spaces. The frequency-dependent nondimensional parameter λ
(the so-called Moiseyev detuning number λ) was treated as a bifurcation parameter,
while τ > 0 is a small perturbation parameter which characterizes an imperfection of
the underlying system. The local bifurcation analysis of the operator problem gives
results similar to those by Faltinsen et al.8 However, a non-local analysis establishes
a certain domain in the (λ, ‖β1‖, ‖β2‖)-space, where ‖β2‖ ∼ ‖β1‖ and, therefore,
the relation (1.2) becomes invalid. Similar frequency domains were reported by
Feng,9, 10 Faltinsen and Timokha4, 7 and, recently, by Wu.34 In general, their exis-
tence is physically treated as the so-called internal (secondary) resonance.

Concepts of secondary resonances in the liquid sloshing dynamics have been
elaborated by Ockendon et al.,28, 29 Bryant,2 and Faltinsen and Timokha.6 However,
these works are concentrated on either shallow liquid depths or the case, when
the forcing amplitude τ is not small. In both cases, higher modes are resonantly
amplified, i.e. the modal functions βi, i �= 1, become of the same order as β1. The
analysis is then concentrated on excitations of the lowest natural mode, namely on
the case when the forcing frequency σ is close to the lowest natural frequency σ1.
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However, the shallow liquid depth is characterized by the amplification of a large
number of higher modes, i.e. β1 ∼ βi, i = 2, . . . , N , andN , generally speaking, tends
to infinity. But the increase of τ with a finite liquid depth leads to the amplification
of the second mode only, namely, β1 ∼ β2. A similar amplification of higher modes
β3, β4, etc. was only found slightly away from the primary resonance zone. It is
a theoretical novelty that Part I establishes certain frequency domains in which
‖β2‖ ∼ ‖β1‖ for small τ and a finite liquid depths. These frequency domains do not
vanish in the limit τ → 0.

There is a limited class of asymptotic modal systems that explain the ampli-
fication of higher modes due to the secondary resonance. Examples are given by
Faltinsen and Timokha,4, 5 and Faltinsen et al.7 However, the system by Faltinsen
and Timokha5 is based on the Boussinesq-type ordering and handles shallow liq-
uid sloshing and Faltinsen et al.7 operate with three-dimensional waves. Only the
adaptive modal systems by Faltinsen and Timokha,4 we believe, are applicable to
study the steady-state solutions in the frequency domains established in Part I.

Based on a physical and experimental analysis, Faltinsen and Timokha4 have
proposed to consider the asymptotic relationships

βi = O(τ1/3), i = 1, . . . ,M ; βi = O(τ), i > M, (1.3)

where the number M may vary from 1 to ∞. By changing M , we obtain a series
of embedded modal systems, which we call “Model M”. Faltinsen and Timokha4

studied the applicability of these models with increasing τ and in a wide range of
the forcing frequency around the primary resonance. They found a good agreement
between experimental data and theoretical results received with the Model 2 (based
on the double-dominant relationship β1 ∼ β2 = O(τ1/3), βi ≤ O(τ)) in a local
neighborhood of the primary resonance. This result was checked numerically by
Landrini et al.21 (smooth-particles hydromechanics method) and Löhner et al.22

Model 3, Model 4 etc. are only needed for certain frequency domains away from
the primary resonance zone.

The asymptotic modal system associated with Model 2 couples nonlinearly the
two lowest (leading) modal functions. The remaining equations are linear in the
driven modal functions βi, i ≥ 3, but may include nonlinear terms in β1 and β2.
In the literature one finds no theoretical studies of this double-dominant system.
Here, we use the operator approach of Part I to carry out a bifurcation analysis of
its steady-state solutions and compare these results with those obtained with the
single-dominant modal theory from Part I. We put the main emphasis on frequency
domains, where β1 ∼ β2, and on the critical depth-to-breadth ratio h/l = 0.3368 . . . .

2. Statement of the Problem and Preliminaries

2.1. Definitions and nomenclature

Having in mind the problem formulated in Part I, we consider two-dimensional oscil-
latory fluid flows in a rigid rectangular tank shaking horizontally with a frequency σ.
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Fig. 1. Two-dimensional sloshing in a rectangular tank. Non-dimensional sketch, in which all the
geometric sizes are scaled by the tank length l.

The amplitude of the shaking is small relative to the tank breadth l. An asymptotic
analysis requires a nondimensional formulation, in which all the geometric param-
eters are scaled by l. Under this scaling, the time-dependent liquid volume reads
(see Fig. 1):

Q(t) = {(x, z) : −h < z < f(x, t);−1/2 < x < 1/2}. (2.1)

Let us define the hydrostatic liquid shape as Q0 = (−1/2, 1/2)× (−h, 0) (h := h/l

is the scaled mean depth h) and z = f(x, t) determines the free surface Σ(t). The
Oxz-coordinate system is fixed with the water-plane.

The original free boundary value problem (BVP) couples f(x, t) and the velocity
potential Φ(x, z, t) (see Part I of this work and the books of Moiseyev and Rumyant-
sev,25 Lukovsky and Timokha,23 and Ibrahim17). Adopting the multimodal meth-
ods, we have to introduce the Fourier solution of this free BVP

f(x, t) =
∞∑

i=1

βi(t)fi(x); Φ(x, z, t) = −τx sin t+
∞∑

i=1

Ri(t)φi(x, z), (2.2)

where fi(x) = cos(πi(x + 1/2)) and

φi(x, z) = fi(x)
cosh(πi(z + h))

cosh(πih)
(2.3)

are the so-called natural modes. The natural sloshing frequencies (see, e.g.
Faltinsen et al.3, 8) are computed by

σ2
i =

g

l
πi tanh(πih), i = 1, 2, . . . , (2.4)

where g ≈ 9.81m/s2 is the gravitational acceleration.
Furthermore, in order to get a fully non-dimensional statement, we introduce

the characteristic time 1/σ (2π/σ is the forcing period) and re-define the time-
coordinate as t := σt. The nondimensional frequency parameter is then associ-
ated with the so-called Moiseyev detuning number (Moiseyev,24 and Ockendon and
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Ockendon27)

λ = 1 − σ2
1

σ2
, −∞ < λ < 1. (2.5)

Following Part I, λ is regarded as a bifurcation parameter.
Since the lateral harmonic excitation is performed with a small amplitude and

one can define the non-dimensional forcing as

η1 := η1/l = τ cos t, τ 	 1, (2.6)

the problem contains an initial imperfection which is represented by the perturbation
parameter τ . The parameter corresponds to the highest-order of smallness in the
system.

2.2. Modal systems

2.2.1. Single-dominant modal theory

The single-dominant nonlinear modal theory by Faltinsen et al.8 is based on the
relations (1.2) and neglects O(δ4/3)-terms. It results in a system of ODEs, whose
first two equations are nonlinear in β1 and β2 and do not contain βi, i ≥ 3. The
remaining equations are linear in βi, i ≥ 3, but may contain nonlinear terms in
β1 and β2. If a 2π-periodic solution of the first two equations is found and sub-
stituted into the other modal equations, we can determine a numerical solution of
βi(t), i ≥ 3, by standard techniques for linear differential equations with a peri-
odic right-hand side. This means that the nonlinear intermodal energy content is
completely determined by the two-dimensional subsystem for β1 and β2. This sub-
system is the fundamental relation of the single-dominant modal theory and reads
(see formulas (3.16) and (3.17) in Part I16) as

β̈1 + (1 − δ1(λ))β1 + d1(β̈1β2 + β̇1β̇2) + d2(β̈1β
2
1 + β̇2

1β1)

+ d3β̈2β1 + P1τ cos t = 0; (2.7)

β̈2 + (4 − δ2(λ))β2 + d4β̈1β1 + d5β̇
2
1 = 0. (2.8)

Here,

δi = δi(λ) = i2 − µ2
i (1 − λ); µi =

σi

σ1
, i ≥ 1, (2.9)

and the coefficients di, i = 1, . . . , 5, and P1 are defined by the formulas

d1 = 2
E0

E1
+ E1, d2 = 2E0

(
−1 +

4E0

E1E2

)
, d3 = −2

E0

E2
+ E1,

d4 = −4
E0

E1
+ 2E2, d5 = E2 − 2

E0E2

E2
1

− 4E0

E1
, P1 =

4 tanh(πh)
π

,

(2.10)

where

E0 =
π2

8
, Ei =

π

2
tanh(πih), i ≥ 1. (2.11)
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2.2.2. Double-dominant modal theory

Having in mind an amplification of the second modal function β2 for certain values
of λ and increasing τ , Faltinsen and Timokha4 proposed an adaptive modal theory.
As Model 2 of this theory, they derived an asymptotic modal system based on

β1 ∼ β2 ∼ δ1/3, βi ∼ δ, i ≥ 3. (2.12)

Similarly to the single-dominant case, the basis of this new theory consists of the
two nonlinear second-order ODEs for the unknown functions β1(t) and β2(t):

β̈1 + (1 − δ1(λ))β1 + d1(β̈1β2 + β̇1β̇2) + d2(β̈1β
2
1 + β̇2

1β1) + d3β̈2β1

+ d̃1β̈1β
2
2 + d̃2β̈2β2β1 + d̃3β̇

2
2β1 + d̃4β̇1β̇2β2 + P1τ cos t = 0; (2.13)

β̈2 + (4 − δ2(λ))β2 + d4β̈1β1 + d5β̇
2
1 + d̃5β̈1β1β2 + d̃6β̈2β

2
1

+ d̃7(β̈2β
2
2 + β̇2

2β2) + d̃8β̇
2
1β2 + d̃9β̇1β̇2β1 = 0. (2.14)

The remaining differential equations are rather complicated, but they are still linear
in βi, i ≥ 3.

Equations (2.7) and (2.8) contain additional (relative to (2.13), (2.14)) nonlinear
terms associated with nine coefficients d̃i, i = 1, . . . , 9. Using the tensor expressions
from Faltinsen and Timokha,4 these coefficients can be written in the following
form

d̃1 = −4E0 + 4
E2

0

E2
1

+ 12
E2

0

E1E3
; d̃2 = −4

E2
0

E1E2
+ 12

E2
0

E2E3
,

d̃3 = 8
E0E1

E2
− 4

E2
0

E1E2
+ 12

E2
0

E2E3
− 4

E2
0

E2
2

− 12
E2

0E1

E2
2E3

,

d̃4 = −8E0 + 8
E2

0

E2
1

+ 24
E2

0

E1E3
; d̃5 = −8

E2
0

E2
1

+ 24
E2

0

E1E3
,

d̃6 = −16E0 + 8
E2

0

E1E2
+ 24

E2
0

E2E3
; d̃7 = −8E0 + 32

E2
0

E2E4
,

d̃8 = 8
E0E2

E1
− 8

E2
0

E2
1

+ 24
E2

0

E1E3
− 8

E2
0E2

E3
1

− 24
E2

0E2

E2
1E3

,

d̃9 = −32E0 + 16
E2

0

E1E2
+ 48

E2
0

E2E3
.

The postulation of (2.12) was based on a physical and experimental analysis.
Faltinsen and Timokha4 have shown that numerical simulations on the basis of
(2.13), (2.14) are in a good agreement with experimental data for h ≥ 0.24 and
τ ≤ 0.1. The range for the frequency parameter λ should be λ0(2, 2) < λ < 1 (see,
Part I and Fig. 2), where λ = 0 means primary resonance (as follows from the
definition (2.5)). A failure of this model was only found when an increase of the
forcing causes a fragmentation of the free surface in experimental observations.
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Simulations and experimental data by Faltinsen and Timokha4 have shown that
an explanation for the amplification of the third mode, i.e. β1 ∼ β2 ∼ β3, is required.
The consequence is the development of a new modal system of dimension 3, Model 3,
which is only appropriate when λ is away from the mentioned frequency range,
namely, λ < λ0(2, 2).

2.3. Operator statement and preliminary results

2.3.1. Operator formulation

In order to get an operator formulation of the single-dominant system equipped by
periodic boundary conditions, in Part I, we have set B = (β1, β2)T and rewritten
the nonlinear equations (2.7) and (2.8) as

M(B)B̈ = GM (t, B, Ḃ;λ, τ), (2.15)

with

M =
(

1 + d1β2 + d2β
2
1 d3β1

d4β1 1

)
∈ R

2×2 and GM = (GM
1 , GM

2 ) ∈ R
2,

GM
1 = −(1 − λ)β1 − d1β̇1β̇2 − d2β̇

2
1β1 − P1τ cos t, (2.16)

GM
2 = −(4 − δ2(λ))β2 − d5β̇

2
1 .

Similarly, Eqs. (2.13) and (2.14) can be written in the form (2.15) with

M =

(
1 + d1β2 + d2β

2
1 + d̃1β

2
2 d3β1 + d̃2β1β2

d4β1 + d̃5β1β2 1 + d̃6β
2
1 + d̃7β

2
2

)
∈ R

2×2 (2.17)

and

GM
1 = −(1 − λ)β1 − d1β̇1β̇2 − d2β̇

2
1β1 − d̃3β̇

2
2β1 − d̃4β̇1β̇2β2 − P1τ cos t,

GM
2 = −(4 − δ2(λ))β2 − d5β̇

2
1 − d̃8β̇

2
1β2 − d̃7β̇

2
2β2 − d̃9β̇1β̇2β1.

(2.18)

As long as B is relatively small in a uniform norm, the matrix M is nonsingular
and, therefore, one can use the normal form

B̈ = G(t, B, Ḃ;λ, τ), (2.19)

where G = M−1GM and G : DG := [0, 2π] × DB × DḂ × R × R → R
2, 0 ∈ DG,

G ∈ Cp(Df ), p ≥ 4.
Furthermore, we assume that Eq. (2.19) is subject to the periodic boundary

conditions

l0(B) = B(0+) −B(2π−) = 0, l1(Ḃ) = Ḃ(0+) − Ḃ(2π−) = 0, (2.20)

and consider the parametrized nonlinear BVP (2.19), (2.20) as an operator equation

T (B;λ; τ) := B̈ −G(t, B, Ḃ;λ, τ) = 0, B ∈ X, λ, τ ∈ R. (2.21)



November 13, 2008 10:40 WSPC/103-M3AS 00321

Modal Modelling of the Fluid Sloshing, II 1853

Here, T : Z := X × R × R → Y and the Banach spaces X , Y

X := BC2([0, 2π],R2) := {B ∈ C2([0, 2π],R2) : l0(B) = 0, l1(Ḃ) = 0},
Y := C([0, 2π],R2)

are equipped by the norms

‖B‖X = ‖B : BC2‖ = ‖B : C2‖ = sup
t∈[0,2π]

(|B(t)| + |Ḃ(t)| + |B̈(t)|),

‖B‖Y = ‖B : C‖ = sup
t∈[0,2π]

|B(t)|.

The operator equation (2.21) depends on two real parameters −∞ < λ < 1 and
0 ≤ τ 	 1. Let us assume that τ belongs to an interval Iτ . Following Hermann,13

Wallisch and Hermann,32 and Hermann and Ullrich,15 we study the solution man-
ifold

M := {(B, λ, τ) : −∞ < λ < 1; τ ∈ Iτ ; T (B, λ, τ) = 0}. (2.22)

Obviously, the trivial solution curve Ctriv := {(0, λ, 0) : −∞ < λ < 1} belongs to
M and can be interpreted as the hydrostatic equilibrium of the original sloshing
problem.

2.3.2. Primary bifurcation points on the trivial solution curve Ctriv

A local analysis of the manifold M should include the detection of the primary
bifurcation points on Ctriv. These appear at certain values {λ0(i, k)}, the so-called
critical values, on the abscissa of the (λ, ‖B‖)-plane, at which non-trivial solutions
of (2.21) are branching off. From a physical point of view, the existence of these
bifurcation points implies nonlinear free-standing waves.

In order to find {λ0(i, k)}, let us present the unperturbed problem (2.21) (i.e.
the case τ = 0) as

T (B;λ, 0) = T0(B;λ) := T 0
B[λ]B + T̃0(B;λ) = 0, T0 : X × R → Y, (2.23)

where T 0
B[λ]B is the linear part of the operator T0 which is represented by the

Fréchet derivative T 0
B[λ] = ∂T0(0, 0)/∂B. It can easily be shown that T 0

B[λ] is a
self-adjoint Fredholm operator on a suitable set of functions from L2(0, 2π). The
linearised problem

T 0
B[λ]ϕ = 0, ϕ ∈ X, (2.24)

has the eigenvalues

λ0(i, k) = 1 − k2/µ2
i , k ∈ N, i = 1, 2, (2.25)

which are the required critical values of (2.23). Note, that we have determined the
same values of λ0(i, k) in Part I. The reason is that the linearizations of (2.7)–(2.8)
and (2.13)–(2.14) are identical.

Since µ2
1 = 1 and 2 < µ2

2 < 4, there do not exist two integers k1 and k2

such that λ0(1, k1) = λ0(2, k2). This implies that the two kernels N (T 0
B[λ0(i, k)]),
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i = 1, 2, have dimension 2 and are spanned by either ϕ1[1, k] = (sin(kt), 0) and
ϕ2[1, k] = (cos(kt), 0) or ϕ1[2, k] = (0, cos(kt)) and ϕ2[2, k] = (0, sin(kt)). Moreover,
the kernels N (T 0

B[λ0(i, k)]∗) of the adjoint operators T 0
B[λ0(i, k)]∗, i = 1, 2, have

dimension two as well and are spanned by ψm[i, k] = ϕm[i, k], m, i = 1, 2; k ∈ N.
This dimension is caused by the phase-shift invariance, i.e. the kernels have the
following structure

N (T 0
B[λ0(i, k)]) =

{
c · (cos(k(t+ θ)), 0), for i = 1,

c · (0, cos(k(t+ θ))), for i = 2,

where θ ∈ R can be fixed without loss of generality.
The values λ0(i, k), i = 1, 2, k ≥ 1, change with the mean fluid depth h. In

general, their order along the λ-axis is not clearly predictable. However, one can
show that the three lowest critical values satisfy: λ(1, 1) = 0, λ(2, 2) ∈ (−1, 0) and
λ(2, 1) ∈ (1/2, 3/4). Moreover, it holds λ0(2, 2) < λ < λ0(2, 1) and λ(2, 2) → 0 as
h→ 0.

2.3.3. Applicability of the single-dominant modal theory

In the previous section we have demonstrated that the unperturbed operator prob-
lem has an infinite number of primary bifurcation points at λ0(i, k) ∈ R, i = 1, 2,
k = 1, 2, . . ., on the λ-axis. The theory presented in Part I has proved that these pri-
mary bifurcations are destroyed by imperfections τ > 0 only at two values, namely
at λ0(1, 1) = 0 (the local branching behavior is consistent with Moiseyev24 and
Faltinsen3) and at λ0(2, 2). The primary bifurcations are preserved at the other
points.

From a physical point of view, the first bifurcation point (λ = λ0(1, 1) = 0)
implies primary resonance. When λ → λ0(2, 2) �= 0, the forcing frequency is away
from the primary resonance zone. The destroyed primary bifurcation at λ0(2, 2)
means a secondary (internal) resonance. A concept of this type of secondary res-
onance was elaborated in the physical literature (Feng,9, 10 Ockendon et al.,28, 29

Bryant,2 and Faltinsen and Timokha4, 5). A simple treatment of this concept is
that, for a certain value of λ ≈ λ0(2, 2), the second-order quantities in Eqs. (2.8)–
(2.14) generate a double-frequency harmonics cos 2t and sin 2t and this double har-
monics may be close to the second natural sloshing frequency, i.e. under our non-
dimensional statement, close to

√
4 − δ2(λ). Occurrence of the secondary resonance

at λ0(2, 2) leads to an increase of ‖β2‖. It reaches the order of magnitude of ‖β1‖
or even exceeds this value. As a consequence, the asymptotic relation (1.2) fails. In
Part I the branching at λ0(2, 2) is analyzed with the single-dominant theory.

Another discovery of Part I is a frequency domain in the vicinity of λ(1, 1) = 0
where the nonlocal solution of (2.21) is characterized by the relation β2 ∼ β1. The
domain does not vanish as τ decreases and, we believe, a new type of secondary
resonance is indicated. It occurs away from λ0(2, 2) and for small values of τ . This
frequency domain will be the primary focus of our study in Sec. 5.
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3. Unperturbed Operator Problem for the Double-Dominant
Theory

The results of the Lyapunov–Schmidt reduction in a neighborhood of λ0(1, k), k ∈
N, coincide with those presented in Part I for (2.7) and (2.8), i.e. the local branching
can be described as

β1(t; s) = s cos(k(t+ θ)) +O(s3);

β2(t; s) = s2[p0 + h0 cos(2k(t+ θ))] +O(s4);

λ(s) = 1 − k2 + s2k2m1 +O(s4),

(3.1)

where |s| ≤ s0 	 1 is an artificial parameter,

p0 =
d4 − d5

2µ2
2

, h0 =
d4 + d5

2(µ2
2 − 4)

(3.2)

and

m1 = −1
2
d2 − d1

(
p0 − 1

2
h0

)
− 2h0d3 (3.3)

depends only on the mean fluid depth h.
The local solutions bifurcating at λ0(2, k), k ∈ N, differ from the results given

in Part I and now take the form

β1(t; s) ≡ 0; β2(t; s) = s cos(k(t+ θ)) +O(s3),

λ(s) = 1 − k2

µ2
2

− s2
d̃7k

2

2µ2
2

+O(s3), |s| ≤ s0 	 1.
(3.4)

The parametrized solutions (3.1) and (3.4) determine the local branching at the
primary bifurcation points. Considering the situation in the (λ, ‖β1‖, ‖β2‖)-space,
we find that the curves associated with (3.4), which emerge at λ0(2, k), k ≥ 1,
run in the (λ, ‖β2‖)-plane. In contrast, the representation (3.1) determines almost
planar branches in the (λ, ‖β1‖)-plane. Curves bifurcating at the lower critical values
λ0(i, k) are exemplified in Fig. 2.

The type of the local branching (soft- or hard-spring behavior) depends on
the signs of m1 and d̃7. A simple analysis shows that d̃7 > 0 for arbitrary h. This
means that the solutions on the curves emerging at λ0(2, k), k ≥ 1, are characterized
by the soft-spring behavior. The corresponding examples for λ0(2, k), k = 1, 2, 3,
are plotted in Fig. 2 (solid lines). Dashed lines represent the primary bifurcating
solution curves which are determined by the single-dominant theory.

The qualitative conclusions on the branching behavior at the critical values
λ0(1, k), k = 1, 2, 3, are the same as presented in Part I. In Fig. 2, the curves
branching off at λ0(1, 1) = 0 and λ0(1, 2) = −3 are represented by solid lines.
When m1 < 0 (h > hR = 0.3368 . . .), the corresponding solutions determine the
soft-spring behavior, but m1 > 0 (h < hR) is associated with the hard-spring
behavior.
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Fig. 2. Local branching at λ0(i, k), i = 1, 2, k ∈ N, in the (λ, ‖β1‖, ‖β2‖)-space. The solid lines:
curves branching off at λ0(1, 1) = 0 and λ0(1, 2) = −3 in the (λ, ‖β1‖)-plane; curves branching off
at λ0(2, k), k = 1, 2, 3, in the (λ, ‖β2‖)-plane. The dashed vertical lines: curves branching off at
λ0(2, k), k = 1, 2, 3, which have been computed in Part I using the single-dominant model (2.7),
(2.8). The behavior at λ0(1, k) = 1 − k2, k ∈ N, depends on h: h > hR = 0.3368 . . . leads to the
soft-spring behavior, but h < hR implies the hard-spring behavior.

4. Local Analysis of the Perturbed Bifurcations

When τ > 0, the perturbed operator equation (2.21) describes the forced
steady-state waves. The smallness of τ makes it possible to use the Lyapunov–
Schmidt reduction and to analyze perturbations of the branching solutions in a
neighborhood of λ0(i, k), i = 1, 2, k∈N. The procedure employs the fact that
dimN (T 0

B [λ0(i, k)]) = 2 and is in some detail described in Part I. The analysis
suggests τ 	 |s|, where s is the artificial parameter in the ansatz (3.1) and (3.4),
respectively, for the local solutions. The Lyapunov–Schmidt reduction shows that
the initial perturbations τ can either preserve or destroy the primary (unperturbed)
bifurcation points.

4.1. Perturbed bifurcations at λ0(1, k), k ∈ N

The analysis of the perturbed bifurcations at λ0(1, k), k ∈ N, leads to the same
results as those presented in Part I of this work. For k �= 1, the initial perturbations
τ preserve the bifurcating solutions (3.1). In that case, any small τ 	 s does not
effect the dominating asymptotic terms in (3.1). Therefore, the branching solutions
can be parametrized in the form

β1(t; s) = s cos(k(t+ θ)) − P1τ

k2 − 1
cos t+O(s3);

β2(t; s) = s2[p0 + h0 cos(2k(t+ θ))] +O(sτ); (4.1)

λ(s) = 1 − k2 + s2k2m1 +O(sτ), |s| ≤ s0 	 1,

where m1 is determined by (3.3).
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In contrast, for k = 1, the perturbations τ destroy the local bifurcating solutions
(3.1). The local solutions can now be represented in the form

β1(t; s) = s cos(t) +O(s2); β2(t; s) = s2(p0 + h0 cos 2t) +O(s3),

λ(s) =
(
m1 +

P1τ

s3

)
s2 +O(s3), |s| ≤ s0 	 1.

(4.2)

The representation (4.2) is based on the relation s3 ∼ τ which is in fact a resolv-
ability condition.

4.2. Perturbed bifurcations at λ0(2, k), k ∈ N

The results on the perturbed bifurcations at λ0(2, k), k ∈ N, differ from those given
in Part I. Here, the initial perturbations τ can either preserve (k �= 2, k ∈ N) or
destroy (k = 2) the unperturbed bifurcations associated with the local solutions
(3.4). If k �= 2, the Lyapunov–Schmidt reduction gives

β1(t; s) = skτ cos t+O(τs); β2(t; s) = s cos(k(t+ θ)) +O(s3),

λ(s) = 1 − k2

µ2
2

− s2
d̃7k

2

2µ2
2

+O(s3), |s| ≤ s0 	 1,
(4.3)

where sk = −P1/(k2/µ2
2 − 1) = O(1).

In the case k = 2, the situation changes. Now, the initial perturbations τ destroy
the bifurcations appearing in the unperturbed problem and generate the following
local solution

β1(t; s) = s2τ cos t+O(τs); β2(t; s) = s cos 2t+O(s3),

λ(s) = 1 − 4
µ2

2

−
(

2d̃7

µ2
2

+
s22(d4 + d5)

2µ2
2

· τ
2

s3

)
+O(s3), |s| ≤ s0 	 1,

(4.4)

where the resolvability condition now reads τ2 ∼ s3.

4.3. Local response curves

The bifurcation preserving perturbations, associated with the solutions (4.1) and
(4.3), do not introduce a new resolvability condition. Since the s-dependent terms
in these solutions are independent of τ , the problem can be related to the free
nonlinear sloshing. From a physical point of view, the sloshing is characterized by a
small viscous damping. This leads to a rapid decaying of this free nonlinear sloshing.
Moreover, the solutions (4.1) and (4.3) without the s-terms describe in fact a linear
sloshing.

In contrast to the bifurcation preserving perturbations, the relations (4.2) and
(4.4) couple τ and s. Varying λ ∈ (−∞, 1) and choosing appropriate values of s
(independently of τ), determines a local branching structure for a relatively small
norm ‖B‖. In Fig. 3(a), (b), this branching is shown in the (λ, ‖B‖)-plane for h > hR



November 13, 2008 10:40 WSPC/103-M3AS 00321

1858 M. Hermann & A. Timokha

λ
10

||B||

λ(2,2)
λ

10

||B||

λ(2,2)

(a) (b)

||β ||1

||β ||2

λ 1

0

λ (2,2)
0

||β ||1

||β ||2

λ 1

0

λ (2,2)
0

(c) (d)

Fig. 3. Perturbed local bifurcations associated with the solutions (4.1)–(4.4). The representations
are given in the (λ, ‖B‖)-plane (see, (a) and (b)) and in the (λ, ‖β1‖, ‖β2‖)-space (see, (c) and
(d)). The solid lines: cases (a), (c) imply h > hR, but (b) and (d) correspond to h < hR. The
dashed lines: the local behavior at λ0(2, 2) for the single-dominant system (2.7), (2.8) is illustrated
in (a) and (b).

and h < hR, respectively. Here the curves at the origin are associated with the
local solution (4.2) (for λ → λ0(1, 1) = 0). The behavior of ‖B‖ as λ → λ0(2, 2) is
described by the solution (4.4).

As mentioned above, the local solution (4.2) implies the local branching at the
bifurcation point λ0(1, 1). This point is related to the primary resonance in the
system when σ → σ1. This type of resonance was described by Faltinsen.3 Thus,
it is evident that the solution (4.2) is mathematically equivalent to his results.
Although Ockendon et al.,28, 29 Faltinsen and Timokha4, 6 and other authors clari-
fied why we should expect a secondary resonance at point λ0(2, 2), the analysis of
the corresponding local nonlinear amplification of the second mode at λ0(2, 2) is,
to the authors knowledge, absent in the literature. This means that the local solu-
tion (4.4) is a pioneering one. When nonlinearity associated with d̃7 is neglected,
the branching at λ0(2, 2) has a linear character as it has been in the case of the
single-dominant theory. This fact becomes clear when the dashed and solid lines in
Fig. 3(a), (b) are compared.



November 13, 2008 10:40 WSPC/103-M3AS 00321

Modal Modelling of the Fluid Sloshing, II 1859

Finally, our primary attention should be on the frequency domains at λ≈ 0,
where in Part I an amplification of the second mode has been detected, i.e.
β2 ∼ β1. This happens due to fact that the branching at this point may become
strongly three-dimensional in the (λ, |β1|, |β2|)-space as it is schematically shown
in Fig. 3(c), (d). When m1 is finite, this domain is slightly away from the λ-axis.
As long as m1 tends to zero, namely, h→ 0.3368 . . ., the frequency domain touches
this axis. This behavior requires a special study of the local and nonlocal branching
for the critical depth.

5. Non-Local Branching

The nonlocal behavior of the perturbed response curves (τ > 0) is studied by using
the RWPM-package of Hermann and Kaiser,14 and Hermann and Ullrich.15 We
focus on what happens in a neighborhood of λ = λ0(1, 1) = 0, where in Part I a new
type of secondary resonance is established. Moreover, the linear (single-dominant)
and nonlinear (double-dominant) branches at λ0(2, 2) are compared.

A typical nonlocal branching for three different fluid depths is illustrated in
the Figs. 4–6. Each figure consists of three parts. These parts represent the three-
dimensional response curves in the (λ, ‖β1‖, ‖β2‖)-space and their projections on
the (λ, ‖β1‖)- and (λ, ‖β2‖)-planes. The solid lines are used to mark the results
obtained with the double-dominant modal theory and the dashed lines give the
branching obtained with the single-dominant theory. Our calculations were made
for τ = 0.01. This value of the perturbation parameter (non-dimensional forc-
ing amplitude) is relevant to various laboratory experiments in which τ typically
varies from 0.005 to 0.05. Furthermore, the limit of the branching for τ → 0 is
presented by dashed-and-dotted (double-dominant) and dotted (single-dominant)
curves in parts (a) of Figs. 4–6. These represent the nonlocal branching of the
unperturbed problem. A splitting of the curves implies that the single-dominant
theory fails in the asymptotic limit τ → 0. In Figs. 4 and 6, the splitting
occurs in a domain of the (λ, ‖β1‖)-plane which is far from the λ-axis. How-
ever, in Fig. 5 the splitting occurs at the origin which can be attributed to
the critical depth. When τ is a small fixed positive number, e.g. τ = 0.01 as
in Figs. 4–6, the disagreement between the two theories can clearly be seen at
the two resonant zones. The disagreement is especially evident for the critical
depth case.

Figure 4 shows the response curves for h = 0.5, i.e. for the case when the local
analysis predicts a soft-spring local branching at λ = 0. Parts (a) and (b) demon-
strate that the nonlocal branching determined by the double-dominant theory keeps
this local behavior even when the norm of B increases. But this is not true for the
single-dominant theory. We illustrate this fact in part (a), where the secondary
bifurcation point S on the backbone (dotted line, unperturbed operator problem for
the single-dominant theory) is discovered. Furthermore, a comparison of parts (a)
and (b) shows that the relation β1 ∼ β2 can be fulfilled for the nonlocal branches
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Fig. 4. Typical response curves for h > hR, i.e. for the case when the local bifurcation analysis
predicts the soft-spring behavior at λ = λ0(1, 1) = 0. Computations were done with h = 0.5, τ =
0.01. Solid lines: results obtained by using the double-dominant modal theory. Dashed lines: results
obtained by the single-dominant theory. The figure consists of three parts: (a) the response curves
in the (λ, ‖β1‖)-plane; (b) the response curves in the (λ, ‖β2‖)-plane, and (c) the three-dimensional
(λ, ‖β1‖, ‖β2‖)-view. The dotted line in (a) depicts the response curve for the unperturbed problem
(τ = 0) which has been determined with the single-dominant theory. The dashed-and-dotted line
denotes the unperturbed response curve determined by the double-dominant theory.
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Fig. 5. The same as in Fig. 4, but for the value h = hR = 0.3368 . . . .

at both λ = 0 and λ = λ0(2, 2). This implies that the single-dominant theory based
on the asymptotics (1.2) fails with increasing ‖B‖ and, therefore, the secondary
bifurcation point S is physically irrelevant. In contrast, the relation ‖β1‖ ∼ ‖β2‖ is
consistent with the original assumption (2.12).
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Fig. 6. The same as in Fig. 4, but for the case when the local branching at λ = 0 is characterized
by the hard-spring behavior. The calculations were done for the value h = 0.2.

Figure 5 demonstrates a nonlocal branching for h = hR = 0.3368 . . . , i.e. when
the local analysis predicts a change from soft-spring to hard-spring behavior at
λ = 0. The calculations show two qualitatively different results for the single- and
double-dominant modal systems. The branches for the single-dominant case indicate
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a hard spring-like behavior, whereas the double-dominant theory clearly establishes
soft spring-like branching. We indicate it by dotted and dashed-and-dotted lines in
part (a). In order to find out which parts of these branches are physically relevant,
one should compare the norms ‖β2‖ and ‖β1‖ in parts (a) and (b). It follows that
‖β1‖ ∼ ‖β2‖ as λ → 0. Therefore, from a physically point of view, we can only
trust the results obtained with the double-dominant theory. The soft spring-like
perturbed branching for the theoretical h = hR = 0.3368 . . . is consistent with the
famous laboratory tests by Fultz,12 who estimated the experimental critical depth
at h = 0.28. Soft spring-like nonlocal branching for h = hR was also deduced by a
special fifth-order sloshing theory of Waterhouse.33

Figure 6 illustrates the response curves for h < hR, when the hard-spring unper-
turbed local branching at λ = 0 is expected. In the calculations we used h = 0.2.
This is the lower bound for the applicability of the double-dominant theory. Smaller
h belongs to the so-called intermediate, or shallow liquid depth ranges. The most
interesting conclusion which follows from a comparison of parts (a) and (b) of this
figure, is that the double-dominant theory is characterized by a secondary bifurca-
tion in the unperturbed problem (point S on the dashed-and-dotted line). Another
important fact is that the nonlocal results obtained by the single-dominant the-
ory (dashed lines) at λ = 0 clearly contradict the intermodal ordering (1.2) for
the tested value of τ , whereas the double-dominant theory is consistent with the
assumption β1 ∼ β2. We illustrate also a dramatical increase of the norm ‖β2‖ for
λ ≈ λ0(2, 2) (compare the solid lines around λ = λ0(2, 2) in parts (a) and (b) of
Fig. 6 as well as in parts (b) of Figs. 4–6). From a physical point of view, this
may indicate the amplification of some higher modes, e.g. β1 ∼ β2 ∼ β3, due to
energy content from β1 and β2. Physical aspects of those amplifications as h → 0
with a fixed τ were extensively discussed by Faltinsen and Timokha.5 In this case,
the modeling at λ0(2, 2) may require another modal system from our Model 2, e.g.
Model 3 by Faltinsen and Timokha,4 or the Boussinesq-like model by Faltinsen and
Timokha.5 We will discuss this point in Sec. 7.

6. On the Experimental Critical Depth

As we have shown above, the single-dominant theory fails at the primary resonant
point λ = 0 for h close to the theoretical value hR = 0.3368 . . . . A successful
comparison with experimental results on the critical fluid depth is therefore only
possible by employing the double-dominant theory. The double-dominant theory
(see Figs. 4 and 5) clearly shows a soft-spring branching for any h ≥ hR. This means
that the experimentally determined critical depths should be much smaller than the
theoretical value hR. What is this value? Fultz12 estimated it at h∗R = 0.28. The
difference between the theoretical value 0.3368 . . . and the experimental value 0.28
looks quite large and needs an explanation. The explanation can be given within
the framework of the double-dominant theory. We should recall the experimental
technique by Fultz12 and take the fact into account that his laboratory experiments
were done with small, but fixed values of τ .
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Fig. 7. Perturbed nonlocal branches at λ = 0 for h = hR∗ = 0.28 (the experimental critical depth
from laboratory experiments of Fultz) with different initial imperfections τ (forcing amplitude).
The results for τ = 0.00002 are represented by the dotted line, the results for τ = 0.000904 by
the line with small dashes, the results for τ = 0.0018388381 by the line with long dashes and the
results for τ = 0.005 by the solid line. The points Ti, i = 1, . . . , 4, denote the turning points on
the left subbranch, the points S1 and S2 mark two turning points on the right subbranch, and
the point D, which occurs for τ = 0.000904, is a double turning point.

In order to show that the experimental critical depth is a function of τ , we
present in Fig. 7 the perturbed nonlocal branching (by the double-dominant theory)
for h = h∗R = 0.28 and different values of τ . The smallest tested value of τ leads to
a locally hard-spring behavior of the smallest ‖B‖ at λ = 0. This result is consistent
with the local solution presented in Sec. 4.1. Since the experimental technique by
Fultz12 was only able to detect the lowest stable resonant waves (solutions with
the lowest ‖B‖ for each λ), the experiments show a maximal response at λ =
0.00789946575 (abscissa of S1), i.e. for the forcing frequency which is larger than
the linear eigenfrequency. As usual, the positiveness of λ indicates a hard-spring
behavior, i.e. the resonance is expected at a higher forcing frequency than σ1.

Furthermore, increasing τ changes the branching. Two special cases are marked
by dashed lines in Fig. 7. The two turning points S1 and S2 which are located on
the nonlocal branches for the smallest τ pass into the double turning point D. In
that case, the maximum amplitude in the tests is expected at the abscissa of T2, i.e.
for λ = 0.00594460116 (remembering that experiments can only detect solutions of
the lowest norm for each fixed λ). This value of λ should report on the hard-spring
behavior (the maximal amplitude is found for σ > σ1). Continuing the increase
of τ leads to the situation where all turning points on the right subbranch are
eliminated and, for a certain τ = 0.0018388381, the maximal experimental steady-
state response will be at λ = 0. This occurs when the abscissa of the turning point
T3 becomes zero. In this case, the test should indicate the critical fluid depth. A
larger τ , e.g. τ = 0.005 in Fig. 7, leads to a soft spring-like branching. Therefore,
the maximum response has to occur at the abscissa of point T4, for a negative λ,
namely, for a forcing frequency σ < σ1.
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Fultz12 has carried out experiments with different forcing amplitudes. The mean
value of τ was τm = 0.002. This result agrees well with our theoretically determined
value τ = 0.0018388381 (see Fig. 7), for which the double-dominant theory expects
the maximum amplitude response at λ = 0.

7. Concluding Remarks

We showed that the use of the asymptotic, double-dominant modal theory (Model 2
by Faltinsen and Timokha4) makes it possible to describe the secondary resonance
and the corresponding amplification of the second mode. Our analysis focuses on
steady-state (periodic) solutions and a continuous frequency domain that covers
two subdomains in which the second mode can be amplified. The first subdomain
is associated with the primary resonance (it has been studied in Part I by a single-
dominant model). The second subdomain is situated slightly away from the primary
resonance. It is characterized by the secondary resonance in the hydrodynamic
system. The phenomenon of the secondary resonance was studied by Ockendon et
al.,28, 29 Feng,9, 10 Faltinsen and Timokha,4, 7 and Wu.34 However, these authors
did not present the nonlinear branching at the secondary resonance zone. The
present paper analyzes this branching for the first time and establishes links to the
branching at the primary resonance zone. Special emphasis is also placed on the
case of the critical liquid depth-to-breadth ratio.

Faltinsen and Timokha4 performed a wide series of numerical experiments to
prove that Model 2 gives an adequate prediction of the steady-state waves when the
forcing frequency is close to the lowest natural frequency. Our theoretical studies
have implicitly confirmed that the main part of the sloshing energy is concentrated
on the two natural modes. Moreover, Faltinsen and Timokha4 showed that a sig-
nificant amplification of subsequent higher modes, i.e. third, fourth etc. can only
occur away from the primary resonance domain or in the case of small liquid depths.
This fact is illustrated in Fig. 6 by increasing the amplitude response at the point
λ0(2, 2).

On the other hand, it is also of interest to see what happens when the contri-
bution of the higher modes is studied by the adaptive modal systems (Model M)
developed by Faltinsen and Timokha4 or by the Perko-like multimodal technique.
Looking at the results of numerical experiments by Faltinsen and Timokha4 and La
Rocca et al.,18–20 one can also expect that these techniques will help us to describe
and understand the branching behavior for values of the bifurcation parameter λ
on the left of λ0(2, 2). This is an interesting task which requires a sophisticated
work on special numerical schemes.
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