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Steady-state nonlinear resonant fluid sloshing in moving tanks can be characterized by
a finite set of natural modes (leading modes). Approximate solutions of the criginal free
boundary value problem can be found from a system of nonlinear ordinary differential
equations (modal system} coupling time-dependent amplitudes of these leading modes.
The derivation of the modal systems combines projective and asymptotic methods. The
work presents an extensive survey of the literature and examines bifurcations of peri-
odic (steady-state) solutions of the single-dominant modal system based on Moiseyev
asymptotic ordering. It describes two-dimensional resonant fuid sloshing in a rectangular
tank due to its horizontal harmonic oscillations, The periodicity condition yields a two-
point boundary value problem that allows bath asymptotic and numerical treatments
within the framework of the perturbed bifurcation theory. A secondary bifurcation that
is found for response curves shows the flaws of the single-dominant modal modelling.
Modifications of the single-dominant model should account for internal (secondary) res-
onance in the mechanical system leading to amplification of higher modes. Part IT will
consider modal systems which take into account the internal resonance.
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1. Introduction

Sloshing in moving tanks has many applications in the automotive, aerospace and
shipbuilding industries. It is typically studied as part of the overall structural
dynamics of carrying objects (their stability, safety and control). In the past few
years a new technique in studying sloshing motions has been developed. It is known
as modal modelling and has many specific advantages in comparison with the tradi-
tional numerical tools. Modal modelling reduces the sloshing free boundary problem
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to a system of nonlinear ordinary differential equations (modal system) which can
easily be incorporated into dynamic equations of the whole object. The modal sys-
tems have a small dimension and provide CPU-efficient simulations of both transient
and steady-state wave regimes. Numerous scientific publications in hydrodynami-
cal, computational and physical journals have investigated special modal systems.
However, a disadvantage of the modal modelling is that each fixed modal system
is typically applicable only for a limited set of physical parameter, tank shapes
and fluid fillings (depths). Due to a lack of mathemasical work establishing the
links and differences between distinct nonlinear modal systems and their solutions,
a quantification of these sets of parameters is usually based on comparisons with
experimental data. This paper makes the first steps to a more rigorous mathemat-
ical analysis of the modal systems as well as to a mathematical understanding of
their applicability. The investigations focus on periodic (steady-state) solutions of
asymptotic and pseudo-spectral multidimensional nenlinear modal systems derived
by Faltinsen et al.,”> La Rocca et al.?®%! and Faltinsen & Timokhal®20 for describ-
ing two-dimensional fluid sloshing due to horizontal harmonic excitations of a rect-
angular tank.

Bearing in mind interests of mathematically-oriented readers who are not famil-
iar with this class of applied mathematical problems, we begin Part I with an
extensive survey of the literature on modal modelling in fluid sloshing prob-
lems. The remaining sections concern the asymptotic modal system developed by
Faltinsen et al.?® based on the Moiseyev® single-dominant modal ordering. In
Sec. 3, this system is subjected to periodicity conditions and reformulated. The
corresponding periodic solutions are governed by the perturbed operator equation
T(B,\ 1) =0, where B(t) = {8:(t), i > 1} is a (27)-periodic function, X € (—oc, 1)
is the bifurcation parameter implying a relation between the actual and lowest nat-
ural frequencies, and 0 < 7 < 1 is the perturbation parameter {non-dimensional
excitation amplitude). The unperturbed operator equation 7°(B, A,0) = 0 which
determines free nonlinear standing waves, is examined in Sec. 4. Section 5 considers
the perturbed bifurcations with » > 0 (steady-state forced waves). The asymptotic
analysis of primary perturbed bifurcations in Secs. 4 and 5 is consistent with well-
known results on steady-state solutions by Moiseyev,?® Ockendon & Ockendon®!
and Faltinsen,'® as A\,7 — 0. However, in contrast to those results, the periodic
solutions are characterized by secondary bifurcations which have not been previ-
ously detected. The modal system also has infinite periodic solutions for some A
bounded away from zero. These are associated with the internal {secondary) reso-
nance. Part II will concentrate on multidimensional modal systems capturing the
amplifications of higher modes due to this resonance phenomenon.

2. Nonlinear Modal Systems

Two typical physical assumptions characterizing nonlinear modal modelling are that
the fluid is incompressible with irrotational flows and that there are no overturning
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waves. The applicability of the inviscid fluid model has been validated for smooth
tanks (without internal structures, baffles) and non-shallow fluid depths. In addition
to these well-accepted conditions we also consider the fluid sloshing under earth-
based conditions. This causes large Bond numbers which implies that the surface
tensions together with related conditions on the moving contact curve between
the surface and the wall can be neglected (see, Billingham®). Although the modal
approach can be developed for tanks of arbitrary shape (see surveys by Lukovsky,**
Limarchenko & Yasinsky,** Lukovsky & Timokha'™*® and Gavrilyuk et ol.3?), we
restrict ourselves to vertical cylindrical tanks. Special emphasis is also placed on
tanks with a rectangular base.

2.1. Original free boundary problem

The free boundary problem, which describes an inviscid fluid sloshing in a rigid
vertical cylindrical tank, takes the following “canonical form” {see its derivation by
Moiseyev & Rumyantsev®® and Narimanov et al.50)

AP =0 in Q) / d@Q) =V = const.
Q(t)

o®

a—nsz-n~§~w-(rxn) on S(#),

o ; (2.1)
—vyntw- S L B(t),
e/

S T 3(V)? -V (vo+wxr)+U=0 onZ(t),

where the two unknowns are the time-varying domain Q(t) of the constant vol-
ume V' and the velocity potential ®(z,y,z,t) which is defined inside the Q(¢).
The domain Q(¢} is confined to the free boundary (i) determined by the equa-
tion z = f(z,y,t) and the wetted internal tank surface S(t), U(z,y,z2,t) is the
gravity potential, n is the outer normal. The tank motions are described by the
pair of known time-dependent vectors vo(t) = 7(t) and w(t) = ¥(¢) representing
instantaneous translatory and angular velocities of the mobile Cartesian coordi-
nate system Ozyz relative to an absolute coordinate system O'z'y’2’ (a dot over
¥ and n denotes the time-derivative). The Ozyz-coordinate system is rigidly fixed
with the tank so that the hydrostatic free surface Ly lies in the Ozy-plane. Since
any absolute position vector P'(t) = (z', ¢/, 2’) can be decomposed into the sum of
P,(t) = 0’0 and the relative position vector P = {z,y, z), the gravity potential
Ulz,y,2,t) = —g - P/, P/ = P, + P, where g is the gravity acceleration vector.
The nomenclature is illustrated in Fig. 1.

Problem {2.1) requires either initial or (for the periodic vector-functions
vg(t) and w(t)) periodicity conditions. Physically, solutions of the initial value
problem determine transient waves which are caused by combined effects of both
(vo(t), w(t)) and the initial perturbations of f, but the periodicity conditions
imply the so-called steady-state waves.
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Fig. 1. Sketch of the fAnid sloshing in & moving rectangularly-based tank with vp =
'agf("hl"??n?]S)T;w = "g{(‘I’l, ‘1'21l1!3)T; Z(t) I = f(m,y,t) and Zp:z=0.

The mathematical validation of the initial value and periodic free boundary
value problems is still an open question (even in the two-dimensional formulation).
Being familiar with both former Soviet and Western literature, the present authors
were not able to find rigorous mathematical results for the periodic problem. There
is only a limited set of mathematical papers that report local existence theorems
for the initial-boundary value problems. Almost all of these results are documented
by Shinbrot,”™ Reeder & Shinbrot,%%% Ovsyannikov et al.,’! Lukovsky,’® Pawell &
Giinther® and Lukovsky & Timolkha. 47

Since there is not a proven theory on how to formulate initial and periodic
conditions for the free boundary value problem (2.1), the majority of papers utilise
conditions from the linear sloshing theory (Feschenko et al.®®). In this case, the
Cauchy conditions at t = #y are

. B .
f(m:ywtﬂ) = fU(:B!y)i %(mﬂvtﬂ) =fl($)y)y (22)
and the periodicity conditions are
flz,y,t+T) = flx,y,1), %(m,y,t+T)=%—'tf(m,?,t), (2.3)

where, in the most general case, T should be determined together with the
T-periodic solutions of (2.1).

2.2. Numerical methods and nonlinear modal modelling

The free boundary value problem (2.1) appears in many “real world applications”
including satellite, missile and tanker ship dynamics, safety of petroleum storage
tanks on coastal terminals, microgravity technology etc. Reviews of experimental
and theoretical studies dealing with fiuid sloshing have been given by Abramson,’
Abramson et al,? Narimanov et al,%° Mikishev,?® Mikishev & Rabinovich,5¢
Ibrahim et al.,*® Lukovsky & Timokha®? and Faltinsen & Timokha.25:18:19
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Due to the mathematical complexity of this problem, current studies of {2.1)
have mainly concentrated on numerical methods (Computational Fluid Dynamics,
CFED) and approximate analytical theories that are derivable from {2.1). Differences
and advantages of various CFI) methods have been discussed in comparative sur-
veys by Solaas,™ Moan & Berge,** Cariou and Casella,'* Gerrits,®3 Ibrahim et al.,*
Celebi & Akyildiz,'? Sames et al.,’® Aliabadi et al® and Frandsen.? Investigations
by Solaas,™ Faltinsen & Rognebakke'” and a recent conference presentation by
Landrini et al.*? (Smoothed particle hydromechanics methods in two-dimensional
sloshing problems) have also focused on comparisons between analytically-oriented
and pure numerical approaches. Under certain circumstances, almost all of the
analytically-oriented approaches can be treated in terms of the modal mod-
elling based on a generalised Fourier representation of f(z,y,t) and ®(z,y, 2,1),
where the time-dependent Fourier coeflicients are interpreted as generalised coordi-
nates {modal functions). This generic Fourier-like insight into analytically-oriented
methods has been developed for cylindrical tanks by Miles,%%% Lukovsky,1%46
Lukovsky & Timokha,*” La Rocca et al? and Faltinsen et al.?®

Let us consider an open vertical cylindrical tank Qp = Ty x [—h, +00], where
%g is the unperturbed planar free surface perpendicular to the Oz-axis and

.f(m!'f %t) = Zﬁt(t)fz(fﬂay) (2‘4)

iml
Here, { fi(xx,y)} is a complete orthogonal system of functions (in La(¥p)) satisfying
the volume conservation condition Jza Jilz, y)dady = 0. Along with {2.4), the modal
methods introduce a Kirchhoff-type solution of the velocity potential, i.e.

@z, y, z,t) =vg -r+w- - Q+ ¢z, y, z1t), (2.5)

where the harmonic vector-function 2 = €(z,y, 2,t) is the Stokes-Zhukovsky
potential determined from the Neumann boundary value problem

a0
AR =0 in Q(F); - = yng -~ 2Na,
on |5+
(2.6)
il zny —In aQSE Zns —yn
. = &1l - IN3y RGN 4n() = The — YNy
dn S()+5(8) an 'SOTEE
and ¢(z,y, z,t) is expanded into the Fourier series
QS(:E:? 1 Z,t) = Z Rﬂ(t)¢ﬂ(m!ya z) (27}
n=1

Due to the representation (2.4), the domain (¢} depends exclusively on the
modal functions {8;(t), ¢ > 1}. Solutions of (2.6) as well as the term w - Q in (2.5)
are therefore parametric functions of {3;(t}}. This implies that inserting (2.4)~(2.7)
into (2.1) (or into its variational formulation) and implementing a projective proce-
dure (various suitable methods are reported by Perko,%® Miles,3! Lukovsky,5+46
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Lukovsky & Timokha,?” Chern et al,'® Faltinsen et al,?® Ferrant & Touze,?”
Shankar & Kidambi” and La Rocca ef al.%!) lead to an infinite-dimensional sys-
tem of nonlinear ordinary differential equations coupling the unknowns 3;(t) and
R,{t), i =2 1. This system can be considered as a generic nonlinear modal system
which is mathematically equivalent to (2.1).

Remark 2.1. Application of modal solution (2.7) is only possible if the set
{¢:(z,y,2), i = 1} is a harmonic basis in H'(Q(¢)) which satisfies a zero-Neumann
boundary condition on the bottom and on the vertical walls for arbitrary ¢. The
practical choice of {¢,} and {f;} consists in using the solutions of the spectral
problem for linear natural sloshing (nasural modes)

Ad, =0 in Qg; Qgéfw =0 on Sp; %%i = Kndn ON Zp; f}: dndS =0 (2.8)

{Qo is the hydrostatic, unperturbed fluid volume confined to Ly and the wetted
tank surface Sp) and setting

fn(g;!y) = Q‘{’n(x?y! 0)5 n 21 (29)
Spectral theorems by Eastham'® and Feschenko et al.?® justify the completeness of
{fi} from (2.9) in Lo(Zq) satisfying fEu fidS = 0. These theorems guarantee the
completeness of {¢,} in the hydrostatic fiuid domain Qg (for harmonic functions
in H((Qq) satisfying zero-Neumann boundary condition on Sp). However, as dis-
cussed by Faltinsen & Timokha!® and Timokha,” even if eigenmodes from (2.8)
are analytically expandable over 35, these are not complete for arbitrary admissible
instantaneous Q(¢). Timokha™ gives a numerical treatment of this incompleteness.

Remark 2.2. For cylindrical tanks, the truncated series {2.4) based on (2.8) and
(2.9) always determines the instantaneous free surfaces L{t) which are smooth and
perpendicular to the vertical walls. This fact can easily be established by separating
spatial variables z and (z, y) in (2.8). Although modal methods are uniformly valid
for sloshing problems, the ‘non-perpendicular contact’ between Z(t) and the walls
indicates weak convergence of the Fourier series {2.4). Taking into account the
experimental observations of E(¢)-shapes for shallow Quid depths (see, photos by
Faltinsen & Timokha®®) and for angular tank motions, limitations of the small-
dimensional nonlinear modal system utilising solutions of (2.8} are possible.

2.3. Pseudo-spectral and asymptotic modal systems

The practical accuracy of the truncated Fourier series (2.4) based on (2.7)
(modal approzimations) can be explained by an amazing physical fact: The
nonlinear fluid sloshing with a finite depth is almost always characterised by wave pat-
terns assembled from a limited set of natural modes (leading modes, {Br}), while the
remaining (higher) modessupply only a minor contribution o the fluid flow. The set of
leading modes increases for decreasing fluid depths and large amplitude external forc-
ing (see the survey and the detailed physical analysis by Ockendon et al.,% Faltinsen &
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Timokha?01® and Hill*®). In many cases, either asymptotic {Moiseyev,3® Faltinsen &
Timokha'® etc.) or experimental {Mikishev,*® Bogomaz & Sirota,® La Rocca et al.4!
etc.) analysis makes it possible to detect {estimate) the set of the leading modes
and to consider najvely truncated infinite-dimensional modal systems in {3;(¢)} and
{R:(t)}. Such a technique has been proposed by Moore & Perke®” and Perko.% It
is often called the pseudo-spectral or Perko-like approach. Some modifications of the
pseudo-spectral approach have been documented by La Rocca et al*!, Shankar &
Kidambi,™ Ferrant & Le Touze®” and Chern et al.'® However, pseudo-spectral non-
linear modal systems are not often used in applied mathematical studies. Numerous
analytical and computational difficulties caused by their large dimensions and stiff-
ness are one reason. Another reason is the incompleteness of the linear natural basis
{¢=} in strongly perturbed instantaneous volumes (see Remark 2.1), which makes
those methods “pseudo-asymptotic”, i.e. these systems can only be applied if Q(¢) is
asymptotically close to its hydrostatic shape (Jg.

In contrast to the pseudo-spectral methods, an alternative means of achieving
a finite-dimensional modal system consisés of combining projective and asymptotic
schemes. This idea was probably first proposed by Narimanov®® and further devel-
oped by Dodge et al.,'* Narimanov et al.,®0 Lukovsky,’® Lukovsky & Timokha,*?
Faltinsen et of.?® and La Rocca et al.®? It suggests small deviations of the free sur-
face X(t) and therefore the smallness (relative to the characteristic tank size) of the
generalised coordinates G;(¢). Nonlinear terms of the asymptotic modal systems are
calculated as integrals over Qp and g, where the natural modes {¢;} constitute
the complete harmonic basis.

The asymptotic schemes suggest “dominating” {fp} and “driven” {Sr} lead-
ing modes, where {81} = {8p} U {Br}. The dominating modal functions {modes)
are associated with the lowest possible asymptotic contributions, i.e. 7 <« |8r] <
I8p| < 1, where 7 is typically defined as a non-dimensional excitation ampli-
tude. Postulating a finite set of dominating modes one always obtains a finite-
dimensional nonlinear modal system coupling all the leading modes. The infinite
set of higher modal functions is then described in the framework of the linear slosh-
ing theory.

2.4. Averaged and multi-modal schemes

Since the dominating modes are the principle contributors to global fluid motions,
the problem of resonant fluid sloshing due to harmonic excitation allows a
multi-timing scheme that reduces the asymptotic modal systems in {85} to the
Hamiitonian systems coupling slow-time evolutions of the dominating modes {8p}.
Between 1965 and 1995, this strategy was elaborated in the works of Miles,32:53
Shemer,” Bridges,®® Feng & Sengtna,?0 Nagata® and, recently, by Hill.®® These
works also present mathematical resulés, which provide the asymptotic classifica-
tion of resonant steady solutions and their stability analysis as 7 — 0. The results
agree well with experiments published in the literature.
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However, numerical simulations based on the Hamiltonian systems for small
but not infinitesimal + do not provide, in many cases, a satisfactory quantitative
agreement with the experimental data. Although the driven modes {8gr} are for-
mally of higher order than {8p}, their contribution is always of practical concern,
sometimes up to 50% in computing the steady-state wave amplitude response (see
practical examples by Faltinsen,® Gavrilyuk et al3! and Faltinsen et al.2%2! for
7 22 0.001 -(.025). By ignoring the driven modes, prominent nonlinear surface wave
phenomena such as mobility of the nodal line are left unexplained. During the last
decade, this motivated Gavrilyuk et al,3! La Rocca,?*! Faltinsen et al,2518:20,21
and many other researchers to turn back to either pseudo-spectral or multidimen-
sional asymptotic modal modelling which use the full set of leading modes. Operat-
ing with finite-dimensional governing equations coupling {5}, the researchers used
them as efficient tools for time-simulations of transient regimes, coupled “tanl-
fluid” motions and even randomly forced waves. Multidimensional modal systems
for resonant sloshing were validated with realistic values of r. The results showed
good agreement with experimental observations of the wave patterns, measurements
of the wave elevations, hydrodynamic forces and moments acting on the tank etc.

Multidimensional modal systems have become increasingly popular in the lit-
erature of physics and computational sciences. Each year at least two to three
newly derived models are published. As far as we know, however, an independent
theoretical analysis of steady-state regimes and their stability based on the multi-
dimensional modal systems has only been done for isolated cases. Many researchers
simply refer to the theoretical prediction provided by the averaged Hamiltonian
systems governing dominating modes (Lukovsky,?® Faltinsen et al.?®?! and Hill%).
Since these predictions are only valid in the asymptotic limit 7 - 0, this path may
lead to wrong conclusions for small but realistic parameters 7. Examples are given
by Faltinsen & Timokha,80 Faltinsen et al.2?

3. A Modal System for T'wo-Dimensional Sloshing

As mentioned, this paper focuses on the multimodal modelling of two-dimensional
sloshing in a rectangularly-based tank with finite depth. This type of sloshing is
caused by a longitudinal excitation in the Ozz-plane. Thus, we have to set

m=Hecos(ot), m=m=0 V=0, i=1,2,3, (3.1)

in the three-dimensional problem (2.1), where H # 0 is the dimensional forcing
amplitude and ¢ is the circular foreing frequency. Pitch harmonic forcing (¥y # 0)
and the Faraday waves due to heave (vertical) excitation (ns ~ coscot) have been
extensively studied by Faltinsen et al.,2%18 Perlin & Schultz®" and Hill.?8

3.1. Relevance of two-dimensional sloshing

Mathematically, to fix a unique two-dimensional solution f = f(z,%), ® = ®(z, z,t)
of (2.1), (3.1) the two-dimensional initial conditions (2.2), ie. fo = fo(z),
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fi=H (x), are required. Physically, the relevance of the two-dimensional solutions
in a rectangularly-based tank implies their uniform stability relative to small three-
dimensional initial perturbations. The stability (instability) of two-dimensional
solutions of (2.1), (3.1) has only been minimally investigated in the scientific lit-
erature. In numerical and physical publications, the majority of the authors refer
to model tests. There exist experimental observations which confirm that, if the
tank length (the size along the Ow-axis) is much longer than the breadth (along
the Oy-axis), the two-dimensional waves are stable for almost all forcing frequen-
cies o. Recent theoretical studies by Faltinsen et al.2}?%24 have shown that two-
dimensional fluid sloshing becomes unstable for square base tanks. This instability
leads to amazing wave patterns including the so-called “swirling” (rotary) waves.
The appearance of three-dimensional waves for H = 0 (free nonlinear waves) and
related bifurcations have also been shown by Bryant & Stiassnie®!? and Bridges.”
Finally, some examples of the hydrodynamic instability of the two-dimensional
solutions have been reported in the experimental book by Bogomaz & Sirota®
and, theoretically, by Tsai et al.™ (wave-maker problem) for the length/breadth
ratios 2 and 3. An important result shown by Faltinsen ef l.?? and Bridges® is that
the hydrodynamic instability of the two-dimensional solutions and the passage to
three-dimensional wave regimes are strongly nonlinear problems. Moreover, damp-
ing plays only a minor role: it can reduce, but not remove the intervals of o in
which the two-dimensional solutions are not stable. This implies that the Squire™
theorem cannot be generalised to (2.1), (3.1).

3.2. Preliminaries and the linear modal theory

Figure 2 shows a rectangular tank with the length ! filled by a sloshing fluid with
the mean fluid depth h. The dimensional problem (2.1) is normalised by I (z := /]
and z := z/l) and the characteristic time 1/5 (t == ot), where & is the forcing
circular frequency from {3.1). Denoting for simplicity h := h/l (non-dimensional
mean fluid depth) we define the normalised time-varying domain

Qi) ={(z.2): —h <z < f(z,8); -1/2 <z < 1/2},

Z Z
=
g xe=x/l
LR zr=zl
pitch(¥, =G
x X
———“'/_..) surge (M}

h Wt

i 1

Fig. 2. Two-dimensional {luid sloshing in a rectangular tank (dimensional and non-dimensional
statements) occurring for ¥ = W3 =2 =0; 2{L) 1 == f{z,t).
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which has an unperturbed static shape Q¢ = (-1/2,1/2) x {—h,0). The non-
dimensional forcing (3.1) is also transformed into the form

mo=m/i=Tcost, m=m=0 T;=0, i=1,23, (3.3)

where 7 = H/l « 1 is the non-dimensional forcing amplitude which becomes a
small parameter and can be treated as an imperfection.

The dimensionless representation of (2.1}, (3.3) suggests normalised modal rep-
resentations (2.4) and (2.5) (5; and R; admit an asymptotic treatment in the usual
sense) as follows:

oQ o0
F=> Bty filz); ®=—rzsint+ )  Ri(t)¢:(,2), (3.4)
where the natural modes
N . ) _ poocosh{mi(z + h})
fi(@) = cos(mi(z +1/2));  di(z,2) = fi(ﬂf)m* (3.5)
are the solutions of the following two-dimensional formulation of problem (2.8):
a . O Os o
Aqbl - 0 n QO': 8:1? ) ] 62’ - 0!
zamk gy z=—h (3.5)
9

Bz = fii(ﬁi (2 = 0), /}3 ¢1d5' = 0.

Moreover, the dimensional natural circular frequencies ¢; (see, e.g., Faltinsen

et al16:25)
of o %.‘ii; #; = wi tanh{wih), (3.7
(g = 9.81m/s” is the gravity acceleration) can be written in a normalised form as
- T3
g =
a

For the resonant condition ¢ — o, this implies &; — 1, i > 1.

3.3. Governing equations
3.3.1. Linearised problem and resonant forcing with v 0

Using the assumption 8; ~ 7, ¢ > 1, and keeping the terms up to the order O{7)
in Eq. (2.1), the following linear normalised modal system results

Bi +326; + Prcost =0; Ry(t) = 6;—“) i>1, (3.9)
where
P = 2(3&11?1:?:(711&) [(=1)i — 1] (3.10)

and r;, 1 > 1 are defined in (3.7).
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The system (3.9) can be subjected to the initial conditions
B0)=al; B(0)=eaf, ixL (3.11)

Here the constants |af| ~ |a}| ~ 7 appear as the coefficients of the Fourier series
f=o] ~ oQ _
Y_alfde) = folz)i D aifilz) = fila),
i=1 i=1

where fy and f; are defined by (2.2).

For two-dimensional fuid sloshing, the infinite-dimensional Cauchy problem
(3.9}, (3.11) is equivalent to the linearised evolution problem (2.1), (2.2), (3.1).
Solutions of the evolution problem describe two-dimensional waves with a small
amplitude in rectangularly-based tanks oceurring due to horizontal excitation and
initial disturbances.

An alternative approach consists in the use of the following periodicity condi-
tions (which is equivalent to (2.3} with T = 2x/0):

Bi(2m) = B:(0);  Bi(2%) = Bi(0), > 1 {3.12)

Linear modal systems similar to (3.9) (in a truncated form) are widely used
in the structural analysis of numerous applied mechanical systems modelling tanks
filled with a fluid (see, for instance, results for tanks of various shape by Abramson,!
Feschenko et al,?® Ibrahim et al,®® Mikishev & Rabinovich®® and Moiseyev &
Rumyantsev®®). Its applicability is strongly restricted to the non-resonant case.
The resonant solutions of (3.9) (7: — 1 for odd numbers i) have a 2r-periodic
component that may tend to infinity, in what follows, that the basic assumption
Bi ~ 7, 1 > 1, is invalid. However, the even modes cannot be resonantly foreed in
the framework of the linear theory. Furthermore, we will show that an appropriate
nonlinear mechanism of their activation is associated with the so-called secondary
(internal) resonance.

Resonant excitation of the lowest frequency #; — 1 (primary resonance) is most
dangerous for structural stability, because here the resulting fluid response has
the largest amplitude. This is the object of numerous mathematical and physical
studies, The limit &, — 1 is typically interpreted in terms of the parameter

A=1-57 0, (3.13)

which measures how close ¢ is to ¢; (Moiseyev®® and Ockendon & Ockendon®?).
Our studies do not restrict A to be small. We treat A as a bifurcation parameter
(since o > 0, —oco < A < 1).

3.3.2. Single-dominant modal system

The dominating character of periodic solutions illustrated by the linear modal the-
ory motivates us to focus on studying the steady-state (periodic) waves and their
stability. Moiseyev®® was probably the first to find an asymptotic periodic solution



August 9, 20056 9:31 WSPC/103-M3AS 00077

1442 M. Hermann & A. Timokha

of (2.1), (3.1) for a two-dimensional rectangular tank with infinite depth, i.e. in the
asymptotic limit A — oo and A, 7 — 0. Ockendon & Ockendon® and Faltinsen'®
derived similar periodic solutions for & = O(1) and A, 7 — 0. In these papers the
periodic solutions are obtained under the Moiseyev asymptotic detuning which links
the infinitesimal numbers A and 7 as follows:

723~ | A (3.14)

Such an asymptotic relationship is a typical attribute of various asymptotic the-
ories. Examples are given by Miles,5»%® Qckendon et al.,5%® Feng & Senthna,?®
Hill®® and Shemer,”® where this detuning asymptotics appears as a necessary
condition.

A simple analysis by Faltinsen!® shows that the asymptotic detuning (3.14)
leads to the following modal ordering

Rim =03, Romfa=0("%); Ri~B:i<0O(r), i>3,  (3.15)

where the notations of representation (3.4) are used. Faltinsen et al.?® have shown
that the single-dominant asymptotic modal system, which is based on (3.15), can be
derived without the Moiseyev detuning {3.14)} between 7 and . As a consequence,
the resulting single-dominant modal system adopts arbitrary initial perturbations
including those for higher (not only dominating) modes and may be used for study-
ing complex transient waves. This model makes it possible to consider ) € (—c0,1)
and small 7. The modal system by Faltinsen et al.?® takes the dimensionless form

Br 4 (1 = 81(\)B1 + di(BrBa + BufBo)

+da2(B1 8 + S151) + dsfBobr + Pi7cost = 0; (3.16)
Bo 4 (4~ 62(\)B2 + daf1 1 + ds 2 = 0; (3.17)
Bs + (9 — 83(A)Ba + 01B1Ba + @2 BT + qsfafn

+ @6?;@1 + Q5£162 + Pyrcost = 0. (3.18)

The equations for 3;(t), 7 > 4, are linear and coincide with (3.9). The coefficients
di,qi,t 2 1, are known functions of & (in Appendix A explicit formulas for their
computation are given} and it holds

b =0(N) =2 —p2{1-X), iz 1; (f1=)N), (3.19)
where
_ G
=2 (3.20)

is the dispersion relationship. Physically, the formulas (3.16)—(3.18) can only be used
if the assumptions (3.15) are satisfied. These conditions may fail when A - 0 and
7 & 1. Moreover, its failure is expected at h = hg = 0.337 ..., where experimental
response curves (Tadjbakhsh & Keller,”® Fultz®® and Waterhouse®!) demonstrate
a transition from “hard spring” to “soft spring” behaviour.
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Note, the nonlinear differential equation (3.18) is linear in terms of the modal
function B3 and the other differential equations (3.16), (3.17) do not contain fs.
Once Sy and B are determined from (3.16), (3.17), B3 can be generated from (3.18)
by simple calculations. This means that a nonlinear bifurcation analysis of periodic
{steady-state) solutions can focus on the differential equations (3.16)-(3.17) and
the periodic boundary conditions (3.12).

3.3.3. Operator form of the periodic (steady-staie) boundary value problem
When setting B = (81, 82)T, the system (3.16)—(3.17} can be rewritten as

M(B)B = GM(t,B, B; \, 1), (3.21)
where
2
M= (1 +diffa +dofiy ‘Wl) € R?¥? (3.22)
daffr 1

is an invertible matrix and GM = (G, G¥) € R?, with
G = (1~ N)B1 ~ difr 2 — dofiifr — Pi7cost,
GY = —(4 = 52(N)P2 — ds .
Inverting M leads to the normal form
T(B;\7) =B -G, B,B; \,7) =0, (3.23)

where G = M7IGM and G : Dg := [0,27] x Dg x Dy x RxR - R% 0 €
Dg,Dg; G € CP(Dy), p > 4. Employing the periodic boundary condition (3.12)
for B;,i=1,2,3, gives

lo(B) = B(0+) — B{27—) =0, 1§i(B) = B(0+) — B(27-). (3.24)

The pair (3.23), (3.24) defines a parametrised nonlinear two-point boundary
value problem for a second-order differential equation. It permits the following
operator formulation

T(B;\;7) =0, BeX, M7T€eR, {3.25)

where the operator T : Z == X x R x B — Y and the Banach spaces X,Y are
defined as follows:

X = BC*([0,27],R?) := {B € C?([0,2%],R?) : [o(B) = 0,11(B) = 0},

2 {3.26)
Y :=C(0,27],B?)
with the usual norms
IBlix = {|B : BC?|| = || B : C?|| = sup,epo 2. (| BE)] + |BW)] + | B))), (3.27)

IBlly = 1|8 : Cl| = supsepo,20 | B(E)].
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Remark 3.1. Explicit representations of X and ¥ may be given by means of the
Fourier series

X= {B = ( Z el cos(m(t + 04L0)), Z el cos(mft + Gﬁ)))) L0068 ¢ R,

fkat] m=0

S 24 (1e®)] + @), v»o},

m==0
Y = {B = ( Z ¢ cos(mt + 651)), Z 2 cos(m(t + 9{2)))) o) 92 e R,
mus m=0
Z m=e(lefD] + 1), Ve > 0}. (3.28)
m=0

The solutions of the operator equation (3.25) depend on the two numbers A and
7, where 7, 0 < 7 < 1, belongs to an interval I, (interpreted as imperfection) and
the parameter A, —co < A < 1, is a control (bifurcation) parameter. Our goal is to
obtain a global bifurcation picture. Following the general scheme by Hermann,3?
Wallisch & Hermann®® and Hermann & Ullrich,®® we want to determine a part of
the solution set

M={(B,\7): o< A< ;7€ l;T(B,AX7)=0} (3.29)

4. Unperturbed Bifurcations, the Case 7 =0

Physically, 7 = 0 in Eq. (3.25) implies free nonlinear standing waves relative to the
hydrostatic equilibrium 2z = 0. The equilibrium corresponds to the trivial solution
Cirv = {(0,2,0) : —o0 < A < 1} of {3.25). Although each nontrivial solution B(t) =
(Br(t), Bo(t))T € R? of (3.25) determines a unique orbit in R, the operator equation
is not uniquely solvable because of the phase shift invariance: if B(#) is a solution
then B{t) := B(t +0), for all 8, is also a solution of (3.25). Such an invariance is
a typical property of periodic solutions of nonlinear ordinary differential equations
modelling conservative mechanical systems.
Let us rewrite the unperturbed operator equation (3.25) in the following form

T(B;2,0) =To(B; \) = TYINB +To(B;N) =0, To:XxR—Y,  (41)

where T3 [A}B is the linear part of Ty represented by the Fréchet derivative TS[}] =
T4(0,0)/08. The corresponding differential expression is

F+ (@ - a0\, i=1,2, (4.2)

where ¢ = (!, ¢*)T € X. It can be easily shown that TS[)\] is a self-adjoint
Iredholm operator (on a suitable set of functions from L.(0,2#%)). The linear
operator equation

T =0, peX, (4.3)
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has nontrivial solutions for &;()\) = i* ~ k%, k¥ € N, i = 1,2. From this relation we
get the critical values

A=X(i k) =1~k /u, keN, i=1,2 (4.4}

The values Ao(4, &) define the primary bifurcation points on the trivial solution
curve Chy. Since p2 = 1 and 2 < p3 < 4 (see the definition (3.20)), there do
not exist two integers ki and ks such that Ag(1,%:) = Ao(2, k2). This implies that
the kernels N(T2[Ao(7, )]} have dimension 2 and are spanned by either ¢;[1, %} =
(sin(kt},0),w2[1, k] = (cos(kt),0) or ¢1{2, k] = (0,cos(kt)), wal2, k] = (0,sin(kt)).
Moreover, the kernel A(T8[Ao(%,%)]*) of the adjoint operator TS[Ao(i,%)]* has
dimension 2 as well and is spanned by ¥m[i, k] = @n[i, k], mi = 1,2; k € N.
As noted above, dimension 2 is caused by the phase-shift invariance, i.e. the kernels
have the following representation

ooy [ (cos(k(t +9)),0), fori=1,
N(T5Doti, B)]) = {(O,COS(k(t +8)), fori=2 (45)

where @ € R. Since a variation of 8 does not affect the geometric orbits B(t) € R?,
we study, for simplicity, only solutions for a fixed 4.

4.1. Bifurcations at Ao(1,k), k€N

Performing either the well-known Lyapunov-Schmidt reduction in a neighbourhood
of A(1,%), k£ € N, or the multi-bifurcation analysis by Wallisch & Hermann®°
{Chap. 2), we get the following local curves which branch at the bifurcation points
Ao{l, k)

?’L;}CQ
9k -1+ Ao{l,k)

B2(t) = s*{po + ho cos(2k(t + 0))] + O(s%);

Ba(t) = s cos(k(t + §)) — &3

cos(3k(t + 8)) + O(s°);

A= Xo(1 k) + 8% Xa(1, k) + O(s?)  for |s| « 1, (4.6)
where
dqy — ds dy -+ ds 1 3
e Tt = ——, - = —d Qd . 4‘-
Po 2#3 20 2(#3 — 4) 1 de + hp (2 1+ 3) (4.7)

Here, the parameter Ao(1,k) = O(1) should be calculated from the following

equation
Ap(L, k) = k*m, [h], (4.8)
where
1 1
mﬂh] = —§d2 - dl (pa - §h0) - 2ftgd3 (49)

depends only on the mean fluid depth k. Equation {4.8) is the necessary resolvability
condition.
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Fig. 3. (a) The local branches at Ag(1, £} = 1—£2, & € N, which have been computed by formulae
(4.6), in the (A, s)-plane. Solid lines correspond to h > hpy, dashed lines represent the case i < kg,
where hp = 0.3368.... (b) the local branches in the neighbourhood of the origin {0,0), imposed
always by three bifurcation points Ag(1,1) = 0 (nonlinear standing waves dominated by the mode
Ff1(z) with the frequency close to the lowest natural tone} and Ao(2,1), 20(2,2) (standing waves
associated with the second mode fa(x)); (¢) and (d) the three-dimensional picture of the local
branches in the (A, ||81]l, |I82]|)}-space for k > hp and h < kg, respectively.

Since the asymptotic solution (4.6) has the “asymptotic” norm || B|| = O(s), the
locally bifurcating branches can be interpreted in the (A, s)-plane. Two types of so-
called backbones (solid and dashed lines) are shown in Fig. 3(a). These types depend
on the sign of m;, namely, s fiim;y determine the “soft-spring” behaviour {solid
lines), butPesifive my imply the “hard-spring” behaviour (dashed lines). The sign
of iy depends on h. Calculations show that m[hle 0, A > hg, ma[h] 2>0, h < hg,
where hr = 0.3368... is the already mentioned critical depth.

4.2. Bifurcations at Ae(2,k), k€N

Since the differential equation (3.17) is linear in f2{t), the formal procedure based
on the Lyapunov-Schmidt reduction leads to the following local solutions

Bty =0; Palt) =scos(k(t+8)); A= X(2,k) foranyls|<1. (4.10)
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In the (), s)-plane, the corresponding local curves bifurcating at Ag(2, k) consist
of a family of vertical lines A = Ap(2, k).

4.3. Local bifurcating curves

The relationship between the two families of primary bifurcation points Aq(1, k)
and Ag(2, k) changes with h and, therefore, their order along the A-axis is not very
predictable, in general. However, it can be shown that the three lowest values from
the resulting set {{X(i,k)|,7 = 1,2; k& € N} are A(1,1) = 0, M2,2) € (-1,0)
and A(2,1) € (1/2,3/4), and they are linked as Ag(2,2) < A < Ap(2, 1). Moreover,
A2,2) = 0 as h — 0, but it is bounded away from zero for finite depths h = O(1).
The local branching behavior related to these three bifurcation points is shown in
Fig. 3(b).

We found it useful to give a three-dimensional presentation of the local curves
by operating with the two normed values [|31] and ||52|| independently. The
corresponding local branching behaviour in the (A, [|81]], [B2]])-space is shown in
Figs. 3(c), (d), where (c) and (d) correspond to b > kg and h < hg, respectively.
One important conclusion, which is based on the three-dimensional bifurcation dia-
grams, is that the closeness of A to either Ap(1, k) or Ag(2, &) leads, in the lowest
asymptotic order, to the bifurcations in the (A, ||G1])- or {A,|F=])-plane, respec-
tively. Another important point is that, while the branches at Ag(2, k) are of “linear
nature” with vertical strain lines in the (A, ||f1]], || f2|)-space, the curves bifurcating
at Ag(1, &) become more three-dimensional with increasing s. This constitutes a very
interesting mathematical problem, and, as shown by Timokha & Hermann,?® poses
a new set of numerical problems. However, having based our studies on physical
treatments of realistic free-standing waves, we do not investigate this problem. Even
a very small amount of dissipation, always present in a realistic sloshing condition,
prevents the large-amplitude free standing waves associated with increasing s.

5. Perturbed Bifurcations

When 7 > 0, the perturbed operator equation (3.25) describes the forced steady-
state waves. In this case, the smallness of v makes it possible to perform the
Lyapunov-Schmidt reduction and to analyse perturbations of the local branches
at Ag{t, k), ©==1,2; k£ € N. The study below shows that the T-perturbations lead
to a quite different behaviour of the local branches for distinct indexes ¢ and k.

5.1. Local analysis at Ag(t, k), i=1,2, k&N

Consider the local solutions of the unperturbed problem (4.1) which are defined
parametrically for § = (s,5)T € R?,]|S}i <« 1. By introducing small perturbations
7 < ||S|l into the given problem, we can study the influence of imperfections on
the corresponding solutions. As shown before, we can perform a Lyapunov—Schmids
reduction to analyse the bifurcation properties and to find exact analytical expres-
sions for the local solutions.



August 9, 2005 9:31 WSPC/103-M3AS 00077

1448 M. Hermann & A. Timokha

5.1.1. Perturbed bifurcations of (3.25) at Mo(1,k)

By assuming {A— (1, k)| < 1, k € N, taking into account dim NV (T3 [Ao(1, £)}) =2
and considering the unperturbed solutions from Sec. 4.1, the Lyapunov-Schmidt
reduction deduces that the r-perturbations can either preserve or destroy the bifur-
cations. The result depends on k. For & # 1, the T-perturbations preserve the
bifurcating solutions (4.6). In that case, § = (5,0} and any small 7 < 5 does not
effect the dominating asymptotic terms in (4.6) which take now the following form

Bi(t) = scos{k{(t +6)) — % cost + O(s%);
Ba(t) = s%[po + ho cos(2k(t + 8))] + O(s7); {(5.1)

A= Xo(1, k) + 57 Xa(1, k) + O(s7),

where pg, ho and Aa2{1, %) are governed by (4.7) and {4.8).

On the other hand, for & = 1, the T-perturbations destroy the local bifurcating
solution (4.6) and lead to a new necessary resolvability condition, which couples S
and 7 in the following way

s(=22(1, 1)(s* + as®y + mi{s? + &) + A7 =0, 5.2
5(—Aa2(1,1){s% + @52) + my (s + 52)) = 0, '
where my is defined by (4.9) and
A=22(1,1)(s* +a5%) + O(IS%[) Aa(1,1) = O(1). (5.3)

Further, a simple analysis shows that the system (5.2) requires § = (. Therefore it
can be transformed into the form

§=0; X(ll})=m+ %I (5.4)

The last relationship should be compared with formula {4.8) which holds for the
unperturbed problem. At first, we note that the necessary condition (5.4) makes
unperturbed bifurcations associated with ¢s[1, 1] = (sin¢, 0)? impossible. Further,
since A2(1,1) = O(1), the system (5.2) needs the Moiseyev-like detuning s* ~ 7,
which gives here an additional asymptotic resolvability condition. The correspond-
ing local solution reads

Bi{t) = scos(t) + O(s?);  Baft) = s*(po + ho cos2t) + O(s%),

A= A2(1,1)5% + O(s°), (5.5)

where hg,po are given in (4.7). This solution is mathematically equivalent to
the classical results by Moiseyev,”® Ockendon & Ockendon®' and Faltinsen!®
obtained by the asymptotic expansion directly applied to the original free boundary
problem (2.1).
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5.1.2. Perturbed bifurcations of (3.25) at Aa(2,k)

This type of 7-perturbations can also lead to either a preserving (k # 2, &k € N)
or a destroying (k = 2) of the unperturbed bifurcations associated with the local
solutions (4.10). If k # @, the Lyapunov-Schmidt reduction does not yield a new
resolvability condition and, if 7 < |51, the perturbed local solution

Bi() == spreost+ O(72);  Ba(t) = scos(k(t + ) + O(s?),

A= Xo(2, k) s =—Py/(E*/u3 —1) = O(1) 59

is equivalent to (4.10).

In the case &k = 2 the situation changes. Now, the 7-perturbations destroy the
bifurcations appearing in the unperturbed problem and generate the following local
solution

dyg+dsT ule
: = 59 ) = 55— > s
Pit) = saroost+O(%); - falt) = 55 Seos0 +0([5]),

A= Ap(2,2) + s,

(5.7)

expressed in terms of 7 and the local parametrisation s. The resolvability condition
simply reads

Ef <1 (5.8)

Note that both perturbed solutions (5.6) and (5.7) can be characterised as linear
and do not follow from Moiseyev’s technique, because their cccurrence is quantified
away from A = 0.

5.2. The bifurcation destroying perturbations

The local solutions (5.1), (5.5}, (5.6) and (5.7) at Ag(4, k) represent the general
structure of the solutions of the perturbed problem in the (A, | B||)-plane. Physi-
cally, these solutions imply different levels of nonlinear resonant phenomena. The
bifurcation preserving perturbations, associated with (5.1) and {5.6}, do not intro-
duce a new resolvability condition and, since the s-component in these solutions
is independent of 7, the s-terms can be related to the free nonlinear sloshing. In
practise, these components disappear rapidly due to any small, even infinitesimal,
dissipation. Without the s-terms, the solutions (5.1) and (5.6) are small enough
to be computed by linear modal approximation (3.9); they do not represent forced
resonant waves.,

In conirast to the bifurcation preserving perturbations, the relations {5.5) and
{5.7} couple 7 and s. These solutions imply resonant waves that are the primary
focus of our study. As mentioned above, the local solution (5.5) coincides with the
Moiseyev resonant solution. The local solution {5.7) can be related to the so-called
secondary (internal) resonance phenomena in the fluid sloshing problems studied
by Ockendon et al.5 and Faltinsen & Timokha.'®
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Fig. 4. Perturbed bifurcations in the {},[|B})-plane for |B|| « 1: {a) h > hp and
(b} h < hg. The graphs (¢) and (d} give a three-dimensional representation of (a) and {b) in
the {A, 81|, | B2l])-coordinate system, respectively.

5.2.1. Local analysis

When ignoring the s-terms in (5.5} and (5.6) and continuously varying A € (—o0,1),
the four local solutions (5.1), (5.5), (5.6) and (5.7) can be transformed into each
other. This indicates a general branching structure in the case of the bifurcation
destroying perturbations and for relatively small norms || BJ]. It is shown in the
(A, | B))-plane in Figs. 4(a), (b) for & > hg and h < hg, respectively. Here the
curves at the origin are associated with the local solutions (5.5) as A — Ao(1,1) = 0.
The linear-like resonant behaviour of | B]| as A — Ap(2,2) is described by the
solutions (5.7).

The next, more accurate graphical interpretation of the perturbed solu-
tions requires a three-dimensional view in the (X, ||5:1]}, ||52[))-system as shown
schematically in Figs. 4(c), {d). This three-dimensional representation makes clear,
whether the postulations (3.15) used in derivations of the governing modal system
(3.16)~(3.18) are fulfilled, or not. Since ||F2|| dominates over |81} as A — Ap(2,2),
the ordering (3.15), which can be rewritten as

1Balt ~ 1181117, (5.9)

becomes invalid even in a small neighbourhood of A(2, 2}.
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The relationship (5.9) is true in the neighbourhood of the primary bifurcation
point Ap(l,1} = 0. Of interest then is the non-local behaviour of the solutions of
the perturbed problem in the vicinity of this bifurcation point. To accomplish this
task numerical path-following methods are required.

5.2.2. Non-local analysis

Using the local solution (5.1) at Ag(1,1) = 0, we implemented the RWPM-package
developed by Hermann & Ulrich® and Hermann & Kaiser.3® This package can
be used to study parametrised two-point boundary value problems. It is based on
two numerical shooting techniques (multiple shooting and stabilised march, see e.g.
Hermann®’) and enables the computation of isolated solutions of two-point bound-
ary value problems as well as path-following and the detection and determination
of turning and bifurcation points. The application of this package made it possible
to test a wide range of fluid depths and the excitation amplitude 7, to gain a global
insight into the admissible steady-state solutions of the modal system (3.16)-(3.18)
with increasing norms. The restriction b > 0.27 is due to the hypothesis given by
Faltinsen et al.?® The numerical experiments are illustrated in the Figs. 5(a)~(d).
The detailed numerical analysis establishes that the periodic solutions of (3.16),
(3.17) may be qualitatively different from the asymptotic prediction, even if 7 is
very small. If A > hp = 0.3368..., the numerically determined periodic solutions
characterise not only the primary bifurcation (the turning point 7'} following from
the Moiseyev-like asymptotic solution (5.5}, but also the secondary bifurcations
arising as two “twin”-like secondary turning points 57 and 5. These appear when
[iBali ~ {|1]]- The presence of §7 and Sy makes our numerical results similar to the
fifth-order theory by Waterhouse®! capturing the case of the critical depth h = hg.
This similarity is implicitly confirmed by the fact that the length between 7' and
Si, i = 1,2, diminishes as h — hr+. The secondary bifurcation points S, 1 = 1,2,
do not disappear for large A, but T becomes closer to §; with increasing 7. The
last effect establishes the mathematical limits of the applicability of the single-
dominant approximate modal system (3.16}—(3.18) as well as the restrictions on 7 in
Waterhouse's theory requiring also the single-dominant ordering with 71/% ~ || 5]

6. Concluding Remarks and Open Questions

First we may conclude that periodic solutions of modal systems, in general, and the
single-dominant modal system by Faltinsen et al,”® in particular, can be analysed
by using the imperfect bifurcation theory. This is possible, because, in contrast to
traditional single-dominant averaging asymptotic theories employing the Moiseyev
ordering, the modal modelling does not need asymptotic links between the so-
called Moiseyev detuning parameter A and the dimensionless excitation amplitude
7. Therefore, the parameter A can be interpreted as the bifurcation parameter and
the other non-dimensional parameter 7 as an imperfection. Periodic solutions of the
unperturbed modal system (7 = 0, free-standing waves) as well as of the perturbed
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(d)

Fig. 5. Numerical results on the bifurcation destroying perturbations at Ag(l, 1} == 0 sketched in
the (A, iBz]], |8z])-coordinate system, The calculations have been done for T = 0.0001 with the
four values of h = 1.0, 0.5,0.3368 and 0.3 depicted in (a), (b), (¢) and (d), vespectively. T denotes
the turning point captured by the local solution. Two “twin”-secondary bifurcation points §1 and
Sz appear for b > hg = 0.3368... when [|31 || becomes numerically of the same order as [|3z].
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system (7 3 0, forced waves) are then considered as solutions of a suitable nonlinear
operator equation. We assume that this can be generalised to other modal systemns,
published, for example, by Lukovsky,%® Faltinsen & Timokha!®?® and La Rocca
et al. 404!

The next important conclusion is that some particular results of this paper are
consistent with the well-known asymptotic solutions obtained by various authors
by means of direct asymptotic expansions of the original free boundary problem.
However, there is a difference to those classical results which show an infinite set
of bifurcation points of the unperturbed problem for A away from 0 and, as a
consequence, an infinite number of bifurcation points of the perturbed problem.
The paper gives an asymptotic and numerical treatment of this difference. 1t is of
interest to study these differences for modal systems of larger dimensions. This will
be the principle aim of the forthcoming Part IL

Although, in contrast to traditional asymptotic results based on the Moiseyev
asymptotic detuning, there is an infinite number of bifurcation points of the unper-
turbed problem, the local analysis of their perturbations uncovers two and only two
points where small perturbations destroy the bifurcation. Perturbations around the
other points preserve the bifurcation. These two points oceur at A = 0 (the primary
resonance) and A = Ag(2,2) (the secondary resonance). The physical treatment
of the secondary resonance in nonlinear sloshing problems is given by Ockendon
et al.,%% Ockendon & Ockendon,®? Faltinsen & Timokha'® and Faltinsen et al.??

For small 7 > 0 and h > 0.27, we have used the RWPM-package in the non-local
analysis of periodic solutions. This made it possible to quantify mathematically the
applicability of the single-dominant model. A new discovery is that, even if 7 is very
small and h > hp = 0.3368..., the solution curves of the perturbed problem in
the neighbourhood of A = 0 indicate two “twin”-like secondary bifurcations. This
switches “soft-spring” curves to the “hard-spring” character with increasing the
periodic solution norms. The “hard-spring” behaviour for A < hg stays the same
as in the traditional asymptotic analysis. Calculations show that the norm of the
periodic solutions is still small in the neighbourhood of the secondary bifurcation
points, but the basic Moiseyev ordering is violated and two modes are of the equal
order, ie., ||Bi|| ~ [|B2||- This may indicate failure of the single-dominant modal
systems. Part Il will extend this analysis to alternative, multi-dominant modal
theories presented, for instance, by La Rocca®! and Faltinsen & Timokha,'® in
which some higher modes are of the same order as the primary 5.

Another problem to be studied in Part II is the case h = hg = 0.337...,
where the local response curves of periodic solutions demonstrate a transition from
“hard spring” to “soft spring” behaviour as the fluid depth passes through this value
(Tadjbakhsh & Keller,”® Fultz®® and Waterhouse®!), Waterhouse®! proposed a fifth-
order Moiseyev-like solution considering another asymptotic detuning = ~ |A|5/4 ~
ih — hg|*/? - 0, which orders the five lowest modal functions as §; = O(+¥/3), { =
1,...,5. The response curves by Waterhouse demonstrate qualitatively the same
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secondary bifurcation phenomena. This requires re-examining of this case by using
the perturbed bifurcation theory.

Appendix A. Coefficients of the Single-Dominant Modal System

E 4 E
dl WQ_O +Ely dQ &QEO -1 4 EU B d3 = W‘QME‘E'Ela
El E2

BBy
EO E(]E‘) 4ED
= —4— 4 2F = - —
dg 2 +2Ey, ds=FE» 72 B
6Eq FoFy EDZ EoFs

= 3 Ey — s — —
CL{ 3Es B qﬂ% OFg — 12 z 633E4+24E1E2+3 B

B B Ey EyEs E3E,
gq = 6E2+3E3’ C}zf“ 6E1 GE2 6E1E2+3 B
12Eq + 6F B3 T2E? Ey E
= 18Ey — 2F 12F| == — =
Tom ST T, T E TR )
where
2
Eo="e, E;=2tanh(mih), i 1.
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