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Being installed in tanks, screens play the role of slosh-suppressing devices which may

strongly change resonant sloshing frequencies and yield an extra nonlinear damping

due to cross-flow resulting in either flow separation or jet flow. Employing the linear

sloshing theory and domain decomposition method, we construct an accurate analytical

screen at the tank middle. Two-dimensional irrotational flow of an ideal incompressible

liquid is assumed. Because the considered flow model does not account for flow

separation and jet flow at the screen, the velocity field is locally singular at the sharp

edges. The constructed solution captures this singularity. Analyzing this solution

establishes a complex dependence of the natural sloshing frequencies on the solidity

ratio, the number of submerged screen gaps, the liquid depth, and the position of

perforated openings relative to the mean free surface. Results are compared with

experimental data. Natural surface wave profiles are discussed in the context of a jump

of the velocity potential at the screen and the local inflow component to the screen.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Screens and perforated plates are well known as efficient tools for suppressing the resonantly forced sloshing. Their
applicability has been studied in the past century in the context of liquid sloshing in fuel rockets tanks [1]. Other
applications are associated with anti-rolling tanks of ships, tuned liquid dampers (TLD) of tall buildings, swash bulkheads
of ships, and perforated plates of oil–gas separators on floating platform. Anti-rolling tanks and TLDs can be either free-
surface tanks or U-tube. Our focus is on free-surface tanks. A review can be found in the textbook [2, Chapter 1].

The solidity ratio 0rSnr1, i.e. the ratio of the area of the shadow projected by the screen on a plane parallel to the
screen to the total area contained within the frame of the screen, is an important flow parameter of screens. The value
Sn=0 means no screen (henceforth, the clean tank), and Sn=1 indicates that the screen becomes a rigid wall. A design
requirement for anti-rolling tanks and TLDs is that the lowest resonant sloshing frequency of a screen-equipped tank
should be close to the roll natural sloshing frequency and the most important structural natural frequency, respectively.
The consequence is that either the wave-induced roll motions of a ship or wind- and earthquake-excited vibrations of tall
buildings are clearly reduced. Because it is desirable with the highest possible damping of sloshing with a negligible
change of the lowest resonant sloshing frequency, a rough guideline for a free-surface tank is that Sn� 0:5. The objectives
for a swash bulkhead in cargo liquid tanks of ships and perforated plates in oil–gas separators on floating platforms are to
provide sloshing damping as well as to change the lowest resonant sloshing frequency to a higher frequency range where
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the wave-induced ship and platform velocities and accelerations are less severe. The consequence is a high solidity ratio.
However, the optimum solidity ratio is not the highest Sn=1.

To describe the resonantly forced sloshing and estimate the corresponding resonant frequencies, i.e. the forcing
frequencies where a local maximum of the free-surface elevations occurs, we have to account for free-surface nonlinearity
and for either flow separation or jet flow through the screen. The latter leads to a quadratic damping in the mechanical
system which implies that the resonant response has a quadratic dependence on the forcing amplitude (see, [2, Chapters
6; 3,4] and references therein). The quadratic damping due to either flow separation or jet flow as well as the free-surface
nonlinearity may cause a change of the resonant frequencies relative to the natural sloshing frequencies which can be
considered as an asymptotic limit of the resonant frequencies when the forcing amplitude tends to zero. In other words,
the natural sloshing frequencies are not the same as the resonance frequencies with a finite lateral tank forcing. However,
they give the lowest-order prediction for the occurrence of resonance peaks of the steady-state response curves in terms of
the forcing amplitude.

In general, the linear sloshing theory for tanks with internal structures yields the natural sloshing modes and frequencies
which differ from those for the clean tank. A review on how a rigid submerged ‘small-volume’ structure (in particular, a
screen) may change the natural sloshing frequencies and modes can be found in the textbook [2, Chapter 4]. In the present
paper, we study a changing of the natural sloshing frequencies and modes due to a slat-type screen in a rectangular tank
without accounting for either flow separation or jet flow at the openings, namely, the nonlinear phenomena due to the
screen are neglected. To the best of authors knowledge, the literature contains neither analytical nor numerical studies of the
natural sloshing frequencies and modes for tanks with a slat-type screen. The present paper is novel for this problem.

Ideal incompressible liquid with irrotational flow is assumed. The linear two-dimensional sloshing problem with finite
liquid depth is considered. The slat-type screen appears as a perforated vertical plate installed at the tank middle. The
screen divides the unperturbed liquid volume into two equal compartments with openings allowing for a cross-flow. The
mathematical statement is presented in Section 2. It is associated with the well-known spectral boundary problem
[2, Chapter 4] with additional transmission conditions at the screen. Even (symmetric) natural sloshing modes of the
corresponding clean rectangular tank remain a solution of this problem. However, odd (antisymmetric) modes do not
satisfy the transmission conditions. Using a domain decomposition method similar to that in [5–7], we construct an
integral representation of the natural sloshing modes as a function of the normal velocity at the screen openings. Finding
the antisymmetric natural modes leads to a system of homogeneous integral equations with respect to these normal
velocities. The spectral parameter of the original boundary problem (representing the natural sloshing frequencies) should
be found from the solvability condition of this system. The constructed system is solved in Section 3 by a Galerkin method.
The solution procedure involves coordinate functions which capture local asymptotics of the normal velocity at the sharp
edges of the slats. There is a similarity between the proposed formulation and solution method and that used by Porter and
Evans [5] for wave scattering problem, although they did not apply their method to multiple gaps. A difference is the
chosen set of coordinate function. Evans and Porter (and many authors thereafter) use an orthogonal set of functions
containing the required singular behavior at the edges of the gaps which may be integrated explicitly. In contrast, we use a
nonorthogonal set of functions, which have the same effect of allowing integrals to be done explicitly.

Because all the integrals of the Galerkin scheme are found analytically in terms of Bessel functions, calculations do not
need numerical quadrature formulas. Results on the natural frequencies and modes are reported in Sections 4 and 5. The
results depend on Sn, the number of screen gaps (slots, openings), the position of these gaps relative to the mean free
surface, and the liquid depth. A comparison with experimental resonance frequencies from [8] performed with a small
lateral forcing amplitude shows a satisfactory agreement with our theoretical natural sloshing frequencies unless the
experimental studies report clearly nonlinear wave motions. The natural sloshing modes contain a term responsible for
local inflow to the screen openings and terms describing a local flow at the edges within the framework of our
hydrodynamic model. By the inflow is meant that we do not account for a local flow at the edges, i.e. we consider the
dominant velocity field at a distance from the openings that is the order of the opening dimension. The inflow-related term
can in future studies be used for more accurate prediction of the pressure jump at the screen caused by local flow by
accounting for either flow separation or jet flow by, for instance, using empirically determined pressure loss coefficients
[9]. Present state-of-the-art procedures neglect the influence of the screen on the inflow velocity [3,4].
2. Statement of the problem

2.1. Slat-type screen

We consider linear two-dimensional liquid sloshing in a rectangular tank with a slat-type screen installed at the tank
middle as shown in Fig. 1. The screen appears as a thin solid plate with a series of perforated horizontal slots.
Schematically, it is shown in Fig. 1a (see, also, Fig. 7 representing the screens of the experimental setup in [4,8]). The screen
thickness is neglected.

In contrast to nets and wire-mesh screens [2,9], the slat-type screen geometry is characterized by a rather limited
number of gaps, especially, for larger total solidity ratios. This number does not exceed 100 and, typically, is somewhere
about 5–20. This means that the actual solidity ratio of the wetted screen part, Sn, depends on the liquid depth h and,
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Fig. 1. Sketch of the screen-equipped rectangular tank.
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generally, differs from the total solidity ratio Snt=hs/ht=(ht�ho)/ht (ht is the total screen height, ho is the total height of the
perforation, and hs is the total height of the rigid slats). Examples of these dependencies will be presented in Section 4.3.

In our analysis, we consider only the mean wetted screen part Sc0 and assume that it has N submerged perforations
defined by the numerical sequence �hrzu1oz001ozu2oz002o � � �ozuN oz00N r0 (see, Fig. 1b). When So0 denotes all the
wetted rigid slats, and Op0 is the total set of submerged slots ðSc0 ¼Op0 [ So0Þ, this numerical sequence defines

So0 ¼ fð0,zÞ : �hrzrzu1,z001rzrzu2, . . . ,z00N rzr0g,

Op0 ¼ fð0,zÞ : �hrzu1ozoz001, . . . ,zuN ozoz00N r0g, (1)

where h is the liquid depth.
Based on definition (1), we can introduce the solidity ratio of the mean wetted screen part as follows:

Sn¼
h�
PN

j ¼ 1ðz
00

j�zujÞ

h
: (2)

2.2. Spectral boundary problem

We consider a two-dimensional rectangular tank of the horizontal dimension l=2a equipped with a slat-type screen Sc0

which divides the whole mean liquid domain Q0 into two geometrically-equal rectangular compartments, Q0
� and Q0

+

(Fig. 1b). An ideal incompressible liquid with irrotational flow is assumed. Based on the corresponding linear sloshing theory
(see, e.g. the books [2,10]), we will formulate a spectral boundary problem which describes natural (eigen) sloshing modes
and frequencies. For this purpose, we introduce the natural sloshing frequency s and the velocity potentials expðistÞjþ ðy,zÞ
and expðistÞj�ðy,zÞ (i2=�1) in Q0

+ and Q0
� , respectively. This spectral boundary problem is then formulated with respect to

j7 (natural sloshing modes) and should include the Laplace equation, the zero-Neumann boundary condition on the
wetted walls/bottom, and the spectral boundary condition on the mean free surface S0 [2, Eq. (4.7)]

@2j7

@y2
þ
@2j7

@z2
¼ 0 in Q 7

0 , (3a)

@j7

@y
¼ 0 on S7

0 , (3b)

@j7

@z
¼ kj on S7

0 , (3c)

where the spectral parameter k determines the natural sloshing frequency

s¼
ffiffiffiffiffiffi
gk
p

(4)

(g is the gravity acceleration).
Because of the screen, the problem requires transmission conditions on Sc0 which should govern a ‘no-cross-flow’

condition at So0, and continuity of j7 and @j7 =@y at the perforations Op0, i.e.

@j7

@y
¼ 0 on So0, (5a)

@jþ

@y
¼
@j�

@y
and jþ ¼j� on Op0, (5b)

where So0 and Op0 are defined by Eq. (1).
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When the tank has no screen, condition (5a) disappears, but transmission conditions (5b) become defined on
Op0 ¼ fð0,zÞ : �hozo0g. The spectral boundary problem (3), (5b) has then the well-known nontrivial solution

j7
k ¼fk ¼ cos

pk

l
ðyþaÞ

� �
cosh

pk

l
ðzþhÞ

� �
,

kk ¼ lk ¼
pk

l
tanh

pkh

l

� �
, k¼ 1, . . . (6)

which defines the natural sloshing modes fk and frequencies by formula (4).
Analytical solution (6) for the clean rectangular tank contains the Oz-symmetric (even) natural modes f2i, and the

Oz-antisymmetric (odd) modes f2i�1, i=1,2,y . Because the symmetric modes satisfy the transmission conditions (5a),
they remain a solution of the spectral boundary problem (3)–(5) when a slat-type screen in the middle of the tank is
introduced. In contrast, the antisymmetric modes do not satisfy the Neumann transmission condition (5a).

The screen-modified antisymmetric modes have a jump at So0, i.e. jþaj� on So0, but they are continuous on Op0.
Because the continuous antisymmetric functions should be equal to zero at y=0, the Dirichlet transmission condition of
(5b) can be replaced for the antisymmetric modes by the condition

j7 ¼ 0 on Op0: (7)

2.3. An integral representation of the antisymmetric natural sloshing modes

For brevity of the forthcoming mathematical expressions, we consider the a-scaled problem (3)–(5) with
h ¼ h=a,k ¼ ak,z uj ¼ zuj=a,z 00j ¼ z00j=a so that the horizontal dimension of compartments Q+

0 and Q�0 become 1. In addition,
we omit superscript ‘minus’ for j� so that, by definition, j¼j� in Q�0 .

Let us assume that we know the normal velocity at each perforation given by functions uj(z), j=1,y,N, i.e.

@j
@y

����
y ¼ 0

¼ ujðzÞ, zujozoz00 j, j¼ 1, . . . ,N, (8)

and replace the Neumann transmission condition of (5b) by condition (8). Proceeding with the mixed boundary value
problem (3), (5a) and (8) where k is a constant value in the spirit of external surface wave problems (see, e.g. [5,7]),
we arrive at the following integral representation:

jðy,zÞ ¼
XN

j ¼ 1

Z z 00 j

z uj

ujðz1ÞGk ðy,z,z1Þ dz1, (9)

where

Gk ðy,z,z1Þ ¼ �
coshðk0ðz1þhÞÞcoshðk0ðzþhÞÞ

k0N0

cosðk0ðyþ1ÞÞ

sinðk0Þ

þ
X1
i ¼ 1

cosðkiðz1þhÞÞcosðkiðzþhÞÞ

kiNi

coshðkiðyþ1ÞÞ

sinhðkiÞ
: (10)

Finally, because we look for antisymmetric modes,

j�ðy,zÞ ¼jðy,zÞ in Q�0 and jþ ðy,zÞ ¼�jð�y,zÞ in Q þ0 : (11)

The integral kernel Gk is, in fact, a Green function constructed for the liquid domain Q0
� which has been restricted to the

boundary conditions on S�0 and S0
� . It depends on the nondimensional spectral parameter k. The reason is that ki, Ni,

i=0,1,y, are roots of the transcendental equations

k0tanhðk0hÞ ¼ k, N0 ¼
1

2
h 1þ

sinhð2k0hÞ

2k0h

 !
, (12a)

kitanhðkihÞ ¼ �k, Ni ¼
1

2
h 1þ

sinð2kihÞ

2kih

 !
, i¼ 1,2, . . . (12b)

which parametrically depend on k. To derive the Green function Gk , we followed the analytical technique in [5,7] based on
separation of spatial variables y and z in the mixed boundary value problem (3), (5a) and (8).

The Green function Gk is defined by the i-index functional series. Even though the series is numerically truncated,
it analytically satisfies all the required boundary conditions except the boundary conditions on the screen. Moreover, this
truncated series exponentially converges to the solution of (3), (5a) and (8) at each point of Q� except on Sc0. This is an
advantage of using the integral representation (9).
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Enforcing the zero-Dirichlet boundary condition (7) leads to the following system of homogeneous integral equations
with respect to unknown functions uj(z), j=1,y,N, and spectral parameter k

XN

j ¼ 1

Z z 00 j

z uj

ujðz1ÞGk ð0,z,z1Þ dz1 ¼ 0, zukozoz 00k, k¼ 1, . . . ,N: (13)

Now, the mathematical task consists of finding k, for which this homogeneous system has a nontrivial solution in terms of
uj(z), j=1,y,N. Substituting this nontrivial solution into representation (9) and Eq. (11) leads to the corresponding
antisymmetric natural sloshing modes. An important practical matter is convergence in applying Eq. (13) and the output
(k and uj(z), j=1,y,N) versus the truncated Green function representation and the input parameters, e.g. zuj and z00j. This

convergence should become faster when the approximate solution uj(z), j=1,y,N accounts for the local flow singularities at
the sharp edges. Such an approximate solution will be proposed in the next section. Furthermore, a special analytical
technique will be applied in Appendix A which accelerates convergence in summation by i in the Green function
representation.
3. Solving the integral equations (13)

3.1. Galerkin scheme

We present a nontrivial approximate solution of the homogeneous integral equation (13) in the form

ujðzÞ ¼
XM
l ¼ 1

bjlfjlðzÞ, zujozoz 00j, j¼ 1, . . . ,N, (14)

where ffjlðzÞ,lZ1g is a complete set of trial functions on intervals ðzuj,z
00

jÞ, j=1,y,N, and {bkl} are unknown weight
coefficients. A Galerkin variational scheme with increasing number M of coordinate functions on each gap is used to
find these weight coefficients. According to this scheme, the approximate solution (14) should be substituted into
Eq. (13), multiplied by fkn(z) on the corresponding intervals ðzuk,z 00kÞ, and integrated over this interval. Proceeding this way
yields the homogeneous system of linear algebraic equations with respect to the ðM � NÞ weight coefficients {bjl, j=1,y,N;
l=1,y,M}

XN

j ¼ 1

XM
l ¼ 1

Bkkn,jlbjl ¼ 0, (15)

where the symmetric matrix elements Bkkn,jl take the form

Bkkn,jl ¼

Z z 00 j

z uj

Z z 00k

z uk

fknðzÞGk ð0,z,z1Þfjlðz1Þ dz dz1

¼�
cð0Þkn cð0Þjl

tanðk0Þk0N0
þ
X1
i ¼ 1

cðiÞkncðiÞjl

tanhðkiÞkiNi
: (16)

Here, we have introduced the notations

cð0Þpq ¼

Z z 00p

z up

fpqðzÞcoshðk0ðzþhÞÞ dz, cðiÞpq ¼

Z z 00p

z up

fpqðzÞcosðkiðzþhÞÞ dz, iZ1: (17)

A nontrivial solution of the homogeneous system (15) is only possible if the determinant of the ðNMÞ � ðNMÞ matrix
JBkkn,jlJ is zero, i.e.

detJBkkn,jlJ¼ 0: (18)

Eq. (18) should be considered as a transcendental equation with respect to nondimensional spectral parameter k. Each
[enumerated] root km of this transcendental equation (18) is, in fact, an approximate nondimensional eigenvalue for the
corresponding antisymmetric natural mode. To find this natural mode in an analytical form, we should solve the
homogeneous matrix problem

JBkm

kn,jlJfbjlg ¼ 0, (19)

substitute the nontrivial solution vector {bjl} into (14) and, thereafter, in representation (9). Going this way, we get

jðy,zÞ ¼�
coshðk0ðzþhÞÞcosðk0ðyþ1ÞÞ

k0N0sinðk0Þ
A0þ

X1
i ¼ 1

cosðkiðzþhÞÞcoshðkiðyþ1ÞÞ

kiNisinhðkiÞ
Ai, (20)
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where

Ai ¼
XM
l ¼ 1

XN

j ¼ 1

bjlc
ðiÞ
jl , i¼ 0,1, . . . : (21)

3.2. Coordinate functions { fkl(z)}

To get an accurate Galerkin approximation, the chosen coordinate functions {fkl(z)} should capture local asymptotics of
uj(z) at the sharp edges, namely, at the points zuj and z00j. This local asymptotics should be the same as for a steady
irrotational flow of an ideal incompressible liquid through an orifice plate (see, e.g. [11]). In the notations of Fig. 2 for the
local flow plane ðt1,t2Þ, the normal velocity uðt1Þ is characterized by the local asymptotics

C7 ðt171Þ½q�1��1=2, q¼ 1, . . . , as t1-71: (22)

One must note that our problem requires consideration of a cross-flow with C�aCþ in Eq. (22). The reason is an
exponential decay of the natural sloshing modes along the screen causing different local velocities at zuj and z00j of the same
gap (Fig. 2). To match this nonsymmetric flow in the local plane, we can introduce symmetric and antisymmetric (with
respect to Ot2) trial functions

gð1Þq ðt1Þ ¼ ð1�t2
1Þ
½q�1��1=2, and gð2Þq ðt1Þ ¼ t1ð1�t2

1Þ
½q�1��1=2, qZ1: (23)

Whereas q=1, these functions capture the main singularity at t1 ¼ 71 with different weight coefficients C+ and

C� provided by a linear combination of gð1Þðt1Þ and gð2Þðt1Þ. The regular (continuous) velocity field component can be

approximated by the continuous functional set fgð1Þq ðt1Þ,g
ð2Þ
q ðt1Þ,qZ2g which is complete due to Müntz’ theorem [12].

Employing the functional basis (23) in the original plane (p=1,y,N; M=L1+L2) implies

fpqðzÞ ¼ gð1Þq �1þ
2

z 00p�zup
ðz�zupÞ

� �
, q¼ 1, . . . ,L1,

fpðqþ L�1Þ ¼ gð2Þq �1þ
2

z 00p�z up
ðz�zupÞ

� �
, q¼ 1, . . . ,L2: (24)

An advantage of the coordinate functions (24) is that they make it possible to get exact analytical expressions for
quadratures c(0)

pq and c(i)
pq by using Poisson’s integrals [13, Section 3.3]. These expressions are

cð0Þpq ¼
ffiffiffiffi
p
p
½DupcoshbðpÞ0 �½2

q�2Gðq�1
2Þ�½ða

ðpÞ
0 Þ

1�qIq�1ðaðpÞ0 Þ�, (25a)

cð0ÞpðL�1þqÞ ¼
ffiffiffiffi
p
p
½DupsinhbðpÞ0 �½2

q�2Gðq�1
2Þ�½ða

ðpÞ
0 Þ

1�qIqðaðpÞ0 Þ�, (25b)

cðiÞpq ¼
ffiffiffiffi
p
p
½DupcosbðpÞi �½2

q�2Gðq�1
2Þ�½ða

ðpÞ
i Þ

1�qJq�1ðaðpÞi Þ�, (25c)

cðiÞpðL�1þqÞ ¼ �
ffiffiffiffi
p
p
½DupsinbðpÞi �½2

q�2Gðq�1
2Þ�½ða

ðpÞ
i Þ

1�qJqðaðpÞi Þ�, (25d)

where

Dup ¼ z 00p�zup, aðpÞi ¼
1
2 kiDup, bðpÞi ¼ kiðhþz�pÞ, z�p ¼

1
2ðz
00

pþz upÞ, (26)
1

z

(                    )
τ1

u (τ1)
τ2

zj’’

zj’

−1

Fig. 2. Sketch of a local instantaneous flow through an single gap in the local ðt1 ,t2Þ-plane. We define uðt1Þ ¼ qf=qt2jt2 ¼ 0, where fðt1 ,t2Þ is the local

velocity potential in the ðt1 ,t2Þ-plane.



O.M. Faltinsen, A.N. Timokha / Journal of Sound and Vibration 330 (2011) 1490–15031496
Gð�Þ is the Gamma-function, and Jpð�Þ and Ipð�Þ are the Bessel functions of the first kind, and the modified Bessel function of
the first kind, respectively.

Expressions (25) should be substituted into Eq. (16) to compute the symmetric matrix JBkkn,jlJ. The procedure needs a
numerical summation of the series by index i. Accounting for the limits

ki �
pi

h
, i-1, JaðxÞ �

ffiffiffiffiffiffi
2

px

r
cos x�

1

2
ap�1

4
p

� �
, x-1, (27)

we can show that these numerical series converge absolutely.
Summation of the numerical series in Eq. (16) deals, except for Bk 1,j 1, BkðL1þ1Þ,j1,Bk1,jðL1þ1Þ, and BkðL1þ1Þ,jðL1þ1Þ, with the

O(1/i3)- and o(1/i3)-order terms. This means that, if we take K elements of these numerical series, the convergence error is
of the order O(1/K2) and o(1/K2), respectively, which is, generally, satisfactory for our FORTRAN code providing 10–12
significant figures with K=100 000. A slower convergence is expected for Bk 1,j 1, BkðL1þ1Þ,j1,Bk1,jðL1þ1Þ, and BkðL1þ1Þ,jðL1þ1Þ,
whose numerical computation involves the O(1/i2)-order terms. However, the latter convergence can be improved to have
the O(1/K2)-order error by employing the analytical results in Appendix A.

4. Natural frequencies

4.1. A single gap

When the considered screen has a single gap (N=1 in Eq. (1)), Eq. (2) transforms to

1�
z 001�z u1

h
¼ Sn: (28)

Eq. (28) couples the end coordinates of this single gap, the liquid depth, and the solidity ratio.

4.1.1. Baffle

When varying the coordinate z 001 with zu1 ¼�h, we arrive at the free-surface piercing baffle. The case of z 001 ¼ 0 with the
varied coordinate zu1 corresponds to the bottom-mounted baffle. The numerical eigenvalues k i, i¼ 1,3,5, for these two
limit ‘baffle’ problems are presented in [14,15]. Fig. 3 shows that our approximate solution is in a good agreement with
these values.

When computing the eigenvalues in Fig. 3, we establish a rather fast numerical convergence. Using L1=L2=8,
M=L1+L2=10 in Galerkin’ solution (14) with coordinate functions (24) provides 6–7 stabilized significant figures of k1,k3

and k5 for all the baffle sizes lb. Moreover, when the gap size is smaller, ð1�lb=hÞt0:15, six significant figures of these three
nondimensional eigenvalues are stabilized with L1=L2=2. The reason for this fast convergence is that our coordinate
functions account for the singular behavior of the velocity field at the sharp edges. These singularities provide dominant
contribution to the original solution, especially, for smaller gap sizes.

Fig. 3 presents the nondimensional eigenvalues k i,i¼ 1,3,5, versus Sn= lb/h with h/l=1. The dashed lines denote the
surface-piercing baffle case, but the solid lines give the numerical eigenvalues for the bottom-mounted baffle case. As we
have remarked in Section 2.2, the symmetric modes remain the same as for the clean tank; these are defined by Eq. (6).
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The corresponding nondimensional eigenvalues for the two lowest symmetric modes are denoted by k2 and k4.
Asymptotic limits of k1,k3 and k5 are discussed in [14] and we refer interested readers to this paper for more details.

Some interesting comments can be added for the case Sn-1. For the lowest eigenvalue k1 of the surface-piercing baffle
problem, when the baffle edge approaches the bottom, there is a similarity with the U-tube problem. Our calculations
show a stabilization of the k1�value when Sn numerically tends to 1. However, when 0:99999oSno1, i.e. until the tank
which is almost fully divided by the baffle, this eigenvalue as well as the eigenvalues for the bottom-mounted baffle rapidly
drop to zero and the eigenvalues k2 and k4, respectively. The same ‘drop’ was reported in [14] with a reference to Tuck [16]
who considered the effect of a submerged barrier on the natural sloshing frequencies of a basin connected with an open
water. We can also refer to the book [2, pp. 167–168] in which such a rapid change is reported for the added mass
coefficient of two plates in a side-by-side arrangement in an infinite fluid when the two plates are close and approaching
each other.

An important property is that the surface-piercing baffle leads to a faster decrease of the eigenvalues relative to that for
the bottom-mounted baffle. This can be seen by comparing two values at points B and T corresponding to the same input
Sn. The bigger difference at these points is in the range 0:2tSnt0:8 when the surface-piercing baffle reduces k3 and k5 to
k2 and k4, respectively, but the bottom-mounted baffle leads to almost zero effect. This fact is explained by an exponential
decay of the natural sloshing modes to the bottom. Being situated far from the mean free surface where a ‘mainstream’
occurs, the bottom-mounted baffle cannot influence the liquid flux between Q0

+ and Q0
� , but the surface-piercing baffle

can do it.

4.1.2. A single gap between the mean free surface and the bottom

We consider the case �hozu1oz001o0, which means that there are surface-piercing and bottom-mounted baffles,
simultaneously. For a constant solidity ratio Sn in relation (28), we get the restriction

�1þ1
2 ð1�SnÞoz�1=h¼ z�1=ho�1

2ð1�SnÞ (29)

for the middle point z1
* of the single screen gap defined in Eq. (26).

The solid lines in Fig. 4 show changing k1 and k3 versus z1
* /h in the interval (29). The points B ðz�1=h¼� 1

2 ð1�SnÞÞ and
T ðz�1=h¼�1þ 1

2 ð1�SnÞÞ denote the two limit cases (scenarios) when z1
* /h equals to the ends of this interval and, thereby,

the screen becomes bottom-mounted and surface-piercing baffle, respectively. The dashed lines are used to show what
happens with the considered eigenvalues when z1

* /h moves outside of interval (29) with appropriate increase of the
solidity ratio.

By analyzing the solid lines in Fig. 4 for different constantly fixed solidity ratio, we observe the following. For smaller
solidity ratios, Snt0:5, the solid lines illustrate monotonically increasing functions of z1

* /h whose absolute maximum
occurs at the end B, i.e. when the screen becomes a bottom-mounted baffle without intersection of the mean free surface.
This fact looks quite logical, if we deal with results in Fig. 3 where there are two limit positions, T and B. Varying the gap
position between these limit points monotonically changes the eigenvalues, so that a minimum modification of the
eigenvalues due to the screen (k�1 and k�3 denote the nondimensional eigenvalues for the clean tank) is for the limit case B

(bottom-mounted baffle).
However, the solid lines in Fig. 4 are not monotonic functions of z1

* /h for larger solidity ratios, 0:5tSn. The minimum
difference between k�i and k i,i¼ 1,3, is found slightly left of the point B. At these extrema points, the screen consists of a
long bottom-mounted baffle and a small surface-piercing baffle, simultaneously. Occurrence of such an ‘optimum’ position
of the screen gap which differs from position B can be explained in the following way.

First of all, we remark that, according to asymptotic estimates in [15] (see, also, [2, Chapter 4]), a small surface-piercing
baffle of nondimensional length d provides an Oðd2

Þ-decrease of the eigenvalues. Furthermore, we should look at the solid
lines in Fig. 3 to realize what is the effect of a d�length variation of the long bottom-mounted baffle. We see that when
Snt0:5 (for k1) and Snt0:8 (for k3 and k5), these solid lines are almost horizontal. This means that there is no clear OðdÞ-
or Oðd2

Þ�contribution into the eigenvalues due to a d�length variation of the bottom-mounted baffle. The eigenvalues are,
therefore, effected only by the small-piercing baffle. The latter conclusion leads to a local maximum at B for smaller Sn due
to the aforementioned asymptotic results in [15]. However, when 0:5tSn for k1 and 0:8tSn for k3 and k5, the tangent to
the solid lines in Fig. 3 is not horizontal so that a d�length variation of the long bottom-mounted baffle includes a linear,
OðdÞ�order contribution to the eigenvalues. This means that a small variation of the long bottom-mounted baffle provides
a leading-order change of the eigenvalues and the Oðd2

Þ�variations due to a small surface-piercing baffle can be neglected
in the first-order approximation. As a consequence for the larger solidity ratios, because the derivatives of the solid-line
graphs in Fig. 3 are negative, the solid-line graphs in Fig. 4 should also have a negative derivative at B. The local maximum
at B becomes then impossible.

4.2. Eigenvalues as functions of Sn, N, and the position of the perforations

When we have many submerged perforations (gaps), the eigenvalues become complicated functions of the solidity
ratio, the number of gaps N, and, as we showed in Section 4.1.2, the position of gaps with respect to the mean free surface.
To illustrate such a dependence, we keep a constant liquid depth (in our example, h/l=1) and the h-scaled perforation
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height (x0=0.0075), but vary the length between the slots whose h-scaled value is denoted by x. The nondimensional value
x is the same as the h-scaled vertical dimension of the solid screen components. An explanation of this scenario is given in
Fig. 5 (in the left top).

Fig. 5 presents dependencies of N, Sn and k i,i¼ 1,3,5, on the h-scaled length between the openings, x. As long as N

perforations are completely submerged into the mean liquid domain so that the upper opening is not intersected by the
mean free surface, changing x does not effect the solidity ratio which remains a constant value. This fact follows from
formula (2) giving Sn=1�Nx0=const with constant values of N and x0. It is also clearly seen in Fig. 5 by the graphs for N and
Sn. The solid lines are used to mark this case in other panels. Let us analyze what happens with the eigenvalues with
constant Sn and N, but a varied x-value.

Even though Sn and N remain constant values on the corresponding intervals of x, the solid lines in the graphs for k1,k3

and k5 demonstrate a change for larger solidity ratios, 0:55tSn. The shapes of the solid-line pieces ðD-CÞ look similar to
those in Fig. 4 where we have had the constant N=1 and Sn, but the single opening position has been varied with respect to
the mean free surface. Again, we see local peaks on these solid lines when the upper submerged opening approaches the
mean free surface. These peaks indicate a local minimum difference between the natural frequencies with the screen and
the corresponding natural frequencies of the clean tank. The picture looks like there is an ‘optimum’ position of the
uniformly perforated screen slots for which a minimum modification of the natural sloshing frequencies occurs with the
same N and Sn. Furthermore, when the upper screen hole becomes intersected by the mean free surface (dashed lines) with
an appropriate increase of the solidity ratio, the eigenvalues rapidly decrease to a local minimum value.

4.3. Eigenvalues as a function of h

The natural sloshing frequencies depend on the liquid depth. For the clean rectangular tank, this dependence is
governed by Eq. (6). Slat-type screens lead to a difference from this dependence. An illustration of the fact is given in Fig. 6
for the four screens in Fig. 7 and rectangular tank of the breadth equal to 1 m.
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First of all, we note that Sn is not a constant value, but an ‘oscillatory’ function of h/l. Fig. 6(a) shows that Sn increases
with h/l on the intervals ðD-CÞ where a solid screen part intersects the mean free surface, and Sn decreases with
increasing h/l on the intervals ðC-DÞ where the mean free-surface runs through a screen perforation. Variations of Sn are
of maximum magnitude for smaller liquid depths when there is a few fully submerged screen slots. However, Sn stabilizes
at an approximately constant value for larger values of h/l.

Furthermore, Fig. 6(b–d) shows that k1,k3, and k5 (scaled by the corresponding eigenvalues for the clean tank) are very
sensitive to variations of the solidity ratio for both smaller and larger liquid depth. This is even though Sn becomes an
approximately constant value detected for larger h/l. A reason is that these eigenvalues may also be affected by positions of
the screen openings which vary together with Sn in our numerical scenario. Because Sn is not a constant value, it is very
difficult to distinguish which from these two factors (variation of Sn or positions of the openings) gives dominant
contribution to the established ‘oscillatory’ change of the eigenvalues.

4.4. Comparison with experiments

Studies in [4,8] report experimental investigations of the resonant sloshing in a rectangular tank with a slat-type screen
in the middle. The resonant sloshing occurred due to the horizontal harmonic forcing. Strongly damped and nonlinear
resonant wave phenomena were observed. However, the experimental resonance frequency ranges evaluated with the
lowest forcing amplitude can, under certain assumptions, be associated with the linear natural sloshing frequencies. These
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experimental ranges [8, Table 3] correspond to the forcing frequencies where the free-surface elevations demonstrate a
local peak response. The experimental liquid depth-to-the-tank-breadth was h/l=0.4, the nondimensional forcing
amplitude Z2a=l was about 0.001. For this depth and nine different screens, the experiments deal with Sn in the range
0:3rSnr0:96, the corresponding number of the submerged openings was 8ZNZ2. Four screens from these experiments
are shown in Fig. 7. The interested readers may find details on other screens in [4,8].

A comparison of the experimental resonance frequencies and our theoretical natural frequencies is presented in Fig. 8.
The values s i ¼ si=sSn ¼ 0

1 denote the ratios between the corresponding resonance/natural frequency and the lowest natural
frequency for the clean tank. In notation of the present paper, according to formulas (4) and (6), s i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ki=l1

p
. The triangles

mark bounds of the experimental resonant frequency ranges, but the theoretical natural frequencies (scaled by the lowest
natural sloshing frequencies of the clean tank) are connected by the solid lines.

Even though the linear theory is limited in predicting the resonance frequencies when the nonlinearity matters, we see
a satisfactory agreement between the experimental frequency ranges and our theoretical values. The difference, we
believe, is due to neglecting the pressure loss caused by flow separation or jet flow at the screen as well as the free-surface
nonlinearity. The most visible difference is for s1 with SnZ0:85 when the experiments were not able to detect a clear
resonant peak associated with the lowest natural sloshing mode. As discussed in [4], the reason is a strong nonlinear
pressure loss due to flow separation or jet flow. The four experimental measurements with SnZ0:85 detect a resonance
response for the third mode. Two of these four experimental frequency ranges are in good agreement with our linear
theory. However, there is a sufficient discrepancy for the remaining two experimental cases with SnZ0:946 when the
experiments report strongly nonlinear surface waves. For these two cases, an explanation comes from considering the
‘soft-spring’ behavior of the corresponding nonlinear response curves [4,8].
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5. On the natural sloshing modes

Our calculations on the natural sloshing modes showed that the first term in expression (20) with coefficient A0 gives a clearly
dominant contribution to the natural sloshing modes for all the tested screens, Sn, N, and h. This is similar to ‘one-term
approximation’ in [14] for a single baffle. Remaining terms are only important in a local neighborhood of the screen. They
exponentially decay away from Sc0 and, therefore, play only the role in providing an accurate satisfaction of the transmission
conditions. However, these terms cannot be neglected in calculation of the eigenvalues. This becomes understandable from
results of previous sections establishing that the eigenvalues undergo a change due to small local variation of the screen
perforation. Based on only the A0-dominant term, we are not able to show the strong parameter dependency of the eigenvalues.

Besides, keeping only the A0-associated term leads always to a jump of the velocity potential (natural mode) at Sc0.
However, this jump should not be theoretically present within the framework of our hydrodynamic model when a solid
screen part does not intersect the mean free surface. The fAi, iZ1g�terms in (20) make it possible to capture the local
asymptotics of the surface-wave profiles at the screen. This fact is illustrated in Fig. 9 by considering the three lowest
antisymmetric modes in a rectangular tank with screen IV in Fig. 7 for two control liquid depths. In the case with h/l=0.4
(panels a–c), the mean free surface crosses a solid screen piece. The graphs show then a clear jump at y=0 which becomes
larger for higher modes. However, the nondimensional depth h/l=0.426 corresponds to situation when the mean free
surface goes though the upper screen perforation. In this case, the free surface profiles are continuous.

6. Conclusions

Using a domain decomposition method, we constructed an approximate solution for antisymmetric natural sloshing
modes in a rectangular tank with a slat-type screen at the tank middle. The solution employs special coordinate functions
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which capture the local asymptotics at the sharp edges of the slats. This provides an accurate approximation of the natural
frequencies and modes so that 4–16 coordinate functions guarantee 6–7 significant figures of the three lowest eigenvalues
for all the tested geometric configurations. A comparison with results in [14,15] is made for the case when the screen has a
single gap located at either the bottom or the mean free surface, namely, for sloshing with a surface-piercing or bottom-
mounted baffle. Very good agreement is documented.

When the single gap is not at either the bottom or the free surface, the result will depend on the position of this gap and
Sn. For smaller solidity ratios, the minimum modification of the natural sloshing frequencies relative to those in the clean
tank is found for the case when the screen becomes the bottom-mounted baffle. However, larger solidity ratios give this
minimum for a single gap screen situated beneath the mean free surface so that the mean free surface is pierced by a small
solid screen part.

Increasing number of the screen perforations shows that the natural sloshing frequencies (eigenvalues of the
considered spectral problem) are complicated functions of the liquid depth, Sn, the number of the submerged perforations,
and the position of these perforations. Based only on Sn, we cannot precisely predict these eigenvalues. When 0:5tSn
with constant values of Sn and N, we demonstrate in Section 4.2 that the eigenvalues can vary with a nonnegligible
magnitude due to varying position of the screen slots relative to the mean free surface. These variations become larger for
larger Sn. The position of the gaps may, we believe, matter for an accurate calculation of the natural sloshing frequencies
with different tank fillings.

A comparison with experimental data on the resonant sloshing frequencies taken from [8] for sufficiently small
excitation amplitude shows satisfactory agreement with our theoretical natural sloshing frequencies. The differences can
be explained by the nonlinearity caused by flow separation/jet flow, and the free-surface nonlinearity.
Appendix A. Numerical series for Bk1,j1, BkðL1þ1Þj1 Bk1jðL1þ1Þ, and BkðL1þ1ÞjðL1þ1Þ

Using asymptotic formulas (27) for the i-index numerical series in Eq. (16) associated with Bk 1,j 1, BjðL1þ1Þ,k1 ¼ Bk1,jðL1þ1Þ,
and BkðL1þ1Þ,jðL1þ1Þ shows that
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as i-1, where
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, p¼ 1, . . . ,N:

Employing the Fourier-series representation of the ð2pÞ�periodic functions presented in [17], we realize that
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This means that one can analytically find the infinite sums by the O(1/i2)-dominating component in expressions (A.1),
namely,
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where
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Replacing the expressions for the considered matrix elements as
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provides the O(i�3)-terms in the square brackets of (A.4). This means that taking K elements of these numerical series leads
to the O(1/K2)-order error.
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