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Àíîòàöiÿ. Îãëÿä ïðåçåíòó¹ êîëåêöiþ íåëiíiéíèõ àñèìïòîòè÷íèõ ìîäàëüíèõ
ðiâíÿíü òåîði¨ êîëèâàíü ðiäèíè â áàêàõ, âèâiä ÿêèõ êîìáiíó¹ âàðiàöiéíi òà
àñèìïòîòè÷íi ìåòîäè. Àêöåíò ÷àñòêîâî çðîáëåíî íà êëàñèôiêàöiþ óñòàëåíèõ
ðåçîíàíñíèõ ðîçâ'ÿçêiâ, ÿêi îòðèìàíî çà äîïîìîãîþ öèõ ðiâíÿíü.

Abstract. The survey collects asymptotic nonlinear modal equations of liquid
sloshing theory whose derivation combines variational (Miles�Lukovsky's) and asymp-
totic (Narimanov-Moiseev's) methods. A particular emphasis is placed on classi�ca-
tion of steady-state resonant solutions obtained by analyzing these equations.

1. Introduction
Modern mainstream in sloshing problems consists of employing the Computational Fluid Dy-

namics (CFD) associated with spatial-and-time discretization of the corresponding free-boundary
problems (Ch. 10 of the book [8] and Rebouillat & Liksonov [42]). These numerical methods ef-
fectively solve the time-domain problem with di�erent initial scenarios, but are rather limited for
parameter studies of the frequency-domain problem dealing with steady-state regimes appearing
on the long-time scale and, therefore, requiring long-time simulations. The CFD has also di�cul-
ties in coupling sloshing and structural dynamics. An alternative could be asymptotic multimodal
methods whose idea consists of reducing the original free-boundary problem to compact systems
of nonlinear ordinary di�erential equations, i.e. the so-called modal equations. These modal equa-
tions make it possible to solve both frequency and time domain problems as well as to identify
chaotic liquid motions (see, [13,14,21,34,35] and references therein).

Systematic collections of experimental and engineering approaches to liquid sloshing dynamics
in axial-symmetric tanks with non-shallow liquid depth (relevant to spacecraft systems) are
given by Abramson [1] and Mikishev [32]. Marine and storage tank applications also deal with
prismatic (rectangular shape) tanks which are considered by Faltinsen & Timokha [8]. Ibrahim
[20] outlines the state-of-the-art for some of other applications. In summary, the engineering
practice concentrates on tank shapes which are, basically, limited to upright cylindrical tanks of
circular (sectored) and rectangular cross-sections, horizontal circular cylindrical tanks, spherical
and conical tanks. A collection of asymptotic modal equations for upright cylindrical tanks is
exhibited in the present survey for the case when these equations were derived being based on
combining Narimanov-Moiseev' asymptotics and Lukovsky-Miles' variational method.

2. Multimodal method
2.1. Free-boundary problem

A mobile rigid tank partly �lled by an inviscid incompressible liquid with irrotational �ow
is considered. Fig. 1 shows liquid domain Q(t) bounded by the free surface Σ(t) and the wetted
tank surface S(t), an absolute coordinate system O′x′y′z′, and non-inertial coordinate system
Oxyz rigidly �xed with the tank so that O lies in the geometric center of the mean free surface
Σ0 (z = 0). The Oxyz-system moves relatively to O′x′y′z′ with the absolute translatory velocity
v0 and the instant angular velocity ω. The gravity potential can be written as U(x, y, z, t) =
−g ·r′; r′ = r′0+r, where r′ is the radius�vector of a point of the body�liquid system with respect
to O′, r′0 is the radius�vector of O with respect to O′, r is the radius�vector with respect to O,
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Fig. 1. Sketch of a moving tank. Nomenclature

and g is the gravity acceleration vector. The absolute velocity potential Φ(x, y, z, t) (va = ∇Φ)
and the free surface Σ(t) : Z(x, y, z, t) = 0 should be found from the following free-boundary
problem [8,29]

∆Φ = 0 in Q(t);
∂Φ

∂ν
= v0 · n + ω · [r× n] on S(t),

∂Φ

∂n
= v0 · n + ω · [r× n] +

∂Z/∂t

|∇Z| on Σ(t),
(2.1a)

∂Φ

∂t
+

1

2
(∇Φ)2 −∇Φ · (v0 + ω × r) + U = 0 on Σ(t),

∫

Q(t)

dQ = const, (2.1b)

where n is the outer normal. The free boundary problem (2.1) must be completed by either initial
or periodicity conditions. Adding the initial conditions implies the time-domain problem. Using
the periodicity conditions for the T = 2π/σ-periodic forcing terms v0(t) and ω(t) corresponds to
the frequency-domain problem.

2.2. Modal solution and its limitations
The multimodal methods are based on Fourier-type expressions for the free surface and

velocity potential with time-dependent coe�cients which are treated as generalized coordinates
of the mechanical system (2.1). When tank walls are vertical in a neighborhood of Σ(t), the
modal representation of Σ(t) takes the form

Z(x, y, z, t) = z − ζ(x, y, t) = z −
∞∑

i=1

βi(t)fi(x, y). (2.2)

Here fi(x, y) is a complete orthogonal functional set satisfying the volume conservation condition∫
Σ0

fi(x, y)dxdy = 0, where Σ0 (z = 0) is the mean free surface and S0 is the mean wetted tank
surface.

In most general case, the multimodal methods express the velocity potential as

Φ(x, y, z, t) = v0 · r + ω ·Ω +

∞∑
n=1

Rn(t) ϕn(x, y, z). (2.3)

Here the complete functional set {ϕn(x, y, z)} satis�es the Laplace equation and the vector�
function Ω(x, y, z) = (Ω1, Ω2, Ω3) (Ωk are called the Stokes-Joukowski potentials) is solution of
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the following Neumann boundary problem

∆Ω = 0 in Q(t);
∂Ω1

∂n
|S(t)+Σ(t) = yn3 − zn2,

∂Ω2

∂n
|S(t)+Σ(t) = zn1 − xn3;

∂Ω3

∂n
|S(t)+Σ(t) = xn2 − yn1,

(2.4)

where n = (n1, n2, n3). Being de�ned by (2.4), the Stokes-Joukowski potentials Ωi are functions
of generalized coordinates βi.

Normally, ϕn and fn(x, y) = ϕn(x, y, 0) are the natural sloshing modes de�ned by the spectral
boundary problem

∇2ϕn = 0 in Q0;
∂ϕn

∂n
= 0 on S0;

∂ϕn

∂z
= κnϕn on Σ0;

∫

Σ0

ϕndy = 0, (2.5)

where Q0 is the mean liquid domain. The natural sloshing frequencies are de�ned by the eigen-
values κi via σn =

√
gκn.

Substituting the modal solution (2.2) and (2.3) into (2.1) or its variational analogy [3, 8,
26, 29] transforms the free-boundary problem to a set of ordinary di�erential equations (modal
equations) with respect to generalized coordinates βi and Rn. According to Faltinsen & Timokha
[8] there are the following limitations in using the modal solution:

• Physical: Original statement (2.1) and modal solution (2.2) and (2.3) neglect damping due
to di�erent physical mechanisms including roof impact and breaking waves. The damping
can partly been accounted for in modal equations by incorporating additional terms. Ch. 6
in [8] discusses these terms for laminar boundary layer at the wetted tank surface, ba�es,
and screens. Furthermore, because of the normal free-surface representation (2.2), the
modal solution makes it impossible to describe wave pro�les modi�ed by roof impact and
overturning waves; the tank bottom has to be wet.

• Geometrical: Eq. (2.2) requires {fn} to be a Fourier basis whose domain of de�nition is
time-independent and, generally speaking, coincides with Σ0. Non-vertical walls make it
impossible. A non-Cartesian parametrization is needed to revise the modal solution for
tanks with non-vertical walls as reported in [16,27,29,30,39].

• Numerical: To be correctly substituted into eq. (2.1), modal solution (2.3) needs a har-
monic functional set {ϕn} de�ned outside of Q0. Practical choice consists of natural modes
(2.5) which are theoretically de�ned only in Q0. An exception is upright cylindrical tanks
of circular and rectangular cross-sections when the spectral problem (2.5) has analyti-
cal solution de�ned over Σ0. For more general case, speci�c numerical methods are re-
quired [16, 17, 43] providing zero-Neumann condition on the time-dependent wetted tank
surface S(t). Otherwise, a numerical error on the mentioned part of the walls physically
implies an in�ow/out�ow through S(t).

• Functional: Harmonic functional set {ϕn} should be complete for any instant Q(t). The
linear natural modes generally do not constitute such a complete functional basis. The
latter fact was demonstrated by Timokha [46] for two-dimensional rectangular tank. In
view of this functional problem, one can interpret the natural modes as an "asymptotic"
harmonic basis, namely, assume that Q(t) is to some extent asymptotically close to its un-
perturbed state Q0. Within the framework of the asymptotic treatment, the completeness
of {ϕn} is only needed in Q0.

One can distinguish two analytical schemes to derive nonlinear modal equations. The �rst
scheme is associated with works by Narimanov [38] and Moiseev [36] employing asymptotic
methods. The second one uses variational methods based on the Bateman-Luke [28, 33] or La-
grange [23�25] formulation of the free-boundary problem (2.1).

2.3. Asymptotic methods
As a rule, asymptotic methods in liquid sloshing problems with a �nite liquid depth assume

that the relative (with respect to tank size) forcing magnitude is small, of the order O(ε), and tank
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excitations are almost harmonic with the forcing frequency σ close to the lowest natural sloshing
frequency σ1. Furthermore, these methods assume the possibility of a third-order theory and
consider the primarily excited mode being of the dominant, lowest asymptotic order, O(ε1/3).
There are also generalized coordinates of the order O(ε2/3) and O(ε). Shallow liquid sloshing
needs other approaches [8, 10].

One can classify two asymptotic approaches based on this third-order intermodal order-
ing. The �rst approach is associated with Narimanov-type asymptotic schemes and devoted to
derivations of modal equations coupling generalized coordinates up to the order O(ε). The sec-
ond asymptotic approach was proposed by Moiseev to derive a steady-state (periodic) resonant
solution for purely harmonic excitations. This approach does not derive any modal equations but
makes it possible to identify ordering of the generalized coordinates.

Narimanov-type asymptotic scheme. Similar asymptotic schemes for deriving asymp-
totic modal equations were proposed by Narimanov [38] and, later on, by Hutton [19] (interested
readers can �nd results on these schemes in [5,18,29,39]). In these schemes, asymptotic ordering
of generalized coordinates is postulated. To obtain modal equations with respect to βi, Nari-
manov assumed that generalized coordinates Ri take the form Ri = Fi(β̇i, βk) where functions
Fi have a polynomial structure and can be found after substituting eqs. (2.2) and (2.3) into
"kinematic" equations (2.1a) by using a Taylor expansion with respect to the mean free surface
Σ0 (z = 0) leading to a series of Neumann' boundary-value problems. Having known Ri in (2.3)
as explicit functions of βk and β̇k and substituting eqs. (2.2) and (2.3) into "dynamic" equations
(2.1b), analogous Taylor expansion leads to the desirable modal equations with respect to βn

after neglecting the o(ε)-order terms.
The Narimanov-type asymptotic scheme is straightforward but causes tedious analytical

derivations. This explains why Narimanov et al. [39] found out arithmetic errors in [38] and
Miles [35] detected errors in [19]. Furthermore, to minimize tedious derivations, many of the
Narimanov-type nonlinear modal equations coupled only generalized coordinates responsible
for dominant modes, but second- and third-order generalized coordinates were neglected (Stol-
betsov [39, 44, 45] derived those simpli�ed modal equations for upright rectangular and circular
tanks). Lukovsky [29,39] showed that this simpli�cation su�ciently e�ects results on steady-state
sloshing which may not become consistent with experiments. Lukovsky [27] also generalized the
Narimanov-type scheme for tanks of complex, non-cylindrical shapes.

Steady-state asymptotic solution by Moiseev. Moiseev [36] formally constructed a
steady-state asymptotic solution of the original free-boundary problem (2.1). For �nite liquid
depth, he proved that, if the nondimensional forcing amplitude is small of the order O(ε), the
primary-excited lowest natural sloshing modes must be of the order O(ε1/3) provided by |σ2 −
σ2

1 |/σ2
1 = O(ε2/3). Moiseev's asymptotic scheme makes it possible to detect which of modes have

second, O(ε2/3), and third O(ε) order of the smallness. This is in contrast to Narimanov' scheme
which postulates the intermodal ordering.

Faltinsen [7] implemented Moiseev's asymptotic scheme to construct a steady-state solution
for two-dimensional resonant sloshing in a rectangular tank due to either longitudinal or an-
gular harmonic excitations. Di Maggio & Rehm [4] used similar asymptotic scheme to describe
nonlinear free standing waves in an upright circular cylindrical tank.

2.4. Variational methods by Miles-Lukovsky
Variational multimodal methods were proposed by Miles [33] and Lukovsky [28]. Miles [33]

demonstrated applicability of the Lagrange and Bateman-Luke principles, while Lukovsky [28]
focused on Luke's variational formulation. These variational methods make it possible to derive
nonlinear modal equations without any asymptotic relationships for generalized coordinates.
The Lukovsky method leads to the following in�nite-dimensional system of ordinary di�erential
equations [29]

∞∑

k=1

∂An

∂βk
β̇k =

∞∑

k=1

AnkRk, n = 1, 2, . . . , (2.6a)
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∑

n

Ṙn
∂An

∂βi
+

1

2

∑
n

∑

k

∂Ank

∂βi
RnRk + ω̇1

∂l1ω

∂βi
+ ω̇2

∂l2ω

∂βi
+ ω̇3

∂l3ω

∂βi
+ ω1

∂l1ωt

∂βi

+ ω2
∂l2ωt

∂βi
+ ω3

∂l3ωt

∂βi
− d

dt

(
ω1

∂l1ωt

∂β̇i

+ ω2
∂l2ωt

∂β̇i

+ ω3
∂l3ωt

∂β̇i

)

+ (v̇01 − g1 + ω2v03 − ω3v02)
∂l1
∂βi

+ (v̇02 − g2 + ω3v01 − ω1v03)
∂l2
∂βi

+ (v̇03 − g3 + ω1v02 − ω2v01)
∂l3
∂βi

− 1

2
ω2

1
∂J1

11

∂βi
− 1

2
ω2

2
∂J1

22

∂βi
− 1

2
ω2

3
∂J1

33

∂βi

− ω1ω2
∂J1

12

∂βi
− ω1ω3

∂J1
13

∂βi
− ω2ω3

∂J1
23

∂βi
= 0, i = 1, 2, . . . , (2.6b)

where

An = ρ

∫

Q(t)

ϕndQ; Ank = ρ

∫

Q(t)

ϕndQ; Jij = ρ

∫

S(t)+Σ(t)

Ωi
∂Ωj

∂n
dS,

lkω = ρ

∫

Q(t)

ΩkdQ; lkωt = ρ

∫

Q(t)

∂Ωk

∂t
dQ; l3 = ρ

∫

Q(t)

zdQ,

l1 = ρ

∫

Q(t)

xdQ; l2 = ρ

∫

Q(t)

ydQ

(2.7)

are nonlinear functions of βi.
The nonlinear modal equations (2.6) are a full analogy of the original free-boundary problem

(2.1) provided by normal representation of Σ(t), i.e. z = ζ(y, z, t). Direct simulations by (2.6)
imply the so-called Perko's numerical method [37,40]. Faltinsen & Timokha [9,10] remarked that
these simulations can be very sti� for resonant sloshing and, therefore, certain numerical methods
become numerically unstable unless the time step is taken to be extremely small. This unrealistic
sti�ness is caused by ampli�cation of higher harmonics which are in the physical reality highly
damped due to di�erent physical mechanisms. La Rocca et al. [22] used truncated modal system
(2.6) with additional linear damping terms for solving time-domain problems, however, they were
not able to simulate strongly resonant sloshing since damping of higher harmonics are not well
predicted by these linear terms. Alternative is to introduce asymptotic relationships between
generalized coordinates and, thereby, exclude ("�lter") the unrealistically high harmonics. These
relationships can be taken from Moiseev's asymptotic analysis.

3. Asymptotic modal equations based on combining modal equa-
tions (2.6) and Moiseev's asymptotics

The aforementioned idea to use Moiseev-type ordering in the fully-nonlinear modal equa-
tions (2.6) was extensively used in [6, 11, 16, 29] for derivations of asymptotic modal equa-
tions. According to Moiseev's method, (i) the nondimensional excitations (associated with the
six functions (η1(t), η2(t), η3(t)) and (η4(t), η5(t), η6(t)) de�ned by v0 = (η̇1(t), η̇2(t), η̇3(t)) and
ω = (η̇4(t), η̇5(t), η̇6(t))) are of the highest asymptotic order, O(ε), (ii) the nondimensional gen-
eralized coordinates have di�erent asymptotic ordering from O(ε1/3) to o(ε) for di�erent tank
shapes, and (iii) the o(ε)-terms in the modal equations should be neglected. Algorithm for deriva-
tion of asymptotic modal equations contains the following steps:

1. Using analytical relationships between natural sloshing modes, one should identify the set
of nondimensional generalized coordinates ordered by O(ε2/3) and O(ε) provided by the
O(ε1/3)-order for the generalized coordinates responsible for the lowest natural sloshing
modes and the limit σ → σ1. This set, depending on the tank shape, can be �nite or
in�nite. Other generalized coordinates should be considered of the order o(ε) and excluded
from nonlinear modal analysis.

2. Using the Taylor expansion, one should �nd polynomial expressions (in terms of nondimen-
sional generalized coordinates βi) for ∂An/∂βk and Ank keeping up to the O(ε2/3)-order
and ∂Ank/∂βi keeping the O(ε1/3)-terms.
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3. We should �nd asymptotic solution Ri = F (βk, β̇k) from modal equations (2.6a) by sub-
stituting previously-found asymptotic expressions for ∂An/∂βk and Ank. This solution
should neglect the o(ε)-terms.

4. We should substitute expressions Ri = F (βk, β̇k) from the previous step into modal equa-
tions (2.6b) and keep up to the O(ε)-terms. This will give the desirable asymptotic modal
equations.

The algorithm is only realized for upright cylindrical tanks of circular and rectangular shape.
Finite-dimensional asymptotic nonlinear modal equations were derived for rectangular base. The
system of asymptotic modal equations is in�nite-dimensional for circular base. The asymptotic
modal equations remain quite accurate in describing both steady-state [8,29] and transient [6,15]
waves.

3.1. Two-dimensional rectangular tank
The two-dimensional liquid sloshing is considered in the Oxz-plane. The tank has the width

L1 and forced horizontally or angularly with almost periodic excitation and σ is close to σ1. The
natural sloshing frequencies and the L1-scaled natural modes are

fi(x) = cos
(
πi(x + 1

2
)
)
; ϕi(x, z) = fi(x)

cosh(πi(z + h̄))

cosh(πih̄)
; σ2

i = gπi tanh(πih̄), (3.1)

where h̄ = h/L1 is the nondimensional liquid depth.
According to analytical relationships for the trigonometric natural modes (3.1) (see, step 1.),

the Moiseev ordering is [6, 7, 36] as follows

β1 = O(ε1/3); β2 = O(ε2/3); β3 = O(ε); βk = o(ε), k ≥ 4 (3.2)

and, therefore, we arrive at the �nite-dimensional system of nonlinear modal equations [6]

(β̈1 + σ2
1β1) + d1(β̈1β2 + β̇1β̇2) + d2(β̈1β

2
1 + β̇2

1β1) + d3β̈2β1 = K1(t), (3.3a)

(β̈2 + σ2
2β2) + d4β̈1β1 + d5β̇

2
1 = 0, (3.3b)

(β̈3 + σ2
3β3) + q1β̈1β2 + q2β̈1β

2
1 + q3β̈2β1 + q4β̇1β̇2 + q5β̇

2
1β1 = K3(t); (3.3c)

coupling β1, β2, and β3. Higher generalized coordinates are formally of the order o(ε) and are
governed by linear modal equations. The �rst two nonlinear equations of (3.3) couple β1 with β2

and do not depend on β3. The third generalized coordinate is excited by rigid body motions and
due to nonlinear terms in β1 with β2. The forcing terms are

Ki(t) = −Pi,0 [η̈1 + Si,0η̈5 + g/lη5] (3.4)

and the hydrodynamic coe�cients di, qi, Pi,0, Si,0 are found analytically in [6] as functions of h̄.

3.2. Three-dimensional nearly-square tank
Let us consider a three-dimensional rectangular tank whose cross-section has dimensions L1

(along the Ox-axis) and L2 (along the Oy-axis). The tank is �lled with �nite liquid depth h
assuming that h/L1 and h/L2 are of the order O(1). The L1-scaled natural sloshing modes for
three-dimensional rectangular tank are

ϕi,j(x, y, z) = f
(1)
i f

(2)
j

cosh(λi,j(z + h̄))

cosh(λi,j h̄)
,

λi,j = π
√

i2 + r2
l j2, σ2

i,j =
g

L1
λi,j tanh(λi,j h̄), i, j ≥ 0, i + j 6= 0, rl =

L1

L2
. (3.5)

Physically, the natural sloshing modes (3.5) can be classi�ed in terms of three subclasses.
The �rst class consists of two-dimensional Stokes waves in the Oxz and Oyz-planes. These are
the same as the natural sloshing modes (3.1) implying two-dimensional, "planar" waves:

f
(1)
i (x) = cos(πi(x + 1

2
)), i ≥ 1; f

(2)
j (y) = cos(πjrl(y + 1

2rl
)), j ≥ 1. (3.6)
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The second subclass deals with the three-dimensional wave patterns

f
(1)
i (x) · f (2)

j (y), i, j ≥ 1. (3.7)

Finally, it is convenient to introduce the mixed modes

Si
1(x, y) = Af

(1)
i (x)± B̄f

(2)
i (y) (3.8)

recombining the two modes (3.6) in perpendicular planes into three-dimensional patterns with
non-zero weight coe�cients, AB̄ 6= 0. These are called "diagonal".

The three-dimensional sloshing is expected due to passage to square geometry implying σi,j →
σj,i (rl → 1) when natural modes f

(1)
1 and f

(2)
1 become degenerated (having equal natural

frequencies). By using the trigonometric-type natural modes, Faltinsen et al. [11] showed that
L1 ≈ L2 leads to Moiseev' asymptotic relations

β1,0 ∼ β0,1 = O(ε1/3); β2,0 ∼ β1,1 ∼ β0,2 = O(ε2/3),

β3,0 ∼ β2,1 ∼ β1,2 ∼ β0,3 = O(ε); βi,j . O(ε), i + j ≥ 4 (3.9)

in terms of the nondimensional forcing magnitude O(ε). They also derived the �nite-dimensional
system of modal equations coupling βi,j , i + j ≤ 3. Other modes (i + j ≥ 4) are governed by
the linear sloshing theory. It is the same as for the two-dimensional case in previous section.
After re-denoting for brevity β1,0 = a1, β2,0 = a2, β0,1 = b1, β0,2 = b2, β1,1 = c1, β3,0 = a3, β2,1 =
c21, β1,2 = c12, β0,3 = b3 these nonlinear asymptotic modal equations take the form

[
ä1 + σ2

1,0a1 + d1(ä1a2 + ȧ1ȧ2) + d2(ä1a
2
1 + ȧ2

1a1) + d3ä2a1

+ P1,0(η̈1 − S1,0η̈5 − gη5/L1)
]

+ d6ä1b
2
1 + b̈1(d7c1 + d8a1b1) + d9c̈1b1 + d10ḃ

2
1a1 + d11ȧ1ḃ1b1 + d12ḃ1ċ1 = 0, (3.10a)

[
b̈1 + σ2

0,1b1 + d̄1(b̈1b2 + ḃ1ḃ2) + d̄2(b̈1b
2
1 + ḃ2

1b1) + d̄3b̈2b1

+ P0,1(η̈2 + S0,1η̈4 + gη4/L1)
]

+ d̄6b̈1a
2
1 + ä1(d̄7c1 + d̄8a1b1) + d̄9c̈1a1 + d̄10ȧ

2
1b1 + d̄11ȧ1ḃ1a1 + d̄12ȧ1ċ1 = 0, (3.10b)

[
ä2 + σ2

2,0a2 + d4ä1a1 + d5ȧ
2
1

]
= 0, (3.10c)

[
b̈2 + σ2

0,2b2 + d̄4b̈1b1 + d̄5ḃ
2
1

]
= 0, (3.10d)

c̈1 + d̂1ä1b1 + d̂2b̈1a1 + d̂3ȧ1ḃ1 + σ2
1,1c1 = 0, (3.10e)

[
ä3 + σ2

3,0a3 + ä1(q1a2 + q2a
2
1) + q3ä2a1 + q4ȧ

2
1a1 + q5ȧ1ȧ2

+ P3,0[η̈1 − S3,0η̈5 − gη5/L1]
]

= 0, (3.11a)

c̈21 + σ2
2,1c21 + ä1(q6c1 + q7a1b1) + b̈1(q8a2 + q9a

2
1) + q10ä2b1 + q11c̈1a1

+ q12ȧ
2
1b1 + q13ȧ1ḃ1a1 + q14ȧ1ċ1 + q15ȧ2ḃ1 = 0, (3.11b)

c̈12 + σ2
1,2c12 + b̈1(q̄6c1 + q̄7a1b1) + ä1(q̄8b2 + q̄9b

2
1) + q̄10b̈2a1 + q̄11c̈1b1

+ q̄12ḃ
2
1a1 + q̄13ȧ1ḃ1b1 + q̄14ḃ1ċ1 + q̄15ȧ1ḃ2 = 0, (3.11c)
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[
b̈3 + σ2

0,3b3 + b̈1(q̄1b2 + q̄2b
2
1) + q̄3b̈2b1 + q̄4ḃ

2
1b1 + q̄5ḃ1ḃ2

+ P0,3[η̈2 + S0,3η̈4 + gη4/L1]
]

= 0 (3.11d)

with the hydrodynamic coe�cients being functions of h̄ and rl. Analytical expressions for these
coe�cients are explicitly derived in [11]. We recognize in eqs. (3.10) and (3.11) that the terms
in square brackets are associated with "planar" �ows in either Oxz or Oyz planes. They are
exactly the same as in section 3.1. Other terms and additional equations for c11, c21 and c12 are
due to three-dimensional intermodal interaction. Here the subsystem (3.10) does not depend on
a3, c21, c12 and b3 calculated from (3.11). The subsystem (3.11) is linear in a3, c21, c12 and b3 and
depends nonlinearly on a1, b1, a2, b2 and c1.

Having based on modal equations (3.10), Faltinsen et al. [11,12] studied steady-state resonant
sloshing occurring due to harmonic (ηk = ηk1 cos(σt), η3a = η6a = 0) longitudinal (η2a = η4a =
0) or diagonal (η1a = η2a, η4a = η5a) excitations. They showed that there are "planar "diagonal"
and "swirling" regimes. If the forcing is along the Ox-axis, the following approximations of the
steady-state elevation are possible

ζ(x, y, t) = Af
(1)
1 cos(σt) + o(A), (3.12a)

ζ(x, y, t) = [Af
(1)
i (x)± B̄f

(2)
i (y)] cos(σt) + o(A, B̄), (3.12b)

ζ(x, y, t) = Af
(1)
1 cos(σt)±Bf

(2)
i (y) sin(σt) + o(A, B) (3.12c)

corresponding to these three regimes.
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Fig. 2. Theoretical frequency domains of stable resonant steady-state sloshing as a function of the liquid
depth-to-breadth ratio h̄ = h/L1 (L1 = L2) versus σ/σ1 for di�erent forcing amplitudes. Longitudinal

excitations with amplitudes (a) η1a/L1 = 0.001, (b) η1a/L1 = 0.0025, (c) η1a/L1 = 0.0078, and
(d) η1a/L1 = 0.025. There are no stable steady-state waves and chaotic motions occur in the shaded

area. Comparisons with experimental observations are made in (c) for the liquid depths h̄ = 0.508, 0.34
and 0.27 and in (d) for h̄ = 0.508. Experimental steady-state regimes are denoted as "p" � planar

waves, "s" � swirling, "d" � nearly-diagonal and "*" � "chaos"
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Fig. 2 summarizes frequency domains of stable steady-state regimes as function of h̄ for
square-base tank, L1 = L2, and four di�erent forcing amplitudes. The �gure shows that region of
stable planar waves is always away from the main resonance σ/σ1 = 1. The region where planar
waves are unstable is denoted as D2D4FGHO2O1. This region becomes wider with increasing
forcing amplitude. The two-dimensional analysis based on results in section 3.1. does not lead to
this instability region. This con�rms that it is caused by three-dimensional perturbations. Geo-
metrically, D2D4FGHO2O1 falls into three sub-regions. The �rst one, O1CGHO2 corresponds
to unstable planar regime, but diagonal waves are stable. This region appears only for smaller
depths and is absent for fairly deep water. The second region, FD4D6, corresponds to the case
when there is stable swirling, but planar waves are unstable (the region disappears at σ/σ1 = 1
for small depths). No stable steady-state solutions exist and chaotic motions are possible for the
region D2D6FHC which disappears for small liquid depths. Away from region D2D4FGHO2O1,
the planar waves are stable and may co-exist with stable swirling (region R1FD4) or diagonal
waves (region A1BCD1). There are no regions where stable swirling co-exist with stable diagonal
waves. Swirling is stable right up to the border D6FR1. The region of stable swirling is away
from σ/σ1 = 1 for smaller h̄, while e�ective domain of stable diagonal waves A1BO1O2HCD1

drifts left of the main resonance with increasing h̄. The diagonal waves co-exist with planar waves
when h̄ is larger than the ordinate of C. Theoretically, initial conditions determine what kind of
steady-state motion is realized after initial transients.

The theoretical e�ective frequency domains for diagonal excitations are summarized in Fig. 3.
Obviously, planar regimes are then impossible. The instability of diagonal waves and swirling is
between the solid and dashed lines, respectively. The instability zones become narrower with
lower forcing amplitudes (note the abscissas in parts a-d). Both regimes are simultaneously
unstable only when the zones overlap each other. This is only possible for smaller depths. Another
interesting point is that two di�erent stable steady-state regimes (diagonal and swirling) co-exist
for h̄ > 0.27 in the vicinity of the main resonance. Depending on the transient/initial perturbation
scenarios either diagonal or swirling waves are excited.
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Fig. 3. Theoretical frequency domains of stable resonant steady-state motions caused by resonant
diagonal excitations η1a = η2a 6= 0 and presented in the (σ/σ1, h̄)-plane for di�erent forcing amplitudes.
The square-base tank and (a)

√
2η2

1a/L1 = ε = 0.001, (b) ε = 0.0025, (c) ε = 0.0078, and (d) ε = 0.025.
The instability of diagonal waves and swirling is expected between solid and dashed lines, respectively.
Comparisons with experimental data are made in part (c) for h̄ = 0.508 and 0.34. "d-stable diagonal

waves, "s- stable swirling waves, ?= not clear identi�ed
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3.3. Upright circular cylindrical tank
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Fig. 4. E�ective frequency domains for stable steady-state waves and chaos in the
(σ/σ1,1, η2a/R0)-plane for an upright circular cylindrical tank with h/R0 = 1.5.

Experimentally-predicted bounds are taken from Royon-Lebeaud et al. [41]: "solid circle" =
experimental bounds for planar waves, "empty circle" = experimental bound for swirling
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Fig. 5. E�ective frequency domains for stable steady-state waves and chaos in the
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(case b). The bounds between the domains are obtained by using the modal theory (9.47)-(9.51), solid

lines. Experimentally-predicted bounds are taken from Fig. 4

Consider an upright circular cylindrical tank of the radius R0 with the liquid depth h. The
R0-scaled natural sloshing modes in cylindrical coordinate system (r, θ, z) are

ϕm,n,1 = Rm,nZm,n(z) cos(mθ); ϕm,n,2 = Rm,nZm,n(z) sin(mθ), m ≥ 0, n ≥ 1, (3.13)
where J ′m(km,n) = 0, σ2

m,n = gkm,n tanh(km,nh̄) and

Zm,n(z) =
cosh(km,n(z + h̄))

cosh(km,nh̄)
; Rm,n(r) =

Jm(km,nr)

Jm(km,nh̄)
.

The natural modes (3.13) possess the trigonometric algebra by angular coordinate θ and the
Bessel functions Jm describe wave patterns in radial direction. The latter causes an in�nite
number of generalized coordinates corresponding to the second and third order

β1,1,j = O(ε1/3), β0,n = O(ε2/3), β2,n,j = O(ε2/3), β3,n,j = O(ε), j = 1, 2, n ≥ 1. (3.14)
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Adopting the notations β1,1,1 = p1,1, β1,1,2 = r1,1, β0,n = p0,n, β2,n,1 = p2,n, β2,n,2 =
r2,n, β3,n,1 = p3,n, β3,1,2 = r3,n, Lukovsky [31] derived the corresponding in�nite-dimensional
system. The equations for the dominant generalized coordinates and the second-order terms take
the form

µ1,1(p̈1,1 + σ2
1,1p1,1) + p1,1

∞∑
n=1

d
(2)
0,np̈0,n +

∞∑
n=1

d
(3)
0,n(p̈1,1p0,n + ṗ1,1ṗ0,n)

+ d1(p
2
1,1p̈1,1 + p1,1ṗ

2
1,1 + r1,1p1,1r̈1,1 + p1,1ṙ

2
1,1)

+ d2(r
2
1,1p̈1,1 + 2r1,1ṙ1,1ṗ1,1 − r1,1p1,1r̈1,1 − 2p1,1ṙ

2
1,1) +

∞∑
n=1

d
(2)
2,n(p1,1p̈2,n + r1,1r̈2,n)

+

∞∑
n=1

d
(3)
2,n(p̈1,1p2,n + r̈1,1r2,n + ṗ1,1ṗ2,n + ṙ1,1ṙ2,n)

= −P1(η̈1 − gη5/R0 − S1η̈5), (3.15a)

µ1,1(r̈1,1 + σ2
1,1r1,1) + r1,1

∞∑
n=1

d
(2)
0,np̈0,n +

∞∑
n=1

d
(3)
0,n(r̈1,1p0,n + ṙ1,1ṗ0,n)

+ d1(r
2
1,1r̈1,1 + r1,1ṙ

2
1,1 + r1,1p1,1p̈1,1 + r1,1ṗ

2
1,1)

+ d2(p
2
1,1r̈1,1 + 2p1,1ṙ1,1ṗ1,1 − r1,1p1,1p̈1,1 − 2p1,1ṗ

2
1,1) +

∞∑
n=1

d
(2)
2,n(p1,1r̈2,n − r1,1p̈2,n)

+

∞∑
n=1

d
(3)
2,n(p̈1,1r2,n − r̈1,1p2,n + ṗ1,1ṙ2,n − ṙ1,1ṗ2,n)

= −P1(η̈2 + gη4/R0 + S1η̈4), (3.15b)

µ2,0(p̈0,n + σ2
0,np0,n) + d

(1)
0,n(ṗ2

1,1 + ṙ2
1,1) + d

(2)
0,n(p̈1,1p1,1 + r̈1,1r1,1) = 0, (3.15c)

µ2,n(p̈2,n + σ2
2,np2,n) + d

(1)
2,n(ṗ2

1,1 − ṙ2
1,1) + d

(2)
2,n(p̈1,1p1,1 − r̈1,1r1,1) = 0, (3.15d)

µ2,n(r̈2,n + σ2
2,nr2,n) + 2d

(1)
2,nṙ1,1ṗ1,1 + d

(2)
2,n(p̈1,1r1,1 + r̈1,1p1,1) = 0. (3.15e)

Analyzing the modal equations, one can �nd two di�erent steady-state regimes

ζ(r, θ, t) = AR1,1 cos θ cos(σt) + o(A), (3.16a)

ζ(r, θ, t) = R1,1[A cos θ cos(σt) + B sin θ sin(σt)] + o(A, B). (3.16b)
called "planar" and "swirling". E�ective frequency domains associated with stable steady-state
regimes and the possibly of "chaos" (versus forcing amplitude and liquid depth) are illustrated
in Fig. 4 and 5. The results are supported by Royon-Lebeaud et al.' [41] model tests. The range
of "chaos" increases with increasing excitation amplitude, but Fig. 5 shows that the frequency
domain for "chaos" decreases with decreasing h̄.

3.4. Non-cylindrical tank shapes
Lukovsky [27] proposed a non-conformal mapping technique to extend Narimanov's asymp-

totic scheme for tanks with non-vertical walls. Later on, the same technique was generalized
in [16,29] to derive an analogy of modal systems (2.6). However, because of di�culties in �nding
higher natural sloshing modes satisfying the Laplace equation and the zero-Neumann condition
for any instant S(t), this technique was realized to derive asymptotic modal equations only for
circular conical tanks [16, 30]. Further, the �rst step of the algorithm in section 3. suggests es-
tablishing the second- and third-order generalized coordinates. This task becomes quite di�cult
for complex tank shapes and explains why the modal equations in [16,30] (conical tank) are not
complete and include, along with two dominants, only three second-order generalized coordinates
whose number must be theoretically in�nite.



80 I. A. LUKOVSKY AND A.N.TIMOKHA

There were made some preliminary steps towards derivations of modal equations for a spher-
ical tank. For h/R0 < 1 (R0 is the radius), the natural sloshing modes to be used in algorithm
from section 3. were constructed [2]. For higher liquid depths, the main di�culty is the singular
behavior of these modes at the contact line formed by Σ0 and S0.
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