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Employing the virtual work variational principle and the linear multimodal method for the
liquid sloshing in an axisymmetric tank, we study coupled eigenoscillations of a tower and
an elevated tank partially filled by a liquid. An emphasis is placed on the case of an upright
circular cylindrical tank. Theoretical results are compared with known experimental data.
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1. Introduction

Studying water tower dynamics is an important task of civil engineering. The supporting structure (tower) typically has a
complex design and can be considered as either a reinforced frame type staging configuration (Dutta et al., 2004) or an
orthotropic shell equipped by various internal stingers, stiffeners, and webs. When the tower height is much larger than the
horizontal tower dimension, the structural vibrations can be described within the framework of the beam model with
varying cross-section area, second moment of inertia, Young's modulus, and structural density. Applying the generalized
Euler–Bernoulli beam model instead of more complicated models, e.g., shell model, is common in engineering. Discussions
on that are, for instance, given by Forsberg (1969), Trotsenko (2006), and Gavrilyuk et al. (2010) where free (eigen)
oscillations of a long axisymmetric structure are considered.

Eigenoscillations of an axisymmetric structure, e.g., shell or beam, are characterized by axisymmetric (if exist) and
degenerated (having equal eigenfrequencies) antisymmetric eigenmodes. The degenerated beam-type eigenmodes are not
coupled in the linear statement and, normally, define two independent eigenmotions, occurring in two perpendicular planes
containing the symmetry axis. For axisymmetric tank shapes, the linear modal sloshing theory (see,Chapters 4 and 5 by
Faltinsen and Timokha, 2009, and Appendix A) also distinguishes axisymmetric and degenerated natural sloshing modes.
The latter set includes the beam-type sloshing modes consisting of an infinite set of the degenerated pairs whose two
elements define mutually ‘perpendicular’ perturbations of the liquid mass center, but axisymmetric and the remaining
degenerated natural sloshing modes do not affect the liquid mass center, in the linear approximation. As a consequence,
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‘planar’ beam vibrations do not perturb the liquid mass center perpendicularly to this plane and, therefore, the coupled
tower-linear sloshing motions can independently be considered in the two aforementioned perpendicular planes. The
degenerated eigenmodes may be nonlinearly coupled due to the so-called internal resonances. The nonlinear phenomena
are, however, neglected in the present paper.

Studying the liquid sloshing dynamics implies a description of the hydrodynamic force and moment caused by tower
vibrations, and visa-versa. One can naturally use Computational Fluid Dynamics (CFD) as exemplified by Curadelli et al.
(2010). Other engineering approaches (see,e.g., Shenton and Hampton, 1999; Shrimali and Jangid, 2003; Dutta et al., 2004;
Livaoglu and Dogangun, 2007; Livaoglu, 2008; Moslemi et al., 2011) are associated with the so-called equivalent mechanical
systems, e.g., pendulum or mass-spring (see more on these phenomenological approaches in the book by Ibrahim, 2005).
Adopting the pendulum or/and spring-mass models makes the mathematical modeling less accurate but simpler with
respect to CFD. A disadvantage is that the phenomenological modeling may need a set of empirical coefficients and,
sometimes, a dedicated experimental validation. An alternative can be the multimodal method extensively elaborated by
Faltinsen and Timokha (2009). The multimodal method makes it possible to replace, in a rigorous mathematical way, the
original sloshing problem by a (modal) system of ordinary differential equations with respect to a set of generalized
coordinates βiðtÞ responsible for the free-surface motions. The right-hand side of these equations depends on the six
functions ηn;n¼ 1;…;6 implying the six degrees of freedom of the rigid tank. Lukovsky's formulas express the
hydrodynamic force and moment as functions of βiðtÞ and ηn. These formulas can be used to derive dynamic equations of
the entire ‘liquid-structure’ mechanical system.

The present paper uses the multimodal method and the generalized Euler–Bernoulli beam model to study the coupled
eigenoscillations of the considered mechanical system. The original statement is based on the virtual work variational
principle (see, Section 2). The statement does not deal with boundary value problems which can be written for this hybrid
mechanical system but rather with a four virtual works caused by (i) the force and moment due to the rigid tank inertia, (ii)
the inertial force and moment due to beam vibrations, (iii) the force associated the global weight of the structure, and (iv)
the hydrodynamic force and moment due to sloshing. The liquid sloshing dynamics is described by using the linear modal
equations whose derivation details are theoretically elaborated in chapter 5 by Faltinsen and Timokha (2009). To make the
paper self-contained, the required details of the linear modal theory are given in Appendix A.

In Section 3, we derive a differential problem following from the virtual work principle. Mathematically, the problem
takes the form of the generalized Euler–Bernoulli beam equation coupled with an infinite-dimensional system of ordinary
differential equations with respect to the generalized coordinates describing the natural sloshing modes displacements. The
Euler–Bernoulli beam equation are equipped with the clamped end conditions at the lower beam end but the
inhomogeneous boundary conditions at the upper end contain, in the right-hand side, the Lukovsky-type modal expressions
with respect to the aforementioned generalized coordinates. The expressions imply the resulting hydrodynamic force and
moment applied to an axisymmetric rigid tank carrying an ideal incompressible liquid with a free surface. The derived
differential problem describes coupled linear free oscillations of the mechanical system.

In Section 5, we use the variational statement for solving the problem on eigenoscillations of the coupled mechanical
system. A focus is on the Ritz method and the case of an upright circular cylindrical tank. The method provides a fast
convergence and an accurate approximation of the eigensolution. Results are validated by comparing with experiments by
Dieterman (1986, 1988). A series of numerical examples demonstrating the dependence of a few lower coupled
eigenfrequencies of the mechanical system on the liquid filling is presented.

2. Variational statement of the problem

2.1. Preliminaries

We consider free linear (small-amplitude) oscillations of an axisymmetric tower with an elevated axisymmetric tank
installed on the top as shown in Fig. 1. The tank is partly filled by an ideal incompressible liquid with irrotational flow.
External force and moment applied to the mechanical system can also be accounted for but the forced motions are not
subject of the present study.

The O1x1y1z1�coordinate system is rigidly fixed with the Earth so that O1z1 is superposed with the symmetry axis of this
multicomponent mechanical system (see, Fig. 1). The tank bottom is rigidly fixed to the tower top so that their symmetry
axes coincide with each other. The tower bottom is rigidly clamped to the ground (soil) whose feedback is neglected. As was
mentioned in the Introduction, we assume that the tower height is much larger of the tower width (maximum diameter),
and one can model the tower oscillations by employing the generalized Euler–Bernoulli beam equation. The beam is
characterized by the cross-sectional area Sb, the second moment of inertia I, Young's modulus E and the mass density ρb.

As discussed in the Introduction, linear oscillations of the hybrid axisymmetric mechanical system can be considered as a
superposition of beam-type planar eigenoscillations occurring in two perpendicular planes containing the symmetry axis.
The planar eigenoscillations are associated with planar motions of the generalized Euler–Bernoulli beam coupled with the
hydrodynamic response, force and moment, caused by the ‘planar’ motions of the beam top. Without loss of generality, the
planar beam vibrations are assumed to occur in the O1y1z1�plane so that the tank-fixed coordinate system Oxyz is rigidly
fixed to the tank top and performs small-amplitude translatory (sway) and angular (roll) motions as shown in Fig. 1. In the
linear statement, these motions can be described by instant horizontal displacements of the origin O (because the beam has
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Fig. 1. Main geometric notations. The coordinate system Oxyz is tank-fixed with the origin at the tank bottom. The Onxnynzn�and O1x1y1z1�coordinate
systems are the Earth-fixed ones with Onzn and O1z1 counterdirected to the gravity acceleration vector g.
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constant length, vertical displacements are of the second order of smallness with respect to the horizontal displacements),
u(t), and instant angular motions, ϑðtÞ, of the Oyz-coordinate system around the Ox-axis. The linear modal theory in
Appendix A shows that the two degrees of freedom associated with sway, η2 ¼ u, and roll, η4 ¼ ϑ, lead to nonzero F2
(hydrodynamic force in the Oyz-plane) and F4 (moment around the Ox-axis), but do not cause hydrodynamic loads
perpendicular to the Oyz-plane. This means that the liquid mass center remains in the Oyz-plane. Generally speaking, the
same is true for the pairs η1 and η5 and the hydrodynamic force and moment, F1 and F5, respectively, keeping the liquid mass
center in the Oxz-plane. Assuming planar motions can fail for the forced resonant excitations leading to the so-called
internal resonance and associated strongly nonlinear three-dimensional phenomena, e.g., swirling (Gavrilyuk et al., 2000,
2007; Ikeda et al., 2012; Takahara and Kimura, 2012; Faltinsen and Timokha, 2013).

Let wðz1; tÞ denote the beam deviations, and l be the beam length (height). Functions u¼ η2 and ϑ¼ η4 can be expressed
in terms of wðz1; tÞ and its first-order spatial derivative at z1 ¼ l as follows:

u¼wðl; tÞ; ϑ¼ −
∂w
∂z1

����
z1 ¼ l

: ð1Þ

2.2. Virtual work principle

We employ the virtual work variational principle for the Euler beam. According to this principle, the full variation of the
beam potential energy (Volmir, 1967)

δW ¼
Z l

0
EI

∂2w
∂z21

∂2δw
∂z21

dz1;

where δw are admissible variations of w, should be equal to the sum of virtual works caused, for the linear free oscillations,
by inner (with respect to the entire mechanical system) loads applied to the beam, i.e.,

δW ¼ ∑
Nf

i ¼ 1
δAi: ð2Þ

Four different inner loads (Nf¼4) should be accounted for including (i) the force and moment associated with inertia of the
rigid tank body; (ii) the inertial force and moment due to the beam vibration; (iii) the force associated with the weight; (iv)
the hydrodynamic force and moment due to sloshing. Furthermore, we give expressions for the virtual works δAi.
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2.3. The virtual works of the non-hydrodynamic nature

By definition, virtual work δA1 associated with the inertial force and moment associated of the rigid tank body reads as

δA1 ¼ −Ið0Þ €ϑδϑþMtZtC0 ð €ϑδuþ €uδϑÞ−Mt €uδuþ gMtZtc0ϑδϑ; ð3Þ
where g is the gravity acceleration, ρt is the tank body density, Qt is the rigid tank domain, Ið0Þ ¼ RQt

ρtðy2 þ z2Þ dQ is moment
of inertia of the rigid tank around axis Ox, and Mt and ð0;0; ZtC0 Þ are the tank body mass and the tank mass center in the
Oxyz-coordinate system, respectively.

The virtual work δA2 related to the inertial properties of the beam (tower) is defined as

δA2 ¼ −
Z l

0
ρbSb €wδw dz1; ð4Þ

where ρb is the beam density and Sb is the cross-sectional area of the beam.
The work δA3 due to the vertical ‘weight’ force Nðz1Þ associated with the total beam-and-elevated tank weight (together

with liquid) is

δA3 ¼
Z l

0
Nðz1Þ

∂w
∂z1

∂δw1

∂z1
dz1; ð5Þ

where

Nðz1Þ ¼M0g þ ρbSbgðl−z1Þ ð6Þ
and M0 ¼Mt þMl is the total mass of the tank body together with the contained liquid.

2.4. The virtual work due to liquid sloshing

This virtual work can be expressed, formally, as

δA4 ¼ F2δuþ F4δϑ; ð7Þ
where F2 is the horizontal hydrodynamic force (in the Earth-fixed coordinate system) along the Oyn axis and F4 is the
hydrodynamic moment around the Oxn axis.

The forthcoming analysis needs explicit analytical expressions for F2 and F4 as functions of u and ϑ, appearing as
disturbances of the rigid tank, and an infinite set of generalized coordinates responsible for the liquid sloshing motions with
infinite degrees of freedom. Assuming that the contained liquid is inviscid incompressible with irrotational flow, we adopt
the so-called Lukovsky formulas (Lukovsky, 1990; Lukovsky and Timokha, 1995; Faltinsen and Timokha, 2009) for the
hydrodynamic force F2 and moment F4 as they follow from the linear multimodal method. These formulas contain the
aforementioned generalized coordinates which describe the disturbances of the natural sloshing modes.

To make the present paper self-contained, we give some details of the linear modal theory in Appendix A for the most
general case, i.e., when the rigid tank motions occur with the six degrees of freedom associated with ηiðtÞ; i¼ 1;…;6.
Appendix A demonstrates that the tank motions in the Oyz plane, here, due to u¼ η2 and ϑ¼ η4 can lead to the
hydrodynamic force F2 and moment F4, but keep the liquid mass center in the Oyz plane.

Employing the Lukovsky formula (A.16b) for the horizontal hydrodynamic force F2 (in the Earth-fixed coordinate system)
and the hydrodynamic moment F4 (formula (A.17a)) rewrites (7) in the form

δA5 ¼ −Ml €u þMlZlC0
€ϑ− ∑

∞

i ¼ 1

€β
s
i λi

 !
δuþ MlZlC0

€u þ gMlZlC0
ϑ−JO0 €ϑ− ∑

∞

i ¼ 1
ð €βs

i λ
O
0i þ gβsi λiÞ

 !
δϑ; ð8Þ

where Ml is the liquid mass and ð0;0; ZlC0
Þ is the liquid mass center in the Oxyz-coordinate system. Here, (8) introduces the

generalized coordinates βsi ðtÞ describing the free surface elevations in the cylindrical coordinate system associated with
Oftxftyftzft and defined by the equation

zft ¼ sin θ ∑
∞

i ¼ 1
βsi ðtÞφ1;iðr;0Þ; ð9Þ

where sin θφ1;iðr; zftÞ are the corresponding natural sloshing modes. The generalized coordinates βsi ðtÞ are the solution of the
modal equations

μið €β
s
i þ s2i β

s
i Þ þ λi €wðl; tÞ−g ∂wðl; tÞ

∂z1

� �
−λO0i

∂ €wðl; tÞ
∂z1

¼ 0; ð10Þ

where si are the natural sloshing frequencies but the definition of the hydrodynamic coefficients μi, λi, λ
O
0i ¼ λ0i−hλi (h is the

liquid depth) and JO0 ¼Mlhð2ZlC0
−hÞ þ J0 (the coefficients also appear in (8)) is given in Appendix A by integrals (A.9) and (A.13).

Computing the hydrodynamic coefficients μi, λi, λ0i and J0 is a relatively complicated task. Analytical expressions for them
exist, e.g., for an upright circular cylindrical tank (Appendix B). Numerical values of the hydrodynamic coefficients for a
tapered conical tank are computed by Gavrilyuk et al. (2012). For spherical tanks, the numerical hydrodynamic coefficients
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can be extracted from supplementary materials of the paper by Faltinsen and Timokha (2013) or based on the analytically
approximate natural sloshing modes by Barnyak et al. (2011) and Faltinsen and Timokha (2012).

3. Differential formulation following from the variational principle

When summarizing the five virtual works, variational relation (2) and condition (1) lead together to the variational equationZ l

0
EI

∂2w
∂z21

∂2δw
∂z21

−NðzÞ ∂w
∂z1

∂δw
∂z1

þ ρbSb €wδw

" #
dz1 þ IO

∂ €w
∂z1

∂δw
∂z1

þM0 €wδw
�

þM0ZC0
€w
∂δw
∂z1

þ ∂ €w
∂z1

δw
� �

þ ∑
∞

i ¼ 1

€β
s
i λiδw−λO0i

∂δw
∂z1

� �
−gM0ZC0

∂w
∂z1

∂δw
∂z1

−g ∑
∞

i ¼ 1
βsi λi

∂δw
∂z1

#
z1 ¼ l

¼ 0; ð11Þ

where IO ¼ Ið0Þ þ JO0 is the total (rigid tank plus liquid) inertia moment around the Ox-axis, M0 ¼Mt þMl is the total (tank plus
liquid) mass, and ZC0 is the vertical coordinate of the ‘tank-liquid’ mass center in the Oxyz-system, i.e.,

ZC0 ¼
MtZtC0 þMlZlC0

Mt þMl
: ð12Þ

The kinematic constraint is the clamped-end conditions

wð0; tÞ ¼ ∂w
∂z1

ð0; tÞ ¼ 0 ð13Þ

which should be fulfilled for w and δw. Another constraint to (11) is the linear modal system (10).
Integrating by parts (by coordinate z1) the two first components of (11)

Z l

0
EI

∂2w
∂z21

∂2δw
∂z21

¼ EI
∂2w
∂z21

∂δw
∂z1

−
∂
∂z1

EI
∂2w
∂z21

 !
δw

" #l
0

þ
Z l

0

∂2

∂z21
EI

∂2w
∂z21

 !
δw dz1; ð14aÞ

−
Z l

0
NðzÞ ∂w

∂z1
∂δw
∂z1

dz1 ¼− Nðz1Þ
∂w
∂z1

δw
� �l

0
þ
Z l

0

∂
∂z1

Nðz1Þ
∂w
∂z1

� �
δw dz1 ð14bÞ

and using (13) in variational equation (11) fulfilled for arbitrary δw, δw and ∂δw=∂z1 at z1 ¼ l leads to the following boundary
problem with respect to wðz1; tÞ

∂2

∂z21
EI

∂2w
∂z21

 !
þ ∂

∂z1
Nðz1Þ

∂w
∂z1

� �
þ ρbSb €w ¼ 0; z1∈ð0; lÞ; ð15aÞ

∂
∂z1

EI
∂2w
∂z21

 !
þ Nðz1Þ

∂w
∂z1

" #
z1 ¼ l

¼ M0 €w þM0ZC0

∂ €w
∂z1

� �
z1 ¼ l

þ ∑
∞

i ¼ 1

€β
s
i λi; ð15bÞ

EI
∂2w
∂z21

 !
z1 ¼ l

¼ gM0ZC0

∂w
∂z1

−M0ZC0
€w−IO

∂ €w
∂z1

� �
z1 ¼ l

þ ∑
∞

i ¼ 1

€β
s
i λ

O
0i þ g ∑

i ¼ 1
βsi λi; ð15cÞ

where βsi ðtÞ are defined by linear modal equations (10) and the clamped-end conditions (13) are satisfied. The problem
should be equipped by the initial conditions at t ¼ t0

wðz1;0Þ ¼w0ðz1Þ; _wðz1;0Þ ¼w1ðz1Þ; βsi ð0Þ ¼ β0i ; _β
s
i ð0Þ ¼ β1i ð16Þ

to uniquely describe the coupled ‘liquid-structure’ dynamics.
Eq. (15a) is the generalized Euler–Bernoulli beam equation in the gravity field. A heavy weight is attached to the beam

top. The boundary conditions (15b) and (15c) represent the shear force and the bending moment

Q ¼ −
∂
∂z1

EI
∂2w
∂z21

 !
þ Nðz1Þ

∂w
∂z1

" #
and M¼ −EI

∂2w
∂z21

;

respectively, due to the inner loads applied to the beam top (z1 ¼ l). These loads are caused by the rigid tank motions and the
hydrodynamic loads due to the sloshing of the contained liquid.

4. Nondimensional statement

Henceforth, we consider the characteristic length scale R0 and the characteristic time
ffiffiffiffiffiffiffiffiffiffiffi
R0=g

p
. Then all variables of the

problem (15), (10), and (13) as well as the liquid depth can be transformed to the nondimensional form (with overbars)

t2 ¼ R0

g
t2; l¼ R0l; λi ¼ ρlR

3
0λ i; s2n ¼

g
R0

s2
n; μi ¼ ρlR

3
0μi;
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λO0i ¼ ρlR
4
0λ

O
0i; IO ¼ ρlR

5
0I ; I ¼ ρt

ρl
Ið0Þ þ JO0 ; z1 ¼ R0z1;

w¼ R0w; βsi ¼ R0β i; EI¼ E0I0EI; N¼ E0I0

R2
0

N ;

N ¼DðM0 þ
ρb
ρl

ðl−z1ÞÞ; D¼ ρlR
5
0g

E0I0
; Sb ¼ R2

0Sb; M0 ¼ ρlR
3
0M0;

M0 ¼
ρt
ρl
Mt þMl

� �
; ZC0 ¼ R0ZC0 ; h ¼ h

R0
; ð17Þ

where E0I0 is the bending stiffness in the characteristic cross-section. For brevity, the overbars will furthermore be omitted.
The nondimensional variational equation (11) takes the formZ l

0
EI

∂2w
∂z21

∂2δw
∂z21

−Nðz1Þ
∂w
∂z1

∂δw
∂z1

þ ρb
ρl

DSb
∂2w
∂t2

δw

" #
dz1 þ D I

∂3w
∂z1∂t2

∂δw
∂z1

þM0ZC0

∂2w
∂t2

∂δw
∂z1

þ ∂3w
∂z1∂t2

δw
� �

þM0
∂2w
∂t2

δw
��

þ ∑
∞

i ¼ 1

€β i λiδw−λO0i
∂δw
∂z1

� �
−M0ZC0

∂w
∂z1

∂δw
∂z1

− ∑
∞

i ¼ 1
βiλi

∂δw
∂z1

#)
z1 ¼ l

¼ 0; ð18Þ

but the nondimensional linear modal equations (10) are

μið €β i þ s2i βiÞ þ λi
∂2w
∂t2

−λO0i
∂3w
∂z1∂t2

−λi
∂w
∂z1

� �
z1 ¼ l

¼ 0; i¼ 1;2;…: ð19Þ

5. Eigenfrequencies and eigenmodes

5.1. Statement

Eigenoscillations of the mechanical system are associated with the time-harmonic solution

wðz1; tÞ ¼ expðiωtÞwðz1Þ; βnðtÞ ¼ expðiωtÞbn; ð20Þ
which leads to the following spectral boundary problemwith respect to unknown spectral parameter ω2, function wðz1Þ, and
coefficients bi; i¼ 1;2;…

d2

dz21
EI

d2w

dz21

 !
þ d

dz1
N
dw
dz1

� �
−ω2 ρb

ρl
DFw¼ 0; z1∈ð0; lÞ; ð21aÞ

EI
d2w

dz21

 !
z1 ¼ l

¼ ω2D M0ZC0wþ I
dw
dz1

� �
z1 ¼ l

− ∑
i ¼ 1

biλO0i

" #
þ DM0ZC0

dw
dz1

�����
z1 ¼ l

þ D ∑
∞

i ¼ 1
biλi; ð21bÞ

d
dz1

EI
d2w

dz21

 !
þ N

dw
dz1

" #
z1 ¼ l

¼−ω2D M0 wþ ZC0

dw
dz1

� �
z1 ¼ l

þ ∑
∞

i ¼ 1
biλi

" #
; ð21cÞ

wð0Þ ¼ dw
dz1

�����
z1 ¼ 0

¼ 0; ð21dÞ

μiðs2i −ω2Þbi þ ω2 λO0i
dw
dz1

−λiw
� �

−λi
dw
dz1

� �
z1 ¼ l

¼ 0: ð21eÞ

Substituting (20) into variational equation (18) gives the following variational equation for (21a)–(21c)Z l

0
EI

d2w

dz21

d2δw

dz21
−Nðz1Þ

dw
dz1

dδw
dz1

" #
dz1−M0ZC0D

dw
dz1

dδw
dz1

� �
z1 ¼ l

−ω2D
Z l

0

ρb
ρl

Sbwδw dz1−ω2D I
dw
dz1

dδw
dz1

þM0ZC0 w
dδw
dz1

þ dw
dz1

δw
� ��

þM0wδwþ ∑
∞

i ¼ 1
bi λiδw−λO0i

dδw
dz1

� �#
z1 ¼ l

−D ∑
∞

i ¼ 1
biλi

dδw
dz1

�����
z1 ¼ l

¼ 0: ð22Þ
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5.2. Solution method

Solution wðz1Þ of the variational problem (22) is presented in the form

wðz1Þ ¼ ∑
m0

q ¼ 1
ajWjðz1Þ; ð23Þ

where the coordinate functions Wj satisfy the clamped-end conditions (21d), and aj are unknown variables.
Because the clamped end conditions (21d) should be a priori satisfied for the coordinate functions Wj which must also be

complete on the interval ½0; l�, an appropriate choice of Wj can be

Wjðz1Þ ¼ z21Pj
2z1
l

−1
� �

; ð24Þ

where Pj(x) are the Legendre polynomials. The polynomials can be computed by using the recurrence relations

P1ðxÞ ¼ 1; P2ðxÞ ¼ x; Pjþ2ðxÞ ¼
1

jþ 1
½ð2jþ 1ÞxPjþ1ðxÞ−jPjðxÞ�;

P′jþ2ðxÞ ¼ xP′jþ1ðxÞ þ ðjþ 1ÞPjþ1ðxÞ; P″jþ2ðxÞ ¼ xP″jþ1ðxÞ þ ðjþ 2ÞP′jþ1ðxÞ: ð25Þ
Substituting (23) into (21e) and (22) (previously multiplying equation (21e) by coefficient D), setting δwðz1Þ ¼Wiðz1Þ, and

truncating (21e) to a finite sum with bi ði¼ 1;2;…;n0Þ gives the spectral matrix problem

ðA−ω2BÞX¼ 0: ð26Þ
Here, the eigenvector X has coordinates fa1; a2;…; am0 ; b1; b2;…;bn0 g, elements of symmetric matrices A¼ fαijg and B¼ fγijg
are defined by the formulas

αi;j ¼
Z l

0
EI

d2Wj

dz21

d2Wi

dz21
−Nðz1Þ

dWj

dz1

dWi

dz1

 !
dz1−M0ZC0D

dWj

dz1

dWi

dz1

� �
z1 ¼ l

; ði; j¼ 1;2;…;m0Þ;

αi;jþm0
¼−Dλj

dWi

dz1

� �
z1 ¼ l

; ði¼ 1;2;…;m0; j¼ 1;2;…;n0Þ;αiþm0 ;jþm0
¼Dμis

2
i δij; ði; j¼ 1;2;…;n0Þ;

γi;j ¼D
Z l

0

ρb
ρl

SbWjWi dz1 þ D I
dWj

dz1

dWi

dz1
þM0ZC0 Wj

dWi

dz1
þ dWj

dz1
Wi

� �
þmWiWj

	
z1 ¼ l; ði; j¼ 1;2;…;m0Þ;

�

γi;jþm0
¼D λjWi−λ0j

dWi

dz1

� �
z1 ¼ l

; ði¼ 1;2;…;m0; j¼ 1;2;…;n0Þ;

γiþm0 ;jþm0
¼Dμiδij; ði; j¼ 1;2;…;n0Þ;

where δij is the Kronecker delta.

5.3. Convergence

We consider the case of an upright circular cylindrical tank when the hydrodynamic coefficients are taken from
Appendix B. The inner tank radius is R0, r0 is the beam radius, and δ is the beam wall thickness, a¼ r0=R0, l1 ¼ l=r0, and
δ1 ¼ δ=r0. Accepting R0 to be the characteristic length scale in (17), the nondimensional area, the constant second moment of
inertia, and the coefficient D can be presented as follows:

Sb ¼ 2πa2δ1; I¼ πa4δ1; D¼ D1

πa4δ1
; D1 ¼

ρlgR0

E0
;

respectively.
Numerous computational experiments were done to establish a fast convergence. This is demonstrated by the numerical

examples in Tables 1 and 2 conducted with neglecting the tank mass, Mt ¼ 0 ðρt ¼ 0Þ. The nondimensional values
ρb
ρl

¼ 7:8; D1 ¼ 0:476� 10−7; a¼ 0:5; δ1 ¼ 0:01 ð27Þ

(according to (17)) were adopted. The tables show the convergence to nondimensional eigenfrequencies ωi for h¼1 and
l1 ¼ 20 versus subdimensions m0 and n0 of the vector X. There are two types of nondimensional eigenfrequencies. The first
type is caused by liquid sloshing (sloshing-type frequencies) but the second type is associated with the beam vibrations
(beam-type frequencies). For the present input data and n0≤15, the beam-type frequencies are ωn0þ1;ωn0þ2;…, namely, the
first 15 eigenfrequencies (up to ω15) are the sloshing-type frequencies.

5.4. Validation by experiments

Dieterman (1986, 1988) conducted model tests related to our studies. An upright circular cylindrical tank of the radius
R0¼0.225 m and the mass Mt¼19 kg was filled with the two different liquid depths, h=R0 ¼ 0:5 and 1.0. The contained liquid
was fresh water with ρl ¼ 999 kg=m3. Other physical and geometric dimensional parameters are as follows: the distance ZC0
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by (12) is equal to 0.19 m, moment of inertia of the rigid tank is Ið0Þ ¼ 0:5 kg m2, cross-sectional area of the beam
Sb ¼ 3:14� 10−4 m2, the beam length l¼1.2 m, 1=ðI0E0Þ ¼ 3:3� 10−4 ðN m2Þ−1, the tank density is ρt ¼ 1190 kg=m3, the beam
density is ρb ¼ 7800 kg=m3.

Comparison between the experimental νni and the theoretical νi dimensional frequencies is presented in Table 3.
Agreement is satisfactory accounting for small internal structures installed in experimental tank which affect sloshing.
5.5. Lower eigenfrequencies of the system for the weightless tank

Adopting the nondimensional input data (27) and neglecting the tank weight (Mt ¼ ρt ¼ 0), one can get an information
on lower nondimensional eigenfrequencies 0oω1o⋯oωio⋯ and eigenmodes of the mechanical system versus the
nondimensional beam length l and the nondimensional liquid depth h (scaled by the tank radius R0).
Table 1
Convergence to eigenfrequencies ωi of the entire mechanical system with (27) versus subdimensions m0 and n0 of the vector X.

m0 ω1 ω2 ω3 ω4 ωn0þ1 ωn0þ2 ωn0þ3

n0 ¼ 1
3 1.3086905 6.8813844 84.34535 0.0000000
4 1.3086905 6.8813577 84.20592 301.67328
5 1.3086905 6.8813575 84.14868 299.39230
6 1.3086905 6.8813575 84.14739 296.54805
7 1.3086905 6.8813575 84.14727 296.49416
8 1.3086905 6.8813575 84.14727 296.46383
9 1.3086905 6.8813575 84.14727 296.46365

10 1.3086905 6.8813575 84.14727 296.46360

n0 ¼ 2
3 1.3086864 2.3069021 6.9330735 84.87793 0.0000000
4 1.3086864 2.3069021 6.9330459 84.73512 305.50586
5 1.3086864 2.3069021 6.9330457 84.67563 303.38190
6 1.3086864 2.3069021 6.9330457 84.67431 300.29854
7 1.3086864 2.3069021 6.9330457 84.67418 300.24745
8 1.3086864 2.3069021 6.9330457 84.67418 300.21354
9 1.3086873 2.3069021 6.9330457 84.67418 300.21336

10 1.3086864 2.3069021 6.9330457 84.67418 300.21330

n0 ¼ 3
3 1.3086859 2.3069007 2.9207033 6.9459150 85.03830 0.0000000
4 1.3086859 2.3069007 2.9207033 6.9458872 84.89454 306.55349
5 1.3086859 2.3069007 2.9207033 6.9458870 84.83435 304.47495
6 1.3086859 2.3069007 2.9207033 6.9458870 84.83303 301.32484
7 1.3086863 2.3069007 2.9207032 6.9458870 84.83290 301.27459
8 1.3086864 2.3069007 2.9207032 6.9458870 84.83290 301.23966
9 1.3086864 2.3069006 2.9207032 6.9458870 84.83290 301.23949

10 1.3086864 2.3069006 2.9207032 6.9458870 84.83290 301.23949

n0 ¼ 4
3 1.3086858 2.3069004 2.9207026 3.4207562 6.9511865 85.10640 0.0000000
4 1.3086858 2.3069004 2.9207026 3.4207562 6.9511586 84.96226 306.98395
5 1.3086858 2.3069004 2.9207026 3.4207562 6.9511584 84.90177 304.92436
6 1.3086858 2.3069005 2.9207026 3.4207563 6.9511584 84.90045 301.74666
7 1.3086858 2.3069005 2.9207026 3.4207563 6.9511584 84.90032 301.69676
8 1.3086858 2.3069005 2.9207026 3.4207563 6.9511584 84.90032 301.66141
9 1.3086858 2.3069005 2.9207025 3.4207563 6.9511584 84.90032 301.66123

10 1.3086858 2.3069005 2.9207026 3.4207563 6.9511584 84.90032 301.66117

Table 2
Convergence to the beam-type eigenfrequencies ωn0þ1 ;ωn0þ2 and ωn0þ3 with (27) versus subdimension n0 with m0 ¼ 10.

n0 6 7 8 9 10 11 12 13 14 15

ωn0þ1 6.955 6.956 6.957 6.959 6.960 6.960 6.960 6.960 6.961 6.962
ωn0þ2 84.96 84.97 84.98 84.98 84.99 84.99 84.99 84.99 85.00 85.00
ωn0þ3 302.0 302.1 302.1 302.1 302.2 302.2 302.2 302.2 302.2 302.2
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In Fig. 2, we schematically illustrate that the lower ith eigenmode associated with the beam deflection wiðz1Þ; z1∈½0; l�
defined by (23) and the free-surface radial wave profile defined by (9) and (20) as

RbðrÞ ¼ ∑
n0

j ¼ 1
bjφ1;jðr;0Þ ¼ ∑

n0

j ¼ 1
bj
J1ðk1jrÞ
J1ðk1jÞ

is characterized by the monotonic wiðz1Þ (typical for the first eigenmode of the cantilever beam), but the ith radial free-
surface profile is mainly determined by the eigenmode φ1;i ¼ J1ðk1irÞ=J1ðk1iÞ.

Fig. 3 analyses differences between the two lowest nondimensional eigenfrequencies ω1 and ω2, the nondimensional
sloshing frequencies s1 and s2, and the lowest nondimensional ‘beam’ eigenfrequency ωn

1 associated with the artificial case
when the free surface is covered by a solid plate and no sloshing motions occur. The eigenfrequency ωn

1 can be found from
the algebraic system (26) by enforcing n0 ¼ 0. The figure shows how the frequencies change for the fixed nondimensional
beam length l¼15 when the nondimensional liquid depth varies from 0.2 to 7.0. The solid lines correspond to ω1 and ω2, the
dashed lines represent the natural sloshing frequencies s1 and s2 and the dash-and-dotted line implies ωn

1. Numerical values
of the frequencies are presented in Table 4 for 0:2≤h≤5:0

We see in Fig. 3 and Table 4 that, whereas ho2, the eigenfrequencies ω1 and ω2 are close to the corresponding natural
sloshing frequencies s1 and s2, respectively. This means that the lower eigenfrequencies of the mechanical system are
mainly determined by the liquid sloshing and, as a consequence, ωi≈si; i¼ 1;2, tend to zero in the shallow water limit.

The ‘beam’ eigenfrequency ωn
1 increases with decreasing liquid depth to become much larger than s1 and s2.

Theoretically, when h-0, ωn

1 does not tend to infinity but rather to the lowest eigenfrequency of the cantilever beam
whose value is far away from the vertical axis interval in Fig. 3.

Fig. 3 demonstrates that increasing the nondimensional liquid depth h makes the lowest nondimensional eigenfrequency ω1

close to the ‘beam’ eigenfrequency ωn

1 but the second eigenfrequency ω2 tends to s1. This implies that the lowest and most
dangerous eigenfrequency of the mechanical system is almost not affected by liquid sloshing for large tank fillings. From a practical
point of view, the lowest eigefrequency can then be replaced by ωn

1 whose computations assume that the tank is completely filled
by a liquid (a rigid plate covers the free surface).

The functions ω1 ¼ω1ðh; lÞ and ω2 ¼ ω2ðh; lÞ are shown in Fig. 4 as the corresponding surfaces in the ðh; l;ωiÞ-space. The
solid lines in Fig. 3 are intersections of these surfaces with the vertical plane l¼15. The upper plateaus in Fig. 4 are
Table 3
Comparison between the experimental νni (Hz) and the theoretical νi (Hz) dimensional eigenfrequencies. Experiments were conducted by Dieterman (1986,
1988); err: is the relative error.

h=R0 ¼ 0:5 h=R0 ¼ 1:0

νni (Hz) νi (Hz) err: (%) νni (Hz) νi (Hz) err: (%)

1.02 1.065 4.4 1.03 1.07 3.88
1.93 2.088 8.1 1.83 1.84 0.54
2.5 2.472 1.12 – – –

3.03 3.077 1.6 – – –

3.55 3.597 1.3 – – –
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Fig. 2. The enumerated eigenmodes associated with the eigenfrequencies 0oω1o⋯oωio⋯ of the mechanical system. The left panel illustrates the
corresponding beam deflections (marked by the i values), but the right panel shows the corresponding radial surface wave profiles. Computations were
done with the nondimensional liquid depth h¼1 and the nondimensional beam length l¼10.
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associated with the input parameters (h,l) for which ωi become close to the corresponding natural sloshing frequencies si
with a finite liquid depth. The flat ravine for ω2 implies the closeness of ω2 to s1, but the lower values of ω1 appear as ω1≈ωn

1.
The numerical values of ω2 steeply change between s1 and s2 as was already established in Fig. 4 for l¼15.
6. Concluding remarks

Using the virtual work variational principle, the linear modal sloshing theory by Faltinsen and Timokha (2009) and the
Lukovsky formulas for the hydrodynamic force and moment, we examine the free linear (eigen) oscillations of the coupled
mechanical system consisting of axisymmetric tower and rigid tank installed at the tower top. The principle derives a
boundary problem for the generalized Euler–Bernoulli beam equation coupled with a set of linear ordinary differential
equations with respect to generalized coordinates responsible for displacements of the natural sloshing modes. The
differential formulation is however not used in our analysis.

Employing the Ritz method and the corresponding variational formulation, we focus on the eigenoscillations of the
mechanical system. Numerical experiments demonstrate a fast convergence. Results are validated by Dieterman (1986,
1988)'s experiments. Dependencies of lower eigenfrequencies on the nondimensional liquid depth and the tower height are
studied and some practical recommendations are given for lower and higher tank fillings.

The proposed analytical method requires a set of hydrodynamic coefficients which are known for upright circular and
annular cylindrical tanks. The literature contains the numerical hydrodynamic coefficients for tapered conical (Gavrilyuk
et al., 2012) and spherical (Faltinsen and Timokha, 2013) tanks. Several numerical values of the hydrodynamic coefficients
for other axisymmetric tank shapes can be found in the books by Feschenko et al. (1969) and Lukovsky et al. (1984).

The forthcoming studies should concentrate on the forced motions of the coupled mechanical system occurring due to
external loads including those caused by earthquake when there appear inhomogeneous kinematic boundary conditions at
the tower bottom. Dieterman (1986, 1988) conducted experimental studies on the forced oscillations of the hybrid
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Fig. 3. The nondimensional eigenfrequencies ωi of the mechanical system, the nondimensional natural sloshing frequencies si and the ‘beam’

eigenfrequency ωn

1 (the lowest eigenfrequency of the system when the mean free surface is covered by a rigid plate and no sloshing occurs) as functions
of the nondimensional liquid depth in an upright circular cylindrical tank. The nondimensional beam length l¼15.

Table 4
Illustrative numerical values of the nondimensional eigenfrequencies associated with Fig. 3.

h ω1 ω2 s1 s2 ωn

1 ωn

2

0.2 0.8007 2.0454 0.8056 2.0498 5.8171 43.908
0.6 1.1831 2.2972 1.2153 2.3051 3.8676 39.627
1.0 1.2735 2.2999 1.3232 2.3089 3.0533 37.927
1.4 1.2926 2.2969 1.3491 2.3090 2.5742 36.750
1.8 1.2950 2.2867 1.3551 2.3090 2.2477 35.573
2.2 1.2929 2.2046 1.3565 2.3090 2.0060 34.165
2.6 1.2886 1.9985 1.3568 2.3090 1.8173 32.457
3.0 1.2820 1.8219 1.3569 2.3090 1.6645 30.489
3.4 1.2716 1.6826 1.3569 2.3090 1.5374 28.368
3.8 1.2552 1.5748 1.3569 2.3090 1.4295 26.224
4.2 1.2298 1.4951 1.3569 2.3090 1.3364 24.161
4.6 1.1934 1.4411 1.3569 2.3090 1.2551 22.249
5.0 1.1481 1.4076 1.3569 2.3090 1.1833 20.517
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Fig. 4. The two lowest nondimensional eigenfrequencies of the mechanical system versus the nondimensional beam length l and the nondimensional
liquid depth h.
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mechanical system due to horizontal harmonic excitations. Even though these experimental tests did not establish any
three-dimensional motions, the three-dimensional resonant phenomena due to the so-called internal resonances involving
the degenerated modes, e.g., swirling, are theoretically possible. Describing them will need a modification of the variational
technique as well as the Euler–Bernoulli beam model should probably be revised. Other revisions may be due to internal
structures submerged into the liquid (Askari et al., 2012; Takahara et al., 2012).

Employing the multimodal method for other tank shapes and more complicated towers looks theoretically possible. In
those cases, the eigenoscillations could be of the three-dimensional nature and, therefore, describing the tower vibrations
may need to involve more complicated mathematical models exemplified by Timoshenko's beam, thin-walled shell, or
composite structures (Dutta et al., 2004; Gavrilyuk et al., 2010).

Authors thank the German Research Society (DFG) for the financial support.
Appendix A. Elements of the linear modal theory

The linear modal sloshing theory is well known from the 50–60s of the past century. A modern description of the theory
is given in Chapter 5 by Faltinsen and Timokha (2009). The theory consists of the linear modal equations and the Lukovsky
formulas for the resulting hydrodynamic force and moment. Even though our study needs only particular expressions of this
theory, let us outline most general case when an axisymmetric rigid tank moves with six degrees of freedom of a small
magnitude as shown in Fig. A1. The liquid is incompressible and ideal with irrotational flows.

Faltinsen and Timokha (2009) constructed the linear modal theory in the Oftxftyftzft-coordinate system (see, Fig. A1)
rigidly fixed with the tank so that the origin Oft coincides with the geometric center of the mean free surface Σ0 which
belongs to the Oftxftyft�plane. The mean liquid domain is denoted Q0 and S0 is the mean wetted tank surface. The Ozft-axis is
counterdirected to the gravity acceleration vector g as the tank is at rest. The six degrees of freedom are associated with
instant translatory and angular motions of the tank-fixed coordinate system Oftxftyftzft relative to the Earth-fixed coordinate
system Onxnynzn whose axes are parallel to axes of the O1x1y1z1�system.

We represent the free surface elevations by the Fourier series

zft ¼ ζðxft ; yft ; tÞ ¼∑
M
βMðtÞφMðxft ; yft ;0Þ: ðA:1Þ

Here, M is, generally speaking, a composite index which may consist of several integer numbers, φMðxft ; yft ; zftÞ are the
natural sloshing modes, and βMðtÞ are the generalized coordinates for sloshing motions (modal functions). The natural
sloshing modes are eigenfunctions of the spectral boundary problem

∇2φM ¼ 0 in Q0;
∂φM

∂n
¼ 0 on S0;

∂φM

∂n
¼ κMφM on Σ0;

Z
Σ0

φM dS¼ 0; ðA:2Þ

where the spectral parameter κM determines the natural sloshing frequencies sM ¼ ffiffiffiffiffiffiffiffiffi
gκM

p
(g ¼ ∥g∥), and n¼ ðn1;n2;n3Þ is the

outer normal.
Using (A.1) and the corresponding modal solution for the velocity potential, Faltinsen and Timokha (2009) derived the

following linear ordinary differential (modal)

€βM þ s2MβM ¼ KMt; ðA:3Þ

where the right-hand side

KMðtÞ ¼−
λ1M
μM

ð€ηft1−gηft5Þ−
λ2M
μM

ð€η ft2 þ gηft4Þ−
λ01M
μM

€ηft4−
λ02M
μM

€η ft5−
λ03M
μM

€ηft6 ðA:4Þ

involves the hydrodynamic coefficients μM , λ1M , λ2M and λ0ðk−3ÞM computed via the natural sloshing modes φM and the
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equations.
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so-called Stokes–Joukowski potentials Ω0ðxft ; yft ; zftÞ ¼ ðΩ01;Ω02;Ω03Þ:

∇2Ω0 ¼ 0 in Q0;
∂Ω01

∂n
¼ yftn3−zftn2;

∂Ω02

∂n
¼ zftn1−xftn3;

∂Ω03

∂n
¼ xftn2−yftn1; on Σ0∪S0: ðA:5Þ

Explicit formulas for these hydrodynamic coefficients are as follows:

μM ¼ ρl
κM

Z
Σ0

φ2
M dS; λ1 M ¼ ρl

Z
Σ0

xftφM dS; λ2 M ¼ ρl

Z
Σ0

yftφM dS; λ0kM ¼ ρl

Z
Σ0

φMΩ0k dS; k¼ 1;2;3; ðA:6Þ

where, because the liquid is incompressible, ρl is the constant liquid density.
Faltinsen and Timokha (2009) also re-derived the linearized Lukovsky formulas for the hydrodynamic force and moment

(relative to the origin Oft). The formulas are linear combination of the six degrees of freedom ηftiðtÞ, the generalized
coordinates βMðtÞ and their second-order derivatives. Coefficients in these formulas are functions of (A.6) and the inertia
tensor. For axisymmetric tanks, e.g., upright circular cylindrical, conical, spherical or other tank shapes, both the modal
equations and the aforementioned formulas take special form. The reason is that the basic boundary problems (A.2) and
(A.5) allow for separation of spatial variables in the cylindrical coordinate system xft ¼ r cos θ; yft ¼ r sin θ; zft ¼ zft .
The Stokes–Joukowski potentials take then the form

Ω01 ¼−Fðr; zftÞ sin θ; Ω02 ¼ Fðr; zftÞ cos θ; Ω03 ¼ 0; ðA:7Þ
where Fðr; zftÞ is the solution of the corresponding boundary-value problem in the meridional plane of Q0, but the natural
sloshing modes are as follows:

φm;i;1 ¼ ϕm;iðr; zftÞ cos ðmθÞ; φm;i;2 ¼ ϕm;iðr; zftÞ sin ðmθÞ; m¼ 0;1;…; i¼ 1;2;…: ðA:8Þ
Here, one can detect axisymmetric modes (withm¼0), butm≠0 implies an infinite set of degenerated modes φm;i;1 and φm;i;2

corresponding to the same eigenvalue κm;i (natural frequency).
Using (A.7) and (A.8) in (A.6) with the complex index M¼m; i; j (j¼1,2) leads to the following nonzero hydrodynamic

coefficients

κi ¼ κ1;i; μi ¼ μ1;i;1 ¼ μ1;i;2 ¼
ρlπ

κi

Z
L0
rϕ2

1;i ds;

λi ¼ λ1ð1;i;1Þ ¼ λ2ð1;i;2Þ ¼ ρlπ

Z
L0
r2ϕ1;i ds; λ0i ¼ −λ02ð1;i;1Þ ¼ λ01ð1;i;2Þ ¼−ρlπ

Z
L0
rϕ1;iF ds; ðA:9Þ

where L0 is the cross-sectional line formed by Σ0 and the meridional plane. These hydrodynamic coefficients correspond to
the so-called beam-type sloshing modes with m¼1. For other m, the hydrodynamic coefficients are zeros. As a consequence,
the modal equations (A.3) with the nonzero right-hand side fall into the two subsets

μið €β
c
i þ s2i β

c
i Þ þ λið€ηft1−gηft5Þ−λ0i €ηft5 ¼ 0; ðA:10aÞ

μið €β
s
i þ s2i β

s
i Þ þ λið€ηft2 þ gηft4Þ þ λ0i €ηft4 ¼ 0; ðA:10bÞ
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where the modal functions βci ðtÞ correspond to the cos θ�type liquid motions, but βsi ðtÞ imply the sin θ�type liquid motions
as defined by (A.8); s2i ¼ gκi. The remaining generalized coordinates corresponding to the sloshing modes with m≠1 are
described by the linear homogeneous oscillator equations. These generalized coordinates do not depend on the tank
motions and can be nonzeros exclusively due to initial perturbations. This means that the only beam-type linear sloshing
modes are directly excited so that βci ðtÞ depend on excitations in the Oftxftzft plane, ηft1 and ηft5, but β

s
i ðtÞ are independently

excited by ηft2 and ηft4 implying the tank motions in the Oftyftzft plane.
Another component of the linear modal theory is the so-called linearized Lukovsky formulas for the hydrodynamic force.

Based on derivations in Faltinsen and Timokha (2009), the force FOft
¼ ðFOft

1 ; FOft

2 ; FOft

3 Þ and the moment MOft
¼ ðFOft

4 ; FOft

5 ; FOft

6 Þ
(projections in the Oftxftyftzft�coordinate system) take the form

FOft

1 ¼Mlðgηft5−€ηft1−zlC0
€ηft5Þ− ∑

∞

i ¼ 1
λi €β

c
i ;

FOft

2 ¼Mlð−gηft4−€ηft2 þ zlC0
€ηft4Þ− ∑

∞

i ¼ 1
λi €β

s
i ; FOft

3 ¼−Mlg €η ft3; ðA:11Þ

and

FOft

4 ¼MlzlC0
ðgηft4 þ €ηft2Þ−J0 €ηft4− ∑

∞

i ¼ 1
ðgλiβsi þ λ0i €β

s
i Þ;

FOft

5 ¼MlzlC0
ðgηft5−€ηft1Þ−J0 €η ft5 þ ∑

∞

i ¼ 1
ðgλiβci þ λ0i €β

c
i Þ; FOft

6 ¼ 0; ðA:12Þ

respectively. Here, Ml is the liquid mass

J011 ¼ J022 ¼ J0 ¼ ρlπ

Z
L0þL1

F
∂F
∂n

ds ðA:13Þ

(L1 is the cross-sectional line formed by S0 and the meridional plane) are the only two nonzero elements (for an
axisymmetric tank)

J0ij ¼ ρl

Z
Σ0∪S0

Ω0i
∂Ω0j

∂n
dS;

and rlC0
¼ ð0;0; zlC0

Þ is the mass center of the unperturbed liquid in the Oftxftyftzft�system.
Expressions (A.11) and (A.12) show that only the beam-type sloshing modes associated with the generalized coordinates

βci ðtÞ and βsi ðtÞ effect the liquid mass center and, thereby, the hydrodynamic force and moment. Furthermore, it is important
for the present study, that the tank motions in the Oftyftzft plane, ηft2 and ηft4, lead to nonzero hydrodynamic loads in this
plane, F2 and F4, but do not cause the force and moment component perpendicular to Oftyftzft . The same is true for the
Oftxftzft plane and the pairs ηft1, ηft5 and F1; F5.

In the present paper, the hydrodynamic force and moment are considered in the Oxyz-coordinate system whose three-
dimensional translatory and angular motions are defined by the six generalized coordinates ηi; i¼ 1;…;6 connected with
ηfti; i¼ 1;…;6 by formulas

ηft1 ¼ η1 þ hη5; ηft2 ¼ η2−hη4; ηft3 ¼ η3; ηft4 ¼ η4; ηft5 ¼ η5; ηft6 ¼ η6 ðA:14Þ

so that the modal equations (A.10) take the form

μið €β
c
i þ s2i β

c
i Þ þ λið€η1−gη5Þ−λO0i €η5 ¼ 0; ðA:15aÞ

μið €β
s
i þ s2i β

s
i Þ þ λið€η2 þ gη4Þ þ λO0i €η4 ¼ 0; ðA:15bÞ

where λO0i ¼ λ0i−hλi.
The hydrodynamic force components are then computed by

F1 ¼ ½Mlgη5� þMlð−€η1−ZlC0
€η5Þ− ∑

∞

i ¼ 1
λi €β

c
i ; ðA:16aÞ

F2 ¼ ½−Mlgη4� þMlð− _η2 þ ZlC0
€η4Þ− ∑

∞

i ¼ 1
λi €β

s
i ; F3 ¼−Mlg €η3 ðA:16bÞ

where ZlC0
¼ hþ zlC0

(h is the mean liquid depth) is the vertical coordinate of the mass center in the Oxyz-coordinate system,
and the square-brackets terms are yielded by the liquid weight considered in the mobile coordinate system Oxyz. To get
projections of the hydrodynamic force on the Onxnynzn�axes, the square-brackets terms should be omitted.

The hydrodynamic moments relative to O are defined by the formula MO ¼ rOOft
� FOft

þMOft
, where rOOft

is the radius-
vector of Oft with respect to O. According to definitions in Fig. A1, the two nonzero components of MO ¼ ðF4; F5;0Þ are

F4 ¼MlZlC0
½gη4 þ €η2�−JO0 €η4− ∑

∞

i ¼ 1
ðgλiβsi þ λO0i €β

s
i Þ; ðA:17aÞ
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F5 ¼MlZlC0
½gη5−€η1�−JO0 €η5 þ ∑

∞

i ¼ 1
ðgλiβci þ λO0i €β

c
i Þ; ðA:17bÞ

where JO0 ¼Mlhð2ZlC0
−hÞ þ J0 is the nonzero inertia tensor component defined relative to O (J0 is defined relative to Oft). The

formula for JO0 can be obtained by direct derivations, or, alternatively, by Steiner's theorem (see,discussion of this theorem in
Chapter 5 by Faltinsen and Timokha, 2009).

In our analysis, since we concentrate on the tank motions in the Oyz plane shown in Fig. 1, we will need expressions for
the hydrodynamic force (A.16b) and moment (A.17a). The perpendicular hydrodynamic loads are not excited by the degrees
of freedom η2 and η4.

Appendix B. Hydrodynamic coefficients for an upright circular cylindrical tank

When an upright rigid circular cylindrical tank has the radius R0, section 5.4.4 by Faltinsen and Timokha (2009) gives the
required hydrodynamic coefficients as

s2j ¼
gζj tanhðζjh=R0Þ

R0
; μj ¼

ρlπR
3
0ðζ2j −1Þ

2ζ3j tanhðζjh=R0Þ
; λj ¼

ρlπR
3
0

ζ2j
; λ0j ¼

2πρlR
4
0

ζ3j
tanh

ζjh
2R0

� �
;

J0 ¼ JO0 ¼ ρlπR
2
0

1
3
h3−

3
4
hR2

0 þ 16R3
0 ∑

∞

j ¼ 1

tanhðζjh=ð2R0ÞÞ
ζ3j ðζ2j −1Þ

" #
;

where ζj are the enumerated (in ascending order) roots of equation J′1ðζjÞ ¼ 0 (J1 is the Bessel function of the first kind).

References

Askari, E., Daneshmand, F., Amabili, M., 2012. Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of
free surface waves. Journal of Fluids and Structures 27 (7), 1049–1067.

Barnyak, M., Gavrilyuk, I., Hermann, M., Timokha, A., 2011. Analytical velocity potentials in cells with a rigid spherical wall. Zeitschrift für Angewandte
Mathematik und Mechanik 91 (1), 38–45.

Curadelli, O., Ambrosini, D., Mirasso, A., Amani, M., 2010. Resonant frequencies in an elevated spherical container partially filled with water: FEM and
measurement. Journal of Fluids and Structures 26 (1), 148–159.

Dieterman, H., 1986. An analytically derived lumped-impendance model for the dynamic behaviour of a watertower. Ingenieur–Archiv 56, 265–280.
Dieterman, H., 1988. Dynamics of Towers. Liquid–Structure–Foundation Interaction. Ph.D. Thesis. Technical University Delft.
Dutta, S., Mandal, A., Dutta, S., 2004. Soil-structure interaction in dynamic behavior of elevated tanks with alternate frame staging configurations. Journal of

Sound and Vibration 277, 825–853.
Faltinsen, O., Timokha, A., 2009. Sloshing. Cambridge University Press, Cambridge.
Faltinsen, O., Timokha, A., 2012. Analytically approximate natural sloshing modes for a spherical tank shape. Journal of Fluid Mechanics 703, 391–401.
Faltinsen, O., Timokha, A., 2013. Multimodal analysis of weakly nonlinear sloshing in a spherical tank. Journal of Fluid Mechanics 719, 129–164.
Feschenko, S., Lukovsky, I., Rabinovich, B., Dokuchaev, L., 1969. Methods of determining the added liquid mass in mobile cavities. Naukova Dumka Kiev

(in Russian).
Forsberg, K., 1969. Axisymmetric and beam-type vibrations of thin cylindrical shells. AIAA Journal 7 (2), 221–227.
Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, O., Timokha, A., 2012. Multimodal method for linear liquid sloshing in a rigid tapered conical tank.

Engineering Computations 29 (2), 198–220.
Gavrilyuk, I., Hermann, M., Trotsenko, Y., Timokha, A., 2010. Eigenoscillations of three- and two-element flexible systems. International Journal of Solids and

Structures 47, 1857–1870.
Gavrilyuk, I., Lukovsky, I., Timokha, A.N., 2000. A multimodal approach to nonlinear sloshing in a circular cylindrical tank. Hybrid Methods in Engineering 2

(4), 463–483.
Gavrilyuk, I., Lukovsky, I., Trotsenko, Y., Timokha, A., 2007. Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 2. Nonlinear resonant

waves. Journal of Engineering Mathematics 57, 57–78.
Ibrahim, R., 2005. Liquid Sloshing Dynamics. Cambridge University Press.
Ikeda, T., Ibrahim, R., Harata, Y., Kuriyama, T., 2012. Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. Journal of Fluid

Mechanics 700, 304–328.
Livaoglu, R., 2008. Investigation of seismic behavior of fluid-rectangular tank-soil/foundation systems in frequency domain. Soil Dynamics and Earthquake

Engineering 28, 132–146.
Livaoglu, R., Dogangun, A., 2007. Effect of foundation embedment on seismic behavior of elevated tanks considering fluid-structure-soil interaction. Soil

Dynamics and Earthquake Engineering 27, 855–863.
Lukovsky, I., 1990. Introduction to Nonlinear Dynamics of Rigid Bodies with the Cavities Partially Filled by a Fluid. Naukova Dumka, Kiev in Russian.
Lukovsky, I., Timokha, A., 1995. Variational Methods in Nonlinear Problems of the Dynamics of a Limited Liquid Volume. Institute of Mathematics of NASU

in Russian.
Lukovsky, I.A., Barnyak, M.Y., Komarenko, A.N., 1984. Approximate Methods of Solving the Problems of the Dynamics of a Limited Liquid Volume. Naukova

Dumka, Kiev in Russian.
Moslemi, M., Kianoush, M., Pogorzelski, W., 2011. Seismic response of liquid-filled elevated tanks. Engineering Structures 33, 2074–2084.
Shenton, H., Hampton, F., 1999. Seismic response of isolated elevated water tanks. Journal of Structural Engineering 125, 965–976.
Shrimali, M., Jangid, R., 2003. Earthquake response of isolated elevated liquid storage steel tanks. Journal of Constructional Steel Research 59, 1267–1288.
Takahara, H., Hara, K., Ishida, T., 2012. Nonlinear liquid oscillation in a cylindrical tank with an eccentric core barrel. Journal of Fluids and Structures 35,

120–132.
Takahara, H., Kimura, K., 2012. Frequency response of sloshing in an annular cylindrical tank subjected to pitching excitation. Journal of Sound and

Vibration 331 (13), 3199–3212.
Trotsenko, Y., 2006. Frequencies and modes of vibration of a cylindrical shell with attached rigid body. Journal of Sound and Vibration 292, 535–551.
Volmir, A., 1967. Stability of Deformable Systems. Nauka, Moscow.

http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref1
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref1
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref2
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref2
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref3
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref3
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref4
http://refhub.elsevier.com/S0889-9746(13)00132-1/othref0005
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref6
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref6
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref7
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref8
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref9
http://refhub.elsevier.com/S0889-9746(13)00132-1/othref0010
http://refhub.elsevier.com/S0889-9746(13)00132-1/othref0010
http://refhub.elsevier.com/S0889-9746(13)00132-1/othref0015
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref12
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref12
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref13
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref13
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref14
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref14
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref15
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref15
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref16
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref17
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref17
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref18
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref18
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref19
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref19
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref20
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref21
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref21
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref22
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref22
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref23
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref24
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref25
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref26
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref26
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref27
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref27
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref28
http://refhub.elsevier.com/S0889-9746(13)00132-1/sbref29

	Studying the coupled eigenoscillations of an axisymmetric tower-elevated tank system by the multimodal method
	Introduction
	Variational statement of the problem
	Preliminaries
	Virtual work principle
	The virtual works of the non-hydrodynamic nature
	The virtual work due to liquid sloshing


	Differential formulation following from the variational principle
	Nondimensional statement
	Eigenfrequencies and eigenmodes
	Statement
	Solution method
	Convergence
	Validation by experiments
	Lower eigenfrequencies of the system for the weightless tank

	Concluding remarks
	Elements of the linear modal theory
	Hydrodynamic coefficients for an upright circular cylindrical tank
	References




