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Abstract

The paper classifies steady state three-dimensional resonant waves in a square-base tank by using the asymptotic modal

system proposed by the authors in 2003. The effective frequency domains of stable steady state motions are analysed versus

mean fluid depths and forcing amplitude. The results are validated by experiments both qualitatively and quantitatively.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional fluid sloshing in smooth tanks is of concern in various engineering applications. One particularly

challenging example is prismatic membrane tanks for transportation of liquefied natural gas (LNG). Since the length

and breadth of such tanks are often similar in size, three-dimensional flow phenomena may be significant. Even if a tank

oscillates with a small amplitude, forcing frequencies in the vicinity of a natural frequency for the fluid motion inside a

smooth tank lead to violent surface wave response. Experimental investigations of realistic ship motions and tank

dimensions shows that combined sway/surge/roll/pitch forcing (see Fig. 1) near the lowest natural frequency causes the

violent sloshing and potentially dangerous loads on the ship tanks (Abramson, 1966; Abramson et al., 1974). This paper

classifies the full set of three-dimensional resonant steady state waves occurring due to two types of harmonic forcing

(longitudinal and diagonal) in a square-base tank. The analysis is based on the analytically oriented modal approach by

Faltinsen et al. (2003). Qualitative conclusions are accompanied by direct numerical simulations (by using the modal

system) as well as experimental validation. Since total hydrodynamic loads on the ship tank due to sloshing are of

concern in predictions of ship motions and for dimensioning possible supports of the tank structure, the paper treats the

evaluation of horizontal hydrodynamic forces due to sloshing.

Sloshing in smooth tanks with finite (nonsmall) mean depth can be described in the framework of a potential

irrotational flow model of an incompressible fluid. This point has been documented by comparison of theoretical and

experimental results by Abramson (1966), Mikishev (1978) and recently, in the framework of the modal methods for

two-dimensional flows by Faltinsen et al. (2000) and Faltinsen and Timokha (2001) for the depth/breadth ratio h40:27:
A requirement is also the absence of strong local phenomena like extensive free-surface run-up and overturning near the

wall, wave breaking in the middle of the free surface and roof impact, which may dramatically increase dissipative

effects (Yalla, 2001; Rognebakke and Faltinsen, 2000). Current achievements of the potential fluid sloshing theory
e front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. Fluid sloshing in a moving tank. The rigid tank rotational velocity x ¼ ðo1;o2;o3Þ ¼
d
dt
ðc1;c2;c3Þ and translatory velocity

vO ¼ ðvO1; vO2; vO3Þ ¼
d
dt
ðZ1; Z2; Z3Þ are considered in the moving body-fixed coordinate system Oxyz framed with the rigid tank. The

O0x0y0z0-system is earth-fixed.
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related to this study are reviewed by Ibrahim et al. (2001) and Faltinsen and Timokha (2002b). Three different

approaches to theoretical sloshing modelling are distinguished. One of them focuses on low-order asymptotic

mathematical theories and appropriate Hamiltonian formalism for the system of ordinary differential equations

governing the dominating standing waves. Another approach is based on computational fluid dynamics (CFD) [see

surveys by Cariou and Casella (1999), Gerrits (2001), Celebi and Akyildiz (2002)]. The third approach deals with

multimodal/pseudospectral methods. Such methods are able to provide in different versions both analytical and

numerical studies and ‘build a bridge’ between the first and second ones. All three approaches have their advantages

and disadvantages from mathematical, physical and engineering points of view outlined in details by the mentioned

surveys. Links, common features and differences should be demonstrated. This is a difficult problem with regard to the

lower-order mathematical theories (first approach) and modal/pseudospectral methods [see some details given by

Faltinsen et al. (2000); Hill (2003)]. Both approaches reduce the original free boundary problem to systems of ordinary

differential equations with finite nonlinear kernel and often focus on nonlinear steady state waves. The difference is that

the modal methods account for the full set of activated modes and their arbitrary initial perturbation, while the first

approach studies the behaviour of the leading modes. Generally speaking, the multidimensional modal approach is

more general, because under some additional asymptotic assumptions (Faltinsen et al., 2000, 2003) a corresponding

low-order Hamiltonian system can be derived from the modal systems. The opposite is not true. AlthoughHill (2003)

presented a version of single-dominant theory of two-dimensional sloshing, where the behaviour of some higher modes

can be restored, his scheme is invalid for arbitrary initial conditions (for the higher modes) and requires the single

harmonic forcing in a very small vicinity of the primary resonance.

With the aim of capturing wide classes of forcing relevant for e.g. realistic tanks excited by ship motions the paper

focuses on the modal/pseudospectral methods. Those methods can formally be separated into two branches based on

asymptotic and Perko-like modal schemes (techniques). Whereas the asymptotic modal schemes (asymptotic modal

methods) originated from an analytical sloshing study by Narimanov (1957), the pseudospectral Perko-like technique

was first proposed by Moore and Perko (1964) and Perko (1969) for direct simulation of transient free surface flows.

Both schemes assume Fourier solution of the potential flow sloshing problem in the tank-framed Cartesian coordinate

system Oxyz (Fig. 1) as follows:

f ðx; y; tÞ ¼
X

i;j

bi;jðtÞf i;jðx; yÞ; (1)

Fðx; y; z; tÞ ¼ v0 � P þ x � X þ
X

i;j

Ri;jðtÞji;jðx; y; zÞ: (2)
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Here z ¼ f ðx; y; tÞ is the equation of the free surface, Fðx; y; z; tÞ is the velocity potential, vO and x are instantaneous

translatory and angular velocities of the tank, P ¼ ðx; y; zÞT; ff i;jg and fji;jg are known sets of basis functions in

corresponding functional spaces, bi;jðtÞ and Ri;jðtÞ are the unknown time-dependent functions (modal functions) and

Xðx; y; z; tÞ ¼ ðO1;O2;O3Þ
T is the Stokes–Zhukovsky potential defined for instance by Faltinsen et al. (2000). The

Fourier expressions (1) and (2) require vertical walls in vicinity of the mean free surface, no overturning free surface and

an open tank. Further, since it implies that the free surface intersects the wall perpendicularly, it does not give an

adequate description of run-up near walls. The completeness of ff i;jg and fji;jg in corresponding functional spaces

(Aubin, 1972) is also needed.

The substitution of (1) and (2) into the original free boundary problem or its variational analogy (Faltinsen et al.,

2000; La Rocca et al., 2000) leads to an infinite-dimensional system of nonlinear ordinary differential equations

coupling the modal functions. Those systems (in truncated form) can be implemented for direct numerical simulations

of fluid sloshing. This way constitutes the main idea of the Perko-like scheme (Moore and Perko, 1964; Perko, 1969).

Some recent modifications of this scheme have been developed by Chern et al. (1999), La Rocca et al. (2000), Ferrant

and Le Touze (2001) and Shankar and Kidambi (2002). The advantage of the Perko-like scheme relative to the

asymptotic modal technique is that corresponding truncated systems of ordinary differential equations take into

account the full set of high-order wave components. This makes it a promising alternative to existing CFD schemes, but

not to analytical methods. Moreover, our experience shows that their implementation for large amplitude sloshing may

sometimes be numerically inefficient. One difficulty is associated with the set of functions fji;jg; which must be a

complete Fourier basis for any admissible instantaneous fluid domain. In practice, linear natural modes of the fluid

oscillations are chosen in all existing modifications of the Perko-like scheme. These modes are only a complete Fourier

basis in the mean fluid domain. Even if this set of eigenfunctions can be found analytically and extended above the

mean fluid surface (examples are rectangular and vertical circular cylindrical tanks), it is generally not complete for all

physically possible instantaneous fluid shapes. Timokha (2002) exemplified the incompleteness for two-dimensional

domains by using analytical and numerical results by Lukovsky et al. (1984). Numerical problems can also occur when

the higher modes are evaluated outside the mean fluid domain. This is caused by the strong exponential character of

fji;jg along the Oz-axis. Further, corresponding truncated systems of nonlinear ordinary differential equations become

very stiff for larger dimensions. In contrast to Perko-like schemes the asymptotic modal technique does not provide a

‘truncation’, but rather an asymptotic reduction of the infinite-dimensional systems to a finite-dimensional form. The

nondimensional forcing amplitude is assumed asymptotically small and of Oð�Þ and eachmodal function is ordered in

terms of �: The asymptotic scheme leads to substantial limitations of the number of higher-order nonlinear components,
but the finite-dimensional asymptotic modal system reduces to a relative simple analytical structure. Corresponding

simplified systems constitute the ground for analytical studies, time efficient computing and even simulations of

coupling with ship motions. Recent examples are given by La Rocca et al. (1997), Faltinsen et al. (2000), Faltinsen and

Timokha (2001), Gavrilyuk et al. (2000) and Lukovsky and Timokha (2002). Finally, the modal asymptotic schemes use

the linear natural modes as a basis, but they do not require evaluation outside the mean fluid domain and are therefore

not in conflict with completeness.

Asymptotic reduction of the infinite-dimensional modal systems requires an intermodal ordering, namely,

relationships between the modal functions bi;j and Rn;k (in scale �). As a consequence, the asymptotic modal scheme

suggests a preliminary physical prediction of wave phenomena. This paper emphasizes the case when the forcing

frequency is very close to the lowest natural frequency. Under those resonant conditions the amplification of the lowest

mode/modes should obviously be dominating and of a lower order relative to the nondimensional forcing amplitude �:
For instance, for forced sway motions the nondimensional � is the ratio between the forcing amplitude and the

horizontal length dimension of the tank along the sway direction. This type of ordering is in contrast with what is

commonly done for external free surface problems, where the leading order terms are of the same order as the forcing.

Further, the higher modes are in the asymptotic analysis of either higher order or of the same order as the primary

dominant mode when internal resonances in this multidimensional mechanical system occur. The matching of the

primary order for deep water sloshing in rectangular (two dimensional) and vertical circular cylindrical tanks was done

by Moiseyev (1958) and Narimanov (1957), respectively. They showed that the lowest dominating mode should be

Oð�1=3Þ to get nonlinear mathematically correct secular equation governing the primary amplitude response versus

forcing frequency in close vicinity of the primary resonance [see also detailed description of the asymptotic detuning

procedure by Ockendon and Ockendon (1973) and Faltinsen (1974)]. A corresponding asymptotic relationship is often

associated with so-called Moiseyev detuning. A critical depth condition leads to loss of the third-order nonlinear

component in the secular equation, so that the fifth order analysis is required (Waterhouse, 1994). In order to match

shallow water asymptotics the second-order analysis is needed Ockendon et al. (1996). For the intermediate depths,

Faltinsen and Timokha (2002a) showed that the asymptotic modal scheme needs fourth-order Boussinesq-type

ordering, where the fluid depth is of the same order as the modal functions bi;j and Rn;k:
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The asymptotic modal theory by Faltinsen et al., 2003 derived to capture nonlinear three-dimensional sloshing in a

rectangular-base tank with finite depth uses Moiseyev–Narimanov-like ordering, namely only two lowest natural modes

are assumed to be dominating. The present paper continues the examinations of this modal theory and presents an

extensive classification of steady state waves in a square base tank by use of the asymptotic solutions obtained from the

corresponding modal system. Analytical investigations are accompanied by direct numerical simulations. The

theoretical predictions are validated by new experimental results for wave elevation and forces. An important finding

consists in selecting frequency domains where no steady solutions exist (‘chaotic’ waves are expected) as well as in

detecting three categories of stable steady state resonant waves for longitudinal (along the wall) and diagonal (along the

diagonal of the horizontal cross-section) excitations. This has been done for a wide range of fluid depths and excitation

frequencies/amplitudes. The wave types are in the first case ‘planar’ (two dimensional), ‘swirling’ [see discussion on

experimental observation of ‘swirling’ waves in square-base tank by Barber (1969)] and ‘diagonal’-like [observed earlier

in experiments by Tomawa and Sueoka (1989)], and, in the second case ‘diagonal’, ‘swirling’ (see also experiments and

CFD calculations by Arai et al. (1992, 1993) and ‘diagonal’-like waves. The reason for generating stable ‘swirling’ and

‘diagonal’-like wave motions for longitudinal excitations is nonlinear transfer of the energy into transversal waves

caused by their small perturbations in the initial or transient phase. Since these types of motions are hydrodynamically

stable, the direction of ‘swirling’ does not theoretically change with time and is defined exclusively by initial/random

perturbations. Analogously, the initial perturbations determine along which of the two diagonals the ‘diagonal’-like

waves occur. Even if the planar waves due to longitudinal excitation exist in general, their effective domain is

significantly influenced by three-dimensional hydrodynamic instability. This makes them in particular unstable in a

narrow frequency domain around the lowest natural frequency. This domain increases with increasing excitation

amplitude.

The systematization of possible steady state regimes is believed to give important guidance for CFD simulations. For

instance, if CFD simulations do not show steady state behaviour, one may wrongly conclude that this is due to

numerical errors. The graphs of this paper are then helpful in telling for which frequency domain, excitation amplitude

and direction of forcing that ‘chaotic’-type of fluid flows happens. This paper does not consider parametric waves [see

survey by Perlin and Schultz (2000)] and therefore heave excitation is not studied, i.e. vO3 ¼ 0 (Fig. 1). Parametric waves

are not of primary concern for the excitation frequencies that we focus on.

Although the main topic of the paper is steady state waves due to harmonic forcing, the basic modal system is

believed applicable for more complicated situations. It is only restricted by the ordering of different modes, but has no

limitation with regard to initial perturbations or type of excitation. Its future modifications are in part associated with

an appropriate ordering of higher modes. An important consideration for that is the secondary resonances in the

hydrodynamic system occurring for instance when 2s (s is the forcing frequency) is close to the natural frequencies

s0;2; s2;0 and s1;1 or, generally, when nonlinearities cause the harmonics ns in the modal functions bi;jðtÞ and Rn;kðtÞ and

ns 	 si;j ; i þ j ¼ n; hX2: The secondary resonance phenomenon is a pronounced effect for commensurate (nearly

commensurate) dispersion relationships established by shallow (intermediate) fluid depths for two-dimensional sloshing

(Ockendon and Ockendon, 1973; Faltinsen and Timokha, 2002a). However, even if the spectrum is not commensurate,

the probability of the multiple secondary resonance for finite depths grows with increasing forcing amplitude, especially

for transient waves (Bryant, 1989; Faltinsen and Timokha, 2001). The classical asymptotic scheme by

Moiseyev–Narimanov employed by Faltinsen et al. (2003) does not take fully into account the secondary/internal

resonances, but only predicts them for the second and third modes. Considering those predictions and the already

mentioned analysis by Faltinsen and Timokha (2001) developed for two-dimensional sloshing, enables appropriate

modifications of this asymptotic modal theory.

The modifications should start from assumptions that some higher modes have the same order as the primary

dominant mode, i.e.

bi;j 
 Ri;j ¼ Oð�1=3Þ; i þ jX1: (3)

When relationship (3) is true for an infinite number of modes, the asymptotic infinite-dimensional modal systems (these

models did not a priori specify a limited number of dominating modes) take the form equivalent to the third-order

equation by Zakharov (1968), or, in a particular case, to the adaptive modal theories by Faltinsen and Timokha (2001)

(two-dimensional flows). Such an infinite asymptotic modal system, where all the modes are assumed formally to

contribute equally, has already been derived for three-dimensional nonlinear sloshing in rectangularly shaped tanks

(Faltinsen et al., 2003, general modal system from). This general infinite system is similar to Perko-like differential

models, but restricted to third-order polynomial nonlinearities. An extensive physical analysis is required to get an

estimate of the number of modes having the lowest order (Faltinsen and Timokha, 2001). Some discussion on how to do

that follows from our test simulations and experimental studies.
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Further modifications of the modal methods should include the effect of sloshing induced slamming, i.e. roof

impact. Slamming is of primary importance in design of LNG tanks. All filling heights have to be examined

making roof impact important for larger depths. Since liquefied natural gas is partly boiling, the flow is in reality

two-phase. Air cushions may also be created during impact. Slamming must always be considered from a struc-

tural elastic and plastic response point of view, with the possibility that hydroelasticity matters. The knowledge

about physical parameters affecting slamming in LNG tanks is limited. This causes uncertainties in scaling of

model tests.
2. Governing equations

The forced fluid sloshing with the mean depth h is considered in a rigid open parallelepipedal tank with breadth L1

and width L2: The tank movement is described by known time-dependent vectors vOðtÞ ¼ ðvO1ðtÞ; vO2ðtÞ; vO3ðtÞÞ and

xðtÞ ¼ _wðtÞ ¼ d=dtðc1ðtÞ;c2ðtÞ;c3ðtÞÞ representing instantaneous translatory and angular velocities of the mobile

Cartesian coordinate system Oxyz relative to an absolute coordinate system O0x0y0z0 (Fig. 1). The fluid is perfect with

irrotational flows; its motions are monitored in the mobile coordinate system Oxyz, which is rigidly fixed to the tank.

The origin O coincides with the middle point of the mean fluid surface so that the mean fluid surface belongs to the

Oxy-plane and the Ox and Oy-axes are parallel to the vertical walls. Absolute position vector P0ðtÞ ¼ ðx0; y0; z0Þ is
decomposed into the sum of P0

OðtÞ ¼
~O0O and the relative position vector P ¼ ðx; y; zÞ: The gravity potential U depends

therefore on the spatial coordinates ðx; y; zÞ and time t, namely, Uðx; y; z; tÞ ¼ �g � P0; P0 ¼ P0
O þ P; where g is the

gravity acceleration vector.

The mobile coordinate system is convenient to use in analysing sloshing in spacecraft and ship applications. The

corresponding hydrodynamic free boundary problem is derived by Moiseyev and Rumyantsev (1968) and Narimanov

et al. (1977). The problem couples the function xðx; y; z; tÞ defining the free surface evolution SðtÞ : xðx; y; z; tÞ ¼ 0 and

the absolute velocity potential Fðx; y; z; tÞ which should be determined in the time-varying volume QðtÞ confined to the

wetted body surface SðtÞ and SðtÞ (Fig. 1); m is the outward normal to QðtÞ: The free boundary problem requires either

initial or periodicity conditions. The initial (Cauchy) conditions require that the initial fluid shape and the initial normal

velocity on the free surface are known. The periodicity conditions are associated with periodicity of wave pattern and

velocity field, and are formulated for standing (free) nonlinear waves or steady state regimes caused by periodic external

forcing.

2.1. Modal system

Adopting the Fourier solution of Eqs. (1) and (2) and the Luke–Bateman variational principle, Faltinsen et al. (2000)

proved the equivalence of the fluid sloshing free boundary problem and an infinite-dimensional system of nonlinear

ordinary differential equations coupling bi;j and Rn;k (the modal system). In order to provide both robust computations

and to be able to study analytically nonlinear sloshing it has been asymptotically simplified. Examples are given by

Faltinsen et al. (2000), Faltinsen and Timokha (2001, 2002a, 2002b) (two dimensional sloshing in a rectangular tank),

Gavrilyuk et al. (2000) (vertical circular cylinder), Lukovsky and Timokha (2002) (conical tank) and Faltinsen et al.

(2003) (three-dimensional sloshing in a rectangular base tank). Our investigations that follow will be based on the last

asymptotic model.

Following Faltinsen et al. (2003) we introduce dimensionless lengths, i.e. the tank has breadth 1 and width 1=r ¼

L2=L1: The original free boundary problem is then considered in nondimensional form, which suggests that the fluid

depth is redefined as h :¼ h=L1 and g :¼ g=L1 (g is the gravity acceleration). The nondimensional forcing amplitudes/

velocities/acceleration of sway/surge/roll/pitch excitations are assumed to be small (� ! 0). This implies in particular

that the nondimensional translatory forcing amplitude is small relative to L1 and, therefore, nondimensional forcing

velocities vO1; vO2 are proportional to �: In a similar way, the functions c1;c2 associated with nondimensional angular

forcing are also assumed to be of order �:
The analytical solutions F ¼ expðIsi;j tÞji;jðx; y; zÞ; ðI2 ¼ �1Þ of the linearized natural sloshing problem

(the natural standing waves occurring with circular frequencies si;j) are chosen as a basis system of functions

in (2), i.e.

ji;jðx; y; zÞ ¼ f
ð1Þ
i ðxÞf

ð2Þ
j ðyÞ

coshðli;jðz þ hÞÞ

coshðli;jhÞ
;

li;j ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ r2j2

q
; s2i;j ¼ gli;j tanhðli;jhÞ; i; jX0; i þ jX1 ð4Þ
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and

f
ð1Þ
i ðxÞ ¼ cosðpiðx þ 1=2ÞÞ; iX0; f

ð2Þ
j ðyÞ ¼ cosðpjrðy þ 1=ð2rÞÞÞ; jX0: (5)

The projections of ji;j on the mean free surface z ¼ 0 give the standing wave shapes f i;jðx; yÞ ¼ f
ð1Þ
i ðxÞf

ð2Þ
j ðyÞ ¼

ji;j jz¼0; i þ jX1: The set of functions ff i;jðx; yÞ; i þ jX1g forms an appropriate Fourier basis in the hori-

zontal rectangular cross-section of the tank ½�1=2; 1=2� � ½�1=ð2rÞ; 1=ð2rÞ� and can therefore be used in (1). The

harmonic functions fji;jðx; y; zÞ; i þ jX1g satisfy zero-Neumann boundary conditions on the tank surface and can be

adopted in (2) since the asymptotic technique requires only completeness in the unperturbed fluid domain Q0 ¼

½�1=2; 1=2� � ½�1=ð2rÞ; 1=ð2rÞ� � ½�h; 0�; where those functions constitute the appropriate basis (Lukovsky et al., 1984;
Timokha, 2002).

The paper focuses on resonant forcing of the lowest mode for finite h and r ¼ 1: The pair of primary natural modes
f
ð1Þ
1 and f

ð2Þ
1 becomes then degenerate (having equal natural frequencies) and, therefore, when the forcing frequency is

close to the smallest natural frequency s1;0 ¼ s0;1 ¼ s1; the hydrodynamic system gives double primary resonance for

the dual lowest modes with possible violent three-dimensional resonant phenomena. This is due to their synchronized

periodical motions with the same frequency (‘swirling’ and ‘diagonal’-like waves have been established in many

experimental works). Nonshallow dispersion relationships (Dean and Dalrymple, 1992, h40:2) do not establish internal
(secondary) resonance relationships for higher modes, namely, si;ji2s1;0; i þ j ¼ 2; si;ji3s1;0; i þ j ¼ 3; etc. There are
therefore only two primary leading modes that are of primary concern as � ! 0 and s ! s1: The ordering of other

modes can then be based on the Moiseyev–Narimanov-like asymptotic scheme, i.e.

b1;0 
 b0;1 ¼ Oð�1=3Þ; b2;0 
 b1;1 
 b0;2 ¼ Oð�2=3Þ;

b3;0 
 b2;1 
 b1;2 
 b0;3 ¼ Oð�Þ;

bi;jpOð�Þ; i þ jX4: ð6Þ

After re-denoting for brevity

b1;0 ¼ a1; b2;0 ¼ a2; b0;1 ¼ b1; b0;2 ¼ b2; b1;1 ¼ c1; b3;0 ¼ a3; b2;1 ¼ c21; b1;2 ¼ c12; b0;3 ¼ b3: (7)

Faltinsen et al. (2003)derived the following asymptotic modal system:

½ €a1 þ s21;0a1 þ d1ð €a1a2 þ _a1 _a2Þ þ d2ð €a1a
2
1 þ _a21a1Þ þ d3 €a2a1 þ P

ð1Þ
1;0ð_vO1 � ~S1

€c2 � gc2Þ� þ d6 €a1b
2
1

þ d7ð €b1c1 þ _b1 _c1Þ þ d8
€b1a1b1 þ d9 €c1b1 þ d10

_b
2

1a1 þ d11 _a1 _b1b1 ¼ 0; ð8aÞ

½ €b1 þ s20;1b1 þ d1ð €b1b2 þ _b1 _b2Þ þ d2ð €b1b
2
1 þ

_b
2

1b1Þ þ d3
€b2b1 þ P

ð2Þ
0;1ð_vO2 þ ~S1

€c1 þ gc1Þ�

þ d6
€b1a21 þ d7ð €a1c1 þ _a1 _c1Þ þ d8 €a1a1b1 þ d9 €c1a1 þ d10 _a

2
1b1 þ d11 _a1 _b1a1 ¼ 0; ð8bÞ

½ €a2 þ s22;0a2 þ d4 €a1a1 þ d5 _a
2
1� ¼ 0; (8c)

½ €b2 þ s20;2b2 þ d4
€b1b1 þ d5

_b
2

1� ¼ 0; (8d)

€c1 þ d̂1ð €a1b1 þ €b1a1Þ þ d̂3 _a1 _b1 þ s21;1c1 ¼ 0; (8e)

½ €a3 þ s23;0a3 þ €a1ðq1a2 þ q2a
2
1Þ þ q3 €a2a1

þ q4 _a
2
1a1 þ q5 _a1 _a2 þ P

ð1Þ
3;0½_vO1 � ~S3

€c2 � gc2�� ¼ 0; ð9aÞ

€c21 þ s22;1c21 þ €a1ðq6c1 þ q7a1b1Þ þ €b1ðq8a2 þ q9a
2
1Þ þ q10 €a2b1 þ q11 €c1a1 þ q12 _a

2
1b1 þ q13 _a1 _b1a1

þ q14 _a1 _c1 þ q15 _a2 _b1 ¼ 0; ð9bÞ

€c12 þ s21;2c12 þ €b1ðq6c1 þ q7a1b1Þ þ €a1ðq8b2 þ q9b
2
1Þ þ q10

€b2a1 þ q11 €c1b1 þ q12
_b
2

1a1 þ q13 _a1 _b1b1

þ q14
_b1 _c1 þ q15 _a1 _b2 ¼ 0; ð9cÞ

½ €b3 þ s20;3b3 þ €b1ðq1b2 þ q2b
2
1Þ þ q3

€b2b1 þ q4
_b
2

1b1 þ q5
_b1 _b2 þ P

ð2Þ
0;3½_vO2 þ ~S3

€c1 þ gc1�� ¼ 0; (9d)
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Table 1

Coefficients di and d̂ i versus depth/breadth ratio h

h d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d̂1 d̂3

0.3 3.290 4.551 �0.488 �41.266 �5.533 0.512 1.157 5.447 �0.120 4.935 1.025 �0.401 �4.668

0.4 3.183 3.414 �0.256 �0.595 �4.290 �0.589 1.335 4.346 0.159 4.935 �1.177 0.500 �3.195

0.5 3.153 2.933 �0.136 �0.295 �3.721 �1.040 1.441 3.895 0.303 4.935 �2.079 0.914 �2.511

0.6 3.145 2.706 �0.072 �0.152 �3.441 �1.245 1.500 3.690 0.378 4.935 �2.490 1.110 �2.180

0.7 3.143 2.592 �0.039 �0.079 �3.299 �1.344 1.533 3.591 0.417 4.935 �2.688 1.205 �2.014

0.8 3.142 2.533 �0.021 �0.042 �3.225 �1.393 1.550 3.541 0.438 4.935 �2.787 1.253 �1.931

0.9 3.142 2.502 �0.011 �0.022 �3.186 �1.418 1.560 3.516 0.448 4.935 �2.837 1.276 �1.887

1.0 3.142 2.486 �0.006 �0.012 �3.165 �1.431 1.565 3.503 0.454 4.935 �2.863 1.288 �1.865

1.1 3.142 2.477 �0.003 �0.006 �3.154 �1.438 1.568 3.497 0.457 4.935 �2.876 1.295 �1.853

1.2 3.142 2.473 �0.002 �0.003 �3.148 �1.441 1.569 3.493 0.458 4.935 �2.883 1.298 �1.847

1.3 3.142 2.470 �0.001 �0.002 �3.145 �1.443 1.570 3.491 0.459 4.935 �2.887 1.299 �1.844

1.4 3.142 2.469 0.000 �0.001 �3.143 �1.444 1.570 3.491 0.460 4.935 �2.889 1.300 �1.842

1.5 3.142 2.468 0.000 �0.001 �3.143 �1.445 1.571 3.490 0.460 4.935 �2.890 1.301 �1.841

1.6 3.142 2.468 0.000 0.000 �3.142 �1.445 1.571 3.490 0.460 4.935 �2.890 1.301 �1.841

1.7 3.142 2.468 0.000 0.000 �3.142 �1.445 1.571 3.490 0.460 4.935 �2.890 1.301 �1.841

1.8 3.142 2.468 0.000 0.000 �3.142 �1.445 1.571 3.490 0.460 4.935 �2.891 1.301 �1.840

1.9 3.142 2.467 0.000 0.000 �3.142 �1.445 1.571 3.489 0.460 4.935 �2.891 1.301 �1.840

2.0 3.142 2.467 0.000 0.000 �3.142 �1.445 1.571 3.489 0.460 4.935 �2.891 1.301 �1.840
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where coefficients diðhÞ; d̂ iðhÞ; qiðhÞ; P
ðkÞ
i;j ðhÞ and

~SiðhÞ are functions of the mean fluid depth h and can be calculated prior

to use (8c) (9a). The higher modes are governed by linear equations

€bi;j þ si;jbi;j þ P
ð2Þ
i;j ½_vO2 þ ~Sj

€c1 þ gci� þ P
ð1Þ
i;j ½_vO1 � ~S

ð1Þ

i
€c2 � gc2� ¼ 0; i þ jX4: (10)

We recognize in (8c) and (9a) that the terms in square brackets are associated with ‘planar’ flows in either Oxz or Oyz

planes; they are exactly the same as derived by Faltinsen et al. (2000). The natural frequencies si;j are governed by (4),

while

~Si ¼
2

pi
tanhðpih=2Þ; P

ð1Þ
i;j ¼

2d0jEi;0

ðpiÞ2
½ð�1Þi � 1�; P

ð2Þ
i;j ¼ P

ð1Þ
j;i :

The formulae for nondimensional coefficients diðhÞ; d̂ iðhÞ and qiðhÞ are explicitly given by Faltinsen et al. (2003) (for

pure square geometry d12 ¼ d7 and d̂2 ¼ d̂1 in their definitions). They are of relatively complicated structure. In order

to facilitate computations by interested readers we give in Tables 1, and 2 the values of di; d̂ i and qi for different depths

hX0:3: Readers can interpolate them for intermediate values of h or, when accurate calculations are required, code the

original formulae from Faltinsen et al. (2003) (comparison of these calculations with the tables becomes then an

additional numerical control). Note, that dimensional values of the wave elevations can easily be computed by

multiplying each modal function by L1:
Fig. 2 illustrates the modes involved in the nonlinear interaction. Here the first row corresponds to the primary modes

of Oð�1=3Þ; the second row describes the free surface shapes of the second-order modes of Oð�2=3Þ and the last row

presents four modes of Oð�Þ: The first and the second columns present the modes corresponding to the two-dimensional
waves. In addition, since s0;1 ¼ s1;0 the primary modes may perform synchronized cosine-like oscillations leading to

‘diagonal’ flows. In order to capture those ‘diagonal’ flows we introduce also the auxiliary modes

Si
1ðx; yÞ ¼ f

ð1Þ
i ðxÞ � f

ð2Þ
i ðyÞ; Si

2ðx; yÞ ¼ f
ð1Þ
i ðxÞ þ f

ð2Þ
i ðyÞ (11)

recombining two Stokes modes of (5) into three-dimensional patterns (see the framed patterns in Fig. 2). These will be

denoted as ‘diagonal’ or [due to Miles (1994)] ‘square’. If different nonzero weight coefficients are associated with f
ð1Þ
i

and f
ð2Þ
i ; i.e. Af

ð1Þ
i þ Bf

ð2Þ
i ;ABa0; jAjajBj; we call them ‘diagonal’-like (‘square’-like) modes.
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Table 2

Coefficients qi versus depth/breadth ratio

h q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15

0.3 �1.720 2.379 �0.255 23.168 �13.310 �0.856 5.446 2.554 6.600 0.241 �0.420 6.956 34.705 �8.451 �4.026

0.4 �0.836 0.896 �0.067 13.827 �11.221 �0.208 0.923 3.279 4.128 0.608 �0.041 �0.614 20.529 �6.808 �3.088

0.5 �0.426 0.397 �0.018 10.387 �10.313 0.081 �0.601 3.587 3.213 0.706 0.095 �3.131 15.305 �6.098 �2.720

0.6 �0.223 0.191 �0.005 8.883 �9.880 0.221 �1.208 3.732 2.826 0.732 0.146 �4.123 13.080 �5.769 �2.558

0.7 �0.117 0.097 �0.001 8.163 �9.662 0.292 �1.477 3.804 2.650 0.739 0.167 �4.557 12.051 �5.609 �2.481

0.8 �0.062 0.050 0.000 7.800 �9.550 0.329 �1.604 3.842 2.567 0.741 0.175 �4.761 11.552 �5.529 �2.442

0.9 �0.033 0.026 0.000 7.612 �9.491 0.349 �1.666 3.861 2.526 0.741 0.178 �4.860 11.303 �5.488 �2.422

1.0 �0.018 0.014 0.000 7.514 �9.460 0.359 �1.698 3.871 2.505 0.742 0.179 �4.910 11.176 �5.468 �2.412

1.1 �0.009 0.007 0.000 7.461 �9.444 0.365 �1.714 3.877 2.495 0.742 0.180 �4.936 11.110 �5.457 �2.406

1.2 �0.005 0.004 0.000 7.434 �9.435 0.367 �1.722 3.880 2.489 0.742 0.180 �4.949 11.076 �5.451 �2.403

1.3 �0.003 0.002 0.000 7.419 �9.430 0.369 �1.726 3.881 2.487 0.742 0.180 �4.956 11.058 �5.448 �2.402

1.4 �0.001 0.001 0.000 7.411 �9.428 0.370 �1.729 3.882 2.485 0.742 0.180 �4.959 11.049 �5.447 �2.401

1.5 �0.001 0.001 0.000 7.407 �9.426 0.370 �1.730 3.883 2.484 0.742 0.180 �4.961 11.044 �5.446 �2.400

1.6 0.000 0.000 0.000 7.405 �9.426 0.371 �1.730 3.883 2.484 0.742 0.180 �4.962 11.042 �5.445 �2.400

1.7 0.000 0.000 0.000 7.404 �9.425 0.371 �1.731 3.883 2.484 0.742 0.180 �4.963 11.040 �5.445 �2.400

1.8 0.000 0.000 0.000 7.403 �9.425 0.371 �1.731 3.883 2.484 0.742 0.180 �4.963 11.039 �5.445 �2.400

1.9 0.000 0.000 0.000 7.403 �9.425 0.371 �1.731 3.883 2.484 0.742 0.180 �4.963 11.039 �5.445 �2.400

2.0 0.000 0.000 0.000 7.402 �9.425 0.371 �1.731 3.883 2.484 0.742 0.180 �4.963 11.039 �5.445 �2.400
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Fig. 2. The modal wave patterns associated with the natural modes that are involved in nonlinear interaction for sloshing in a square-

base tank with finite depth.
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System (8)–(10) needs the initial conditions

a1ð0Þ ¼ a01; _a1ð0Þ ¼ a11; . . . ; b3ð0Þ ¼ b03;
_b3ð0Þ ¼ b13;

bi;j ¼ a0i;j ; _bi;j ¼ a1i;j ; i þ jX4; ð12Þ
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where the known constants a01; . . . ; b
1
3; a

0
i;j and a1i;j describe initial free surface shape and the initial free surface velocity.

For periodic forcing one can also define periodic conditions.

2.2. Hydrodynamic force

Lukovsky (1990) gives a convenient formula for calculation of the hydrodynamic force acting on the tank as follows

F ¼ ðFx;Fy;FzÞ
T
¼ mL1g

� mL1½_vO þ x � vO þ x � ðx � rCÞ þ _x � rC þ 2x � _rC þ €rC �: ð13Þ

Here m is the fluid mass and rC is the nondimensional radius-vector of the centre of mass in the moving coordinate

system. This formula has mathematically been derived by using the original definition of the hydrodynamic force as

F ¼
R

SðtÞ
pðx; y; z; tÞm dS; where p is the pressure. The terms of (13) allow favourable physical interpretation as given by

Faltinsen and Timokha (2001), namely, mL1g is the fluid weight and the terms in square brackets mean: _v0 is the

acceleration of the origin O, x � v0 is the tangential acceleration, x � ðx � rCÞ is the centripetal acceleration, 2x � _rC is

the Coriolis acceleration, €rC is the relative acceleration.

Accounting for the smallness of nondimensional forcing, the formula (ci 
 vOi 
 �), Eq. (13), reduces to

Fx ¼ mL1ðgc1 � _vOx þ
h
2
_o2 � €xC þ Oð�ÞÞ;

Fy ¼ mL1ð�gc2 � _vOy �
h
2
_o1 � €yC þ Oð�ÞÞ;

Fz ¼ mL1ð�g � €zC þ Oð�ÞÞ;

8><
>: (14)

where rC are calculated as

xC ¼ �
2

p2h
a1 þ

a3

9

h i
;

yC ¼ �
2

p2hr
b1 þ

b3

9

� �
;

zC ¼ �
h

2
þ

1

4h
a21 þ b21 þ 2ða1a2 þ b1b2Þ

 �

:

8>>>>>>><
>>>>>>>:

(15)

3. Model tests

A series of model tests on resonant sloshing has been conducted to establish the resonant steady state wave motions.

The experiments were accompanied by both video recordings and actual measurements of the free surface elevations

near the walls at the wave probes as indicated in Fig. 3. The tank had a square base with breadth/width 59 cm and a

height of 80 cm. The tank height was sufficiently large to avoid tank roof impact due to sloshing in the documented

series. It was ensured that the walls and bottom of the tank were stiff enough to avoid hydroelastic effects. Fresh water

was used. The nondimensional water depths were h ¼ 0:508; 0.34 and 0.27. The set-up allowed changes in the excitation
direction. The majority of the experiments were done for horizontal longitudinal (along the Ox-axis) and diagonal

excitations as indicated on the top view in Fig. 3. Only translatory forced tank motions are considered. However, the

mathematical expressions for the pitch and roll excitations are similar and can be easily studied. The forced tank

velocity is expressed as _vOi ¼ �s2Hi cos st with

H1 ¼ H cos y1; H2 ¼ H sin y1

(H ¼ � is the amplitude of translatory excitation). Two excitation directions are considered, i.e. y1 ¼ 0 (longitudinal

excitations) and y1 ¼ p=4 (diagonal excitations).

The typical dimensional excitation amplitude was about 0.5 cm. This means nondimensional value H ¼ 0:0078 for

longitudinal forcing and H1 ¼ 0:0078=
ffiffiffi
2

p
; H2 ¼ 0:0078=

ffiffiffi
2

p
for diagonal excitations. A few measurements were made

with higher forcing amplitudes H ¼ 0:025 (for longitudinal excitations only). The wave probes 1–6 were of two different
types (Fig. 3). Numbers 1 and 6 are made of thin wires with 0.5mm diameter and placed a distance 40mm from the

wall. The experimental error due to meniscus effects for wave probes 1 and 6 is less than 1mm. The other probes are

made of copper tape. They are placed directly on the tank walls and have a total width of approximately 20mm. Since

experiments were done prior to theoretical studies and the authors were not familiar with possible theoretical

predictions, the test series were done for a wide range of excitation frequencies in the vicinity of primary resonance

(0:86os=s1o1:08; s1 ¼ s0;1 ¼ s1;0). The horizontal forces along the Ox and Oy-axes have also been measured.
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Fig. 3. The top view of the tank with positions of the wave probes. All the numbers in mm.
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The experimental series are approximately 120 s long. This corresponds to 100–130 forcing periods for different time

series. Due to importance of transients, only the last 30–50 s of measurements might under certain circumstances be

used to indicate what type of steady state motions were achieved. Since video recordings demonstrated a significant run-

up in terms of a thin film of water at the wall, only wave probes 1 and 6 placed at a small distance from the wall were

used in the analysis.
4. Classification and validation

The theoretical classification of the nonlinear free surface waves is related to stable resonant steady state regimes

occurring due to harmonic forcing with the excitation frequency close to the primary resonance (s ! s1;0 ¼ s0;1 ¼ s1 in
our case). Faltinsen et al. (2003) obtained analytically the third-order asymptotic steady state solution of the modal

system accounting for the terms up to Oð�Þ: These solutions exist, if and only if, four primary amplitudes A; Ā; B̄;B of

the dominating modes

a1ðtÞ ¼ A cos st þ Ā sin st þ Oð�1=3Þ; b1ðtÞ ¼ B̄ cos st þ B sin st þ Oð�1=3Þ (16)

satisfy the following secular system of nonlinear algebraic equations:

Aðm0 þ m1ðA
2 þ Ā

2
Þ þ m2B̄

2
þ m3B

2Þ þ ðm2 � m3ÞĀB̄B ¼ P1H2;

Āðm0 þ m1ðA
2 þ Ā

2
Þ þ m2B

2 þ m3B̄
2
Þ þ ðm2 � m3ÞABB̄ ¼ 0;

B̄ðm0 þ m1ðB
2 þ B̄

2
Þ þ m2A

2 þ m3Ā
2
Þ þ ðm2 � m3ÞĀAB ¼ P1H2;

Bðm0 þ m1ðB
2 þ B̄

2
Þ þ m2Ā

2
þ m3A

2Þ þ ðm2 � m3ÞĀAB̄ ¼ 0;

8>>>>><
>>>>>:

(17)

where P1 ¼ P
ð2Þ
0;1 ¼ P

ð1Þ
1;0 and the coefficients m0;m1;m2 and m3 are functions of s and h. Taking into account the ordering

of A; Ā; B̄;B ¼ Oð�1=3Þ and H ¼ Oð�Þ gives m0 ¼ Oð�2=3Þ and mi ¼ Oð1Þ in the secular system in order to keep the terms

up to Oð�Þ: Under the resonant condition ðs� s1Þ51 we need only mi ¼ mijs¼s1 ðhÞ; iX1 in (17) to satisfy that. The

solvability of Eq. (17) can then be studied for different h. Analysis by Faltinsen et al. (2003) showed that the secular

system may have either no solutions for some isolated critical depths, or multiple solutions which appear/disappear or

change the system behaviour for other critical depths or infinite solutions for s ! s1: One of those critical depths

h1 ¼ 0:337 . . . is related to change from soft to hard spring type of the ‘planar’ waves [see two-dimensional analysis by

Fultz (1962), Waterhouse (1994), Faltinsen et al. (2000)]. Other critical depths are connected exclusively with three-

dimensional resonant regimes. They are mathematically defined and calculated by Faltinsen et al. (2003) and we

refer interested readers to this work. That paper provides also the stability analysis for steady state solutions by using

the first Lyapunov scheme. This makes it possible in the section below to classify possible stable resonant waves for

finite depths (h40:2).
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4.1. Longitudinal excitations

Three possible resonant steady state waves for longitudinal excitation are best described in terms of the primary

amplitudes (A is always nonzero), i.e.

(i) ‘planar’

f ðx; y; tÞ ¼ Af
ð1Þ
1 ðxÞ cos st þ Oð�1=3Þ; (18)

occurring when Aa0 and Ā ¼ B ¼ B̄ ¼ 0;
(ii) ‘diagonal’-like

f ðx; y; tÞ ¼ ½Af
ð1Þ
1 ðxÞ � B̄f

ð2Þ
1 ðyÞ� cos st þ Oð�1=3Þ

¼ A�
1 ðf

ð1Þ
1 ðxÞ � f

ð2Þ
1 ðyÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

S1
1ðx;yÞ

þB�
1 ðf

ð1Þ
1 ðxÞ þ f

ð2Þ
1 ðyÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

S1
2ðx;yÞ

2
664

3
775 cos st þ Oð�1=3Þ ð19Þ

occurring for Aa0 and Ā ¼ B ¼ 0; B̄a0; and, finally,
(iii) ‘swirling’

f ðx; y; tÞ ¼ Af
ð1Þ
1 ðxÞ cos st � Bf

ð2Þ
1 ðyÞ sin st þ Oð�1=3Þ (20)

occurring for Aa0 and Ba0; B̄ ¼ Ā ¼ 0: The reason why (20) describes ‘swirling’ is that the x- and y-dependent terms

are 90� out of phase. The � ahead of amplitude component B in (20) means clockwise or counterclockwise ‘rotation’.

Since a ‘diagonal’-like wave corresponds to a nearly diagonal standing wave, � in (19) describes the possibility that the

waves can occur approximately along either of the two diagonals. Both signs are mathematically possible. This means

that initial conditions and transient phase will determine the sign.

New results on distribution of effective frequency domains in the ðs=s1; hÞ-plane are presented in Figs. 4(a–d) for four
different forcing amplitudes, 0:2oho0:6 and 0:85os=s1o1:15: The arrows indicate the region of stable steady state

motions (the corresponding steady regimes disappear/become unstable in the direction of the arrows). Figs. 4 (a–d)

show that the region of stable planar waves is always away from the primary resonance s=s1 ¼ 1: The region where

planar waves are unstable is denoted as D2D4FGEO2O1: Figs. 4 (a–d) demonstrate that this region becomes wider with
increasing forcing amplitude. It should be noted that two-dimensional analysis Faltinsen (1974) does not give any

instability region. This means that this instability is caused by three-dimensional wave perturbations.

Geometrically, D2D4FGEO2O1 falls into three sub-regions, i.e. O1CGEO2 corresponds to stable ‘diagonal’-like

waves (these waves are absent for deep water and s=s1 	 1), FD4D3 corresponds to stable ‘swirling’ waves (it

disappears at s=s1 ¼ 1 for small depths) and D2D3FEC implies no stable steady state solution (this region also

disappears for small depths). The last region is often associated in dynamic systems with ‘chaotic’ motions. Away from

the region D2D4FGEO2O1 the planar waves may co-exist with either ‘swirling’ (R1FD4) or ‘diagonal’-like waves

(ABCD1). There are no regions where stable ‘swirling’ waves co-exist with stable ‘diagonal’-like waves. The domain of

stable ‘swirling’ drifts right of the resonant zone for sufficiently small h, while the effective domain of stable ‘diagonal’-

like waves drifts left of the main resonance for sufficiently large depths (deep water). Note that increasing forcing

amplitude does not change qualitatively the distribution of the frequency domains with different types of wave motions.

The theoretical results were experimentally validated for the case H ¼ 0:0078: Fig. 4(c) illustrates good qualitative

agreement in this case, especially for h ¼ 0:508: For smaller depths the experiments show a reduction and a shift of the

‘chaotic’ region relative to the theoretical prediction. This tendency is illustrated by experimental series with h ¼ 0:34:
When decreasing depth to h ¼ 0:27; the experiments show the planar waves in region D2CEGFD3; but no chaotic waves
are detected as are predicted by the theory. A possible explanation is the neglecting of the damping, which becomes of

primary concern for smaller depths. The damping no doubt reduces the ‘‘chaotic’’ frequency domains. Another

interesting point is that theoretical prediction suggests a slight drift to the right relative to the experimental data. Since

any drifts in a ‘‘frequency-amplitude’’ response of a mechanical system are in most cases caused by nonlinearities, it is

believed that improvements of the asymptotic modal theory should be associated with modifications of the asymptotic

ordering to account for nonlinear interaction of some higher modes. This is also explicitly confirmed by both our direct

numerical simulations and experiments (see the next section), which established significant contribution from

nonprimary modes. This situation is similar to the one explained by Faltinsen and Timokha (2001, 2002a) for two-

dimensional resonant waves.
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Fig. 4. Theoretical frequency domains of stable resonant steady state motions presented as function of the depth/breadth ratio h versus

the ratio between the excitation frequency and the lowest natural frequency s=s1 ðs1 ¼ s0;1Þ for different forcing amplitude/breadth

ratios. Longitudinal (surge) excitations (y1 ¼ 0) with the following amplitudes (a) H ¼ 0:001; (b) H ¼ 0:0025; (c) H ¼ 0:0078 and (d)

H ¼ 0:025: Shaded area (chaos) indicates the frequency domain, where no stable steady state waves occur. Comparisons with

experimental observations are made in (c) for the fluid depths h ¼ 0:508; 0:34 and 0:27 and in (d) for h ¼ 0:508: Experimental data are
denoted as ‘o’ – ‘planar’ waves, ‘*’ – ‘swirling’ waves, ‘#’ – ‘chaos’ and ‘S’ – ‘diagonal’-like waves.
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One should also note that the theory for case h ¼ 0:508 predicts two frequency domains away from the primary

resonance domain s=s1 ¼ 1 where either stable ‘swirling’ or ‘diagonal’-like waves co-exist with ‘planar’ waves.

Theoretically, the initial conditions determine what kind of steady state motions are realized after initial transients. In

practice these initial conditions consist of small perturbations of various types. The influence of small initial/random

perturbations was unavoidable in our experimental tests. Ideally, the time domain simulations with damping

coefficients (see the next section) and zero-initial conditions may address this problem. However, since the system

demonstrates in some cases a sensitivity to small changes of the initial conditions, which are not exactly known,

qualitative arguments related to the difference in the amplitudes (energy) of co-existing stable waves are used. If there is

a clear difference in amplitude and there are nearly-zero initial conditions, the steady wave system with the lowest

energy is most likely to occur. The ‘planar’ solutions are of lower energy in both mentioned frequency domains. It is

therefore most probable that ‘swirling’ and ‘diagonal’-like wave were not physically realized in these experiments for

corresponding excitation frequencies and that planar flow occurs. Since the effective frequency domain of the

‘diagonal’-like solutions always co-exists with planar waves for h ¼ 0:508; we were strongly motivated to find them in

observations for h ¼ 0:34; 0:27: Corresponding experimental observations are denoted S in Fig. 4(c) and show good

agreement with theoretical predictions. The theory agrees also well with experimental data for h ¼ 0:508 and the

relatively large forcing amplitude presented in Fig. 4(d).
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4.2. Diagonal excitations

Faltinsen et al. (2003) found three and only three periodic resonant waves for the diagonal harmonic excitations

(treated in terms of ‘diagonal’ modes), i.e.

(i) ‘diagonal’ waves (the pure diagonal (square) mode S1
2ðx; yÞ is nonlinearly excited)

f ¼ B1S
1
2ðx; yÞ cos st þ Oð�1=3Þ (21)

occurring for B ¼ �Ā ¼ 0; A ¼ B̄ ¼
def

B1;
(ii) ‘diagonal’-like waves

f ¼ �A1S
1
1ðx; yÞ þ B1S

1
2ðx; yÞ

� �
cos st þ Oð�1=3Þ (22)

describing joint cosine amplification of the pair S1
1 and S1

2 (here B1 ¼
def
ðA þ B̄Þ=2; A1 ¼

def
ðA � B̄Þ=2) occurring for B ¼

�Ā ¼ 0;AaB̄; and, finally
(iii) ‘swirling’ waves

f ¼ B1S
1
2ðx; yÞ cos st � A1S

1
1ðx; yÞ sin st þ Oð�1=3Þ (23)

occurring for A1 ¼
def

Ā ¼ �Ba0; B1 ¼
def

A ¼ B̄:
Figs. 5(a–d) demonstrate the effective frequency domain for the resonant stable steady state waves due to diagonal

excitation. The figures present the change of the frequency domains for 0:2oho0:6 and 0:9os=s1o1:1 with different

excitation amplitudes. The calculations establish relatively narrow regions of ‘chaotic’ waves (no stable steady state

regimes occur). One of these regions T2T3F is found for 0:5th: For smaller depths (ho0:3) the corresponding region is
zoomed in Figs. 5(a–c). The last range is probably too small and should be reduced by even smaller damping. In

addition, the numerical analysis captures a zone D for small depths (hp0:27) where diagonal steady state nonlinear

waves are always stable. This frequency domain decreases with increasing forcing amplitude. When h40:3; Figs. 5(a–d)
show no stable ‘diagonal’-like waves. However, two finger-like areas of stable ‘diagonal’-like waves are established for

smaller depths. These become wider for relatively large excitation amplitudes (Figs. 5(c,d)). Another interesting point is

that two different stable steady regimes (‘diagonal’ and ‘swirling’) co-exist for h40:27 in vicinity of the main resonance
s=s1 ¼ 1: This can be realized due to different transient/initial perturbation scenarios causing either ‘diagonal’ or

‘swirling’ waves.

Theoretical results on resonant sloshing due to diagonal excitations were compared with experimental wave data for

h ¼ 0:508; 0:34 and H ¼ 0:0078 (Fig. 5(c)). There is generally good agreement except for the points denoted by ‘?’.

These points correspond to the fact that two theoretically predicted steady state motions (‘diagonal’ and ‘swirling’) co-

exist and have approximately equal energy. This means that both types of periodical solutions are physically and

mathematically possible when starting from planar initial free surface shape. The measurements show regular ‘beating’

waves in this zone. We cannot based on this conclude which stable periodic solution will be realized from zero-initial

conditions. This would require a much longer time series. In addition, we cannot mathematically ignore possible stable

steady state aperiodic waves. Additional theoretical and experimental investigations of this phenomenon are needed.
5. Time domain simulations and validation

5.1. Damping

Although the experiments showed that dissipation is not significant for nonsmall depths, we made some efforts to

account for it. This was done in a similar way as described by Faltinsen and Timokha (2002a) for low viscosity fluid

(large Galileo numbers) and two-dimensional flows. The method relates the damping to linear logarithmic decrements

ai;j calculated for each natural mode in free linear sloshing regimes. These damping rates are constant values in the

framework of the linear sloshing theory and can be taken into account by the modal system by incorporating the linear

terms 2ai;j
_bi;j in corresponding differential equations with index i; j; i þ jX1: In general, the damping rates ai;j express

the sum of different types of energy dissipation, namely,

ai;j ¼ abulki;j þ asurfacei;j þ aotheri;j ; (24)

where abulki;j is the dissipation due to viscosity of the fluid bulk and asurfacei;j is the boundary layer dissipation on the wetted

tank surface. By generalizing the derivations by Keulegan (1959) [see also the original formula (25.6) by Landau and
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Lifshitz (1987) for the dissipation on a plate] done for two-dimensional flows with finite depths to three-dimensional

sloshing in a square base tank we get

asurfacei;j ¼

ffiffiffiffiffiffiffiffi
nsi;j

2

r
3

2
þ

li;j

sinhð2li;jhÞ

1

2
� h

� �� �
; (25)

where n is the nondimensional kinematic viscosity.
Further, by following Landau and Lifshitz (1987) (example 2 below paragraph 25) we get

abulki;j ¼ 2n
p4ðijÞ2

l2i;j
þ l2i;j

 !
þ
2h

li;j

p4ðijÞ2 � l4i;j
sinhð2li;jhÞ

" #
: (26)

The values aotheri;j are for instance due to overturning and wave spilling breaking. This effect cannot be analytically

estimated and our calculations assumed aotheri;j ¼ 0 to avoid speculation.

5.2. Direct numerical simulations

We incorporated the terms 2a1;0 _a1; 2a0;1 _b1; . . . ; 2ai;j
_bi;j ; i þ jX4 with viscous damping rates into the modal system

(8)–(10) and used it for direct numerical simulations of steady state regimes. Since the simulations required the initial

conditions (12), two physical scenarios were tested. The first scenario assumed initially unperturbed fluid (zero-initial

conditions). If the steady state response is stable, the small viscous damping should theoretically lead to steady state

conditions after a long time series. The second scenario assumes that pre-simulated sloshing has already led to a nearly
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Fig. 6. Comparison of the computed (dotted line) and measured (solid line) velocity of the tank, wave elevations and horizontal force

components Fx and Fy for the nearly steady resonant regimes in a square base tank. Computations are made with initial conditions

derived from steady state asymptotic solutions by Faltinsen and Timokha (2002a). Diagonal excitation resulting in diagonal waves.

H ¼ 0:0078; h ¼ 0:508; s=s1 ¼ 1:034:
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steady state regime. Appropriate approximate initial conditions may then be calculated by using asymptotic periodical

solutions given by Faltinsen et al. (2003). However, since the last initial conditions are based on asymptotic

approximation of the periodical solutions, the simulations by the second scenario cause a beating in the initial phase.

Unfortunately, the first scenario was in many cases not successful, especially for longitudinal forcing. A reason for this is

that when the tank is forced along the Ox-axis, the terms in the bracket next to P
ð2Þ
0;1 and P

ð2Þ
0;3 become zero and zero-initial

conditions for the modal functions caused always zero transversal waves, i.e. b1 ¼ b2 ¼ b3 ¼ c11 ¼ c12 ¼ c21 � 0: The
wave motion was then defined by nonzero a1; a2 and a3 and the numerical results were fully consistent with already

reported simulations by Faltinsen et al. (2000) for two-dimensional fluid sloshing. Small speculative initial perturbations of

the initial conditions did not improve the situation: in the frequency domains of planar waves they led to two-dimensional

sloshing after 10–30 forcing periods, while in the region of three-dimensional waves those perturbations resulted in strong

amplification of higher modes (it was sometimes so significant that it caused numerical divergence) and the simulations

were stopped after 30–40 forcing periods as physically unrealistic ones. In addition, even small speculative changes of the

initial perturbation illustrated sometimes qualitatively different wave behaviour. Since nonlongitudinal forcing makes the

equation for transversal modes (first of all, Eq. (8b) for the primary dominant mode) inhomogeneous (so that the nonlinear

terms cause the modal functions b1; b2; b3; c11; c12 and c21 to be nonzero), we applied a zero-initial condition scenario for

diagonal excitations. Here, however, it led in almost all series to similar results, namely, to either steady state ‘diagonal’

waves (in agreement with steady state analysis) or to amplification of higher modes.

The second scenario demonstrated almost always clear identification of the waves and good agreement with

experiments. The simulations were performed for all types of the wave motions. These were especially in good

agreement for planar waves (longitudinal excitations) and diagonal waves (diagonal excitation) with frequencies slightly

away from the main resonance. About 150–300 forcing periods were needed to get periodic numerical solutions for

these resonant wave motions (the criterion for numerically obtained steady state values was that the relative deviation
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Fig. 7. The same as in Fig. 6, but for diagonal excitation resulting in ‘swirling’ wave. H ¼ 0:0078; h ¼ 0:508; s=s1 ¼ 1:0087:
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between maximum beating amplitude and averaged amplitude is 10�4). However, even this scenario showed that three-

dimensional resonant waves are very sensitive to small changes in initial conditions. Sometimes the numerical solutions

were very close, but clear steady state regimes were not achieved even after 2000 forcing periods. In addition, if an

experimental series demonstrated stable three-dimensional steady state waves, but this modal theory did not confirm

that, the simulations were unsuccessful leading to numerical divergence due to unrealistic numerical amplifications of

higher modes. Since the viscous damping is accounted for, this is an indication that the model may need some

modifications in particular by ordering the higher modes in a different way. Effects of local phenomena (local breaking,

run-up, near-corner flows, etc.) may also matter.

5.3. Validation by experiments

The theoretical results were experimentally validated by comparing with the measured wave elevation near the wall

(probes 1 and 6) and horizontal force components Fx and Fy: The measurements included the inertia force from the

tank mass. This relatively small contribution is added to the calculated sloshing force in the presented data. The typical

examples for h ¼ 0:508 when our previous classification agreed well with experiments are presented in Figs. 6–11 (the

measurements are denoted by solid lines, while the numerical simulations are given by dotted lines). The second row in

the figures compares the wave elevation, the third row presents measured and calculated hydrodynamic forces. The

measured and theoretical forcing velocities of the tank are presented on the top of each figure. The stepwise behaviour is

due to a low-frequency output (47Hz) in the velocity feedback from the closed loop steering system. The real tank

motion is smooth.

The first example in Fig. 6 is related to ‘diagonal’ (three-dimensional) waves occurring due to diagonal forcing.

Although it demonstrates good agreement between theoretical predictions and measured data for both wave elevation
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Fig. 8. The same as in Fig. 7, but s=s1 ¼ 1:0031:
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Fig. 9. The same as in Fig. 6, but for longitudinal (surge) excitation resulting in ‘swirling’ wave. H ¼ 0:0078; h ¼ 0:508;s=s1 ¼ 0:9971:
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and the forces, one should note an asymmetry in the experimental data. There is both a difference between the measured

wave elevations at 1 and 6, and analogously, a difference in the measured forces Fx and Fy: Due to the symmetry of the
system there should be no differences in steady state conditions. The calculations show this symmetry. The asymmetric

measured data are likely to be explained by transient phenomena associated with wave perturbations perpendicular to

the diagonal forcing plane.

The next examples in Figs. 7 and 8 are for ‘swirling’ waves occurring due to diagonal forcing. These two experimental

series were made with only 0.5% difference in the excitation frequency and we originally expected practically equal

results. This was true for the theory, but experiments gave up to 20% difference for these two series, especially for the

wave elevations. Once more the transient effects are a possible explanation. The importance of the transients and initial

conditions are also documented by two cases in Figs. 9 and 10 for longitudinal excitation. In a similar way as in Figs. 7

and 8 the excitation parameters are approximately the same and the theory gives very close results, but the experiments

differ from each other, especially for the measured forces.

An important factor affecting the transient character of three-dimensional sloshing is the run-up phenomena

established in all the experimental series [see also similar observations by Royon et al. (2002)]. When a ‘swirling’ wave

occurs there is particularly strong run-up in terms of thin jets in the tank corners (see photos in Fig. 12). In general,

these local phenomena cannot significantly affect the hydrodynamic forces, but may affect the measured wave

elevation. This is implicitly confirmed by the case in Fig. 11, where the forces are in good agreement with experiments,

while the maximum wave elevations have up to 20% difference.

Figs. 6–11 show clearly higher harmonics 3s� 5s in the measured forces Fx and Fy and measured elevations (except,

probably elevations in Fig. 6). These are not found in the calculations. These harmonics occur in numerical simu-

lations if either speculative changes of the initial conditions are made or perturbations of higher modes are intro-

duced during the transient phase. This speculative strategy can be defended when the damping is small as it is in our
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Fig. 10. The same as in Fig. 9, but s=s1 ¼ 0:9975:
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case and there are either clearly nonzero initial conditions or local near wall phenomena due to run-up.

Why there is a smaller effect of the higher harmonics in wave elevation than in forces follows from our general

expressions for wave elevation (1) and the force components (14), (15). The wave elevation depends on the

modal functions, while the force depends on the second derivative of the modal functions. According to (15) the

dominating modes a1 and b1 determine the main contribution to the horizontal forces. Let us say a1 and b1 have a 3s-
component expressed as C cosð3stÞ: The second derivative of this term is �ð9s2ÞC cosð3stÞ; i.e. the contribution

from the 3s-component is relatively more important for the forces than for wave elevation. A reason why our

asymptotic modal theory does not show any pronounced effect of higher harmonics is that our initial conditions are

calculated from (16) and the lowest-order terms of a1 and b1 in the steady state solution (16) contain only s-harmonics.
Higher-order asymptotic solutions by Faltinsen et al. (2003) showed that the 3s-component in the dominating modal

functions for steady state motions is proportional to Oð�Þ: This is a too small value to influence our predictions when

they are based onperiodic initial conditions following from (16). Situations could only change when reordering the

modal system by assuming effects of secondary resonance. Then a1 
 a2; b1 
 b2: Since the modal equations for the
primary modes (8a) and (8b) contain the terms €a1a2; €b1b2; which are of Oð�2=3Þ; the 3s-component in dominating

modes becomes Oð�2=3Þ: Multiplied by 9 (in calculations of the force components) those terms may in practice

become comparable with the primary order term Oð�1=3Þ: Future studies are needed to evaluate the effect of

secondary resonance.
6. Conclusions

The use of the information on possible steady state sloshing is a natural way to systematize (classify) the flows due to

external resonant forcing. Faltinsen et al. (2003) extracted the asymptotic periodic solutions of the modal system
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Fig. 11. The same as in Fig. 9, but s=s1 ¼ 1:011:
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describing the steady state waves and presented a scheme to study their stability. We used this analytical scheme to

classify possible resonant sloshing in a wide range of excitation frequencies/amplitudes for h40:2 [the last inequality is
the limit of the quantitative applicability of the finite water depth theory established by Faltinsen and Timokha

(2002a)]. Special emphasis is placed on experimental (both qualitative and quantitative) validation of the modal theory

to indicate the effective frequency domain of three-dimensional ‘chaotic’ (no stable steady regime for these input data)

and ‘swirling’ (rotary waves) sloshing. It was confirmed that the theoretical predictions of the effective frequency

domain are in good agreement for sufficiently large depths (the experimental series with h ¼ 0:508), but the theory

disagrees slightly for lower depths (especially in the experimental series with longitudinally forced sloshing with

h ¼ 0:27). The mentioned discrepancy consists in a shift of ‘swirling’ and planar steady state waves into an effective

domain of ‘chaotic’ motions. The last motions were not established in the predicted zone for our experimental series

with h ¼ 0:27: This disappearance was theoretically expected only at h ¼ 0:23: Since a two-dimensional analogy of the
given modal theory is the system by Faltinsen et al. (2000), which also became inapplicable for ht0:27; the discrepancy
may be explained in a similar way. Modifications are needed to account for the nonlinearities associated with secondary

resonance and dissipation (Faltinsen and Timokha, 2001, 2002a). The experiments confirmed the existence of

‘diagonal’-like steady state waves (three-dimensional free surface fluid motions occurring with small angle to the

diagonal plane of the tank) in predicted ranges of the excitation frequencies for hp0:34:
Based on the asymptotic modal system the paper gives new classification of steady state regimes for diagonal

excitations (horizontal resonant forcing in the diagonal plane of the tank) versus h, excitation frequency and amplitude.

In contrast to longitudinal forcing the ‘chaotic’ regimes are only possible in very narrow regions for h40:5 and around
h ¼ 0:3: The ‘diagonal’-like (occurring with small angle to the diagonal plane of the tank) waves are not stable except

for small effective domains. Therefore the resonant motions are almost always related to ‘diagonal’ waves and

‘swirling’. The most interesting point is that ‘diagonal’ waves are always stable for sufficiently small h. This occurs in
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Fig. 12. Photos from the experimental series demonstrating local phenomena near the wall occurring for three-dimensional waves.
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our calculations for ho0:24� 0:27 (depending on the excitation amplitude). An additional point is the presence of a

significant frequency domain at s ¼ s1 ¼ s0;1 ¼ s1;0; where stable diagonal and ‘swirling’ waves co-exist. If both waves
are of approximately equal energy, we could not conclude from the experimental observations and measurements which

of the steady state motions would be realized. These cases showed permanent beating and cyclic changes between

‘swirling’ and diagonal wave motions during the experiments. Three-dimensional sloshing with finite depth is

characterized by small damping and it is therefore very sensitive with respect to initial perturbations and changes of the

frequency/amplitude of the external forcing. The paper discusses these problems in the framework of the extensive

comparison of the direct numerical simulations and experimental measurements (wave elevation and horizontal

hydrodynamic forces).

The modal theory is validated quantitatively, i.e. the paper considers a series of typical numerical simulations of

three-dimensional sloshing. In order to avoid speculations on a possible viscous damping effect, we derived the

formulae for linear logarithmic decrements due to viscosity in the fluid bulk and on the tank surface (due to boundary

layer formation). These damping terms were incorporated in corresponding modal equations. When using the

asymptotic solution by Faltinsen et al. (2003) for calculation of the initial conditions, the numerical series with the

damping terms in most cases lead to periodic solutions (relative error 10�3–10�4) after 150–300 forcing periods.

However, they did not give numerical periodic solutions of three-dimensional waves in all the cases. Even if the initial

conditions were calculated from the asymptotic approximation of the periodic solution and damping was included,

simulations with up to 2000 forcing periods showed beating in simulating the three-dimensional motions. Similar

behaviour is typical also in experimental observations, where nonnegligible beating was accompanied by contribution

of the higher harmonics (3s and 5s), especially in the measured force. Although the experimental and numerical data

are generally in good agreement for steady state motions, the simulations typically do not capture those higher

harmonics. The problem of higher harmonics in force response is extensively discussed in the main text. They can

appear in numerical solutions due to transient effect (speculative change of the initial conditions), local near wall

phenomena like run-up, which is especially large at tank corners, or due to effect of secondary resonance by higher

modes accompanied by their amplification. The last phenomenon should probably by of primary concern for future

studies. Theoretical investigation of the secondary resonance for two-dimensional sloshing with finite depth was



ARTICLE IN PRESS
O.M. Faltinsen et al. / Journal of Fluids and Structures 20 (2005) 81–103102
documented by Faltinsen and Timokha (2001). A corresponding theoretical analysis in the three-dimensional case is

much more tedious, but seemingly, it should be done.

Finally, we would like to stress again the importance of systematic studies of dissipation in strongly nonlinear

sloshing, especially for intermediate depths. Existing estimations of the logarithmic decrements are almost always

related to linear sloshing, but the experiments detect a nonlinear nature of the damping caused in many cases by local

breaking and run-up. Taking into account the results by Rognebakke and Faltinsen (2000) on damping due to roof

impact one finds time-dependent, random, impulsive damping rates of significant value due to local phenomena [some

empirical/phenomenological theories based on a pendulum model of the sloshing to account for fluid wall impact

are reviewed by Ibrahim et al. (2001)]. However, we have still no theoretical strategy on how to perform correspond-

ing modifications in the multidimensional modal systems. Another interesting direction is to study the wave phenomena

in a near-square tank (r is close, but not equal to 1). Bridges (1985, 1987) established some new types of free

nonlinear sloshing with even infinitesimal deviation of r from 1. Although the modal methods should capture

these nonlinear wave motions, the paper does not give an answer on how a non-square cross-section affects steady

state resonant waves.
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