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The multimodal method requires analytical (exact or approximate) natural sloshing
modes that exactly satisfy the Laplace equation and boundary condition on the wetted
tank surface. When dealing with the nonlinear sloshing problem, the modes should
also allow for an analytical continuation throughout the mean free surface. Appropriate
analytically approximate modes were constructed by Faltinsen & Timokha (J. Fluid
Mech., vol. 695, 2012, pp. 467–477) for the two-dimensional circular tank. The present
paper extends this result to the three-dimensional, spherical tank shape and, based on
that, establishes specific properties of the linear liquid sloshing.
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1. Introduction
Sloshing in spherical tanks is, for instance, of concern for liquefied natural gas

(LNG) carriers (Faltinsen & Timokha 2009, chap. 1) and water supply towers
(Curadelli et al. 2010). The hydrodynamic response (resulting forces and moments)
due to sloshing in spherical tanks may be described numerically by computational
fluid dynamics (Faltinsen & Timokha 2009; Rebouillat & Liksonov 2010), or
analytically by the multimodal method (Faltinsen & Timokha 2009, chaps. 5, 7–9).
The multimodal method makes it possible to derive a low-dimensional (modal) system
of ordinary differential equations with respect to generalized coordinates responsible
for amplification of natural sloshing modes.

Specifically, the multimodal method needs either exact or special approximate
analytical sloshing modes which exactly satisfy both the Laplace equation and the
boundary condition on the wetted tank surface. For nonlinear effects, the natural
sloshing modes should be analytically expandable above the mean free surface. Even
though the literature exemplifies various approximate methods for solving the natural
sloshing problem, starting with famous works by Budiansky (1958, 1960), McIver
(1989) and, recently, by Patkas & Karamanos (2007) and Drodos, Dimas & Karabalis
(2008) and Karamanos, Papaprokopiou & Platyrrachos (2006, 2009), it is questionable
whether all existing approximate natural sloshing modes can be adopted by the
multimodal method due to the aforementioned specific requirements.

Appropriate approximate natural sloshing modes can be obtained by the Trefftz
method employing a harmonic basis that exactly satisfies the zero-Neumann condition
on the wetted tank surface. Such functional bases were constructed by Faltinsen &
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Timokha (2010) for the two-dimensional (circular) tank and Barnyak et al. (2011) for
the three-dimensional (spherical) tank. They satisfy the zero-Neumann condition for
any liquid fillings but possess a singular behaviour at the tank top. However, when the
depth-to-tank-radius ratios were in the range 1.2 . h/R0 < 2, the Trefftz solution based
on these harmonic bases was not sufficiently accurate.

The aforementioned failure can be explained by a specific asymptotic behaviour of
the velocity potential at the contact line (the intersection of the mean free surface
and the tank surface) causing, in particular, the ‘high spot’ results by Kulczycki
& Kuznetsov (2011). The asymptotic behaviour was described by Komarenko
(1980) (two-dimensional statement), Lukovsky, Barnyak & Komarenko (1984) (two-
dimensional and axisymmetric three-dimensional tanks) and Komarenko (1998) (the
three-dimensional axisymmetric tank, and accounting for the surface tension). To
derive asymptotic terms possessing this asymptotic behaviour, Komarenko employed
the procedure of Kondratiev (1967) by introducing an auxiliary two-dimensional
boundary value problem formulated at the contact line. For the two-dimensional
spectral sloshing problem with the Laplace equation, this auxiliary problem also
deals with the Laplace equation and, as a consequence, Kondratiev’s procedure
yields two-dimensional harmonic functions possessing the corner-point asymptotic
behaviour. However, these harmonic functions do not necessarily satisfy the zero-
Neumann condition on the whole wetted tank wall. Normally, one should combine
the asymptotic results by Komarenko (1980) with the conformal mapping technique
to construct the required harmonic functions which satisfy, in addition, the tank
surface condition. An example is given by Faltinsen & Timokha (2010) for a two-
dimensional circular tank. For the three-dimensional spectral sloshing problem in an
axisymmetric tank, Lukovsky et al. (1984) and Komarenko (1998) considered a family
of two-dimensional spectral boundary problems in meridional cross-section appearing
after separation of the angular coordinate in a cylindrical coordinate system (see
(2.3)–(2.4)). The aforementioned two-dimensional auxiliary boundary problem is also
formulated in the meridional plane. However, the asymptotic terms derived from the
auxiliary problem possess the asymptotic behaviour of the natural sloshing modes, but,
generally, do not return the three-dimensional harmonic functions and do not satisfy
the tank surface (zero-Neumann) condition on the entire wetted wall.

For a two-dimensional circular shape, Faltinsen & Timokha (2010) employed the
constructed set of harmonic functions capturing the required asymptotic behaviour
and satisfying the zero Neumann condition on the wetted wall as ‘correcting’
functions in the Trefftz method. This procedure improved the convergence for the
higher liquid filling ratios. Because the derived asymptotic terms by Lukovsky et al.
(1984), generally speaking, do not satisfy the three-dimensional Laplace equation in
the spherical domain and the zero-Neumann condition on the wetted tank surface,
the authors’ efforts to extend results by Faltinsen & Timokha (2010) to the three-
dimensional spherical shape were not successful. An alternative approach is needed.
Such an approach was proposed by Faltinsen & Timokha (2012) for a circular tank by
studying an analytical continuation of the natural sloshing modes into the whole tank
domain via a modified Poisson integral (see Polyanin 2001, § 7.1.2-3). The present
paper shows how to generalize this approach to the spherical tank shape.
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FIGURE 1. Geometric notation for the spectral boundary problems (2.1) and (2.3).

2. Theory
2.1. Statement of the problem

Henceforth, we consider a non-dimensional sloshing problem based on the
characteristic size R0 (radius) and time

√
R0/g (g is the acceleration due to gravity).

This implies, in particular, that the spherical tank studied has unit radius and all the
length dimensions introduced in figure 1 are scaled by R0. The natural sloshing modes
are the eigenfunctions ϕI of the spectral boundary problem (well known from surface
wave theory: see Lamb 1932, chap. 10):

∇2ϕI = 0 in Q0,
∂ϕI

∂n
= κIϕI on Σ0,

∂ϕI

∂n
= 0 on S0,

∫
Σ0

ϕI dS= 0. (2.1)

Here, Q0 is the unperturbed liquid domain, S0 is the wetted tank surface, Σ0 is the
mean free surface, and κI > 0 are the eigenvalues that define the non-dimensional
natural sloshing frequencies, σI = √κI (dimensional natural sloshing frequencies are
σ̄I = σI

√
g/R0). The spectral boundary problem (2.1) defines linear standing waves

exp(iσIt)ϕI(x, y, z), where i2 = −1. The natural sloshing modes ϕI should be regular
and, generally speaking, analytically expandable over the mean free surface Σ0 but,
as is normal for linear fluid–structure interaction problems, the velocity potential can
possess special asymptotic behaviour at the contact line l formed by Σ0 ∩ S0.

As naturally occurs for axisymmetric tanks, the non-dimensional spectral boundary
problem (2.1) divides into a family of spectral problems in the meridional plane,
after introducing the cylindrical coordinate system (r, η, z) and separating the angular
coordinate η by imposing

ϕI(r, η, z)=
{
ϕm,n,c(r, η, z),
ϕm,n,s(r, η, z)

= φmn(r, z)

{
cos(mη),
sin(mη),

m= 0, 1, . . . , n= 1, 2, . . . , (2.2)

and κI = κmn. Using (2.2) implies a composite index I, namely I = (m, n, c) or
I = (m, n, s), where the non-negative integer m > 0 is associated with the angular
wavenumber, n > 1 enumerates the natural modes within the same m, and c and s
correspond to cos(mη) and sin(mη) components, respectively. Eigenfunctions φmn(r, z)
come from the two-dimensional spectral boundary problem in domain G formed by
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intersection of the mean liquid domain Q0 and the meridional plane (see figure 1b):

1
r

∂

∂r

(
r
∂φmn

∂r

)
+ ∂

2φmn

∂z2
− m2

r2
φmn = 0 in G,

∂φmn

∂n
= 0 on L (2.3)

∂φmn

∂z
= κmnφ on Γ, (2.4)

where L and Γ are intersections of S0 and Σ0 with the meridional plane. In addition,
the case m= 0 requires the volume conservation condition∫ r0

0
rφ0n dr = 0, (2.5)

where r0 is the radius of the circle Σ0, r0 =
√

2h− h2.
Faltinsen & Timokha (2012) constructed the Trefftz-type natural sloshing modes for

a circular tank by treating the modes in terms of their analytical continuation into
the ‘air’ area and an artificial normal velocity through the ‘dry’ tank surface yielded
by this continuation. This Trefftz solution includes, in fact, two main components
associated with two infinite harmonic functional sets. The first functional set is
characterized by the zero normal artificial flow through the ‘dry’ tank surface, except
at the tank top where it possesses a singular, multipole-type behaviour. In Faltinsen
& Timokha (2012), the first component gave a dominant contribution to the natural
sloshing modes for the non-dimensional liquid depths 0 < h . 1.2. The second
functional set reflects the fact that analytical continuation of the natural sloshing
modes can cause a non-zero Neumann trace on the ‘dry’ tank surface. The trace
is assumed to be a continuous function, except at the tank top where it may have
a jump. Because of the jump, the second component fell into two subclasses. The
two subclasses gave a dominant contribution to the natural sloshing modes for the
non-dimensional liquid depths 1.2 . h < 2. Our aim is to generalize the results by
Faltinsen & Timokha (2012) to the spherical tank shape by introducing two analogous
functional sets, φ(m)j (r, z) and φ̄(m)j (r, z), for the spectral problem (2.3)–(2.4).

2.2. The first functional set, φ(m)i

An analogy of the first functional set by Faltinsen & Timokha (2010) (functions that
satisfy the framed conditions (2.3) for arbitrary 0 < h < 2) has been constructed by
Barnyak et al. (2011). Based on this mathematical paper, we formulate an algorithm
for computing (deriving) φ

(m)
i in supplementary material A (available at journals.

cambridge.org/flm).
For the circular case, the first functional set admits a clear multipole-type treatment.

A dipole-type component definitely exists for artificial flows associated with φ
(m)
i by

Barnyak et al. (2011). For instance,

φ
(1)
0 (r, z)= 2

R3
+ 1+ R

R(R− z+ 1)
, R=

√
x2 + y2 + (z− 1)2, (2.6)

leads to the quantities 2 cos η/R3 and 2 sin η/R3 in the spatial representation by (2.2).
The quantities determine a horizontal dipole along Ox or Oy, respectively, situated at
the tank top. However, it is very difficult to extract the multipole-type components for
other φ(m)i in the general case.
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2.3. The second functional set, φ̄(m)i

The spherical domain admits a modified Poisson integral which can, for instance, be
found in the handbook by Polyanin (2001, § 8.1.3-3) or in the paper by Dassios
& Fokas (2008). If W(x, y, z) is a harmonic function defined in the unit-radius
spherical domain and wn = ∂W/∂n is the continuous Neumann trace on S0 ∪ S̄0 (see
figure 1a), the original function W is obtained from the trace wn by the modified
Poisson integral

W(x, y, z)= 1
4π

∫
S0∪S̄0

[
− 2

R
+ ln(R− F)

]
︸ ︷︷ ︸

Gs(P;P∗)

wn(P∗) dS(P∗), (2.7)

where P = (x, y, z) is the radius vector of an arbitrary point inside the sphere,
P∗ = (x∗, y∗, z∗) is the radius vector of a point on the spherical surface, R = ‖P − P∗‖
is the distance between these points, and F = (P − P∗) · P∗ = P · P∗ − 1 6 0 is the
projection of P on the outer normal vector to the sphere at the point P∗. The Neumann
trace wn should also satisfy the necessary condition∫

S0∪S̄0

wn dS= 0, (2.8)

implying mass conservation.
Based on (2.7), we define the second functional set φ̄(m)i that, in contrast to φ

(m)
j ,

can have a non-zero Neumann trace on the ‘dry’ surface S̄0. Introducing the spherical
coordinate system for points P∗ = (sin θ cosϕ, sin θ sinϕ, cos θ) belonging to S̄0 leads
to

Gs = Gs(x, y, z; θ, ϕ), wn = wn(θ, ϕ) on S̄0 and wn = 0 on S0, (2.9)

where wn(θ, ϕ) is a 2π-periodic function with respect to ϕ that can be represented by
the Fourier series

wn(θ, ϕ)=
∞∑

m=0

fm cos(m(ϕ − ϕθm))vm(θ), 0< θ < θ0, 0 6 ϕ < 2π (2.10)

with appropriate coefficients fm, phase shifts ϕθm, and functions vm(θ). Condition (2.8)
reads as∫ θ0

0
sin θ v0(θ) dθ = 0 and, in addition, vm(θ0)= 0, m= 0, 1, . . . . (2.11)

The latter condition at θ = θ0 follows from results by Komarenko (Lukovsky et al.
1984; Komarenko 1998, §13) requiring the continuous function wn to be zero on the
contact line between S0 and S̄0 for the spectral boundary problem (2.1).

After substituting (2.10) into (2.7) and using the cylindrical coordinates (r, η, z)
instead of (x, y, z), a tedious derivation makes it possible to separate the angular
coordinate η and arrive at the integral representation of the (r, z)-function satisfying
the framed conditions (2.3):

φ̄
(m)
j (r, z)= 1

4π

∫ θ0

0

∫ 2π

0

[
− 2

Rτ
+ ln(Rτ − Fτ )

]
× cos(mτ) dτ sin θ vmj(θ)︸ ︷︷ ︸

Vmj(θ)

dθ, m > 0. (2.12)
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Here

Rτ =
√

r2 + sin2θ − 2r sin θ cos τ + (z− cos θ)2,
Fτ = r sin θ cos τ + z cos θ − 1 6 0

}
(2.13)

and Vmj(θ), j > 1, is an arbitrary function on the interval [0, θ0] that satisfies the
condition ∫ θ0

0
V0j(θ) dθ = 0 and Vmj(θ0)= 0, for m= 0, 1, . . . . (2.14)

Additional information on Vmj(θ) at θ = 0 follows from analytical continuation of
∂φmn/∂z from G up to the tank top. For m= 0, this derivative is an even function with
respect to r at r = 0, but m 6= 0 causes the partial derivative to be an odd function
with respect to r. This implies that Vmj(θ) should be an odd function with respect to
θ for m = 0 and an even function for m 6= 0. One should note that the continuity of
Vmj(θ), j > 1 at θ = 0 does not mean that the related Neumann trace is finite and
continuous at θ = 0 (tank top). For circular tanks, such a discontinuity at the tank top
has yielded two subclasses of functions.

When Vmj(θ), j > 1 is a complete system of functions on [0, θ0] satisfying (2.14)
and possessing the odd/even features at θ = 0, integral representation (2.12) yields
the required harmonic functional set φ̄(m)j (r, z). In the present paper, we involve the
Legendre polynomials Pi(.) for Vmj(θ), j > 1 by postulating

Vmj(θ)= (z2
0 − cos2θ)P2j−2

(
θ

θ0

)
, (2.15)

for j > 1 and m > 1, and

Vmj(θ)= (z2
0 − cos2θ)

[
P2j+1

(
θ

θ0

)
− bi

b0

θ

θ0

]
,

bi =
∫ θ0

0
(z2

0 − cos2θ)P2i+1

(
θ

θ0

)
dθ,

 (2.16)

for j > 1 and m= 0. Supplementary material B presents computational details.

3. Numerical results: approximate κmn and φmj

3.1. The Trefftz solution based on combining φ(m)j and φ̄(m)j

Employing φ(m)j and φ̄(m)j defines the Trefftz solution

φmn(r, z)=
q1∑

i=1

ciφ
(m)
i−1(r, z)+

q1+q2∑
i=q1+1

ciφ̄
(m)
i−q1
(r, z)=

q1+q2∑
k=1

ciΦ
(m)
i (r, z) (3.1)

of the spectral problem (2.3)–(2.4), which exactly satisfies the framed condition (2.3)
and, in addition, defines an analytical continuation of φmn across the mean free surface
into the ‘air’ area. Coefficients ci and corresponding eigenvalues κmn should follow
from the non-framed condition (2.4), which is equivalent to the variational equation∫ r0

0
rΦ(m)

i (r, z0)

(
∂φmn

∂z
(r, z0)− κmnφmn(r, z0)

)
dr = 0, i= 1, . . . , q1 + q2. (3.2)
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Substituting (3.1) into (3.2) leads to the spectral matrix problem (A − κmnB)c = 0,
where

A= {aij}, aij =
∫ r0

0
r
∂Φ

(m)
i

∂z
(r, z0)Φ

(m)
j (r, z0) dr,

B = {bij}, bij =
∫ r0

0
rΦ(m)

i (r, z0)Φ
(m)
j (r, z0) dr.

 (3.3)

We cannot prove it, but each functional set {φ(m)j (r, z0), j > 0} and {φ̄(m)j (r, z0), j > 1}
is, most probably, a complete basis on the interval [0, r0] for any fixed m. This can be
numerically dangerous. Increasing both q1 and q2 leads to ill-posed matrices A and B.
The same problem was discussed by Faltinsen & Timokha (2010). Its solution requires
that at least one of the numbers qi, i= 1, 2 should not be large.

A non-optimized FORTRAN code was written in double precision (16 digits) to test
applicability of the Trefftz solution (3.1).

3.2. Eigenvalues and natural sloshing modes
The Trefftz solution (3.1) provides rapid convergence to eigenvalues κmn for
0 < h < 1.99. Normally, 8 < q1 + q2 < 20 leads to stabilization of six significant
figures in the numerical eigenvalues κmi, i = 1, . . . , 6. The eigenvalues are fully
consistent with the numerical results of McIver (1989) for nine different liquid
depths from 0.2 to 1.8 and {κmi : i = 1, 2, 3, 4, m = 0, 1, 2, 3} reported by McIver.
Suggesting that this can be useful in practice, we present the numerical eigenvalues
{κmi : i= 1, . . . , 6, m= 0, . . . , 5} in the tables of the supplementary material.

The actual numbers q1 and q2 used in our calculations were different for different
liquid depths. For lower liquid depths, 0 < h . 0.5, we can neglect the contribution
of φ̄

(m)
j and thereby obtain the solution of Barnyak et al. (2011). In the range

0.5 . h . 0.8, a few functions (one or two) φ̄(m)j (r, z0) should be taken to accelerate
convergence with increasing q1. An approximately half-filled tank with 0.8 . h . 1.2
requires four or five functions φ(m)j and four to six functions φ̄(m)j to get numerical
results in the aforementioned tables. Increasing liquid depth to 1.2 . h . 1.9 needs
more basic functions φ̄(m)j (normally 10–16) and only a few (one or two) functions
φ
(m)
j for obtaining six significant figures of κmi, i = 1, . . . , 6. Finally, the eigenvalues

for an almost filled tank, 1.9 . h 6 1.99, can be computed without the functions
φ
(m)
j . Computations with 1.99 < h were often numerically unstable due to decreasing

interval [0, r0] in (3.3). The instability can probably be avoided via an appropriate
normalization in the codes.

The numerical values (r0κmi) at h = 1.99 can be considered as an approximation of
the so-called ‘ice-fishing’ problem with a circular hole (Kozlov & Kuznetsov 2004):
κ̃mn = limh→2(κmnr0). The numerical values κ̃mn were reported by McIver (1989) for
m = 0, 1, 2, 3 and n = 1, 2, 3, 4. Our approximate eigenvalues (r0κ0i), i = 1, . . . , 4
with h = 1.99 are equal to 4.098, 7.309, 10.48, 13.63, which generally agrees with
the κ̃0i, i = 1, . . . , 4 of McIver (1989), equal to 4.1213, 7.34208, 10.51708, 13.6773.
Furthermore, our numerical values (r0κ1i), i = 1, . . . , 4 for h = 1.99 are 2.678, 5.833,
8.977 and 12.12, but κ̃1i, i= 1, . . . , 4 of McIver (1989) are equal to 2.75476, 5.89215,
9.03285 and 12.1741; (r0κ2i), i = 1, . . . , 4 for h = 1.99 are 4.052, 7.282, 10.46
and 13.62, while the limiting values are 4.1213, 7.34208, 10.51708 and 13.6773;
and (r0κ3i), i = 1, . . . , 4 for h = 1.99 are 5.332, 8.656, 11.88 and 15.07, with κ̃0i,
i= 1, . . . , 4 by McIver (1989) equal to 5.400, 8.71829, 11.94062 and 15.1293.
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Because the natural sloshing modes are defined to within a multiplier, the
normalization ∫ r0

0
rφmi(r, z0) dr = 1, φmi(r, z) := φmi(r, z)

sgn (φmi(r0, z0))
(3.4)

was used, imposing, in particular, a positive vertical elevation at the wall. The sign
‘:=’ means the same as in some programming languages, i.e. one should substitute φmi

in the right-hand side to get the final expression in the left-hand side. Convergence
of the Trefftz solution (3.1) to the natural sloshing modes is quite rapid. Because the
framed conditions of (2.3) are exactly fulfilled, the convergence should be uniquely
established for the non-framed (spectral) condition on L. In the cases when the six
to eight significant figures of κmi, i = 1, . . . , 6 are stabilized, this solution normally
stabilizes three or four significant figures of the approximate radial surface profiles
fmi(r) = φmi(r, z0) in the uniform metrics. Provided by normalization (3.4), the mean

square error εmi =
√∫ r0

0 (∂φmi/∂x(r, z0)− κmiφmi(r, z0))
2 dr was established to be in the

range between 10−2 and 10−4.
Using our approximate natural sloshing modes, one can discover how the radial

surface wave profiles, fmi(r) = φmi(r, z0), change with the liquid depth. The results are
illustrated in figure 2 for the four lower modes with m = 1. We remark that, when
0 < h . 0.5, the radial surface wave profile for the lowest natural sloshing modes
related to φ11 becomes close to a linear function, i.e. φ11(r, z0) ≈ Cr, where C is a
constant. Bearing in mind the corresponding three-dimensional wave patterns, we find
f11(r) cos η ≈ Cr cos η = Cx and f11(r) sin η ≈ Cr sin η = Cy, whose linear combination
determines an inclination of an almost flat free surface. Furthermore, recalling that
the natural sloshing modes are orthogonal on Σ0 and the forcing terms due to a
horizontal tank excitation are proportional to the hydrodynamic coefficients (see (5.26)
in Faltinsen & Timokha 2009)

λn = π
∫ r0

0
r2f1n(r) dr, n > 1, (3.5)

we see that (i) the forced linear sloshing in a spherical tank with 0 < h . 0.5 is
uniquely associated with the first (lowest) natural sloshing modes, and (ii) these lowest
modes define spatial wave patterns which look like an inclination of an almost flat free
surface. The appearance of other, complex wave patterns means that the free-surface
nonlinearity and/or initial perturbations of higher modes matter.

Increasing liquid depth yields more complicated radial free surface profiles. Figure 2
shows that when 1 < h < 2 there are no local extrema at the wall as expected for
upright cylindrical tanks. This addresses the so-called ‘high spots’ (the points on the
mean free surface, where its elevation attains the maximum and minimum values)
problem for the spherical tank shape. Kulczycki & Kuznetsov (2011) proved the
corresponding theorems for the two-dimensional sloshing problem that are illustrated
by Faltinsen & Timokha (2010) for a circular tank.

4. Conclusions
After reporting the Trefftz solution for a two-dimensional sloshing problem in a

circular tank (Faltinsen & Timokha 2012), we asked the natural question whether an
analogous solution is possible for spherical tanks.

The solution of Faltinsen & Timokha (2012) contains two different special analytical
components treated in terms of analytical continuation of the natural sloshing modes to
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FIGURE 2. The radial wave profiles, f1i(r) = φ1i(r, z0), i = 1, . . . , 4, for different non-
dimensional liquid depths. The labels of the graphs mark the depths. The figure demonstrates
that ‘high spots’ are not at the walls for 1 < h < 2. Further, the surface wave patterns of the
two lowest natural sloshing modes are for 0< h . 0.5 close to an inclined flat plane provided
by f11(r) cos η ≈ Cr cos η = Cx and f11(r) sin η ≈ Cr sin η = Cy, where C is a constant.

the ‘air’ domain. One difficulty is that, even though Barnyak et al. (2011) constructed
an analogy of the first ‘singular’ component, the functional set arising from this
paper cannot be related to spatial multipoles, and therefore the derivation scheme by
Faltinsen & Timokha (2012), employing an assumption on continuously distributed
multipoles on the ‘dry’ tank surface, generally fails. However, we can continue treating
the second component as giving a non-zero artificial normal flow through the ‘dry’
wall and represent it by using the modified Poisson integral (Dassios & Fokas 2008)
with a continuous (except at the tank top) Neumann trace. This action leads to the
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required second set of functions. The constructed Trefftz solution shows a rapid
convergence to both natural sloshing modes and frequencies.

Based on the constructed Trefftz approximation, we were able to establish specific
properties of the linear sloshing solution. For lower liquid depths, 0 < h . 0.5, we
see that: (i) analytical continuation of the velocity potential is characterized by almost
zero artificial flow through the ‘dry’ wall except at the tank top, where a strong
singular behaviour occurs, (ii) instant steady-state wave patterns occurring due to
horizontal tank excitation look like an inclination of an almost flat free surface, and
(iii) complicated wave patterns are uniquely caused by the free-surface nonlinearity
and/or initial perturbations of higher modes. The higher modes cannot be directly
excited by a harmonic horizontal tank forcing. For higher liquid depths, 1< h< 2, our
analysis demonstrates that (i) an artificial normal liquid flow through the ‘dry’ tank
surface (caused by the analytical continuation) becomes far from zero, (ii) the ‘high
spots’, the points on the mean free surface where its elevation attains the maximum
and minimum values, are not at the wall, which is in agreement with the assertion
proved by Kulczycki & Kwaśnicki (2012).

Supplementary material
Supplementary movies are available at journals.cambridge.org/flm.
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