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On sloshing modes in a circular tank
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Employing the multipole-type functions given by Faltinsen & Timokha (J. Fluid
Mech., vol. 665, 2010, pp. 457–479), we derive a Trefftz-type representation of the
velocity potential for the liquid sloshing problem in a two-dimensional circular tank.
This representation defines a continuation of the velocity potential into the ‘air’ area
confined by the ‘dry’ tank surface. Its usage facilitates an effective approximation of
the natural sloshing modes for all tank fillings.

Key words: interfacial flows (free surface)

1. Introduction
Sloshing must be considered for almost any moving vehicle or for structures

containing a liquid with a free surface. Various applications can be found in Faltinsen
& Timokha (2009, chap. 1) as well as in the book by Ibrahim (2005). The studied two-
dimensional sloshing problem in a circular tank is associated with transverse waves
in a horizontal cistern. Owing to the volume conservation condition, constructing an
analytical approximate velocity potential for inviscid liquid sloshing problems requires
an exact satisfaction of the Laplace equation and the wetted tank–surface condition
(Faltinsen & Timokha 2009). Moreover, a weakly nonlinear solution requires an
analytical continuation of the velocity potential above the mean free surface. Referring
to experiments by Barkowiak, Gampert & Siekmann (1985), Faltinsen & Timokha
(2010) proposed a Trefftz solution of the linear sloshing problem based on a special
set of harmonic functions satisfying the zero-Neumann condition everywhere on the
circular wall except in the highest point of the tank where these functions imply
multipole-type behaviour. By using the Kelvin inversion, similar harmonic functions
were recently constructed by Barnyak et al. (2011) for the spherical tank.

Unfortunately, employing these sets of functions did not provide an effective
approximation of the natural sloshing modes for higher ratios of liquid depth to tank
radius, h/R0 > 1. A formal mathematical clarification comes from the specific local
‘singular’ asymptotic behaviour of natural sloshing modes at the contact line (points)
of a flat mean free surface and a circular wall (see theorems by Wigley 1964, 1970;
Komarenko 1980) that is not captured by the constructed harmonic functions. Faltinsen
& Timokha (2010) used correcting functions that account for the behaviour and
showed that this enables a more accurate approximation of the natural sloshing modes
for higher liquid fillings. However, employing these correcting functions implies non-
changing contact points and angles that have no physical meaning for the nonlinear
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sloshing problem. Therefore, the modified Trefftz solution cannot be adopted for
the nonlinear sloshing problem. We need another analytical representation for the
sloshing velocity potential that is applicable for higher tank fillings and has a clear
mathematical and physical treatment for the linear and nonlinear cases. Such a
representation is proposed in the present paper by considering the continuation of
the velocity potential into the ‘air’ area.

To begin, we discuss the continuation of the Trefftz solution by Faltinsen &
Timokha (2010) and emphasize its inconsistency from experimental and theoretical
points of view (Barkowiak et al. 1985; Kuznetsov, Spector & Zakharov 1994). In § 2,
we try to improve it by distributing tangential multipoles with singularities along the
‘dry’ tank surface. This deduces an integral representation of the velocity potential
with strength functions possessing special properties at the ends of the ‘dry’ tank
area (to provide the finiteness of the velocity field; Komarenko 1980). Requiring the
representation to be uniformly valid for arbitrary liquid depths means continuously
differentiable strength functions (up to a certain order) on the whole ‘dry’ tank surface
except in the tank top. As a consequence, we derive a new Trefftz solution, which
includes (i) the solution by Faltinsen & Timokha (2010), (ii) a modified Poisson
integral depending on the fully continuous component of the strength functions, and
(iii) terms that are proportional to the jumps of the strength functions at the tank top.
Generally speaking, this new solution returns an analytical harmonic function in the
inner points of the whole circular tank domain, i.e. both the velocity potential and
its continuation are constructed. In § 3, we report numerical results based on the new
Trefftz-type solution. The solution is uniformly accurate for arbitrary liquid depths
and enables one to study the limiting case h/R0→ 2 associated with the ice-fishing
problem.

2. Theory
2.1. Preliminaries and statement of the problem

According to Barkowiak et al. (1985), the first sloshing mode in a circular tank with
the depth/radius ratio h/R0 < 1 can be satisfactorily approximated by a horizontal
dipole with singularity at the tank top. The function W1 in figure 1(a) presents the
corresponding dipole-type velocity potential and associated streamlines. Assuming that
other sloshing modes can be considered as a superposition of similar multipole-type
flows, Faltinsen & Timokha (2010) postulated the Trefftz solution for the velocity
potential as the sum

Φ(y, z)=
N∑

i=0

diWi(y, z), (2.1)

where the analytical harmonic functions

Wk(y, z)=
[k/2]∑
i=0

(−1)i
(

k
2i

)(
2y

y2 + (z− 1)2

)k−2i

×
(
−1− 2(z− 1)

y2 + (z− 1)2

)2i

, k > 0, (2.2)

imply a set of multipoles with singularities in the tank top.
Statements of the linear sloshing problem can be found in diverse textbooks (e.g.

Ibrahim 2005; Faltinsen & Timokha 2009). When φ(y, z, t) is the velocity potential
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FIGURE 1. (a) The horizontal dipole harmonic function from the functional set by Faltinsen
& Timokha (2010). The dashed lines denote the associated streamlines; τO = (1, 0) is
the tangential (horizontal) vector to the circle. (b) The geometric notation to the spectral
boundary problem (2.3). A multipole can be posed at P∗, where τ P∗ is the tangential vector.

and z = ζ(y, t) defines small-magnitude vertical displacements of the free surface,
the free liquid oscillations deal with the zero-Neumann boundary condition for φ
on the wetted tank surface S0 as well as kinematic ∂φ/∂z = ∂ζ/∂t and dynamic
∂φ/∂t+gζ = 0 boundary conditions on the mean free surface Σ0 (g is the gravitational
acceleration). The geometric notation for the two-dimensional transverse sloshing in a
horizontal circular cylindrical tank is shown in figure 1(b) (non-dimensional case). For
the natural sloshing problem, φ = iσ exp(iσ t)Φ(y, z), ζ = exp(iσ t)Z(y), i2 = −1, and
one can recombine the boundary conditions on Σ0 (see e.g. Faltinsen & Timokha
2009, chap. 4) to obtain the non-dimensional spectral boundary problem on the natural
sloshing modes and frequencies

∇2Φ = 0 in Q0; ∂Φ

∂n
= 0 on S0;

∂Φ

∂z
= κΦ on Σ0;

∫
Σ0

Φ dS= 0, (2.3)

where the natural sloshing frequencies are defined by σ = √κg/R0 (κ is the spectral
parameter, and Φ are the natural sloshing modes).

The functions Wi are chosen to exactly satisfy the framed boundary conditions of
(2.3) for arbitrary liquid depths. The Trefftz solution (2.1) satisfies the zero-Neumann
condition not only on the wetted but also on the ‘dry’ tank surface S̄0 except in the
upper tank pole. This may be a reason why this solution fails for higher liquid depths,
z0 > 0. To relax the zero-Neumann condition at a point P∗ ∈ S̄0, one can ‘rotate’ the
functions (2.2) around the circle centre so that the singularity can appear everywhere
on the ‘dry’ tank surface. Our idea consists of integrating these singularities over S̄0

accompanied by a strength function. The result is an approximate velocity potential in
the physical plane, which, generally, does not satisfy the zero-Neumann condition on
S̄0 but leads to a zero-normal flow on S0.

2.2. Tangential multipoles with a single singularity
Let P= (y, z) (radius vector P) be an arbitrary point in the Oyz-plane and P∗ = (y∗, z∗)
be a point (radius vector P∗) belonging to the ‘dry’ tank surface S̄0. The function

Fc(P;P∗)=∇(y,z)Gc(P;P∗) · τ P∗ =−∇(y∗,z∗) Gc(P;P∗) · τ P∗, (2.4)
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Gc(P;P∗)= ln | (y− y∗)
2+ (z− z∗)

2 | (2.5)

(τ P∗ is the tangential vector at P∗ in the clockwise direction) is then a generalization
of W1. The function Fc implies now not horizontal but rather a tangential dipole at the
point P∗. It satisfies the zero-Neumann condition everywhere on the circle, except at
P∗. When P∗ = (0, 1), τ P∗ = τO = (1, 0) and W1(y, z)= Fc(y, z; 0, 1).

We adopt the geometric notation in figure 1(b) with P∗ = (y∗, z∗) = (sin θ, cos θ),
−θ0 < θ < θ0 and τ P∗ = dP∗/dθ = (cos θ,− sin θ). As a consequence, the function Gc

given by (2.4)–(2.5) transforms to the form

Gc(y, z; θ)= Gc(y, z; sin θ, cos θ)= ln | (y− sin θ)2+(z− cos θ))2| (2.6)

and we arrive at the following expression for the tangential dipole Fc:

Fc(y, z; θ)= Fc(y, z; sin θ, cos θ)=−∂Gc(y, z; sin θ, cos θ)
∂θ

. (2.7)

In the particular case, W1(y, z)=−Fc(y, z; 0).
Furthermore, we can consider the kth derivative of Gc with respect to θ . All

these derivatives keep the zero-Neumann condition on the circle except at the point
P∗ = (sin θ, cos θ). The functions

∂k−1Fc(y, z; θ)
∂θ k−1

=−∂
kGc(y, z; sin θ, cos θ)

∂θ k
, k > 1, (2.8)

define a special class of tangential multipoles with a single singular point, which
satisfy the framed conditions of (2.3) as −θ0 < θ < θ0. When θ = 0, formula (2.8)
gives a linear combination of Wi, namely,

∂Gc

∂θ

∣∣∣∣
θ=0

=W1(y, z); ∂2Gc

∂θ 2

∣∣∣∣
θ=0

= 1
2
(W2(y, z)+W0(y, z)) ,

∂3Gc

∂θ 3

∣∣∣∣
θ=0

= 1
2
(W3(y, z)+W1(y, z)) ,

∂4Gc

∂θ 4

∣∣∣∣
θ=0

= 3
4

(
W4(y, z)+ 4

3
W2 + 3W0(y, z)

)
,

∂5Gc

∂θ 5

∣∣∣∣
θ=0

= 3
2

(
W5(y, z)− 10

3
W3(y, z)− 2W1(y, z)

)
, . . . .

2.3. Integral representation of the velocity potential

Varying −θ0 < θ < θ0 in (2.8) and introducing the corresponding strength functions
wk(θ) for the tangentially situated multipoles, we can consider a resulting flow in the
Oyz-plane by defining the velocity potentials

φk(y, z)= C̃ −
∫ θ0

−θ0
wk(θ)

∂kGc

∂θ k
dθ, k > 1. (2.9)

The velocity potentials φk(y, z) satisfy the framed condition in (2.3), but, generally,
do not satisfy the zero-Neumann boundary condition on S̄0. The features of the
velocity potentials strongly depend on the strength functions wk(θ), which can be
non-continuous.
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2.4. The sloshing velocity potential

When φk is the velocity potential associated with the sloshing problems, for example,
Φ in (2.3), the corresponding velocity and pressure fields should remain finite in the
vicinity of the free surface (here, Σ0). We refer to Komarenko (1980), who proved
the corresponding theorem for (2.3), as well as to certain physical arguments. This
finiteness requires the strength function wk(θ) to be k times continuously differentiable
in a neighbourhood of ±θ0 and, in addition, the local condition

wk(±θ0)= · · · = dkwk

dθ k
(±θ0)= 0, k > 1, (2.10)

should be satisfied.
Our goal is a solution that is uniformly valid for arbitrary liquid, i.e. defining

wk(θ)=
{

w−k (θ) for − θ0 < θ < 0,
w+k (θ) for 0< θ < θ0,

(2.11)

we require w±k to be k times continuously differentiable on the potentially wetted
tank surface, namely, on the two subintervals [−θ0, 0) and (0, θ0]. The only exception
is the point θ = 0, which is not reachable by liquid for non-empty Σ0, so that a
jump between w±k and their derivatives at θ = 0 is possible. Considering a linear
combination of φk, k = 1, . . . ,N + 1, with (2.11) and using recursive integration by
parts on (−θ0, 0) and (0, θ0) leads to the expression

Φ(y, z)= C +
N∑

i=1

di
∂ iGc

∂θ i
+ (W +(0)−W −(0)

)
Gc(y, z; 0)

+
∫ 0

−θ0

dW −

dθ
Gc(y, z; θ) dθ +

∫ θ0

0

dW +

dθ
Gc(y, z; θ) dθ, (2.12)

with

W (θ)=
{

W −(θ) for − θ0 < θ < 0,
W +(θ) for 0< θ < θ0,

and W ±(±θ0)= (W ±)′(±θ0)= 0, (2.13)

where W ±(θ) is a rather complicated linear combination of w±k and their derivatives
(C is a combination of earlier C̃). The exact expression for W ± does not play a role in
the forthcoming analysis, so that we can start by considering (2.12) with two arbitrary
continuously differentiable functions W ±(θ) on subintervals (−θ0, 0) and (0, θ0).

After introducing an auxiliary analytical ‘density’ function satisfying the conditions{
ρw(±θ0)= ρ ′w(±θ0)= 0, ρw(θ) > 0, −θ0 < θ < θ0,

ρw(0)= 1, ρ ′w(0)= 0,
(2.14)

formula (2.12) can be rewritten by introducing the continuously differentiable
component Wc(θ) of the strength function on [−θ0, θ0] using the formula

W (θ)= 1
2ρw(θ)[(W +(0)−W −(0)) sgn(θ)+ ((W +)′(0)− (W −)′(0)) |θ |] +Wc(θ).

(2.15)
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With definitions (2.15) and (2.14), formula (2.12) reduces to

Φ(y, z)= C +
N∑

i=1

di
∂ iGc

∂θ i
+ 1

2(W
+(0)−W −(0))︸ ︷︷ ︸

c(1)0

×
[

2Gc(y, z; 0)−
∫ 0

−θ0
ρ ′wGc dθ +

∫ θ0

0
ρ ′wGc dθ

]
︸ ︷︷ ︸

Fc(y,z;ρw)

+ 1
2

(
(W +)′(0)− (W −)′(0)

)︸ ︷︷ ︸
c(2)0

×
[
−
∫ 0

−θ0
(θρ ′w(θ)+ ρw)Gc dθ +

∫ θ0

0
(θρ ′w(θ)+ ρw)Gc dθ

]
︸ ︷︷ ︸

Fd(y,z;ρw)

+
∫ θ0

−θ0

dWc

dθ
Gc(y, z; θ) dθ. (2.16)

We see that our representation of the velocity potential (2.16) contains three
different components. First, because ∂ iGc/∂θ

i is a finite linear combination of Wi(y, z),
the first sum in (2.12) is the same as the Trefftz solution by Faltinsen & Timokha
(2010). It implies a discrete strength distribution in the upper tank pole. Secondly, the
last integral is the same as the modified Poisson integral for the Neumann boundary
problem in the circle (Polyanin 2001, §§ 7.1.2–3) returning an analytical harmonic
function in the whole circle for the continuous (here, artificial) normal velocity on
S̄0 ∪ S0:

vn(θ)=− 1
2π

W ′
c (θ), −θ0 < θ < θ0 and vn(θ)= 0 on S0. (2.17)

Equation (2.13) provides the solvability condition
∫ π
−π vn dθ = 0 for this modified

Poisson integral. The integral implies a continuous strength distribution component
along the ‘dry’ tank surface. Thirdly, the formula (2.16) also includes a linear
combination of the two harmonic functions, Fd and Fc, which implies both discrete
strength distribution associated with jumps at θ = 0 and a continuous strength
component related to ρw. These two functions yield a log-type (source) singularity
in the tank top point with the integrated source strength equal to zero.

3. Numerical results for the natural sloshing modes
3.1. Variational Trefftz scheme

We can approximate the function Wc by the sum Wc(θ)=
∑q

k=1αkbk(θ) (q→∞) with
unknown coefficients {αk} and a complete set of continuously differentiable functions
bk(θ) satisfying the end conditions

bk(±θ0)= b′k(±θ0)= 0. (3.1)

The natural sloshing modes in the circular tank fall into symmetric (even) and
antisymmetric (odd) cases. Using the formula (2.16) for approximating the odd
(antisymmetric) natural sloshing modes, Φ2j−1, requires the symmetric (even) function
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Wc, W +(0) = W −(0), and d2i = 0. The symmetric (even) modes, Φ2j, appear for
the antisymmetric (odd) function Wc, (W +)′(0) = (W −)′(0), and d2i−1 = 0. Taking
arbitrary constants C, di and c(j)0 , we can write the natural sloshing modes as

Φ2j−1(y, z)=
N/2∑
i=1

d2i−1
∂2i−1Gc

∂θ 2i−1
(y, z)+ c(2)0 Fd(y, z)+

q∑
k=1

α
(2)
k uk(y, z), (3.2a)

Φ2j(y, z)= C +
N/2∑
i=1

d2i
∂2iGc

∂θ 2i
(y, z)+ c(1)0 Fc(y, z)+

q∑
k=1

α
(1)
k uk(y, z), (3.2b)

where

uk(y, z)=
∫ θ

−θ0
Gc(y, z; θ)b′k(θ) dθ. (3.3)

Each of the (y, z) functions in (3.2) satisfies the framed conditions in (2.3). Our task
consists of finding the unknown coefficients C, di, c(j)0 and α(j)k by using a variational
scheme to satisfy the spectral boundary condition on Σ0 (see details in Faltinsen &
Timokha 2010).

3.2. Numerical experiments
We conducted numerical experiments with the Trefftz solution (3.2) using different
base functions bk(θ) and ρw(θ) = (1− (θ/θ0)

2)
2
. The best convergence is established

when bk(θ) are similar to the Euler beam eigenmodes with the clamped ends defined
on the intervals [−θ0, 0] and [0, θ0]. These eigenmodes provide the end condition (3.1)
as well as guaranteeing the continuity of the function Wc and its first derivative at
θ = 0. Convergence with other complete systems of functions, e.g. of trigonometric
type, was also satisfactory. Our computations involve integrands with singularities at
the ends and in the middle of [−θ0, θ0]. To handle these singularities, the Kress
quadrature rules (see Kress 1990; Timokha 2005) were used. The Trefftz method
showed a rapid convergence, so that the number M = N/2 + 2 + q in the range
between 8 and 20 normally provided stabilization of six–eight significant figures for 20
approximate natural eigenvalues κi and tested liquid depths (0< h/R0 6 1.99995). This
number of significant figures is also consistent with the double-precision specifications
in our non-optimized FORTRAN code, accuracy of the quadrature rules and the
solver of the spectral matrix problem. The numerical eigenvalues fully agree with the
particular cases by McIver (1989). Table 1 focuses on numerical results for higher
liquid depths where the Trefftz solution by Faltinsen & Timokha (2010) failed.

A rapid convergence to the natural sloshing modes Φi was also established. Because
these modes are defined to within a multiplier, the normalization

∫ r0
−r0
|Φi(y, z0)|2 dy =

1, i > 1 was used. In the cases when the six–eight significant figures of the studied
natural eigenvalues κi were stabilized, the method normally provided three–five
significant figures of Φ(x, z0) in the uniform metrics. Within the above normalization,

the error εi =
√∫

Σ0
(∂Φi/∂z− κ̄iΦi)

2 dS was established to be in the range between

10−3 and 10−7.
To get a stable convergence, the lower tank fillings required lower q and larger

N, but the higher tank fillings normally needed the number N to be between 0 and
3 and the larger number q. This implicitly indicates that the discrete, single-located
multipole component in the tank top following from the paper by Faltinsen & Timokha
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h/R0 r0 κ1 κ3 κ5 κ7 κ9 κ11

1.0 1.0 1.35573 4.65105 7.81986 10.9718 14.1189 17.2771
1.2 0.979796 1.50751 4.85091 8.07834 11.2932 14.5041 17.7132
1.4 0.84 1.73463 5.27678 8.72206 12.1571 15.5888 19.0190
1.6 0.8 2.12372 6.13932 10.0807 14.0138 17.9442 21.8734
1.8 0.6 3.02140 8.31389 13.5596 18.7997 24.0382 29.2758
1.9 0.435890 4.31118 11.5485 18.7600 25.9691 33.1776 40.3857
1.92 0.391918 4.83420 12.8716 20.8898 28.9066 36.9232 44.9398
1.94 0.341174 5.60256 14.8207 24.0282 33.2360 42.4440 51.6523
1.96 0.28 6.89493 18.1072 29.3219 40.5394 51.7582 62.9778
1.98 0.198997 9.82040 25.5633 41.3345 57.1141 72.8972 88.6819
1.99 0.141067 13.9661 36.1432 58.3829 80.6387 102.900 125.165
1.999 0.044710 44.6236 114.448 184.572 254.748 308.112 325.188
1.9999 0.014142 141.503 362.194 583.761 805.936 1027.54 1143.69
1.99995 0.009999 200.420 512.488 824.782 1138.13 1454.04 1769.45

r0κ1 r0κ3 r0κ5 r0κ7 r0κ9 r0κ11
1.99995 0.009999 2.00418 5.12482 8.24772 11.38118 14.54030 17.6943

Ice-fishing limit (Miles 1972; McIver 1989)
2.0 2.00612 5.12530 8.25885 11.39820

h/R0 r0 κ2 κ4 κ6 κ8 κ10 κ12

1.0 1.0 3.03310 6.23920 9.39668 12.5457 15.6955 19.0563
1.2 0.979796 3.21640 6.46747 9.68640 12.8988 16.1088 19.3187
1.4 0.84 3.53751 6.99993 10.4388 13.8722 17.3033 20.7333
1.6 0.8 4.14328 8.10314 12.0419 15.9749 19.9056 23.8351
1.8 0.6 5.62694 10.9061 16.1586 21.4033 26.6447 31.8843
1.9 0.435890 7.81443 15.0852 22.3173 29.5378 36.7534 43.9664
1.92 0.391918 8.70757 16.7955 24.8398 32.8709 40.8965 48.9190
1.94 0.341174 10.0226 19.3154 28.5571 37.7833 47.0029 56.2189
1.96 0.28 12.2388 23.5651 34.8274 46.0705 57.3051 68.5354
1.98 0.198997 17.2647 33.2070 49.0564 64.8775 80.6860 96.4882
1.99 0.141067 24.3946 46.8896 69.2504 91.5700 113.872 136.164
1.999 0.044710 77.1585 148.164 218.733 289.166 359.538 429.881
1.9999 0.014142 243.977 468.626 691.761 914.655 1137.26 1359.26
1.99995 0.009999 345.061 663.781 975.868 1293.61 1610.00 1923.44

r0κ2 r0κ4 r0κ6 r0κ8 r0κ10 r0κ12
1.99995 0.009999 3.45057 6.637733 9.75856 12.9359 16.0998 19.23420

Ice-fishing limit (Miles 1972; McIver 1989)
2.0 3.45333 6.62861 9.78393 12.9330

TABLE 1. The eigenvalues for antisymmetric κ2k−1 and symmetric κ2k computed for higher
liquid depths. When they exist, the numerical values fully agree with McIver (1989) and
Faltinsen & Timokha (2010). The calculations show that the method enables a numerical
handling of the asymptotic limit h/R0 → 2 when r0κi tends to the eigenvalues of the
so-called ice-fishing problem.

(2010) gives a dominant contribution for lower tank fillings with −1 < z0 . 0, but
the opposite limit, 0.9 . z0 < 1, is characterized by the leading continuous strength
function component Wc. For the range 0 . z0 . 0.9, both discrete and continuous
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FIGURE 2. The strength function in (3.4) versus z0 = h/R0 − 1 for the first (a) antisymmetric
and (b) symmetric modes. A passage to a purely continuous strength distribution as z0→ 1
is demonstrated. The computations were done with τ = 0.05 in the approximation (3.4). The
peak values of Wcτ (θ) can significantly change when varying τ with −1< z0 . 0.975.

strength function components matter. Even though our code does not have special
normalization accounting for vanishing of the non-dimensional free surface length
2r0 = 2

√
1− z2

0, we tried to study numerically the natural sloshing modes and
frequencies for the limiting case h/R0 → 2. Table 1 reports some results for the
eigenvalues κi. The calculations remain stable up to z0 = 0.999 99. A control of the
numerical eigenvalues for this limit can be done by recalling that the eigenvalues r0κi

should tend to the eigenvalues for the so-called ice-fishing problem. The numerical
limit values of the latter problem were presented, for example, by Miles (1972) and
McIver (1989). Table 1 compares these numerical limiting values with our calculations
done with z0 = 0.999 95. It looks like κi rapidly increases as z0 is close to 1, but this is
because the growth is proportional to 1/r0 with r0 =

√
1− z2

0.

3.3. Discrete versus continuous components of the strength function
Even though the method demonstrates a rapid convergence to the natural modes and
frequencies associated with the liquid domain Q0, we were not able to establish the
convergence for the continuous strength function Wc and the coefficients di and c(j)0 in
formulae (3.2). Why is this so? First, we should remember that, even though the basic
functions ∂ iGc/∂θ

i, Fc and Fd are infinite on the interval (−θ0, θ0), the Trefftz solution
in Q0, being, in particular, defined by integral expressions involving these functions, is
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finite together with the first derivatives. As a consequence, a small error in coefficients
di and c(j)0 causes a small change for the natural sloshing modes and frequencies in Q0,
but may cause significant changes in Wc on S̄0 (first of all, at θ = 0), which tries to
‘compensate’ the error in di and c(j)0 for obtaining the same liquid sloshing solution in
Q0, outside of S̄0.

A way to get information on a summarized strength function for different liquid
depths may, for example, be a continuous approximation of di and c(j)0 related
components by recalling that δ(θ) = limτ→0+ δτ (θ) = limτ→0+ π−1τ/(τ 2 + θ 2) and the
analogous τ approximations sgnτ (θ) = π−1 arctan(θ/τ) and |θ |τ= π−1(θ arctan(θ/τ) −
(τ/2) ln(1 + (θ/τ)2)). Based on that, we can omit the discrete components in formula
(2.15) by considering the only τ -dependent continuous strength function defined by

W (θ)=Wc(θ) :=Wcτ (θ)= ρw(θ)

[
N∑

i=1

(−1)i di (δτ )
(i−1)(θ)+ c(1)0

1
π

arctan
(
θ

τ

)

+ c(2)0

1
π

(
θ arctan

(
θ

τ

)
− 1

2
τ ln

(
1+

(
θ

τ

)2
))]

+
q∑

k=1

αkbk(θ). (3.4)

In the limit τ → 0+, the formula will transform to (2.15).
Using (3.4) with a fixed τ provides the convergence to the natural sloshing modes

and frequencies. In addition, it demonstrates a convergence to the strength function
Wcτ . A typical behaviour of Wcτ for the first antisymmetric and symmetric modes
computed with τ = 0.05 is illustrated in figure 2. A small change of τ may
significantly change the peak values about θ = 0, but qualitatively function Wcτ

remains similar to those in figure 2.

4. Conclusions
We assumed that the continuation of the velocity potential yields an artificial

multipole-type flow on the ‘dry’ tank surface S̄0 and, thereby, derived a new Trefftz
solution that provides the zero-Neumann condition on the wetted tank surface. The
solution contains the earlier solution by Faltinsen & Timokha (2010) and two new
components associated with a continuous distribution of the artificial flows on S̄0.
The solution was used to approximate the natural sloshing modes. Calculations
confirmed that the solution remains accurate for both lower and higher tank fillings
and, moreover, can be used for a numerical study of the limiting case of the
completely filled tank. Studying the strength function on the ‘dry’ tank surface shows
that the earlier solution component by Faltinsen & Timokha (2010) gives a dominant
contribution for lower liquid depths, 0 < h/R0 . 1, and disappears for higher tank
filling, 1.9 . h/R0 < 2, where the continuous strength contribution dominates. For
1 . h/R0 . 1.9, all the solution components give an equal contribution to the velocity
potential.

The present approach can easily be generalized to the arbitrary two-dimensional
sloshing problem for a smooth closed tank surface by using conformal mapping.
Another point is that the sum in (3.2) gives the velocity potential of the nonlinear
sloshing problem provided by C, the coefficients di, cj

0 and α
j
k are time-dependent

functions and the integration in (3.3) is from θ−(t) to θ+(t) (associated with the contact
points) and the analogous integration limits are given in the definitions of Fc and
Fd. As required in the nonlinear multimodal method, this velocity potential satisfies
the tank–surface condition and the newly introduced time-dependent functions can
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be found from the kinematic and dynamic boundary conditions or the corresponding
variational formulation.
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