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Appendix A. The Trefftz approximate natural frequencies and modes

The Trefftz method reduces the original spectral boundary problem to computation
of integrals (3.21) and solving the spectral matrix problem (3.20). The integrands in
eqs. (3.21) may behave as (τ − τend)α−1, 1 < α < 2 at the interval ends caused by
the first-order derivatives of φ′

i. This requires special quadrature rules. We employ the
sinc quadrature formula (Stenger 1983, p. 160, eq. (4.2.37) with conditions (4.2.36)),
providing an exponential convergence.

Representation (3.22) uses the singular trial functions φ′

i which are required to capture
the polar and log-type asymptotics at the corner points and, thereby, improve local
convergence to the natural sloshing modes. The presence of these functions yields a
formal mathematical conflict, because {W ′

i (y
′, z′)} is already complete set of harmonic

functions in domain Q′

0, without additional functions φ′

j(y
′, z′) (see, theorems on the

completeness by Vekua (1953, 1967) for the so-called star-shaped [relative to the origin
O′] domains). This means that solely using the harmonic polynomials should theoretically
provide a convergence to the natural sloshing modes in a mean square-root metrics on Σ′

0

and, therefore, the infinite functional set {Φ′

i} is overdetermined so that, formally, there
exists a nonunique representation of ϕ′

i. However, bearing in mind that this mathematical
conflict occurs only for q1 = ∞, namely, with infinite number of the harmonic polynomials
W ′

k(y′, z′), but q1 and q2 are, in practice, finite, and q2 is not very large, the use of
representation (3.22) does not lead to the mentioned nonuniqueness.

The coordinate functions {Φ′

i} are not orthogonal on Σ′

0. This means that the Gramian
matrix B may be ill-posed and/or ill-conditioned. To avoid the corresponding numerical
problems, the Gram-Schmidt orthogonalization of Φ′

i is implemented for each finite set
of the used trial functions.

A.1. Results on the natural sloshing frequencies (eigenvalues κ̄i)

The Trefftz solution exactly satisfies the Laplace equation and the zero-Neumann bound-
ary condition of eq. (2.5), thus, only the spectral boundary condition should be approx-
imated. This approximation is expected in the mean square-root metrics
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assuming ǫi → 0 with increasing q1 and q2 in representation (3.22). This means, that the
method provides convergence to integral characteristics over the approximate eigenfunc-
tions. Bearing in mind the Rayleigh quotient

κ̄i =

∫

Q0

(∇ϕi)
2dQ

∫

Σ0

ϕ2
i dS

(A 2)
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h̄ = 0.4

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.09698 4.93704 9.00771 12.9922 2.89054 6.99059 11.0018 14.9717
6 1.09698 4.93704 9.00752 12.9842 2.89054 6.99058 11.0014 14.9604
7 1.09698 4.93704 9.00750 12.9836 2.89054 6.99058 11.0014 14.9596
8 1.09698 4.93704 9.00749 12.9835 2.89054 6.99058 11.0013 14.9595
9 1.09698 4.93704 9.00749 12.9835 2.89054 6.99058 11.0013 14.9595

Results by McIver (1989)
1.09698 4.93704 9.00749 12.9835 2.89054 6.99058 11.0013 14.9595

h̄ = 0.6

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.16268 4.69867 8.19917 11.6551 2.88924 6.46067 9.92725 13.3802
6 1.16268 4.69867 8.19888 11.6514 2.88924 6.46065 9.92646 13.3732

... ... ... ... ... ... ... ...
9 1.16268 4.69867 8.19875 11.6491 2.88924 6.46064 9.92611 13.3692
10 1.16268 4.69867 8.19875 11.6490 2.88924 6.46064 9.92610 13.3691
11 1.16268 4.69867 8.19875 11.6490 2.88924 6.46064 9.92610 13.3691

Results by McIver (1989)
1.16268 4.69867 8.19875 11.6490 2.88924 6.46064 9.92610 13.3691

h̄ = 0.8

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.24606 4.60679 7.85429 11.0893 2.93248 6.23620 9.46563 12.7018
6 1.24606 4.60672 7.85377 11.0749 2.93247 6.23614 9.46502 12.6823

... ... ... ... ... ... ... ...
9 1.24606 4.60670 7.85373 11.0741 2.93246 6.23613 9.46500 12.6814
10 1.24606 4.60670 7.85373 11.0741 2.93246 6.23613 9.46500 12.6813
11 1.24606 4.60670 7.85373 11.0741 2.93246 6.23613 9.46500 12.6813

Results by McIver (1989)
1.24606 4.60670 7.85373 11.0741 2.93246 6.23613 9.46499 12.6813

Table 1. Convergence of the Trefftz method based on harmonic polynomials W ′

j (the φ′

j-type
components are not used in representation (3.22) for smaller liquid depths. Increasing q1 is
stopped after the six significant figures of the eight eigenvalues are stabilized.

which computes the eigenvalues κ̄i by using integrals over ϕi, an indication of the numer-
ical convergence can also be a stabilization of the significant figures in κ̄i with increasing
q1 and q2 in representation (3.22). This stabilization is shown in Tables 1–4 for different
liquid depths.

For the lower liquid depths, 0 < h̄ . 0.8, the natural sloshing modes ϕ′

i in the trans-
formed plane have continuous second-order derivatives in Q′

0 as well as on boundaries Σ′

0

and S′

0 including the corner point between them. This means that the natural sloshing
modes should be effectively approximated by the Trefftz solution (3.22) based on the
harmonic polynomials. Table 1 confirms this preliminary expectation. We see, that the
method leads to fast stabilization of the six significant figures of κ̄i, i = 1, ...8, with ten
trial functions W ′

i . These eight eigenvalues are in ideal agreement with benchmark nu-
merical values by McIver (1989). The order of the mean square-root errors ǫi, i = 1, ..., 8,
vary for the table cases from 10−5 for κ̄1 to 10−2 for κ̄8. For these lower liquid depths,
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h̄ = 1.0 (semicircle)

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.35580 4.65305 7.84283 11.1700 3.03344 6.24321 9.43474 12.8197
6 1.35576 4.65184 7.82712 11.0309 3.03326 6.24074 9.40891 12.6329
7 1.35574 4.65142 7.82261 10.9913 3.03319 6.23990 9.40126 12.5754

... ... ... ... ... ... ... ...
19 1.35573 4.65106 7.81988 10.9718 3.03311 6.23920 9.39670 12.5457
20 1.35573 4.65106 7.81987 10.9718 3.03311 6.23920 9.39670 12.5457
21 1.35573 4.65106 7.81987 10.9718 3.03311 6.23920 9.39669 12.5457
22 1.35573 4.65106 7.81987 10.9718 3.03311 6.23920 9.39669 12.5457

Results by McIver (1989)
1.35573 4.65105 7.81986 10.9718 3.03310 6.23920 9.39668 12.5457

Table 2. Convergence of the Trefftz method based on the harmonic polynomials in representa-
tion (3.22). Increasing q1 is stopped after the six significant figures of the eight eigenvalues κ̄i are
stabilized. Larger dimensions q1 do not affect the stabilized six significant figures. Calculation
with q1 > 70 may become unstable due to the ill-conditioned matrix A (within the framework
of our double-precision FORTRAN-code using 16 digits).

the order of the maximum mean square-root error, ǫ = max
i=1,...,8

|ǫi|, becomes 10−6 with

increasing q1 to 30. For 0.6 . h̄ . 0.8, the same maximum mean square-root error can
be achieved with a lower dimension q1 by using singular trial functions in representation
(3.22).

For the middle liquid depths, 0.8 . h̄ . 1.25, the Trefftz method gives satisfactory
results on the eigenvalues by employing the harmonic polynomials. Table 2 illustrates
typical convergence (for the half-filled circular tank, h̄ = 1). Comparing this table with
results in Table 1 shows that the middle liquid depths require a larger number of the
harmonic polynomials to stabilize the same six significant figures of κ̄i. The order of the
mean square-root errors varies from 10−4 to 10−3 with q1 = 70. When q1 > 70, compu-
tations require special care of the matrix A in eq. (3.20) which becomes ill-conditioned
within the framework of our double-precision FORTRAN-code with 16 digits accuracy.

Accounting for two-three singular trial functions in representation (3.22) can signifi-
cantly improve convergence for the middle liquid depths. The numerical eigenvalues are
then in ideal agreement with those by McIver (1989). We illustrate this fact in Table 3
for h̄ = 1.2 by comparing convergence of the Trefftz method based on the harmonic poly-
nomials (strategy (a)) and using, in addition, several singular trial harmonic functions
(strategy (b), q2 = 2 in our calculations). Case (a) in Table 3 exhibits the convergence
similar to that in Table 2 for h̄ = 1. The order of the mean square-root errors with q1 = 50
varies from 10−3 for κ̄1 to 10−1 for κ̄8. Increasing q1 does not change the stabilized sig-
nificant figures and the mean square-root errors; the calculations become unstable with
q1 > 60. Strategy (b) in this table provides stabilization of the six significant figures with
q1 = 10 and q2 = 2. The order of the mean square-root error with q1 = 50 and q2 = 2 is
then 10−6 for κ̄1 and 10−4 for κ̄8.

Strategy (c) in Table 3 assumes that we do not know how many singular trial functions
are needed, and simply postulate q1 = q2 = q in representation (3.22). Table 3 (c)
illustrates convergence for this numerical strategy. The numerical results are similar to
those with strategy (b); the order of the mean square-root error with q = q1 = q2 = 6 is
10−5 for κ̄1 and 10−3 for κ̄8.

Increasing liquid depths to the larger values, 1.25 . h̄ . 1.95, makes the Trefftz method



4

h̄ = 1.2
(a) Results obtained with only harmonic polynomials W ′

j in representation (3.22).

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.50805 4.86858 8.23415 12.0573 3.21944 6.50711 9.93949 13.9159
6 1.50782 4.85990 8.15389 11.6716 3.21811 6.48802 9.81497 13.4304
7 1.50770 4.85598 8.11849 11.4942 3.21745 6.47915 9.75670 13.1934

... ... ... ... ... ... ... ...
49 1.50751 4.85091 8.07837 11.2932 3.21640 6.46748 9.68644 12.8990
50 1.50751 4.85091 8.07836 11.2932 3.21640 6.46748 9.68644 12.8990
51 1.50751 4.85091 8.07836 11.2932 3.21640 6.46748 9.68644 12.8990

(b) Results obtained with q2 = 2

antisymmetric symmetric
q1 κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

5 1.50751 4.85092 8.07872 11.3008 3.21640 6.46761 9.69028 12.9506
6 1.50751 4.85091 8.07842 11.2948 3.21640 6.46750 9.68723 12.9128

... ... ... ... ... ... ... ...
9 1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68640 12.8990
10 1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68639 12.8988

... ... ... ... ... ... ... ...
51 1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68639 12.8988

(c) Results with q1 = q2 = q in representation (3.22)

antisymmetric symmetric
q κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

3 1.50751 4.85093 8.07955 11.3169 3.21640 6.46805 9.70116 13.0138
4 1.50751 4.85091 8.07834 11.2933 3.21640 6.46748 9.68653 12.9019
5 1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68639 12.8988
6 1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68639 12.8988

Results by McIver (1989)
1.50751 4.85091 8.07834 11.2932 3.21640 6.46747 9.68639 12.8989

Table 3. Convergence of the Trefftz method to the eigenvalues κ̄i, i = 1, . . . , 8, for h̄ = 1.2. The
calculations are stopped after stabilizing the six significant figures. Case (a) presents calculations
done with the harmonic polynomials in representation (3.22); these calculations become unstable
for q1 > 60. Case (b) demonstrates convergence when several singular trial functions φ′

i (q2 = 2
in representation (3.22)) are added. These numerical results in case (b) are in ideal agreement
with those by McIver (1989). Case (c) demonstrates calculations done with q1 = q2 = q in
representation (3.22).

unstable without adding a sufficient number of singular trial functions. Strategy (b)
from Table 3 with 2 6 q2 6 3 is generally applicable, but only for 1.25 . h̄ . 1.6. When
increasing the liquid depth, one must add more and more singular trial functions for each
new larger depth. The required number of these trial functions is a priori unknown and,
therefore, numerical experiments with q2 are needed. A way to avoid these experiments
consists of using strategy (c) from Table 3 implying q = q1 = q2. The typical numerical
result on convergence to the eight lower eigenvalues is demonstrated in Table 4. The
obtained numerical eigenvalues are consistent with those by McIver (1989).
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h̄ = 1.4

antisymmetric symmetric
q κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

3 1.73463 5.27693 8.72739 12.2081 3.53753 7.00202 10.4660 13.9593
4 1.73463 5.27678 8.72223 12.1599 3.53751 7.00002 10.4408 13.8989
5 1.73463 5.27678 8.72206 12.1571 3.53751 6.99993 10.4389 13.8724
6 1.73463 5.27678 8.72206 12.1571 3.53751 6.99993 10.4388 13.8722
7 1.73463 5.27678 8.72206 12.1571 3.53751 6.99993 10.4388 13.8722

Results by McIver (1989)
1.73463 5.27678 8.72206 12.1571 3.53751 6.99993 10.4388 13.8722

h̄ = 1.6

antisymmetric symmetric
q κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

3 2.12372 6.14006 10.0942 14.0680 4.14334 8.10782 12.0710 16.3311
4 2.12372 6.13940 10.0831 14.0415 4.14329 8.10410 12.0568 16.0645
5 2.12372 6.13932 10.0808 14.0153 4.14328 8.10320 12.0428 15.9866
6 2.12372 6.13932 10.0807 14.0138 4.14328 8.10315 12.0419 15.9751
7 2.12372 6.13932 10.0807 14.0138 4.14328 8.10314 12.0419 15.9749
8 2.12372 6.13932 10.0807 14.0138 4.14328 8.10314 12.0419 15.9749

Results by McIver (1989)
2.12372 6.13932 10.0807 14.0138 4.14328 8.10314 12.0419 15.9749

h̄ = 1.8

antisymmetric symmetric
q κ̄1 κ̄3 κ̄5 κ̄7 κ̄2 κ̄4 κ̄6 κ̄8

3 3.02142 8.31596 13.6102 19.5977 5.62729 10.9276 16.6444 24.6065
4 3.02140 8.31530 13.5797 18.8751 5.62712 10.9135 16.1997 21.6793
5 3.02140 8.31416 13.5656 18.8530 5.62699 10.9083 16.1850 21.5254
6 3.02140 8.31391 13.5603 18.8088 5.62695 10.9064 16.1628 21.4449
7 3.02140 8.31388 13.5596 18.8003 5.62695 10.9062 16.1589 21.4070
8 3.02140 8.31388 13.5596 18.7997 5.62694 10.9061 16.1586 21.4033
9 3.02140 8.31388 13.5596 18.7997 5.62694 10.9061 16.1586 21.4033

Results by McIver (1989)
3.02140 8.31388 13.5596 18.7997 5.62694 10.9061 16.1586 21.4033

Table 4. Typical convergence of the Trefftz method for 1.25 < h̄ < 1.95 based on representation
(3.22) with q = q1 = q2. The calculations are stopped after stabilizing the six significant figures
of κ̄i. The method needs special care of the ill-conditioned matrix A for q > 12 (within the
framework of our double-precision FORTRAN-code using 16 digits).

A.2. Uniform approximation of the natural sloshing modes

We consider convergence to the natural sloshing modes in the uniform metrics

χ̄i = max
y∈[−ȳ0,ȳ0]

|χi(y)|, χi(y) =
∂ϕi

∂z
− κ̄iϕi

ϕj(−ȳ0, z̄0)
. (A 3)

For the lower liquid depths, 0 < h̄ . 0.8, calculations based on the harmonic polyno-
mials provide a fast practical convergence of the Trefftz solution (3.22) to the natural
sloshing modes, ϕi, in both mean square-root, ǫi, and uniform, χi, metrics. The approxi-
mate modes are then characterized by a clearly dominant contribution of the Wi-function
to the ϕi-mode, i.e. |ci| ≫ |cj |, j 6= i.

Situation changes for the middle liquid depths, 0.8 . h̄ . 1.25, when the Trefftz solu-
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Figure 1. The relative error-functions, χi(y), i = 1, . . . , 8, by eq. (A 3) representing an error
in satisfying the spectral boundary condition in each point of Σ0. The cases (a) and (b) in
Table 2; h̄ = 1.2. The dotted line presents the error-functions for the Trefftz solution based
on the harmonic polynomials (q1 = 50). The solid line shows the error-functions for the case
q1 = 50 and q2 = 2 in representation (3.22). The uniform error of the order 10−3 is detected for
the eight mode (χ̄8), it can be hardly seen in the figure. The uniform error for the lowest mode,
(χ̄1), is of the order 10−5.

tion based on the harmonic polynomials demonstrates convergence in the mean square-
root metrics ǫi (see, previous section), but not in the χi-metrics. Convergence in the
uniform metrics is provided by employing a number of singular trial functions in repre-
sentation (3.22). This fact is demonstrated in figure 1 showing the error-functions χi(y)
for the studied eight approximate eigenfunctions with h̄ = 1.2. The dotted line presents
χi(y) for the approximate natural modes based on the harmonic polynomials, but the
solid line corresponds to χi(y) for the Trefftz solution employing the singular trial func-
tions φ′

j (q2 = 2 in representation (3.22)). The uniform convergence can also be achieved



7

for the larger liquid depths, 1.25 . h̄ 6 1.95, by using strategy (c) in Table 4 with
q = q1 = q2 in representation (3.22). However, the approximations are less precise. For
instance, the case h̄ = 1.8 in Table 4 establishes the order of the uniform error from 10−4

for χ̄1 to 10−2 for χ̄8.

A.3. Final comments

The Trefftz method is an efficient tool for getting approximate natural sloshing modes
being adopted in the multimodal method (see, constraints I, II and III in Introduction). A
requirement is specific sets of trial functions constructed in the present paper. Numerical
experiments show very good consistency with benchmark numerical results by McIver
(1989) for the natural sloshing frequencies. We demonstrate a uniform convergence of
the Trefftz to the natural sloshing modes.

We also conduced numerical tests for the passage 1.95 < h̄ → 2. Using q = q1 = q2 in
representation (3.22), the corresponding computations demonstrated an accurate approx-
imation of two-three lowest eigenvalues for 1.95 < h̄ 6 1.99. However, these computations
are generally unstable for larger h̄. A reason is that the natural sloshing modes of the
ice-fishing problem should exponentially decay from the mean free surface to the bot-
tom, but the used trial functions do not capture this behavior. Additional trial functions
accounting for this decay should be constructed.
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