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A multimodal method for liquid sloshing
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Two-dimensional forced liquid sloshing in a circular tank is studied by the multimodal
method which uses an expansion in terms of the natural modes of free oscillations
in the unforced tank. Incompressible inviscid liquid, irrotational flow and linear free-
surface conditions are assumed. Accurate natural sloshing modes are constructed
in an analytical form. Based on these modes, the ‘multimodal’ velocity potential
of both steady-state and transient forced liquid motions exactly satisfies the body-
boundary condition, captures the corner-point behaviour between the mean free
surface and the tank wall and accurately approximates the free-surface conditions. The
constructed multimodal solution provides an accurate description of the linear forced
liquid sloshing. Surface wave elevations and hydrodynamic loads are compared with
known experimental and nonlinear computational fluid dynamics results. The linear
multimodal sloshing solution demonstrates good agreement in transient conditions
of small duration, but fails in steady-state nearly-resonant conditions. Importance of
the free-surface nonlinearity with increasing tank filling is explained.
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1. Introduction
Sloshing must be considered for almost any moving vehicle or structure containing

a liquid with a free surface and can be the result of both transient and resonant
excitations of the tank. The hydrodynamics of sloshing is complicated, depending on
the tank shape, liquid depth and the forcing conditions. Its understanding requires
a combination of theory, computational fluid dynamics (CFD) and experiments. We
must distinguish from a physical point of view between global flow and local flow
associated with impact between the free surface and the tank structure. The present
paper concentrates on the global flow and the resulting hydrodynamic loads due
to forced two-dimensional transverse liquid sloshing in a circular-shaped tank. The
latter is needed in predicting the dynamics of vehicles and structures relevant, for
instance for wave liquid motions in lorry tanks, horizontal cylindrical ship tanks,
railway cisterns and storage containers exposed to seismic excitations.

Experiments and CFD simulations of two-dimensional forced liquid sloshing
in circular tanks are, for instance, reported by Strandberg (1978), Kobayashi
et al. (1989), Aliabadi, Johnson & Abedi (2003), Djavareshkian & Khalili (2006),
Moderassi-Tehrani, Rakheja & Sedaghati (2006), Karamanos, Papaprokopiou &
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Platyrrachos (2009) and Bogomaz & Sirota (2002). To the authors’ knowledge,
analytical methods, in general, and multimodal methods, in particular, are not
presented in the literature for this tank shape.

The multimodal methods have been extensively elaborated for upright circular,
annular and sectored cylindrical tanks, for two-dimensional and three-dimensional
rectangular tanks. These methods employ a Fourier-type expansion in terms of
the natural sloshing modes so that the forced liquid motions are described by the
so-called modal equations, i.e. ordinary differential equations coupling generalized
coordinates of the free-surface elevations. The fact that analytical natural modes exist
for the aforementioned tank shapes provides exact expressions for the hydrodynamic
coefficients of the modal equations.

An advantage of the multimodal methods relative to CFD is their central processing
unit (CPU)-time efficiency. The latter fact allows for systematic parameter variations.
The methods can give accurate results for hydrodynamic characteristics and loads
within the theoretical assumptions, and, thereby, be used for validation of CFD
results when the assumptions of the modal method about irrotational flow of
an incompressible fluid with single-valued free-surface elevations are applicable.
Analysing the structure of the modal equations and their solutions simplifies studies
of energy distribution between the natural modes. For nonlinear modal equations,
we can also analyse transfer of energy between sloshing modes, jumps between
steady-state solution branches and hydrodynamic instability.

Even though the general scheme of the multimodal methods is well known from the
literature (see e.g. the textbook by Faltinsen & Timokha 2009), their applicability has
been demonstrated only for a limited number of tank shapes. Each individual tank
shape requires a dedicated applied mathematical and physical study. Specifically,
the linear and nonlinear multimodal methods need an accurate approximation
of the natural sloshing modes which should exactly satisfy the Laplace equation
(constraint I) and zero-Neumann boundary condition on the wetted tank surface
(constraint II). Ideally, the natural sloshing modes should be found in an analytical
form (constraint III).

The present paper focuses on a multimodal analytical description of the linear forced
liquid sloshing and associated hydrodynamic characteristics for a two-dimensional
circular tank. The main assumptions are potential flow of an incompressible liquid
with small-magnitude tank excitations and linear free-surface conditions. The latter
conditions are relevant for the global flow in a clean tank without resonant wave
amplification. However, it is believed that an extension of the constructed linear
multimodal scheme to nonlinear resonant sloshing can be developed in the spirit
of the nonlinear multimodal approach (see details in Faltinsen & Timokha 2009,
chapters 8 and 9, and the discussion in § 5).

In § 2, we start with the boundary value problem on linear forced two-dimensional
liquid sloshing in a circular tank, and derive all the required expressions of the linear
multimodal theory for this tank shape. The derivation is based on the general
multimodal solution yielding the so-called linear modal equations, i.e. ordinary
differential equations with respect to the generalized coordinates of the free-surface
elevations. Modal expressions for computing hydrodynamic characteristics and loads
are also derived. They involve the above-mentioned generalized coordinates and
small-magnitude three-degrees-of-freedom forcing of the tank.

Bearing in mind the constraints I, II and III, we construct in § 3 an accurate
analytical approximation of the natural sloshing modes by means of the Trefftz
method. The Trefftz method employs two families of analytical trial functions and
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Figure 1. Sketch of a two-dimensional circular tank partly filled by a liquid. (a) Unperturbed
(hydrostatic) shape of the liquid. (b) Main definitions for linear liquid sloshing in a tank
performing small-magnitude motions associated with translatory (η2, η3) and angular (η4)
motions. Liquid sloshing is described in the tank-fixed coordinate system Oyz whose origin O
coincides with the centre of the circle.

provides full agreement with benchmark calculations by McIver (1989) for the natural
sloshing frequencies. A novelty is that the Trefftz natural sloshing modes capture
the corner-point asymptotics between the mean free surface and circular wall and,
thereby, effectively approximate the spectral boundary condition in a uniform metric.
Requirement in accounting for the singular behaviour is stated for middle and
higher depths, i.e. the liquid depth-to-radius ratios 1.0 � h/R0 < 2. To the authors’
knowledge, the literature does not give examples of the natural sloshing modes
to compare with. However, we show that our results are consistent with the ‘high
spot’ results by Kulczycki & Kuznetsov (2009) which state that the maximum wave
elevation associated with a natural mode does not occur at the tank wall for h/R0 > 1.

Using these natural modes facilitates high accuracy of the multimodal solution as
discussed in § 2. Laterally forced tank motions are studied in detail and free-surface
elevation and horizontal hydrodynamic force which follow from this multimodal
solution are compared in § 4 with known experimental and nonlinear CFD simulations
with a primary focus on non-resonant conditions. Steady-state sloshing due to a
harmonic lateral excitation and transient sloshing associated with the turning and
lane change of a tanker vehicle are considered. As long as the tank filling is low,
h/R0 � 0.8, we establish good agreement provided by a clearly dominant contribution
of the lowest natural mode. There is an increasing discrepancy with increasing depth in
the range 0.8 � h/R0 < 2. Because our linear multimodal solution gives an accurate
approximation of the original linear sloshing problem, the discrepancy indicates
failure of linear sloshing theory. We discuss different arguments in favour of this
point following from the present study and the related literature.

2. Multimodal solution
2.1. Statement of the problem

We consider forced linear transversal waves in a horizontal circular cylindrical tank,
in the present paper termed a two-dimensional liquid sloshing in a circular tank of
radius R0. In its unperturbed state, the contained liquid occupies the two-dimensional
domain, Q0, with the free surface, Σ0, as shown in figure 1(a). The horizontal
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cylindrical tank performs two-dimensional motions in the Oyz-plane which are
governed by the small-magnitude translatory velocity vO = (0, vOy, vOz) = (0, η̇2, η̇3),
and angular perturbations (around the Ox-axis, roll) with the instant angular velocity
ω = (ω1, 0, 0) = (η̇4, 0, 0) depicted in figure 1(b). The two-dimensional sloshing is
considered in the tank-fixed coordinate system Oyz with origin at the centre of the
circle.

The absolute liquid velocity va = (0, v, w) is described by the velocity potential
Φ(y, z, t) (va = ∇Φ = (0, ∂Φ/∂y, ∂Φ/∂z)). The corresponding boundary value
problem (see Faltinsen & Timokha 2009, and other textbooks) is formulated with
respect to Φ and small vertical displacements of the free surface presented by the
equation z = ζ (y, t):

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 in Q0, (2.1a)

∂Φ

∂n
= η̇2n2 + η̇3n3 on S0, (2.1b)

∂Φ

∂z
= η̇3 + η̇4y +

∂ζ

∂t
on Σ0, (2.1c)

∂Φ

∂t
+ gζ + gyη4 = 0 on Σ0, (2.1d )∫

Σ0

(ζ − z0) dS = 0. (2.1e)

Here, g is the acceleration due to gravity, n = (0, n2, n3) is the outer normal, equation
z = z0 determines the mean free surface Σ0 in the Oyz-coordinate system, y0 is the
half-length of Σ0 and S0 is the tank surface below Σ0. These and other geometric
notations are illustrated in figure 1.

Equation (2.1e) implies conservation of the two-dimensional liquid volume (area)

|Q0| =

∫
Q0

dQ = R2
0

(
1

2
π + z̄0

√
1 − z̄2

0 + arcsin(z̄0)

)
, z̄0 =

z0

R0

. (2.2)

Because the origin O coincides with the centre of the circle, the body-boundary
condition (2.1b) does not include forcing terms associated with the angular tank
motion around Ox. The corresponding η4 terms appear only in the kinematic (2.1c)
and dynamic (2.1d) conditions. Appearance of these terms is associated with the fact
that the coordinate system is rigidly fixed with the tank and does not cause sloshing.
Indeed, using a substitution which accounts for the inclination of the tank-fixed
coordinate system,

ζ (y, t) := ζ (y, t) − η4(t) y, (2.3)

in the kinematic and dynamic conditions eliminates the angular perturbation from
the mathematical statement (2.1). This means that the angular perturbations do not
influence the velocity potential Φ .

2.2. Multimodal solution and linear modal equations

The idea of multimodal methods (Lukovsky, Barnyak & Komarenko 1984; Faltinsen
& Timokha 2009) consists of reducing the evolution problem (2.1) to a system of
ordinary differential equations with respect to generalized coordinates responsible for
the free-surface elevations. Any small-amplitude tank motions can be considered and
both complex transient waves and steady-state regimes can be described.
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Henceforth, we consider the following linear multimodal solution of the original
boundary problem (2.1):

ζ (y, t) = z0 − yη4(t) +

∞∑
i=1

βi(t)f̄ i(y), (2.4a)

Φ(y, z, t) = η̇2(t)y + η̇3(t)z +

∞∑
n=1

Rn(t)ϕ̄n(y, z), (2.4b)

where we account for inclination of the tank-fixed coordinate system (see substitution
(2.3)) and the fact that the angular perturbations do not affect the absolute velocity
field; βi(t) and Rn(t) are generalized coordinates, ϕ̄n are the normalized natural
sloshing modes (f̄ i(y) = ϕ̄i(y, z0)).

Postulating (2.4), we implicitly assume that the natural sloshing modes are known.
The natural sloshing modes ϕi are eigenfunctions of the spectral boundary problem

∂2ϕi

∂y2
+

∂2ϕi

∂z2
= 0 in Q0;

∂ϕi

∂n
= 0 on S0;

∂ϕi

∂z
= κiϕi on Σ0;

∫
Σ0

ϕidS = 0,

(2.5)

where the eigenvalues κi > 0, i � 1 determine the natural sloshing frequencies

σi =
√

gκi. (2.6)

For the circular tank shape, there exist antisymmetric (odd) ϕ2j−1 and symmetric
(even) ϕ2i natural sloshing modes with respect to the Oz-axis. Because the
eigenfunctions ϕi are determined by spectral problem (2.5) within a multiplier, a
normalization is required. In the present paper, we adopt the following mean square-
root normalization:

ϕ̄i(y, z) =
ϕi(y, z)

Ni

, f̄ i =
ϕi(y, z0)

Ni

,

Ni = sign (ϕi (y0, z0))

√√√√√
∫ y0

−y0

ϕ2
i (y, z0) dy

y0

, y0 =

√
R2

0 − z2
0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.7)

As long as we know the natural sloshing modes which exactly satisfy the Laplace
equation and the zero-Neumann body-boundary condition, the multimodal solution
(2.4) exactly satisfies (2.1a) and the body-boundary condition (2.1b). Based on the
multimodal solution (2.4), we can then concentrate on kinematic (2.1c) and dynamic
(2.1d) boundary conditions to find relationships coupling the generalized coordinates
βi(t) and Ri(t). Indeed, substituting the multimodal solution (2.4) into kinematic
condition (2.1c) and employing the completeness and orthogonality of {f̄ i(y), i � 1}
on Σ0, i.e.

∫
Σ0

f̄ i f̄ j dS = 0, i �= j , (Eastham 1962; Lukovsky et al. 1984; Morand &
Ohayon 1995; Faltinsen & Timokha 2009) gives the relations

β̇i = κiRi, i � 1. (2.8)

Furthermore, the orthogonality of f̄ i , the dynamic condition (2.1d) and relations (2.8)
deduce the following ordinary differential equations:

β̈n + σ 2
n βn = Kn(t) = −κnλ2n

y0

η̈2, (2.9)
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where the hydrodynamic coefficients λ2n, accounting for the Oz-axis symmetry of ϕ̄2j ,
are defined by

λ2(2j−1) =

∫
Σ0

yϕ̄2j−1 dy; λ2(2j ) =

∫
Σ0

yϕ̄2j dy = 0, j = 1, 2, . . . . (2.10)

The previous derivations show that the original linear sloshing problem (2.1)
transforms to an infinite set of uncoupled linear modal equations (2.9) with respect
to generalized coordinates βi(t). To describe transient wave elevations by modal
solution (2.4a), we should numerically integrate modal equations (2.9) with the initial
conditions

βi(0) = β0i , β̇i(0) = β1i (2.11)

determining the initial free-surface shape and velocity. For the periodic forcing
ηj (t) = ηaj cos(σ t + σ0j ), we can analytically find the steady-state surface waves
described by the 2π/σ -periodic solution of modal equations (2.9):

β2n−1(t) =
σ 2

σ 2
2n−1 − σ 2

κ2n−1λ2(2n−1)

y0

η2a cos(σ t + σ02), β2n = 0. (2.12)

Because our hydrodynamical model does not account for dissipation, which is
small for clean tanks without wave breaking, the absence of damping terms in modal
equations (2.9) is an obvious fact. Following Keulegan (1959), we can, however,
account for the small viscous energy dissipation due to the boundary layer at the
circular and flat endwalls of the horizontal circular tank walls (perpendicular to axis
Ox) for a laminar flow and, thereby, modify the linear modal equations. The damping
rates ξn for each natural mode are

ξn =
1

2

√
ν

2σnR
2
0

{
γ̄n

κny0

+
R0

L1

}
=

1

2

√
ν

2g1/2R
3/2
0

[
κ−1/4

n

{
γ̄n

κny0

+
R0

L1

}]
, (2.13)

where ν is the kinematic viscosity, L1 is the length of the horizontal circular tank, and
the non-dimensional hydrodynamic coefficient γ̄n depends on the tangential velocity
at the wetted walls S0 as follows:

γ̄n =

∫
S0

(
∂ϕ̄n

∂s

)2

ds. (2.14)

The damping rates can be incorporated into the linear modal equations (2.9) in the
following way:

β̈n + 2ξnσnβ̇n + σ 2
n βn = Kn(t) = −κnλ2n

y0

η̈2. (2.15)

In summary, derivation of the modal equations (2.9) implicitly assumes that we
know the approximate natural sloshing modes ϕi which should exactly satisfy the
Laplace equation and the zero-Neumann boundary condition on S0. Derivation of
modal equations (2.9) also uses orthogonality of the natural sloshing modes, and
the spectral relation ∂ϕn/∂z = κnϕn on Σ0. The latter relation should be accurately
approximated in each point of the mean free surface Σ0. The corresponding
approximate natural sloshing modes will be analytically constructed in § 3.

2.3. Velocity and pressure fields

Given the natural sloshing modes, the forcing terms associated with η2 and η3,
and either a steady-state (2.12) or numerical time-integration solution of the modal
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equations (2.9) (or (2.15) if we want to account for small damping), we are able to
find the absolute velocity field,

u = 0, v = η̇2 +

∞∑
n=1

∂ϕ̄n

∂y

β̇i

κi

, w = η̇3 +

∞∑
n=1

∂ϕ̄n

∂z

β̇i

κi

. (2.16)

The modal expression for the pressure field takes the form

p − p0 = −ρ

(
∂Φ

∂t
+ gz + gyη4(t)

)
= −ρ

(
yη̈2 + zη̈3 +

∞∑
i=1

ϕi

β̈i

κi

+ gz + gyη4(t)

)
,

(2.17)

where ρ is the liquid density and p0 is the ullage pressure; the g-proportional terms
are associated with the hydrostatic pressure component considered in the tank-fixed
coordinate system.

2.4. Resulting hydrodynamic force and moment

Using general Lukovsky formulas for the hydrodynamic force and moment due to
forced liquid sloshing (Lukovsky 1990; Faltinsen & Timokha 2009), or performing
direct integration of the pressure (2.17) over the wetted tank surface, we obtain the
following modal hydrodynamic force expression for the tank-fixed coordinate system:

F2(t) = Fy(t) = Ml[{−gη4} − η̈2] − ρL1

∞∑
j=1

λ2(2j−1)β̈2j−1,

F1(t) = Fx(t) = 0; F3(t) = Fz(t) = −Mlη̈3,

⎫⎪⎬
⎪⎭ (2.18)

where Ml is the liquid mass and L1 is the tank length along the Ox-axis. The Ml{−gη4}
term is the liquid weight component in the tank-fixed coordinate system.

The pressure loads on a circular tank cannot cause a hydrodynamic moment around
Ox.

2.5. Non-dimensional hydrodynamic coefficients

Using the linear modal equations (2.9) or their modification (2.15) is only possible
when we know the hydrodynamic coefficients κn and λn. The computed non-
dimensional hydrodynamic coefficients

κ̄n = R0κn, λ̄n = R−2
0 λn with ȳ0 = y0/R0, z̄0 = z0/R0, h̄ = h/R0, (2.19)

and the damping-rate coefficients γ̄n are listed in tables 1–3 for 0.1 � h/R0 � 1.95.

3. Analytical approximate natural sloshing modes
In § 3, we assume the geometrical scaling by R0, so that the non-dimensional spectral

problem (2.5) is considered in the circle of radius 1 with the non-dimensional liquid
depth h̄ = h/R0 varying between 0 and 2; other non-dimensional parameters are
defined by (2.19).

The Trefftz solution of this non-dimensional spectral problem will be constructed
by using analytically given trial functions which exactly satisfy the Laplace equation
and the zero-Neumann boundary condition on S0. To find these trial functions, we
conformally transform the whole interior tank domain, including the ‘air-occupied’
domain, to a half-plane so that the tank surface, except the upper circle pole, becomes
the horizontal axis (see figure 2).



464 O. M. Faltinsen and A. N. Timokha

1

z

y′

z′

Sz

–1 1

–1

–1 10
y

Figure 2. Conformal transformation of the whole tank domain defined by (3.1a). Sz is
the circle without upper pole (0, 1) providing S0 ⊂ Sz for any 0 < h̄ < 2.

3.1. Two families of trial functions

The conformal transformation in figure 2 can be defined by the formulas

y ′ =
2y

y2 + (z − 1)2
, z′ = −1 − 2(z − 1)

y2 + (z − 1)2
, (3.1a)

y =
2y ′

y ′2 + (z′ + 1)2
, z = 1 − 2(z′ + 1)

y ′2 + (z′ + 1)2
(3.1b)

in the Cartesian coordinates Oyz and O ′y ′z′, respectively. When applied to the mean
liquid domain Q0, this transformation (see figure 3) maps segment Q0 to another
segment Q′

0 so that the arc S0 becomes the chord S ′
0 lying on the horizontal axis Oy ′,

and the chord Σ0 transforms to the arc Σ ′
0, i.e.

Q0 = {y2 + z2 < 1, z < z̄0} → Q′
0 = {y ′2 + (z′ − z′

0)
2 < R′2

0 , z′ > 0}, (3.2)

where

z̄0 = h̄ − 1, z′
0 =

z̄0

1 − z̄0

, ȳ0 =

√
1 − z̄2

0,

y ′
0 =

√
1 + z̄0

1 − z̄0

= R′
0

√
1 − z̄2

0, θ0 = arccos(z̄0),

⎫⎪⎬
⎪⎭ (3.3)

R′
0 = 1 + z′

0 =
1

1 − z̄0

, w3 = (−ȳ0, z̄0),

w4 = (ȳ0, z̄0), w′
3 = (−y ′

0, 0), w′
4 = (y ′

0, 0).

⎫⎬
⎭ (3.4)

The radius of the arc S0 is equal to 1, and the radius R′
0 of Σ ′

0 monotonically increases
from 1/2 to infinity as z̄0 (the vertical position of the mean free surface Σ0) varies
from −1 to 1.

According to substitution (3.1b), the natural sloshing modes (eigenfunctions ϕn(y, z))
transform to

ϕ′
n(y

′, z′) = ϕn

(
2y ′

y ′2 + (z′ + 1)2
, 1 − 2(z′ + 1)

y ′2 + (z′ + 1)2

)
, (3.5)
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Figure 3. The mean liquid domain Q0 in the R0-scaled physical plane for h̄ = h/R0 < 1 and
h̄ > 1, and the corresponding transformed domains Q′

0 defined by (3.1a) in the transformed
plane.

which are solutions of the following spectral problem:

∇2ϕ′
n = 0 in Q′

0,
∂ϕ′

n

∂z′ = 0 on S ′
0,

∂ϕ′
n

∂n
=

κ̄n(1 − z̄0)

1 + z′ ϕ′
n on Σ ′

0,

∫
Σ ′

0

ϕ′
n dS

y ′2 + (z′ + 1)2
= 0

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

in the O ′y ′z′-plane. In turn, if ϕ′
n is an eigenfunction of the problem (3.6),

ϕn(y, z) = ϕ′
n

(
2y

y2 + (z − 1)2
, −1 − 2(z − 1)

y2 + (z − 1)2

)
(3.7)

is the corresponding eigenfunction of the spectral boundary problem (2.5).
The ‘first family’ of trial functions in the transformed plane consists of the z′-even

harmonic polynomials (polynomials satisfying the Laplace equation as well as the
zero-Neumann condition at z′ = 0) which are, for example, defined by Vekua (1953,
1967) and Lukovsky et al. (1984):

W ′
i (y

′, z′) =

[i/2]∑
k=0

(−1)kC2k
i y ′i−2kz′2k, i = 0, 1, . . . . (3.8)

Here, [i/2] is the integer part of i/2, and C
(2k)
i = (2k)!/(i!(2k − i)!).

Explicit expressions for the harmonic polynomials are

W ′
0 = 1, W ′

1 = y ′, W ′
2 = y ′2 − z′2, W ′

3 = y ′3 − 3y ′z′2, . . . . (3.9)
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Substitution of the variables y ′ and z′ (3.1a) into the functions W ′
i (y

′, z′) yields the
trial functions Wi(y, z) in the physical plane satisfying both the Laplace equation and
the zero-Neumann condition on S0:

W0(y, z) = 1, W1(y, z) =
2y

y2 + (z − 1)2
, W2(y, z) =

2y2 + (y2 + z2 + 1)2

(y2 + (z − 1)2)2
, . . . . (3.10)

The uniform horizontal steady flow in the transformed plane (corresponding to
W ′

1 = y ′) is the same as the horizontal dipole-type solution W1(y, z), with singularity
at the ‘upper pole’ in the physical plane. The latter solution with depth-dependent
singularity position has been extensively discussed by Faltinsen & Timokha (2009) as
giving a satisfactory approximation of the first natural sloshing mode.

The second trial function, W2(y, z), is a linear combination of the vertical dipole-
type solution, V1(y, z), ∂W1/∂y, and a constant, i.e.

W2(y, z) = 2
∂W1

∂y
− 2V1 − 1. (3.11)

Because the harmonic polynomials W ′
i (y

′z′) are infinitely differentiable functions
in the whole transformed plane O ′y ′z′, the harmonic functions Wi(x, y) are also
infinitely differentiable functions in the physical plane except the upper circle pole
(0, 1). However, this contradicts the theorems of Komarenko (1980):

At the corner points between Σ0 and S0 of the R0-scaled two-dimensional spectral
boundary problem (2.5), the asymptotic behaviour of the natural sloshing modes
(eigenfunctions) ϕn is described by real and imaginary parts of Zαk and Zp lnq Z
(Z = (y ± ȳ0)+ i(z− z̄0)), where α = π/θi and θi is the inner angle between Σ0 and S0,
and k, p and q are nonnegative integers. Appearance of the corresponding asymptotic
terms depends on the real number α, i.e. (i) when α is an irrational number, there
are only the Zαk-type quantities in the local asymptotic solution, (ii) when α = m

is an integer number, the Zαk-type components become the polynomials, but there
appear the log-type quantities Zm(k+i) ln1+i Z, i = 0, 1, . . . ; k = 1, 2, . . . , and, finally,
(iii) when α = m/n is the rational number (m/n is the irreducible fraction), both Zαk

and Zm(k+i) ln1+i Z, i = 0, 1, . . . ; k = 1, 2, . . . asymptotic terms are possible.
The readers can also see related mathematical results for the mixed boundary

condition by Wigley (1964). The eigenfunctions of the two-dimensional spectral
boundary problem (2.5) are characterized by singular asymptotic behaviour, so that
the higher-order derivatives of ϕn become infinite at the corner points formed by S0

and Σ0.
The singular asymptotic corner-points behaviour of the natural sloshing modes

should, generally, be accounted for by trial functions in the Trefftz solution. This
is especially important for h̄ � 1 when the singularity appears in the second-order
derivatives. Indeed, considering lower liquid depths, 0 < h̄ < 1 with 2 < α = π/θi

(θi is the inner angle between Σ0 and S0) detects continuous second-order derivatives
at the corner points. However, higher liquid depths, 1 � h̄ < 2, lead to 1 < α � 2
and, therefore, the second-order derivatives become infinite at the corner points.
The most singular Z ln Z-type asymptotics (infinite first-order derivatives, Z =
(y ± ȳ0) + i(z − z̄0)) is expected as z̄0 → 1 (h̄ → 2). This limit caused by α → 1 leads
to the so-called ice-fishing problem in the non-scaled physical plane, by letting Σ0

be finite with increasing R0 → ∞. Another interesting case is θi = (1/2)π (semicircle)
associated with α = 2. We should then expect the log-type Z2 ln Z-asymptotics at
the corner points.
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Figure 4. Sketch of the transformed domain with notations needed to construct trial functions
capturing the corner-point asymptotics. The inner angle between OlOr and OrA is equal to
θi = π − θ0.

Remembering that the used conformal transformation (3.1) keeps the same inner
angle between S0 and Σ0, and S ′

0 and Σ ′
0, respectively, we start working in the

transformed plane (figure 4) to construct a ‘second family’ of trial harmonic functions.
These harmonic functions should satisfy the zero-Neumann condition on (OrOl) and
capture the required corner-point asymptotics. For brevity, we assume that α = π/θi is
an irrational number and, furthermore, concentrate on a spectral boundary condition
on Σ ′

0 (in (3.6)) in the vicinity of Or . After introducing the local polar coordinate

system r =
√

(y ′ − y ′
0)

2 + z′2, θ = arccos(y ′/r), this boundary condition takes the
form

∂ϕ′

∂r
cos(τ − θ) +

1

r

∂ϕ′

∂θ
sin(τ − θ) =

κ

R′
0(1 + z′)

ϕ′, (3.12)

where the angle τ is shown in figure 4. Furthermore, a local harmonic solution at Or

can be postulated as

rαi cos(αi(θ − π)), i = 1, . . . (3.13)

to satisfy the zero-Neumann boundary condition on (Ol, Or ). Substituting expression
(3.13) into the boundary condition (3.12) and noting that τ − θ = −(1/2)π + O(r)
and ∂ϕ′/∂r ∼ r−1∂ϕ′/∂θ as r → 0, one can extract the primary asymptotic terms of
(3.12):

−∂ϕ′

∂θ
+ O(rα+1) =

rκ

R′
0(1 + z′)

ϕ′ on (OlA). (3.14)

The latter asymptotic boundary condition means that (3.12) is in the lowest-order
approximation equivalent to the Neumann boundary condition ∂ϕ′/∂θ = 0 for θ = θ0

and, therefore,

αi =
πi

θi

= αi, i = 1, 2, . . . (3.15)

in the local harmonic solution (3.13). This result is consistent with Komarenko’s
theorem.
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Considering the local harmonic solution (3.13) in the Oy ′z′-coordinates, we arrive
at the following expressions:

φ′
II i = rαi cos

(
αi

(
π − arccos

y ′ − y ′
0

r

))
= ((y ′ − y ′

0)
2 + z′2)(1/2)αi

× cos

(
αi

(
π − arccos

y ′ − y ′
0√

(y ′ − y ′
0)

2 + z′2

))
. (3.16)

Analogously, one can get the local harmonic solution at Ol:

φ′
I i = ((y ′ + y ′

0)
2 + z′2)(1/2)αi cos

(
αi arccos

y ′ + y ′
0√

(y ′ + y ′
0)

2 + z′2

)
. (3.17)

Finally, combining (3.16) and (3.17), we can get the stated second family of singular
harmonic antisymmetric and symmetric (with respect to the Oy ′-axis) trial functions
as follows:

φ′
2i−1(y

′, z′) = φ′
I i − φ′

II i; φ′
2i−2(y

′, z′) = φ′
I i + φ′

II i , i = 1, 2, . . . . (3.18)

Obviously, these harmonic functions and their harmonic originals (due to substitution
(3.1a)) in the physical plane satisfy the zero-Neumann condition on S ′

0 and S0,
respectively.

The trial functions (3.16)–(3.18) completely account for the corner-point asymptotics
only for the irrational numbers αi = αi. When α is an irreducible fraction m/n, there
exists an integer subsequence {αij = αn(j+1) = m(j + 1), j = 0, 1, . . .} providing, in
accordance with Komarenko’s theorem, the log-type asymptotic terms at the corner
points. Let us assume that α remains an irrational number, but the subsequent
numbers αij = αij include elements which are close to m = 1, 2, . . . , i.e.

αij − m(1 + j ) = (1 + j )O(δ), j = 0, 1, . . . , where |δ| 
 1. (3.19)

Combining the complex functions Zαnj and Zm(1+j ) (here, Z = (y ′ ± y ′
0) + iz′ in the

complex transformed plane) via

Zm ZO(δ) − 1

O(δ)
, . . . , Zm(k+1) ZO(δ) − 1

O(δ)
, . . . , (3.20a)

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,

Zm(j+1)

(
ZO(δ) − 1

O(δ)

)1+j

, . . . , Zm(j+k)

(
ZO(δ) − 1

O(δ)

)1+j

, . . . (3.20b)

leads to the theoretically expected log-type terms at Or as δ → 0. This means that
the log-type asymptotics in Komarenko’s results on the natural sloshing modes is a
consequence of combined terms involving the local harmonic solutions such as (3.13)
and the corresponding harmonic polynomials when the irrational number α is close
to a rational number.

To handle the log-type asymptotics with trial functions (3.18), we can also use
combinations of the harmonic polynomials and trial functions (3.18). In calculations,
we should assume that α always remains an irrational number (within a small
correcting number comparable with an admissible calculation error, if needed) and
combine W ′

i (y
′ ± y ′

0, z
′) and φ′

i(y
′, z′) similarly to expressions (3.20).

The lowest-order log-type asymptotics (framed box in (3.20a)) is associated with
the Zm(ZO(δ) − 1)/O(δ) term. Whereas α is close to the irreducible fraction m/n,
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remembering that φ′
n(y

′, z′) corresponds to the Zαn-type asymptotic terms at the
corner points and W ′

m is the m-order polynomials, this log-type asymptotics can be
captured by modifying the trial function φ′

n(y
′, z′) as follows:

φ′
n(x

′, z′) :=
φ′

n(x
′, z′) − [W ′

m(y ′ + y ′
0, z

′) + (−1)nW ′
m(y ′ − y ′

0, z
′)]

αn − m
(3.21)

(the term (−1)n is introduced to get antisymmetric and symmetric trial functions for
odd and even n, respectively). Combining expressions for the higher-order log-type
asymptotics from (3.20) leads to more complicated expressions which, as we found
out in numerical experiments, may matter only in the limit case h̄ → 2.

3.2. The Trefftz solution

The Trefftz variational method in the transformed plane assumes the eigenfunctions
of the spectral boundary problem (3.6) to be

ϕ′(y ′, z′) =

q∑
i=0

ciΦ
′
i(y

′, z′), (3.22)

where {Φ ′
i} is a set of trial harmonic functions satisfying the zero-Neumann boundary

condition on S ′
0, and the ci are the unknown weight coefficients. Mathematically, the

traces Φ ′|Σ ′
0

should constitute a complete set of functions in the mean square-root
metrics on Σ ′

0.
After substituting variables (3.1a), solution (3.22) becomes defined in the physical

plane, i.e.

ϕ(y, z) =

q∑
i=0

ciΦi(y, z), (3.23)

where the trial harmonic functions Φi(y, z) satisfy the zero-Neumann condition on S0.
To find the Trefftz solution ϕ of the spectral boundary problem (2.5), we can use the
variational equality following from minimizing the Rayleigh quotient (see Morand
& Ohayon 1995; Faltinsen & Timokha 2009),∫

Σ0

δϕ

(
∂ϕ

∂z
− κ̄ϕ

)
dS = 0, (3.24)

with δϕ = Φi, i = 0, . . . , q . This variational equality leads to the spectral matrix
problem

(A − κ̄B)c = 0, c = (c0, . . . , cq), (3.25)

where A and B are symmetric matrices with elements

aij = R′
0

∫ 3π/2−θ0

−π/2+θ0

[
Φ ′

i

∂Φ ′
j

∂n′

]
y′=R′

0 cos τ

z′=R′
0 sin τ

dτ,

bij =
1

R′
0

∫ 3π/2−θ0

−π/2+θ0

[
Φ ′

iΦ
′
j

1 + sin τ

]
y′=R′

0 cos τ

z′=R′
0 sin τ

dτ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.26)

Here, n′ is the outer normal to Σ ′
0, R′

0 is the radius of Σ ′
0 and the angle τ is defined

in figure 4.
The eigenvalues κ̄ of the spectral matrix problem (3.25) approximate the eigenvalues

of the original spectral boundary problem. Substituting the orthogonal eigenvectors
(c0, . . . , cq) into representation (3.23) also gives the corresponding approximate natural
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h̄ κ̄1 κ̄2 κ̄3 κ̄4 κ̄5 κ̄6 κ̄7 κ̄8 κ̄9

0.1 1.02092 2.96076 5.64616 8.86373 12.4067 16.1099 19.8655 23.6177 27.3459
0.2 1.04385 2.92908 5.35498 8.03025 10.7672 13.4884 16.1797 18.8477 21.5002
0.3 1.06908 2.90549 5.12073 7.42633 9.71129 11.9646 14.1976 16.4190 18.6338
0.4 1.09698 2.89054 4.93704 6.99058 9.00749 11.0013 12.9835 14.9595 16.9320
0.5 1.12800 2.88487 4.79798 6.67865 8.52709 10.3602 12.1862 14.0084 15.8285
0.6 1.16268 2.88924 4.69867 6.46064 8.19875 9.92609 11.6490 13.3690 15.0877
0.7 1.20173 2.90466 4.63560 6.31715 7.98200 9.63874 11.2925 12.9440 14.5945
0.8 1.24606 2.93246 4.60670 6.23613 7.85373 9.46499 11.0741 12.6812 14.2877
0.9 1.29685 2.97444 4.61145 6.21093 7.80143 9.38696 10.9706 12.5528 14.1343
1.0 1.35573 3.03310 4.65105 6.23920 7.81986 9.39668 10.9718 12.5457 14.1189
1.1 1.42489 3.11203 4.72882 6.32264 7.90985 9.49400 11.0765 12.6580 14.2389
1.2 1.50751 3.21640 4.85091 6.46747 8.07834 9.68639 11.2932 12.8988 14.5041
1.3 1.60830 3.35408 5.02774 6.68598 8.34014 9.99089 11.6412 13.2899 14.9388
1.4 1.73463 3.53751 5.27678 6.99993 8.72206 10.4388 12.1571 13.8722 15.5888
1.5 1.89888 3.78768 5.62838 7.44799 9.27201 11.0868 12.9063 14.7200 16.5377
1.6 2.12372 4.14328 6.13932 8.10314 10.0807 12.0419 14.0138 15.9749 17.9442
1.7 2.45669 4.68569 6.92979 9.12053 11.3415 13.5329 15.7458 17.9389 20.1479
1.8 3.02140 5.62694 8.31385 10.9061 13.5596 16.1586 18.7997 21.4033 24.0381
1.9 4.31118 7.81443 11.5484 15.0852 18.7600 22.3180 25.9691 29.5463 33.1772
1.95 6.15096 10.9625 16.2141 21.1172 26.2727 31.2168 36.3324 41.3124 46.3937

Table 1. Non-dimensional eigenvalues κ̄i = κiR0, i = 1, . . . , 9 versus non-dimensional liquid
depth h̄ = h/R0.

sloshing modes which constitute, due to orthogonality of the eigenvectors (c0, . . . , cq),
the orthogonal traces ϕi |Σ0

= fi(y) on Σ0 for the Trefftz eigensolutions (3.23) as
discussed in § 2.2.

When employing the two families of constructed trial functions in the Trefftz
solution (3.22), we distinguish antisymmetric and symmetric natural modes, i.e.

ϕ′
2k−1 =

q1∑
i=1

ciW
′
2i−1 +

q2∑
i=1

cq1+iφ
′
2i−1 =

q1+q2∑
j=1

cjΦ
′
j , k = 1, 2, . . . ,

ϕ′
2k =

q1∑
i=0

ciW
′
2i +

q2∑
i=0

cq1+i+1φ
′
2i =

q1+q2+1∑
j=0

cjΦ
′
j , k = 0, 1, . . . ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.27)

where the first sums (up to q1) in expressions for ϕ′
2k−1 and ϕ′

2k include the harmonic
polynomials, but the second sums are based on the singular trial functions capturing
the corner-point asymptotics.

The numerical hydrodynamic coefficients computed by using the approximate
natural sloshing modes (3.27) with normalization (2.7) are listed in tables 1–3.

Details on convergence and error of the Trefftz solution (3.27) for the non-
dimensional eigenvalues κ̄i and the natural sloshing modes ϕi are reported in the
supplementary material available at journals.cambridge.org/flm. It is important that
the present Trefftz solution provides a uniform convergence to the spectral boundary
condition of (2.5) on Σ0. For middle and higher liquid depths, 1.0 � h/R0, this
convergence is only possible due to the singular trial functions. The consequence
of the singularity at the intersection between the mean free surface and the tank
wall is infinite second- and higher-order derivatives of the free-surface profile, and
the associated velocity potential, at the intersection point. However, the free-surface
elevation and the velocity field remain finite at this intersection point. The wave slope
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h̄ λ̄21 λ̄23 λ̄25 λ̄27 λ̄29

0.1 0.155126 0.001617 0.000127 0.000024 0.000007
0.2 0.293875 0.006068 0.000864 0.000256 0.000107
0.3 0.416210 0.012741 0.002468 0.000896 0.000430
0.4 0.522105 0.021049 0.004950 0.002014 0.001041
0.5 0.611544 0.030452 0.008188 0.003586 0.001947
0.6 0.684522 0.040456 0.011994 0.005534 0.003116
0.7 0.741044 0.050598 0.016152 0.007756 0.004492
0.8 0.781124 0.060439 0.020443 0.010132 0.006003
0.9 0.804786 0.069554 0.024644 0.012538 0.007569
1.0 0.812062 0.077529 0.028538 0.014844 0.009107
1.1 0.802998 0.083954 0.031912 0.016919 0.010526
1.2 0.777645 0.088423 0.034552 0.018629 0.011734
1.3 0.736069 0.090528 0.036245 0.019838 0.012635
1.4 0.678346 0.089857 0.036771 0.020403 0.013128
1.5 0.604565 0.085985 0.035903 0.020176 0.013105
1.6 0.514833 0.078467 0.033394 0.018993 0.012447
1.7 0.409283 0.066817 0.028974 0.016672 0.011023
1.8 0.288084 0.050477 0.022312 0.012993 0.008667
1.9 0.151479 0.028703 0.012964 0.007651 0.005152
1.95 0.077529 0.015411 0.007055 0.004198 0.002842

Table 2. Five lowest non-zero non-dimensional hydrodynamic coefficients λ̄2i = λ2i/R
2
0 versus

h̄ = h/R0.

h̄ γ̄1 γ̄2 γ̄3 γ̄4 γ̄5 γ̄6 γ̄7 γ̄8 γ̄9

0.1 6.444 29.30 71.08 126.4 187.2 246.6 302.1 353.9 403.5
0.2 4.379 18.23 38.67 59.85 78.83 96.01 112.5 129.0 145.5
0.3 3.437 13.09 24.82 35.13 44.18 52.95 61.77 70.68 79.66
0.4 2.864 10.01 17.31 23.31 28.94 34.61 40.36 46.16 51.98
0.5 2.467 7.935 12.78 16.82 20.85 24.94 29.08 33.24 37.41
0.6 2.171 6.455 9.859 12.89 15.99 19.14 22.31 25.50 28.68
0.7 1.941 5.357 7.888 10.33 12.82 15.36 17.89 20.45 22.99
0.8 1.757 4.520 6.508 8.566 10.63 12.74 14.84 16.96 19.06
0.9 1.607 3.871 5.515 7.295 9.054 10.86 12.64 14.45 16.24
1.0 1.484 3.361 4.786 6.346 7.888 9.454 11.02 12.58 14.18
1.1 1.383 2.959 4.242 5.632 7.010 8.405 9.795 11.20 12.58
1.2 1.302 2.640 3.837 5.081 6.348 7.602 8.870 10.15 11.40
1.3 1.239 2.390 3.540 4.662 5.855 7.007 8.179 9.403 10.51
1.4 1.194 2.199 3.332 4.354 5.504 6.583 7.684 8.899 9.868
1.5 1.171 2.061 3.208 4.149 5.288 6.330 7.376 8.649 9.468
1.6 1.175 1.977 3.172 4.011 5.214 6.067 7.267 8.128 9.322
1.7 1.222 1.963 3.256 4.033 5.329 6.124 7.412 8.221 9.500
1.8 1.353 2.065 3.557 4.298 5.793 6.558 8.041 8.817 10.29
1.9 1.739 2.487 4.493 5.234 7.284 8.015 10.08 10.77 12.85
1.95 2.351 3.218 5.989 6.807 9.644 10.49 13.36 14.20 17.12

Table 3. Non-dimensional hydrodynamic coefficients γ̄i defined by (2.14) and involved in
computation of the linear damping ratios (2.13) versus non-dimensional liquid depth h̄ = h/R0.

is also finite except in the limit h/R0 → 2, which corresponds to the ‘ice-fishing’
problem. In practice, the local wave steepness at the intersection point increases with
h/R0, indicating increased importance of nonlinearities. The fact that the second
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Figure 5. Surface-wave profiles associated with lower natural sloshing modes. The vertical
wave elevations are normalized to provide the same value at y = −ȳ0. The first antisymmetric
mode and the first symmetric mode correspond to κ̄1 and κ̄2, respectively.

derivative of the wave elevation is infinite at the intersection points implies that
surface tension may matter.

The predicted two lowest natural modes will be compared with the ‘high-spot’
results by Kulczycki & Kuznetsov (2009) which state that, if the tank walls are not
vertical and the inner angle between Σ0 and S0 exceeds (1/2)π, the maximum wave
elevation is expected away from the wall. The inner angles exceeding (1/2)π appear
in the studied case for h̄ > 1. A basis for Kulczycki & Kuznetsov’s (2009) analysis is
the previously described singular flow behaviour at the intersection between the mean
free surface and the tank wall. Our numerical method provides uniform convergence
to the natural modes and, therefore, is able to illustrate the surface-wave profiles as
well as the trend in changing local wave steepness with increasing tank filling. Results
on the surface profiles of the two lowest natural modes are shown in figure 5 for
non-dimensional depths h̄ = h/R0 = 0.25, 0.5, 0.75, 1.25, 1.5 and 1.75.
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Figure 6. The steady-state (maximum and minimum) wave elevation at the wave probe
situated at d = 0.603777R0. Comparison between experimental data by Bogomaz & Sirota
(2002) and the linear multimodal theory (4.1). The wave elevations are normalized by
R0 = 0.1325 m. The longitudinal tank dimension of the Lucite tank is L1 = 0.95 m, the
horizontal forcing amplitude is η2a = 0.0075472R0. The tank filling is h/R0 = 1.47. The
shadow zone notes the frequency range, where Bogomaz & Sirota (2002) report on strongly
nonlinear three-dimensional waves due to amplification of longitudinal modes. The possibility
of the secondary resonance due to the second- and third-order nonlinearities is indicated by

i
(i)
k , where k is the number of the corresponding mode and i is the order of nonlinearity.

For small liquid depths, the first antisymmetric mode is of a clearly linear character,
e.g. ϕ1(y, z̄0) = fi(y) ≈ Cy, where C is a constant. As we report in the supplementary
material, the lowest natural sloshing mode ϕ1 is dominantly contributed by the
horizontal dipole-type flow with the singularity at the upper circle pole. In the limit
shallow liquid case (h̄ → 0), this dipole-type flow causes the liquid motions along
the circular wall to behave as a ‘frozen’ liquid mass, which implies κ̄1 = 1 by using
a pendulum model. Indeed, according to table 1, the eigenvalues κ̄1 become close to
1 for smaller liquid depths. The second (first symmetric) natural mode also implies
non-steep surface-wave profiles for lower liquid depths.

4. Comparison with experiments and nonlinear computational-fluid-dynamics
simulations

4.1. Steady-state vertical free-surface wave elevation

The fact that the theory predicts a non-zero value of the free-surface elevation at the
intersection point does not make sense for h/R0 �= 1 due to conflict with the tank wall
geometry. Our focus is, therefore, on the wave elevation slightly away from circular
walls, as shown for an experimental case in figure 6.

Experimental steady-state wave elevations (maximum and minimum) with the
input parameters given in the caption of figure 6 were presented by Bogomaz &
Sirota (2002) for a wide range of forcing frequencies. The non-dimensional depth is
h/R0 = 1.47 and the forcing amplitude η2a is small and equal to 0.0076R0. Employing
representation (2.4a) and steady-state solution (2.12) for sway excitations, we arrive
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Figure 7. Transverse acceleration of the tank associated with (a) the turning manoeuvre and
(b) the lane change of a tanker vehicle.

at the following expression for the steady-state elevation amplitude at y = d:

R0σ
2

y0

∞∑
i=1

κ̄2i−1λ̄2(2i−1)

σ 2
2i−1 − σ 2

η2af̄ 2i−1(d). (4.1)

Linear multimodal prediction (4.1) is compared with these experimental
measurements in figure 6. The shadow zone denotes the frequency range, where
Bogomaz & Sirota (2002) reported a transition to strongly three-dimensional waves.
A linear sloshing theory cannot predict such a transfer of energy to three-dimensional
wave motions. Away from this zone, the theoretical predictions are in satisfactory
agreement with experiments.

The literature also contains experiments by Kobayashi et al. (1989) and Navarrete
et al. (2003) on the steady-state hydrodynamic force conducted with larger forcing
amplitudes, 0.01R0 � η2a , in a wide frequency range around σ1. Our attempts to
compare with these experimental data close to and away from σ1 were not successful.
The linear multimodal solution gives much larger values of the hydrodynamic force
than the measurements. This fact, and the photograph in the original figure 18 by
Kobayashi et al. (1989) showing an overturning of the free surface at the wall, indicates
limitations of linear sloshing theory in steady-state nearly resonant conditions.

4.2. Transient horizontal hydrodynamic force

Linear sloshing theory can better describe transient liquid sloshing on the time scale
of the highest natural sloshing period T1 than nearly resonant steady-state sloshing.
In this section, we consider two cases of transient waves in a circular tank that are
relevant during either a turning manoeuvre or a lane change of a tanker vehicle.
Rollover is not considered, i.e. the tank experiences only the effect of horizontal
accelerations η̈2(t), as illustrated in figure 7.

The horizontal hydrodynamic force F2(t) due to transient sloshing is investigated.
An estimate of this transient force can be obtained by using fourth-order Runge–
Kutta integration of the modal equations (2.9) with η̈2(t) represented in figure 7 and
the zero-initial conditions βi(0) = β̇i(0) = 0. The Runge–Kutta solution should then
be substituted into (2.18) to compute the hydrodynamic force. Following this path
with input accelerations in figure 7 establishes fast convergence to the time-dependent
F2(t) when increasing the number of the modal equations (2.9). Using the three to
four modal equations of (2.9) responsible for antisymmetric modes stabilizes three
to six significant figures for the output hydrodynamic force F2(t). One reason for
this fast convergence is that the obtained multimodal solution is, for these transients,
characterized by a clear dominant contribution of the lowest natural mode. Our
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calculations will be compared with published CFD results. However, no estimates of
numerical accuracy were provided in the publications.

4.2.1. The turning manoeuvre

We apply our linear multimodal solution to re-examine the case by Aliabadi et al.
(2003), who employed a fully nonlinear, three-dimensional Navier–Stokes model for
simulation of transient sloshing in a horizontal circular cylindrical tank and associated
horizontal force. Both the gas and the liquid were assumed incompressible. Aliabadi
et al. (2003) used the finite element method based on the stabilized-upwind/Petrov–
Galerkin and pressure-stabilized/Petrov–Galerkin techniques; the volume-of-fluid
method is used to capture the liquid–gas interface. In their numerical examples,
the transient sloshing occurs due to a turning manoeuvre. The vehicle is assumed to
follow a circular path of radius Rr = 250 m and constant speed vt = 10 m s−1. The
tank is as a consequence exposed to a constant horizontal centrifugal acceleration
η̈2a = v2

t /Rr = 0.4 (m s−2) = 0.0408 × g. The time behaviour of η̈2(t) is described in
figure 8(a) with Td = 0. Zero-initial conditions for the liquid implying an unperturbed
liquid at t = 0 are adopted.

Comparison of the simulations by Aliabadi et al. (2003) and the multimodal solution
is presented in figure 8. Even though the simulations by Aliabadi et al. (2003) account
for nonlinearity and viscosity, we see generally satisfactory agreement for all the tested
liquid depths during an initial duration corresponding to the highest natural sloshing
period T1 = 2π/σ1, namely, in the interval 0 < tπ/σ1 < 2. In figure 8(a,b) with lower
liquid depth, the simulations by Aliabadi et al. (2003) and our multimodal solution
are in good agreement during the completely studied time interval 0 < tπ/σ1 < 5.
However, a clear discrepancy is established for the middle liquid depths (the middle
liquid depths are classified in the supplementary material to be 0.8 � h/R0 � 1.2) in
figure 8(c,d ) when 2 < tπ/σ1.

Because the lowest natural sloshing mode is clearly dominant in the multimodal
solution for figure 8(a–d ), the resulting oscillation period of the horizontal force is
very close to the highest sloshing period T1. The simulations by Aliabadi et al. (2003)
for figure 8(c,d ) associated with the middle liquid depths do not show the same
periodicity. This implicitly indicates that higher natural modes become amplified in
these simulations; an explicit confirmation of this fact follows from Aliabadi et al.
(2003, figure 5) presenting an instant wave profile related to figure 8(d ) which shows
that the lowest natural mode does not dominate in their numerical solution. Typical
mechanisms of such an amplification of higher modes is the free-surface nonlinearity
(see Faltinsen & Timokha 2009, chapters 8 and 9).

4.2.2. Lane change

Fully nonlinear and viscous simulation of liquid sloshing due to the lane change
manoeuvre of a tanker vehicle (figure 7b) was done by Moderassi-Tehrani et al. (2006)
by using the commercial CFD code FLUENT. The numerical results were obtained
for a two-dimensional tank of radius R0 =1.0161 m and the dimensional horizontal
forcing acceleration amplitude 0.2 × g.

The multimodal solution and the numerical results by Moderassi-Tehrani et al.
(2006) for maximum horizontal hydrodynamic force are compared in figure 9 for
different ratios between the lane change duration Td and T1. One can see satisfactory
agreement. Once again, as in § 4.2.1 for the turning-tanker vehicle, the multimodal
solution demonstrates a clearly dominant contribution of the lowest natural mode; a
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Figure 8. Non-dimensional horizontal force F2(t)/(ρL1(2R0)
2η̈2a) for the turning manoeuvre

of a tanker vehicle considered by Aliabadi et al. (2003), whose simulations (dashed line) were
done with 2R0 = 1 m by a fully nonlinear, three-dimensional and viscous CFD model with
2R0 = 1 m as well as Td = 0 and η̈2a = 0.0408g in the notation of figure 7(a); L1 is the
longitudinal dimension of the horizontal tank. The solid lines represent results by the linear
multimodal theory. (a) h/R0 = 0.3, (b) h/R0 = 0.5, (c) h/R0 = 0.7 and (d ) h/R0 = 0.9.

modal analysis shows that other modes give only a 2 % correction of the maximum
value of F2(t).

FLUENT predicts lower values of the maximum horizontal force than the
multimodal solution in a neighbourhood of Td/T1 = 1. The maximum discrepancy
through all the compared values in figure 9(b–d ) is about 15 %. An indication that
this discrepancy is caused by the free-surface nonlinearity follows from comparing
the hydrodynamic forces predicted by the nonlinear multimodal theory by Faltinsen
et al. (2000) and the corresponding linear modal equations (Faltinsen & Timokha
2009) for a rectangularly shaped tank with the tank breadth 2R0, the liquid-depth-
to-R0 values taken from figure 9, and the same forcing conditions as in figure 9(b–d ).
The established maximum difference between the nonlinear and linear forces due to
transient sloshing in this rectangular tank is estimated to being about the same 15 %.

5. Concluding remarks and discussion
Being motivated in developing the multimodal methods for forced oscillations

of a horizontal circular cylindrical tank, we have constructed approximate natural
sloshing modes in a two-dimensional circular tank. These analytically given modes
exactly satisfy the Laplace equation, the zero-Neumann boundary conditions on the
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Figure 9. Non-dimensional maximum horizontal force max|F2(t)|/(Mlη̈2a) for the lane change
of a tanker vehicle, where η̈2a is the maximum acceleration in figure 7(b) and Ml is the liquid
mass. The circles correspond to fully nonlinear viscous simulations by Moderassi-Tehrani et al.
(2006) employing the FLUENT code, the solid lines are predictions by our linear multimodal
solution. The simulations by Moderassi-Tehrani et al. (2006) were performed with η̈2a = 0.2g,
where R0 = 1.016 m. (a) h/R0 = 0.4, (b) h/R0 = 0.8, (c) h/R0 = 1.2 and (d ) h/R0 = 1.6.

wetted walls, and demonstrates a uniform convergence to the spectral free-surface
condition. They capture the asymptotic behaviour at the corner points between the
mean free surface and the non-vertical tank walls, which becomes singular as h/R � 1.

The natural sloshing modes are employed in the multimodal solution describing
the linear forced sloshing problem in a circular two-dimensional tank (transverse
forced waves in a horizontal circular cylindrical tank). The associated multimodal
expressions for the hydrodynamic force were also derived. The constructed natural
modes were adopted in computations of the hydrodynamic coefficients of the above-
mentioned equations and expressions. Non-dimensional values of these coefficients
are listed for 0.1 � h/R0 � 1.95. Linear viscous damping rates due to laminar flow at
the tank surface were obtained by using the technique of Keulegan (1959).

Linear sloshing theory is commonly used in studying the forced liquid sloshing in
a horizontal circular cylindrical tank (see a recent review by Karamanos et al. 2009).
Because the constructed multimodal solution for forced sloshing is quite accurate,
it is used to estimate the applicability of linear sloshing theory for steady-state and
transient liquid motions. For this purpose, the solution is compared with experimental
results and fully nonlinear CFD simulations. There is good consistency for non-
resonant steady-state regimes and transients. For transient waves, the multimodal
solution demonstrates a clearly-dominant contribution of the lowest (antisymmetric)
natural mode. The agreement with published nonlinear CFD results is especially good
for smaller liquid depths; however, the linear theory may lead to sufficient discrepancy
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for larger tank fillings due to, we believe, the free-surface nonlinearity. We give some
arguments for this.

Explicitly, the nonlinear effects appearing as overturning waves are confirmed in
photographs by Kobayashi et al. (1989), who studied steady-state resonant sloshing
due to horizontal tank excitations with relatively large forcing amplitude 0.01 �
η2a/R0. Furthermore, an explanation why the free-surface nonlinearity can become
more important for larger tank fillings comes from the free-surface profiles associated
with the lowest natural modes. For lower liquid depths, h/R0 � 0.8, these profiles are
characterized by almost linear behaviour as a function of the horizontal coordinate.
Increasing the liquid depth leads to relatively steep-wave profiles at the tank wall.
Remembering that the nonlinear free-surface condition involves derivatives of the
velocity potential, this steepness indicates importance of the nonlinear terms for
higher liquid depths. The fact that there is a geometrical conflict for the instant
linear-theory free-surface profiles at the intersection point between the mean free
surface and the tank wall also introduces nonlinear effects.

Faltinsen & Timokha (2009) review the asymptotic multimodal methods which
effectively describe nonlinear forced liquid sloshing. Based on the natural sloshing
modes from the present paper, these methods have no formal mathematical obstacles
to be applied. The corresponding nonlinear multimodal equations should be of
an adaptive character (adaptive multimodal methods for a rectangular tank are
extensively discussed by Faltinsen & Timokha 2001). One reason is secondary
resonance. Occurrence of the secondary resonance can be illustrated by jumps in
the steady-state response curves seen in experimental measurements by Bogomaz &
Sirota (2002) (see figure 6).

The nonlinear secondary resonance phenomenon occurs when both σ ≈ σ1 and the
nσ -harmonics (n is an integer) are close to a higher natural sloshing frequency. For
the rectangular tank, due to the trigonometric algebra between the natural sloshing
modes, the n-harmonics should primarily cause the secondary resonance of the nth
natural mode, i.e. one should estimate the closeness of nσ and σn. The natural
modes for the circular tank shape do not guarantee that the nσ -harmonics primarily
amplify the nth mode. More precisely, for the second-order nonlinearities, we can
expect the secondary resonance to excite all the symmetric modes, namely, one must
estimate the closeness of 2σ and σ2j , j = 1, 2, . . . . In a similar way, the third-order
nonlinearity requires us to control the condition 3σ ≈ σ2j+1, j = 1, 2, . . . . In terms of
the ratio σ/σ1, the secondary resonance due to the second-order nonlinearities should
be expected at

σ

σ1

≈ i
(2)
2j =

1

2

√
κ̄2j

κ̄1

, i = 1, 2, . . . (5.1)

and the secondary resonance due to the third-order nonlinearities at

σ

σ1

≈ i
(3)
2j+1 =

1

3

√
κ̄2j+1

κ̄1

, i = 1, 2, . . . . (5.2)

For the experimental case studied by Bogomaz & Sirota (2002), many of i
(2)
k and i

(3)
k

belong to the primary resonance frequency range. These are marked in figure 6 and,
as one can see, there are jumps at these values in the experimental measurements.

Finally, a prospective problem is the study of the passage from two-dimensional to
three-dimensional waves in a horizontal circular cylinder due to horizontal excitations
as observed in the experiments by Bogomaz & Sirota (2002).

Supplementary data are available at journals.cambridge.org/flm.
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