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Resonant three-dimensional nonlinear
sloshing in a square-base basin.
Part 3. Base ratio perturbations
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(Received 15 December 2004 and in revised form 10 August 2005)

Previous parts studied nonlinear resonant sloshing in a prismatic tank under the
academic assumption of a square base. However, a representative industrial tank may
have an ‘almost’ rather than a ‘precisely’ square base. The present paper generalizes
the multimodal technique of Part 1 to examine this complication. The main focus is on
resonant sloshing due to lateral harmonic excitations, but several known theoretical
results about free-standing waves have also been re-derived. The analysis shows that,
although disturbances of the square base do not lead to new types of steady-state
wave regimes, the frequency domains, where these wave regimes are stable, change
considerably even with small perturbations of the breadth/width ratio around 1. The
modifications of the effective frequency domains are compared with the results of two
experimental series.

1. Introduction
The precursor of this paper (Part 1, Faltinsen, Rognebakke & Timokha 2003)

developed an asymptotic modal method and derived a nonlinear modal system for
modelling three-dimensional resonant sloshing in a square-base basin with finite
depth. An inviscid and incompressible fluid with irrotational flow was assumed.
The sloshing occurs because of horizontal harmonic excitation close to the lowest
natural frequency. The main combined theoretical-and-experimental result of Part 1
is that a square cross-section causes the existence of three and only three physically
different steady-state resonant regimes, i.e. ‘planar’, ‘swirling’ (rotary) and ‘diagonal’-
like (‘squares’-like in Part 1). The excitation frequency ranges (effective frequency
domains), where each steady-state regime is stable, are functions of the excitation
amplitude and the fluid depth. Simultaneous instability of these regimes in a certain
frequency range causes irregular, ‘chaotic’ waves.

The asymptotic modal technique of Part 1 assumed the smallness of the scaled
excitation amplitude ε � 1 (excitation amplitude/tank breadth ratio) and adopted the
Moiseyev ordering (Moiseyev 1958; Faltinsen 1974), which matches the dominating
modes with O(ε1/3). Error in prediction of the effective frequency domains is then
of o(ε2/3) (intermediate and shallow depths require a special asymptotic technique
and imply other accuracy, see, Faltinsen & Timokha 2002). The method required
modifications (and accounting for damping) for accurate approximation of transient
waves, in general, and transitions to steady-state wave regimes, in particular, for rea-
listically small non-infinitesimal ε (Faltinsen, Rognebakke & Timokha 2005a, Part 2,
reported corresponding results) and fails to describe local breaking phenomena at the
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wall. However, as shown by Faltinsen, Rognebakke & Timokha (2005b), prediction
of the effective frequency domains remains in very good agreement with experimental
observations, especially for longitudinal forcing. Physically, this means that the
nonlinear modal equations from Part 1 adequately capture the dominating, ‘global’
fluid flow involving the majority of the fluid mass, but amplification of higher modes
due to transients and local wave breaking imply complex motions of smaller energy
relative to this flow. Comparisons by Faltinsen et al. (2005b) demonstrated that, unless
the excitation frequency approaches the bounds of the effective frequency domain,
these relative motions may affect wave amplitudes, but not the types of motion. An
additional particular explanation of the good agreement is that the dominating flow is
formed by the two lowest natural modes (longest cross-waves) which are characterized
by the lowest viscous damping rates. Owing to the well-known results of Keulegan
(1959), general operator theory of linear viscous sloshing by Krein (1964) (see, also,
reviews of these and related results by Krein & Langer 1978a, b; Kopachevsky &
Krein 2003) and recent papers on asymptotic approximations by Martel, Nicolas &
Vega (1998) and Miles & Henderson (1998), these rates are contributed by shear stress
at the tank surface, of the order O(

√
ν) (ν is non-dimensional kinematic viscosity)

and, as shown by Faltinsen et al. (2005b), are less than ε in the experimental cases.
Bearing in mind the numerous industrial applications that can use the weakly

nonlinear analysis on sloshing in mobile containers with a rectangular-shape base
(an example is the liquefied natural gas tanks), the ‘pure’ square geometry is of
limited relevance. The base ratio of realistic tanks may, in many cases, be close, but
rarely equal to 1. This has been a predominating motivation for us to extend the
results of Part 1, to resonant sloshing in tanks of nearly square cross-section, the
more so, as the corresponding nonlinear asymptotic modal system should generally
handle this complication. The focus was on identifying the types of steady-state
wave regimes and quantifying their effective frequency domains. Numerical results
on effective frequency domains were compared with observations during model tests
from earlier experimental series (not published yet), which have been conducted in a
basin with 60 × 66 cm2 base. Besides, since the modal technique must be applicable
to a study of nonlinear free-standing waves associated with the dominant character
of the two lowest natural modes, another theoretical interest to the present paper
consists of comparing it with the results of Bridges (1985, 1986, 1987). In particular,
Bridges showed that perturbations of the base ratio yield a ‘Poincaré’-type bifurcation
of a ‘planar’ free-standing wave leading to a ‘diagonal’-type sloshing. However, his
technique did not detect ‘swirling’-like free-standing waves established for an ‘exactly’
square base by Bryant & Stiassnie (1994, 1995). An evident query is whether ‘swirling’
disappears if the aspect ratio deviates from 1.

The three most important new theoretical results of the present paper are that:
(i) the nearly-square base causes the same three types of steady-state wave

(‘planar’, ‘swirling’ (rotary) and nearly-‘diagonal’) for both free and longitudinally
forced sloshing;

(ii) even small perturbations of the base ratio significantly change the frequency
domain, where the steady-state resonant motions are stable; as a result, for non-small
fluid depths, the range of ‘chaotic’ waves, which has been detected for sloshing in a
square-base tank with finite depth, can be narrow or even disappear;

(iii) the free-standing ‘swirling’ waves do not disappear for perturbed base ratio.
Similarly to the ‘diagonal’-like type of free-standing waves established by Bridges
(1987), occurrence of ‘swirling’ is associated with secondary bifurcations of the
‘planar’, Stokes waves.
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In order to facilitate an independent reading of the paper without having earlier con-
tributions available, we give in § 2 an introductory review of necessary formulations
and results from Part 1, e.g. the non-dimensional free-boundary problem, physical and
mathematical definitions as well as derivations associated with the modal modelling
(Part 1, pp. 6–10). The analysis employs the nine-dimensional nonlinear asymptotic
modal system (Part 1, p. 11) with forcing frequency close to the lowest natural frequ-
ency and is restricted to horizontal harmonic tank motions along a wall (lateral excita-
tions). In § 3, we use the nonlinear modal system to re-derive several results by Bridges
(1986) on secondary bifurcations of Stokes (‘planar’) free-standing waves in a nearly
square-base basin. Along with the ‘diagonal’-type of three-dimensional waves that have
been detected in the Part 1, we find also a secondary bifurcation leading to ‘swirling’.

In § 4, assuming small-amplitude longitudinal excitation, we establish the existence
of the same three types of steady-state waves as for the square base. Examples are given
of the behaviour of the corresponding response curves and their bifurcations. The
main result of this section is that O(ε2/3)-perturbations of the base ratio significantly
affect the frequency domains, in which steady-state waves are realized. Theoretical
predictions of the effective frequency domains are compared with experimental
observations. One should note that the theoretical and experimental analysis of the
resonant sloshing is restricted to non-small depths (the fluid depth-to-wall length ratios
were larger than h1 = 0.3368 . . . , where h1 is the critical depth of the ‘planar’ sloshing,
see, Waterhouse 1994; Faltinsen 1974; Faltinsen et al. 2003). Passage to smaller fluid
depths can yield new phenomena, which require special systematic examinations
(Ockendon, Ockendon & Waterhouse 1996; Ockendon & Ockendon 2001).

2. Preliminaries from Part 1
2.1. Statement

Let a rigid open rectangular base tank with breadth L1 and width L2 be partially
filled by a perfect fluid with the mean depth h. We assume potential flow of an incom-
pressible fluid and scale lengths by dividing by L1, so that we consider a tank with
breadth 1 and width 1/r = L2/L1. Thus, values of the physical constants h := h/L1,

g := g/L1 (g is the acceleration due to gravity) etc. are re-defined. This means that h

in the following text is dimensionless and g has dimension [s−2].
Furthermore, we fix the mobile coordinate system Oxyz with the tank and superpose

the Oxy-plane with the mean free surface so that the origin coincides with its centre
and the Ox and Oy-axes are parallel to the vertical walls as shown in figure 1. The
lateral harmonic excitations along the Ox-axis are described by the vector

vO(t) = (−εσ sin σ t, 0, 0)T (2.1)

representing translatory velocity of the origin O relative to an absolute coordinate
system. Here, σ is the forcing frequency and ε � 1 is the scaled excitation amplitude.

The free-boundary problem on sloshing is based on a series of traditional physical
idealizations implying inviscid potential flow and the absence of overturning waves
and reads

�Φ = 0 in Q(t);
∂Φ

∂ν
= vO · ν on S(t),

∂Φ

∂ν
= vO · ν +

ft√
1 + (∇f )2

on Σ(t);

∫
Q(t)

dQ = const,

∂Φ

∂t
+ 1

2
(∇Φ)2 − ∇Φ · vO + gz = 0 on Σ(t).




(2.2)
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Figure 1. Sketch of a rectangular base tank oscillating along the Ox-axis. The fluid volume
Q(t) is confined to the free surface Σ(t) and the wetted walls/bottom S(t), its hydrostatic
(mean) shape is determines by the planar unperturbed surface Σ0.

Here the unknowns are the function f (x, y, t) defining the free-surface evolution
Σ(t) : z = f (x, y, t) = 0 and the absolute velocity potential Φ(x, y, z, t) which should
be calculated in time-varying volume Q(t) confined to the wetted body surface S(t)
and Σ(t); ν is outward normal to Q(t).

The evolutional free-boundary problem should be completed by either initial or
periodicity conditions. The initial (Cauchy) conditions require

f (x, y, t0) = f0(x, y);
∂Φ

∂ν

∣∣∣
Σ(t0)

= Φ0(x, y, z) (2.3)

to be known at t = t0. Solutions of (2.2), (2.3) correspond to transient waves. The
periodicity condition

f (x, y, t + T ) = f (x, y, t); ∇Φ(x, y, z, t + T ) = ∇Φ(x, y, z, t) (2.4)

(T = 2π/σ is the forcing period) implies the steady-state wave motions.

2.2. Modal representation

When vO = 0, the linearized (2.2) has fundamental solutions that describe natural
waves Φ = exp(iσi,j t)ϕi,j (x, y, z), (i2 = −1), where

ϕi,j (x, y, z) = f
(1)
i f

(2)
j

cosh(λi,j (z + h))

cosh(λi,j h)
,

λi,j = π
√

i2 + r2j 2, σ 2
i,j = gλi,j tanh(λi,j h), i, j � 0, i + j �= 0, (2.5)

σi,j are the natural frequencies and ϕi,j are the natural modes.
Projections of ϕi,j on the mean free surface z = 0 introduce the shapes of linear

standing waves fi,j (x, y) = f
(1)
i (x)f (2)

j (y) = ϕi,j |z=0. Physically, fi,j can be classified in
terms of two subclasses. The first consists of two-dimensional Stokes wave shapes
in the Oxz- and Oyz-planes. Corresponding natural modes have often been called
‘planar’ waves. These are

f
(1)
i (x) = cos(πi(x + 1/2)), i � 1; f

(2)
j (y) = cos(πjr(y + 1/(2r))), j � 1. (2.6)



Three-dimensional sloshing in a square-base basin. Part 3 97

The other subclass defines three-dimensional wave patterns

f
(1)
i (x) · f

(2)
j (y), i, j � 1. (2.7)

Sometimes, the analysis must be extended to introduce the mixed (called ‘diagonal’-
or ‘squares’-like) modes

C1f
(1)
i (x) − C2f

(2)
i (y), C1C2 �= 0, (2.8)

recombining two Stokes modes of (2.6) into three-dimensional ‘diagonal’ patterns
with non-zero weight coefficients C1 and C2.

The set {fi,j (x, y), i+j � 1} represents an appropriate Fourier basis in the horizon-
tal rectangular cross-section of the tank [−1/2, 1/2] × [−1/(2r), 1/(2r)]; {ϕi,j (x, y, z),
i + j � 1} is a complete system of harmonic functions in the unperturbed fluid
domain Q0 = [−1/2, 1/2] × [−1/(2r), 1/(2r)] × [−h, 0], which satisfies zero-Neumann
boundary conditions on the tank surface. Following the general modal scheme by
Faltinsen et al. (2000) (see, the original equations (3.4), (3.6) and (3.7)), Part 1
introduces the modal representation of the free-surface elevation z = f (x, y, t) as

f (x, y, t) =

∞∑
i+j�1

βi,j (t)fi,j (x, y), (2.9)

where βi,j are the generalized coordinates governing the evolution of each i, j -mode.

2.3. Asymptotic nonlinear modal system

If the width/breadth aspect ratio r = L1/L2 is equal to 1, the natural spectrum
{σi,j , i + j � 1} has an infinite set of double eigenvalues σi,j = σj,i, i �= j generating
strong inter-resonances between the modes fi,j and fj,i and, as a consequence, a high
multiplicity of steady-state (periodic) solutions related to both free-standing waves
(Bridges 1987; Bryant & Stiassnie 1994, 1995) and resonant waves (Part 1). Passage
to r ≈ 1 implies splitting the natural frequencies σi,j , i �= j .

Following the procedure in Part 1, we evaluate the primary resonance σ → σ1,0 ∼
σ0,1 and introduce the so-called Narimanov–Moiseyev modal ordering (Moiseyev
1958; Narimanov 1957; Miles 1984, 1994; Feng & Sethna 1989, and others) of the
generalized coordinates βi,j , i + j � 1 (modal functions) as follows

β1,0 ∼ β0,1 = O(ε1/3); β2,0 ∼ β1,1 ∼ β0,2 = O(ε2/3); βi,j � O(ε), i + j � 3. (2.10)

It holds true as ε → 0, h = O(1) and captures the primary resonant phenomena with
two dominating modes f1,0 and f0,1. The Narimanov–Moiseyev ordering is consistent
with the third-order analysis by Bridges (1987) and Bryant & Stiassnie (1995) for free
nonlinear sloshing regimes associated with amplification of the lowest natural modes.

Tedious derivations of Part 1 established that, if (2.10) is fulfilled, asymptotic
approximation of f up to O(ε) requires only nine modal functions βi,j (t), i + j � 3
in the Fourier series (2.9). The modal functions are solutions of a system of nonlinear
ordinary differential equations (modal system, Part 1, p. 11). After re-denoting for
brevity

β1,0 = a1; β2,0 = a2; β0,1 = b1; β0,2 = b2; β1,1 = c1,

β3,0 = a3; β2,1 = c21; β1,2 = c12; β0,3 = b3 (2.11)
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and taking into account (2.1), we can re-write the nonlinear modal system in the
form[

ä1 + σ 2
1,0a1 + d1(ä1a2 + ȧ1ȧ2) + d2

(
ä1a

2
1 + ȧ2

1a1

)
+ d3ä2a1 − P

(1)
1,0εσ

2 cos σ t
]

+ d6ä1b
2
1 + b̈1(d7c1 + d8a1b1) + d9c̈1b1 + d10ḃ

2
1a1 + d11ȧ1ḃ1b1 + d12ḃ1ċ1 = 0, (2.12a)[

b̈1 + σ 2
0,1b1 + d̄1(b̈1b2 + ḃ1ḃ2) + d̄2

(
b̈1b

2
1 + ḃ2

1b1

)
+ d̄3b̈2b1

]
+ d̄6b̈1a

2
1

+ ä1(d̄7c1 + d̄8a1b1) + d̄9c̈1a1 + d̄10ȧ
2
1b1 + d̄11ȧ1ḃ1a1 + d̄12ȧ1ċ1 = 0, (2.12b)[

ä2 + σ 2
2,0a2 + d4ä1a1 + d5ȧ

2
1

]
= 0, (2.12c)[

b̈2 + σ 2
0,2b2 + d̄4b̈1b1 + d̄5ḃ

2
1

]
= 0, (2.12d)

c̈1 + d̂1ä1b1 + d̂2b̈1a1 + d̂3ȧ1ḃ1 + σ 2
1,1c1 = 0, (2.12e)

[
ä3 + σ 2

3,0a3 + ä1

(
q1a2 + q2a

2
1

)
+ q3ä2a1 + q4ȧ

2
1a1 + q5ȧ1ȧ2 − P

(1)
3,0εσ

2 cos σ t
]
= 0, (2.13a)

c̈21 + σ 2
2,1c21 + ä1(q6c1 + q7a1b1) + b̈1

(
q8a2 + q9a

2
1

)
+ q10ä2b1 + q11c̈1a1

+ q12ȧ
2
1b1 + q13ȧ1ḃ1a1 + q14ȧ1ċ1 + q15ȧ2ḃ1 = 0, (2.13b)

c̈12 + σ 2
1,2c12 + b̈1(q̄6c1 + q̄7a1b1) + ä1

(
q̄8b2 + q̄9b

2
1

)
+ q̄10b̈2a1 + q̄11c̈1b1

+ q̄12ḃ
2
1a1 + q̄13ȧ1ḃ1b1 + q̄14ḃ1ċ1 + q̄15ȧ1ḃ2 = 0, (2.13c)

[
b̈3 + σ 2

0,3b3 + b̈1

(
q̄1b2 + q̄2b

2
1

)
+ q̄3b̈2b1 + q̄4ḃ

2
1b1 + q̄5ḃ1ḃ2

]
= 0, (2.13d)

where

P
(1)
i,j =

2δ0jEi,0

(πi)2
[(−1)i − 1], P

(2)
i,j =

2δ0iE0,j

r(πj )2
[(−1)j − 1],

Ei,j = λi,j tanh(λi,j h), λi,j = π
√

i2 + r2j 2

(2.14)

and coefficients d1, d̄ i , d̂ i , qi and q̄i are functions of depth (see explicit computational
formulae in Part 1).

2.4. Steady-state asymptotic solutions for harmonic forcing

In the asymptotic limit ε → 0, the modal system (2.12) can be asymptotically integrated
for periodic solutions by combining the Bubnov–Galerkin method with asymptotic
expansions. The third-order solutions (up to O(ε)) are given in Part 1 ((3.8)–(3.9)).
The lowest-order quantities of these solutions are determined by four real numbers
(amplitudes) A, Ā, B̄ and B = O(ε1/3) appearing for a1 and b1, i.e.

a1(t) = A cos(σ t) + Ā sin(σ t) + o
(
ε1/3

)
; b1(t) = B̄ cos(σ t) + B sin(σ t) + o

(
ε1/3

)
. (2.15)

The remaining asymptotic contribution is of o(ε1/3). The dominating amplitudes
should be found from the following system of algebraic equations (see, Part 1, (3.10))

A(Γ1,0 + m1(A
2 + Ā2) + m2B̄

2 + m3B
2) + (m2 − m3)ĀB̄B − P1 = 0,

Ā(Γ1,0 + m1(A
2 + Ā2) + m2B

2 + m3B̄
2) + (m2 − m3)ABB̄ = 0,

B̄(Γ0,1 + m̄1(B
2 + B̄2) + m̄2A

2 + m̄3Ā
2) + (m̄2 − m̄3)ĀAB = 0,

B(Γ0,1 + m̄1(B
2 + B̄2) + m̄2Ā

2 + m̄3A
2) + (m̄2 − m̄3)ĀAB̄ = 0,




(2.16)
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where

Γi,j = σ̄ 2
i,j − 1, σ̄i,j =

σi,j

σ
; P1 = P

(1)
1,0ε,

m1 = − 1
2
d2 − d1

(
p0 − 1

2
r0

)
− 2r0d3;

m2 = − 3
4
d6 + 1

4
d10 − 3

4
d8 + 1

4
d11 − d7p1 − r1

(
1
2
d7 + 2d9 − d12

)
,

m3 = − 1
4
d6 + 3

4
d10 − 1

4
d8 − 1

4
d11 − r1

(
1
2
d7 + 2d9 − d12

)
,

p0 =
d4 − d5

2σ̄ 2
2,0

; r0 =
d4 + d5

2
(
σ̄ 2

2,0 − 4
) ,

p1 =
d̂1 + d̂2 − d̂3

2σ̄ 2
1,1

; r1 =
d̂1 + d̂2 + d̂3

2
(
σ̄ 2

1,1 − 4
)




(2.17)

and m̄i, i = 1, 2, 3 are obtained from (2.17) by adding bars over the coefficients of the
modal system di . The coefficients mi, m̄i are functions of the non-dimensional depth
h, the forcing frequency σ and r .

Depending on the values mi and m̄i , the system (2.16) does not always have real
solutions and may have multiple solutions. Part 1 presented a detailed mathematical
analysis and derived the resolvability conditions, but its conclusions are only valid for
r = 1. The next section will generalize them to the nearly-square case (0 < |r −1| � 1)
for free-standing waves (P1 = 0) and longitudinal forcing (P1 �= 0).

3. Free nonlinear standing waves
3.1. Three types of free-standing wave

The dominating contribution into third-order asymptotic solutions, which describe
the nonlinear free-standing waves, are formed by the lowest modes (1, 0) and (0, 1)

f (x, y, t) = (A cos σ t + Ā sin σ t)f (1)
1 (x) + (B̄ cos σ t + B sin σ t)f (2)

1 (y) + o
(
ε1/3

)
, (3.1)

where A, Ā, B and B̄ are computed from the system (2.16) with P1 = 0. In this
case, the system (2.16) is homogeneous and, therefore, includes the trivial solution
A = Ā = B = B̄ = 0.

Since any unforced solution of conservative mechanical systems is invariant relative
to phase shift t =: t + t0 and, without loss of generality, we assume that

Ā = 0

in (3.1). The latter leads to the necessary resolvability condition of (2.16)

(m2 − m3)ABB̄ = 0, (3.2)

and taking into account the numerical results of Part 1 (see also some details in the
next paragraph) establishing that m2 �= m3, we find three and only three physically
different types of nonlinear free-standing wave associated with non-trivial solutions
of (2.16).

(i) Stokes, ‘planar’ waves along either the Ox-axis for

A �= 0; B = B̄ = 0,

or the Oy-axis with

A = 0; B2 + B̄2 �= 0.

Both non-trivial solutions above are associated with the primary bifurcations of the
trivial solution at the points σ = σ1,0 and σ = σ0,1, respectively.
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The first solution, which implies non-zero A, can be treated as points on the branch

γ1,0 : Γ1,0 + m1A
2 = 0, (3.3)

in the (σ/σ1,0, |A|)-plane.

The second case requires an introduction of the resulting amplitude b =
√

B2 + B̄2

and determines the branch

γ0,1 : Γ0,1 + m̄1b
2 = 0 (3.4)

in the (σ/σ1,0, b)-plane (generally, owing to phase-shift invariance, we may also assume
B = 0 and operate only with B̄).

(ii) ‘Square’-like or, throughout this paper, ‘diagonal’ waves are associated with the
nonlinear solutions

A �= 0, B̄ �= 0, B = 0,

which lead to standing-wave patterns by the mixed mode (2.8)

f (x, y, t) =
(
Af

(1)
1 (x) + B̄f

(2)
1 (y)

)
cos σ t + o

(
ε1/3

)
.

In that case, the system (2.16) transforms to the form

m1A
2 + m2B̄

2 = −Γ1,0, m̄1B̄
2 + m̄2A

2 = −Γ0,1,

which is a system of linear equations with respect to A2 and B̄2. If m1m̄1 − m2m̄2 �= 0,
the system has a unique solution which, accounting for the positiveness of A2 and
B2, can be re-written in the form

A2 =
Γ0,1m2 − Γ1,0m̄1

m1m̄1 − m2m̄2

> 0; B̄2 =
Γ1,0m̄2 − Γ0,1m1

m1m̄1 − m2m̄2

> 0. (3.5)

The first conclusion about ‘diagonal’ waves is that they are associated with a
triad (σ/σ1,0, A �= 0, B̄ �= 0) and, therefore, determine a three-dimensional response
curve. Besides, if r �= 1, then Γ1,0 and Γ0,1 on the right-hand side of (3.1) cannot
be equal to zero, simultaneously, and, therefore, solutions (3.5) differ from zero and√

A2 + B̄2 �= 0 along the response curves. Since the response curves do not intersect
the horizontal axis, the ‘diagonal’ wave cannot appear owing to a primary bifurcation
of the trivial solution, but rather as a secondary bifurcation of the ‘planar’ solution.
(iii) ‘Swirling’ waves

f (x, y, t) = Af
(1)
1 (x) cos σ t + Bf

(2)
1 (y) sin σ t + o

(
ε1/3

)
are associated with solutions conditions

A �= 0, B̄ = 0, B �= 0.

Repeating the analytical manipulations of (ii), these can be found as a triad
(σ/σ1,0, A �= 0, B �= 0) determined by

A2 =
Γ0,1m3 − Γ1,0m̄1

m1m̄1 − m3m̄3

> 0; B2 =
Γ1,0m̄3 − Γ0,1m1

m1m̄1 − m3m̄3

> 0. (3.6)

If r �= 1, these solutions can appear only because of a secondary bifurcation, following
the same argumentation as for ‘diagonal’ case.

3.2. Asymptotic analysis of (i)–(iii)

The dependence of the dominating amplitudes on σ/σ1,0 (governed by (3.3)–(3.6)) can
be examined by a direct computation. However, the presence of small parameters



Three-dimensional sloshing in a square-base basin. Part 3 101

associated with the closeness of σ1,0 and σ0,1 makes it possible to implement an
asymptotic technique, which is mathematically equivalent to Bridges (1985, 1987) for
the splitting frequencies σ1,0 and σ0,1 as r �= 0 (in the finite-depth case h = O(1)).

3.2.1. Matching asymptotics

Consider r close to 1 so that

r = 1 + µ,
1

r
= 1 − µ + o(µ), (3.7)

σ → σ1,0 and let ε be the third-order (highest) contribution in the asymptotic
approximation of a free-standing wave.

In order to express µ and σ/σ1,0 ≈ σ/σ0,1 in a scale of ε, we should match the
lowest-order terms in (2.16). Because the dominating amplitudes A, B and B̄ are of
O(ε1/3), simple analysis shows that

Γ1,0 ∼ Γ0,1 = O
(
ε2/3

)
(3.8)

and, therefore,

σ = σ1,0 + O
(
ε2/3

)
= σ0,1 + O

(
ε2/3

)
. (3.9)

Further,

σ 2
1,0

σ 2
=

σ 2
1,0

σ 2
− µσ0 + o(µ); σ0 = 1 +

2πh

sinh(2πh)
, (3.10)

and, as a consequence,

µ = O
(
ε2/3

)
. (3.11)

The relationships (3.7), (3.9) and (3.11) make it possible to deduce

mi(h, σ, r) = m0
i (h) + O

(
ε2/3

)
; m̄i(h, σ, r) = m0

i (h) + O
(
ε2/3

)
, m0

i = mi(h, σ1,0, 0).

(3.12)

Neglecting the terms o(ε) in (2.16) and accounting for Ā = 0 leads to the following
system with respect to A, B and B̄

A
(
Γ1,0 + m0

1A
2 + m0

2B̄
2 + m0

3B
2
)

= 0,

B̄
(
Γ1,0 + µσ0 + m0

1(B
2 + B̄2) + m0

2A
2
)

= 0,

B
(
Γ1,0 + µσ0 + m0

1(B
2 + B̄2) + m0

3A
2
)

= 0,


 (3.13)

where the coefficients m0
i are functions of the depth h.

3.2.2. Free-standing waves versus h

Since the sign of µ = L1/L2 − 1 depends on the position of the Oxy-plane, i.e.
placing Ox along the longer walls always gives µ > 0, the consideration of the
free-standing waves is for brevity restricted to µ > 0. Besides, the case µ < 0 will
follow from these considerations by rotating the Oxy-plane around the Oz-axis and
performing appropriate substitutions between A and B̄ , Ā and B .

‘Planar’ waves. Owing to (3.3) and (3.4), the branches (the so-called ‘backbones’)
γ1,0, i + j = 1 emerging owing to primary bifurcation of the trivial solution are
asymptotically governed by

γ1,0 : Γ1,0 + m0
1A

2 = 0 (3.14)

for ‘planar’ waves along the Ox-axis. Analogously,

γ0,1 : Γ1,0 + µσ0 + m0
1b

2 = 0 (3.15)
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µ > 0 µ < 0

|b| b|||A|

1 σ/σ1,0 1 σ/σ1,0 1 σ/σ1,0

h > h1

h > h1h < h1
h < h1

h > h1 h < h1

(a) (b) (c)

Figure 2. The primary bifurcations associated with (a) ‘planar’ longitudinal and
(b, c) cross-waves.
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2

m0
1 + m0
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1 + m0

2
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h
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 0
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0 0.2 0.4 0.6 0.8 1.0

Figure 3. The graphs representing m0
i (h), i = 1, 2, 3 and some of their linear combinations

versus depth/breadth ratio h. The root of m0
1(h) = 0 gives h1 = 0.3477 . . . , the depth h2 =

0.274 . . . implies the equality m0
1 = m0

3, h3 = 0.27 . . . is computed from m0
1 + m0

2 = 0 and h4 =

0.17 . . . for m0
2 = 0.

describes cross-waves, i.e. ‘planar’ waves along the Oy-axis, appearing owing to the
primary bifurcation at σ0,1.

‘Soft’- or ‘hard-spring’ behaviour of the backbones γ1,0 and γ0,1 depends on the
sign of m0

1, which becomes zero at h1 = 0.3368 . . . (see discussion of this critical depth
by Waterhouse 1994; Faltinsen et al. 2003, and figure 3). The local branching at the
primary bifurcation of the trivial solution is schematically depicted in figure 2. It
shows that the non-zero µ causes a shift of γ0,1.

In contrast to ‘planar’ waves, evaluation of ‘diagonal’ and ‘swirling’ introduces a
larger set of critical depths hi associated with zeros of both m0

i and their linear
combinations. Following Faltinsen et al. (2003) we facilitate this analysis by the
graphs in figure 3, which detect h1 at m0

1 = 0 and h2 = 0.274 . . . , (m0
1 = m0

3),
h3 = 0.27 . . . , (m0

1 + m0
2 = 0), h4 = 0.17 . . . , (m0

2 = 0).
‘Diagonal’ waves. The asymptotic solutions of (3.5) can be found from

γ1 : Γ1,0 − µ
σ0m

0
2

m0
1 − m0

2

+
(
m0

1 + m0
2

)
A2 = 0,

γ2 : Γ1,0 + µ
σ0m

0
1

m0
1 − m0

2

+
(
m0

1 + m0
2

)
B̄2 = 0,

where γ1 and γ2 determine the longitudinal, along the Ox-axis, and transversal
amplitude components of the ‘diagonal’ waves and can be considered as projections
of the triad (σ/σ1,0, |A|, |B̄|) on the (σ/σ1,0, |A|) and (σ/σ1,0, |B̄|)-planes, respectively.
Parts (a) and (b) of figures 4–7 show γ1 and γ2 for different depths and µ > 0.
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|B||A|

σ/σ1,0δ 1 σ/σ1,0

σ/σ1,0
σ/σ0,1

γ1,0

γ0,1

δ 1

γ1

(b)(a)

γ2

γ1,0

T

O |A|

1 1T

|A|

|B|

(c) (d)

T

|B|

Figure 4. The secondary bifurcation (the point T ) associated with appearance of ‘diagonal’
from ‘planar’ waves; the case of the fluid depths h > h1. The ‘planar’ waves are associated
with points on the planar curves γ1,0 and γ0,1, while the ‘diagonal’ regimes correspond
to three-dimensional curves in the (σ/σ1,0, |A|, |B̄|)-coordinate system. (a) and (b) show the
(σ/σ1,0, |A|) and (σ/σ1,0, |B̄|)-projections of the branching for µ > 0, so that the curves γ1 and
γ2 are defined in § 3.2.2. The resolvability condition B̄2 > 0 determines the range σ/σ1,0 < δ,
where the ‘diagonal’ regime exists, and, therefore, the arc OT does not imply ‘diagonal’ waves.
(c) shows the three-dimensional branching for µ > 0 and (d) is related to µ < 0. Here, the
‘planar’ waves correspond to points on the solid lines, while the three-dimensional ‘diagonal’
waves are posed as points on the dashed lines.
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Figure 5. The same as in figure 4, but for h3 < h < h1.
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Figure 6. The same as in figure 4, but for h4 < h < h3.
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δ δ
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T 11

|B|

|B|

Figure 7. The same as in figure 4, but for h < h4.

The ‘diagonal’ regimes exist only if both A2 > 0 and B̄2 > 0. If either A or B̄ become
equal to zero, the ‘diagonal’ regime switches to the ‘planar’ solutions (i) and therefore,
intersections of γ1 with γ1,0 or γ2 with γ0,1 define the secondary (Poincaré-type)
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bifurcation. Considering h �= h3 implies m0
2 �= 0 and, therefore, appearance of the

intersections depends on µ, which determines the non-zero shift of γi, i = 1, 2,

relative to the origin at σ/σ1,0 = 1. If µ = 0 (square tank), γ1 coincides with γ2,
both curves emerge from the origin σ/σ1,0 = 1 and, since γ1,0 and γ0,1 also bifurcate
from the origin, the intersection disappears. If µ �= 0, the shift between γ1 and γ1,0 as
well as between γ2 and γ0,1 is unavoidable and the intersection at a point T becomes
possible. The analysis detects the presence of T for all non-critical depths as it is
shown in Part (a) of figures 4–7.

The secondary bifurcation at T (for the dual natural modes fi,j and fj,i, i �= j ),
which is associated with intersections of the ‘planar’ and ‘diagonal’ response branches
was first predicted by Bridges (1985, 1987). He used direct expansions of the original
free-boundary problem and exemplified the behaviour of the branches for the pair of
modes (1, 2), (2, 1) and various depths based on finite and shallow-water asymptotics.
Being motivated by the behaviours of the pair (1, 0), (0, 1) we give below an additional
representation of both the local branching and appearance of T for different non-
dimensional depths h away from three critical values h1, h3 and h4, where the
‘diagonal’ wave response changes its ‘soft’ or ‘hard-spring’ behaviour and/or position
relative to the primary resonance at σ/σ1,0 = 1. The results are treated in the
(σ/σ1,0, |A|) and (σ/σ1,0, |B̄|)-planes in parts (a) and (b) of figures 4–7 and in
the three-dimensional view (σ/σ1,0, |A|, |B̄|) in part (c) of figures 4–7. Part (d) of
figures 4–7 show also three-dimensional interpretation of the secondary bifurcations
for µ < 0. The analysis of the primary bifurcation of the trivial solution as well
as the secondary bifurcation (the local branching in a neighbourhood of T ) is
easily based on relationships between m0

i , i = 1, 2, 3. The larger fluid depths (the
case h > h1) give, for instance, m0

1 < 0, m0
2 < 0, m0

1 + m0
2 < 0, m0

1 − m0
2 > 0 and

formal solutions of (3.16) determine the ‘soft-spring’ curves in figure 4 (a, b). The
curves γ1 and γ2 change their ‘soft-spring’ behaviour with h. This is demonstrated in
figure 5 (a, b) (h3 < h < h1, m0

1 > 0, m0
2 < 0, m0

1 + m0
2 < 0, |m0

1| < |m0
2|), figure 6 (a, b)

(h4 < h < h3, m0
1 > 0, m0

2 < 0, m0
1 + m0

2 > 0, |m0
1| > |m0

2|) and figure 7 (a–d)
(h < h4, m0

1 > 0, m0
2 > 0, m0

1 + m0
2 > 0). An important fact is that the appearance

of ‘diagonal’ waves occurs from ‘planar’ waves along the longest length of the tank,
namely, from γ1,0 as r > 1 and from γ0,1 as r < 1.

The investigations of the local branching at T involve the resolvability condition
A2 > 0, B̄2 > 0, which should be fulfilled on γ1 and γ2. The non-zero shift between
γ1 and γ2 makes this condition not satisfied along both curves. For µ > 0, simple
analysis shows that the abscissa of the origin of γ2 coincides with the abscissa of
T and points on the arc OT do not imply the ‘diagonal’ regime, because there are
no appropriate real B̄ in the corresponding frequency range on the σ/σ1,0-axis. The
bifurcation at T consists therefore of three curves as shown in parts (c) and (d) of
figures 4–7.

‘Swirling’ waves. The asymptotic solutions associated with ‘swirling’ are defined by

γ3 : Γ1,0 − µ
σ0m

0
3

m0
1 − m0

3

+
(
m0

1 + m0
3

)
A2 = 0,

γ4 : Γ1,0 + µ
σ0m

0
1

m0
1 − m0

3

+
(
m0

1 + m0
3

)
B2 = 0.

Again, as in the case of ‘diagonal’ regimes, if µ = 0, the branches γ3 and γ4 coincide
and their intersection with γ1,0 and γ0,1, respectively, is not possible. For non-zero µ,
the local branches γ3 and γ4 are shifted both relative to each other and relative to
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|B||A|
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σ/σ1,0 σ/σ0,1
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|B|(c) (d)

D 1

D

Figure 8. The secondary bifurcation (the point D) associated with the appearance of ‘swirling’
from ‘planar’ waves; the case of the fluid depths h > h1. The ‘planar’ waves are associated
with points on the planar curves γ1,0 and γ0,1, while the ‘swirling’ regimes correspond to
three-dimensional curves in the (σ/σ1,0, |A|, |B|)-coordinate system. (a) and (b) show the
(σ/σ1,0, |A|) and (σ/σ1,0, |B|)-projections of the branching for µ > 0, so that the curves γ3 and
γ4 are defined in § 3.2.2. The resolvability condition B2 > 0 determines the range σ/σ1,0 > δ,
where the ‘swirling’ regime exists, and, therefore, the arc OD does not imply ‘swirling’ waves.
(c) shows the three-dimensional branching for µ > 0 and (d) is related to µ < 0. Here, the
‘planar’ wave correspond to points on the solid lines, while the three-dimensional ‘swirling’
waves are posed as points on the dash-and-dot lines.
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Figure 9. The same as in figure 8, but for h2 < h < h1.
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Figure 10. The same as in figure 8, but for h < h2.

γi,j , i+j = 1. Their intersections with one from γi,j , i+j = 1 determine the secondary
bifurcation (the point D) of the corresponding ‘planar’ wave and the appearance of
the ‘swirling’ regime. The analysis of the secondary bifurcation is similar to the case
of the ‘diagonal’ regimes. Corresponding drawings are in figures 8–10. Here, figure 8
corresponds to h > h1 (m0

1 < 0, m0
3 > 0, m0

1 + m0
3 > 0, |m0

3| > |m0
1|), figure 9 implies

h2 < h < h1, m0
1 > 0, m0

3 > 0, m0
1 + m0

3 > 0, m0
3 > m0

1 and figure 10 is related to
h < h2, m

0
1 > 0, m0

3 > 0, m0
1 + m0

3 > 0, m0
1 > m0

1.
In contrast to ‘diagonal’ waves, non-small depths h > h2 cause the appearance

of ‘swirling’ regimes at D from ‘planar’ waves along the shorter side. In order to
demonstrate this point, we represent the joint bifurcation pictures in figure 11.

4. Resonant steady-state waves
Repeating analytical manipulations of Part 1 for P1 �= 0 (p. 17) we can obtain the

following resolvability condition of (2.17): A �= 0, Ā = 0 and BB̄ = 0. An exhaustive
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γ0,1

γ0,1
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1
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D

Figure 11. The secondary bifurcations associated with appearance of ‘diagonal’ from ‘planar’
longitudinal waves (the point T ) and ‘swirling’ from ‘planar’ transversal waves (the point
D). ‘Planar’ waves are constituted by points on the solid line, ‘diagonal’ by the dashed
line and ‘swirling’ by the dash-and-dot line. (a) µ > 0, h > h1; (b) µ < 0, h > h1;
(c) µ > 0, h2 < h < h1; (d) µ < 0, h2 < h < h1.

search for appropriate variants gives exactly the same types of steady-state regime as
for a ‘pure’ square base, namely, (i) ‘planar’ waves in the forcing plane (A �= 0, Ā =
0, B = B̄ = 0), (ii) ‘diagonal’ (or ‘squares’-like) waves (A �= 0, Ā = 0, B̄ �= 0, B = 0)
and (iii) ‘swirling’ waves (A �= 0, Ā = 0, B̄ = 0, B �= 0). In contrast to free-standing
waves, the Stokes wave along the Oy-axis is not realized.

The three steady-state regimes (i)–(iii) may be stable or unstable depending on the
depth h, the base ratio r and the actual forcing amplitude ε.

4.1. Asymptotic analysis

4.1.1. Governing equations

Simple analysis shows that the matching asymptotics µ ∼ ε2/3 of the previous
paragraph is allowable for the forced case 0 < ε → 0. Besides, repeating the derivation
from this paragraph, we arrive at the governing asymptotic equations for steady-state
regimes:

A
(
Γ1,0 − m0

1A
2
)

= P1 (4.1)

for ‘planar’ longitudinal waves;

A
(
Γ1,0 + m0

1A
2m0

2B̄
2
)

= P1; Γ1,0 + µσ0 + m0
1B̄

2m0
2A

2 = 0

for ‘diagonal’ waves, which can be re-expressed as

A

[
Γ1,0 − µ

σ0m
0
2

m0
1 − m0

2

+
(
m0

1 + m0
2

)
A2

]
=

m0
1P1

m0
1 − m0

2

; B̄2 = − 1

m0
1

[
Γ1,0+µσ0+m0

2A
2
]

> 0

(4.2)
and, finally, ‘swirling’ waves are governed by

A

[
Γ1,0 − µ

σ0m
0
3

m0
1 − m0

3

+
(
m0

1 + m0
3

)
A2

]
=

m0
1P1

m0
1 − m0

3

; B2 = − 1

m0
1

[
Γ1,0+µσ0+m0

3A
2
]

> 0.

(4.3)
The equations (4.1)–(4.3) show that three-dimensional solutions (ii) and (iii) have no

joint solutions in the (σ/σ1,0, A, B̄, B)-space, but each three-dimensional solution can
theoretically have joint points with (4.1). These points are associated with intersections
in the (σ/σ1,0, A) of the branches (4.1) and branches γ5 : Γ1,0 + µσ0 + m0

2A
2 = 0 and

γ6 : Γ1,0 + µσ0 + m0
3A

2 = 0, respectively.

4.1.2. Stability and the types of bifurcation

Assuming that only perturbations of the dominating order ε1/3 are important and
following the scheme of Part 1, we introduce the slowly varying time τ = ε2/3σ t/2,
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the Moiseyev asymptotics Γ1,0 ∼ Γ0,1 ∼ µ ∼ O(ε2/3) and express the infinitesimally
perturbed dominant solutions as

a1 = (A + α(τ )) cos σ t + (Ā + ᾱ(τ )) sin σ t + o
(
ε1/3

)
,

(4.4)
b1 = (B̄ + β̄(τ )) cos σ t + (B + β(τ )) sin σ t + o

(
ε1/3

)
,

where A, Ā, B and B̄ are the solutions of (2.16) and α, ᾱ, β and β̄ are their relative
perturbations depending on τ . Inserting (4.4) into (2.12)–(2.13), gathering terms of
the lowest asymptotic order and keeping linear terms in α, ᾱ, β and β̄ lead to the
following linear system of ordinary differential equations

c′ + Cc = 0, (4.5)

where c = (α, ᾱ, β, β̄)T and the matrix C has the following elements

c11 = −[2AĀm1 + (m2 − m3)BB̄], c12 = −[σ̄ 2
1 − 1 + m1A

2 + 3m1Ā
2 + m2B

2 + m3B̄
2],

c13 = −[2ĀBm2 + (m2 − m3)AB̄], c14 = −[2ĀB̄m3 + (m2 − m3)AB],

c21 = σ̄ 2
1 − 1 + 3m1A

2 + m1Ā
2 + m2B̄

2 + m3B
2, c22 = 2AĀm1 + (m2 − m3)BB̄,

c23 = 2ABm3 + (m2 − m3)ĀB̄, c24 = 2AB̄m2 + (m2 − m3)ĀB,

c31 = 2m2AB̄ + (m2 − m3)BĀ, c32 = 2m3ĀB̄ + (m2 − m3)AB,

c33 = 2m1BB̄ + (m2 − m3)AĀ, c34 = σ̄ 2
1 − 1 + m1B

2 + 3m1B̄
2 + m2A

2 + m3Ā
2,

c41 = −[2m3AB + (m2 − m3)ĀB̄], c42 = −[2ĀBm2 + (m2 − m3)AB̄],

c43 = −[σ̄ 2
1 − 1 + 3m1B

2 + m1B̄
2 + m2Ā

2 + m3A
2], c44 = −[2BB̄m1 + (m2 − m3)AĀ].

Stability of the fixed point solutions A, Ā, B and B̄ depends on the eigenvalues of
the matrix C. Computations give the following characteristic polynomial

λ4 + c1λ
2 + c0 = 0, (4.6)

where c0 is the determinant of C and c1 is a complicated function of the elements of
C. The necessary and sufficient conditions for the real part of the roots of the quartic
equation (4.6) to be non-positive – i.e. for the perturbations α, ᾱ, β and β̄ be stable –
are

c0 > 0, c1 > 0, c2
1 − 4c0 > 0. (4.7)

Computing ci, i = 0, 1, 2 may help to classify the types of the bifurcation points (see
details by Miles 1984). A vanishing c0 determines the turning point or the Poincaré
bifurcation, but changing sign of the discriminant c2

1 − 4c0 indicate the so-called
Hamiltonian Hopf-bifurcation points (furthermore, the Hopf bifurcation). Note that
the position of the bifurcation points is defined to within o(ε2/3) and, therefore,
if damping rates (estimated by Keulegan 1959; Krein 1964; Martel et al. 1998;
Faltinsen et al. 2005b, as O(

√
ν), where ν is the scaled viscosity), or other physical

factors contribute in the proposed scheme O(ε2/3), this position may significantly
change.

4.2. Three-dimensional steady-state regimes

For different depths h, resonant three-dimensional wave motion in basins of square
cross-section has been investigated in Part 1. The effect of the non-dimensional
exciting amplitude ε was analysed in Faltinsen et al. (2005b), where it is shown that,
in contrast to h, ε does not change the qualitative character of bifurcations leading to
the three-dimensional sloshing, but can increase/decrease the frequency domains in
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which these steady-state motions are stable. This implies a ‘sliding’ of the bifurcation
points with varying ε, but never their disappearance.

In the present paper, the base ratio r is a supplementary parameter to h and ε,
which can strongly affect results on steady-state sloshing. Even though both h and ε

are fixed, varying the parameter r around 1 plays a significant role in changing the
character of bifurcations. We tested numerous relevant combinations of h, ε and r

and, after analysing them, have found that dependencies of bifurcation phenomena
on r are qualitatively the same for each of the ranges h > h1, h2 < h < h1,
h3 < h < h2, h4 < h < h4 and h < h4. Taking into account the results by Faltinsen
& Timokha (2002) on applicability of the asymptotic theories based on the Moiseyev
relationships for resonant waves and the importance of higher modes with decreasing
h, the consideration below concentrates on the case h > h1.

4.2.1. Bifurcations leading to ‘diagonal’ waves, branching

When r � 1, the response curves representing the ‘diagonal’ motions versus σ/σ1,0

are qualitatively similar to those found for square cross-section (Part 1). New types of
branch accompanied by the Hopf- or Poincaré-type bifurcations are established only
for r > 1. In order to illustrate this point, we give four examples in figures 12(a)–12(d)
ordered with increasing r . Since the computations of the resonant longitudinal waves
involve non-zero A, the three-dimensional curves in the (σ/σ1,0, |A|, |B̄|)-frame are
accompanied by their projections on the (σ/σ1,0, |A|)-plane. All the definitions related
to the points F , W etc. are presented in the caption of figure 12.

Our stability analysis technique makes it possible to distinguish stable (solid lines),
unstable (dashed lines) solutions as well as to detect both the turning- and Hopf-
bifurcation points on the three-dimensional response curves. The starting case is in
figure 12(b) (similar to figure 5(b) in Part 1, but with other denotation for bifurcation
points) that corresponds to r = 1, where F is the Poincaré-bifurcation point yielding
the ‘diagonal’ regime from the ‘planar’ response curve and V is the turning point.
Decreasing r (figure 12a) indicates a left ‘drift’ of the response curves responsible for
the ‘diagonal’ regimes so that the Poincaré-bifurcation point F replaces the turning
point P (for the ‘planar’ branch). It becomes a separator between stable and unstable
solutions.

Increasing r (excitation along the longer walls) changes the response curves
dramatically. A positive, but still relatively small µ = r − 1, develops a right shift
of the ‘diagonal’ response curves along σ/σ1,0-axis. As a result, the point F moves
up, along the ‘planar’ response curve, but the B̄-component around the point V

decreases. If we continue increasing µ, the branch with V will have not one, but
rather three bifurcation points (figure 12c) that are denoted as Vi, i = 1, 2, 3. Here,
V1 is the turning point, but two Hopf-bifurcation points V2 and V3 constitute a zone
of instability between them. One interesting fact is that r = 1.065 in case (c) implies
stable ‘diagonal’ waves (between V2 and V1) for a small zone around σ/σ1,0 = 1.
Existence of such a zone was not possible for a square base with finite depth h.

A consequent increase of r decreases the B̄-component between V1 and V2 and
leads to the situation depicted in figure 12(d), where the response curve responsible
for the ‘diagonal’ regime ‘touches’ the (σ/σ1,0, |A|)-plane. The edge between V1 and V2

becomes responsible for the ‘planar’ response curve. The points V1 and V2 are then
the Poincaré-bifurcations, but V3 and V4 imply the Hopf-bifurcations. A collateral
effect of this regeneration of Vi, i = 1, 2 is the appearance of stable ‘planar’ waves
in the vicinity of σ/σ1,0 = 1 that is impossible for a square base.
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Figure 12. Resonance curves responsible for ‘planar’ and ‘diagonal’ waves versus r for finite
depths (h > h1). The calculations are made for h = 0.5 and ε = 0.008 and this is related to
our experiments. Four values of r are considered: (a) r = 0.95, (b) r = 1 (square cross-section),
(c) r = 1.065 and (d) r = 1.1. The graphs represent dependence of |A| on σ/σ1,0 and the
three-dimensional branching in the (σ/σ1,0, |A|, |B̄|)-coordinate system. The solid lines imply
stable solutions and the dashed lines indicate instability of the corresponding branches. The
point W is related to bifurcations leading to the ‘swirling’ regime (see details in figure 13),
but other points are caused by the ‘diagonal’ regimes: F implies the bifurcation point yielding
three-dimensional, ‘diagonal’ waves from the ‘planar’ regime, P corresponds to the turning
point of the ‘planar’ response, the points V (V1), V2, V3 and V4 evolve (with increasing r) from
a single turning point V for the ‘diagonal’ motions to two Poincaré-bifurcation (V1 and V2)
and two Hopf-bifurcation points (V3 and V4) in case (d).
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4.2.2. Bifurcations leading to ‘swirling’ waves, branching

Three-dimensional response curves (in the (σ/σ1,0, |A|, |B|)-coordinate system) and
their projections (on the (σ/σ1,0, |A|)-plane), which are responsible for the ‘planar’
and ‘swirling’ regimes, are shown in figure 13. Their evaluation starts from the case
r = 1 shown in figure 13(c) (except for the names of the critical points, this case
is equivalent to figure 5(c) from Part 1). Three-dimensional curves in figure 13(c)
correspond to ‘swirling’. They contain the Poincaré-bifurcation (point W ) and the
Hopf-bifurcation (point U ).

In contrast to the ‘diagonal’ regimes, both increasing and decreasing r are able to
change the qualitative features of the branching. Increasing r (figure 13a, b) moves the
abscissa of U in the right and yields the turning point W1 on the ‘swirling’ response
curve (note that appearance of V2 and V3 is associated with ‘diagonal’ waves). When
r < 1, W moves left along the corresponding ‘planar’ response curve, but the point
U falls into the triplet of the Hopf-bifurcation points U1, U2 and U3, so that the
edge between U1 and U2 becomes responsible for stable ‘swirling’ periodic solutions
(figure 13d). Further, the B-component on the response curve between U1 and U2

decreases with decreasing r and this stable zone transforms to the stable ‘planar’
regime bounded by two Poincaré-bifurcation points U1 and U2 as shown in figure 13(e).

An interesting physical conclusion following from figure 13(d, e) is that excitation
along the shorter walls (r < 1) may both increase the zone of stable ‘planar’ wave
due to drift of W close to σ/σ1,0 and increase the probability of the stable ‘swirling’
regimes far away from σ/σ1,0 = 1, where the analysis and experiments for square-base
tanks established ‘chaotic’ regimes (there are no stable steady-state waves). For the
cases in figures 13(d, e) the ‘chaotic’ waves are expected only in a narrow zone between
U2 and U3, which will probably disappear owing to even damping.

4.3. Effective frequency domains of stable steady-state motions versus base ratio

The response curves of stable steady-state resonant waves show a considerable effect
of a small disturbance µ = O(ε2/3) of the base ratio r = µ + 1 on the effective
frequency domains of these waves, in general, and on the appearance of irregular
‘chaotic’ waves, in particular. Variation of the effective frequency domains versus r

(in the (σ/σ1,0, r)-plane) is exemplified in figures 14. Figure 14(a) shows four effective
domains Pi, i = 1, 2, 3, 4 and an internal area corresponding to unstable ‘planar’
waves. It shows that, as was mentioned above, ‘planar’ motions remain unstable at
σ/σ1,0 = 1 for r very close to 1 (for 0.97 < r < 1.09 in our case), but become stable
for larger deflections of the base ratio.

Further, figure 14(b) shows two effective areas of ‘diagonal’ waves: D1 and D2.
The numerical analysis shows that the ‘diagonal’ resonant wave at σ/σ1,0 = 1 may
only be realized for a small ‘island’ D2. Moreover, if r < 1, the effective frequency
domain (associated with D1) shifts to the left of the primary resonance and the
resonant ‘diagonal’ regime is not realized at all. In contrast, figure 14(c) predicts a
predominating character of ‘swirling’ at σ/σ1,0 = 1 and r � 1 (in the area S1) and,
supplementary to that, a new zone of stable ‘swirling’ associated with S2 appears.

In order to estimate the occurrence of ‘chaotic’ waves (no stable steady-state
regimes) versus r and σ/σ1,0, we overlapped the areas of instability from figures 14(a)–
14(c) and marked the result in figure 14(d) by the shaded area. The figure shows that
‘chaotic’ waves appear for very small deflections of r around 1. However, because
of the predominating character of the ‘planar’ (for increasing r) and ‘swirling’ (for
decreasing r) regimes, the frequency domain of ‘chaotic’ waves becomes narrow for
r > 1.05 and r < 0.97. This means that passage to a non-square base can lead to the
disappearance of ‘chaotic’ motions.
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Figure 13. Resonance curves responsible for ‘planar’ and ‘swirling’ waves versus r for finite
depths (h > h1). The calculations are made for h = 0.5 and ε = 0.008 related to our
experiments. Four values of r are considered: (a) r = 1.1, (b) r = 1.065, (c) r = 1 (square
cross-section), (d) r = 0.9 and r = 0.87. The graphs represent dependence of |A| on σ/σ1,0 and
the three-dimensional branching in the (σ/σ1,0, |A|, |B|)-coordinate system. Solid lines imply
stable solutions and the dashed lines indicate instability of the corresponding branches. Point
F is related to bifurcations leading to the ‘diagonal’ regime (see details in figure 12) and P is
the turning point on the ‘planar’ curve response. The meaning of other points is explained in
the main text.
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Figure 14. The domains of stability/instability of the steady-state motions in the
(σ/σ1,0, r)-plane for h = 0.5, ε = 0.008. (a) shows the stability areas of ‘planar’ waves
(Pi, i = 1, 4), (b) indicates the stability areas for ‘diagonal’ waves (D1 and D2) and (c) represents
the stability domain S of ‘swirling’ waves. In order to detect the ‘chaotic’ wave motions (there
are no stable steady-state regimes), the domains are superposed in (d). Evaluating the shaded
area, which denotes ‘chaotic’, detects its narrowing for r > 1.05 and r < 0.97.

The classification of frequency domains becomes more complicated for h < h1; we
also found a larger area of ‘chaotic’ waves with increasing ε. However, as mentioned in
Parts 1 and 2, both smaller depths and larger forcing amplitudes require modification
of the Moiseyev asymptotic ordering, which is the theoretical background of the
present paper.

The experimental tests on resonant sloshing in tanks with a nearly square base
have been performed with the same experimental set-up as in Part 2, but for a base
60 × 66 cm2. Two forcing amplitudes 0.048 m and 0.096 m were tested corresponding
to ε = 0.008 and 0.016, respectively. Similarly, as described in previous publications,
pure periodic waves in nearly square geometry were not detected even after 270–350
forcing periods for most of the test cases with three-dimensional waves, because of
local breaking phenomena and consequent amplification of steep waves. However,
these relatively steep waves did not affect the global smooth flows and the visual
observations clearly identified ‘planar’ and ‘swirling’ as well as waves of irregular
‘chaotic’ character. We present theoretical estimates of the types of motion and
corresponding experimental observations in figure 15 for r = 60/66 (excitations
along the longer walls were unfortunately not tested in experiments). Figure 15(a)
presents results for smaller forcing amplitude and figure 15(b) gives results for larger
amplitude. These results are in good agreement.

The first conclusion from comparisons in figure 15(a) is that r = 60/66 reduces the
actual zone of ‘chaotic’ waves. The theory in figure 15(a) finds it only between u2 and
u3 and this is too narrow to be captured in experiments. For the analogous forcing
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Figure 15. Response curves implying the steady-state resonant sloshing in a near-square tank
with r = 60/66. The graphs are given in the (σ/σ1,0, |A|, |b|)-coordinate system (b =

√
B2 + B̄2),

the three-dimensional curves represent three-dimensional wave motions, but two-dimensional
branches in the (σ/σ1,0, |A|)-plane determine the ‘planar’ regime. Points on the solid lines
correspond to stable solutions and the dashed curves denote instability. The meaning of the
bifurcation points P , F , W etc. is explained in figures 12 and 13. The abscissa of these points
(p, f , w etc.) intersect the ranges where different steady-state waves are stable. Resulting
stability frequency domains are drawn for each case: (a) ε = 0.008 and (b) ε = 0.016.
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amplitude of the 60 × 60 cm2 square tank, Part 1 detected a significant domain of
‘chaotic’ motions. Larger excitation amplitude obviously increases the ‘chaotic’ waves
zone (now it is situated between f and w). Two experimental runs confirmed its
existence. However, this domain is still small relative to analogous forcing of the
60 × 60 cm2 square tank in Part 1.

The most evident fact, which has been confirmed experimentally, is the presence
of the stable ‘planar’ waves at the primary resonance σ/σ1,0 = 1. We concluded
in Part 1 that the local vicinity of the primary resonance always implies three-
dimensional wave regimes for square-base basins, at least, for the finite fluid depth.
Examples in figure 15 demonstrate the opposite case for near-square tanks. There is
also experimental confirmation of the theoretical prediction that the ‘swirling’ regime
for r < 1 can be expected far away from the primary resonance. The experimental
observations of the ‘swirling’ waves at σ/σ1,0 = 0.932 (case a) and σ/σ1,0 = 0.936
(case b) correspond to the frequency domain where excitations of the square-base
tanks resulted in ‘planar’ waves (see, almost similar results in figures 5 (d) and 11 of
Part 1).

The agreement between theoretical predictions and experimental data is especially
good for the smaller ε = 0.008, but a discrepancy between the theory and experiments
for larger amplitude (see points at σ/σ1,0 = 0.999 and 0.910) is quantified to be in the
order of ε. Because our asymptotic scheme guarantees the results for σ/σ1,0 in the
order of O(ε2/3), this small discrepancy does not indicate a failure of the asymptotic
theory.

5. Concluding remarks and discussion
The main results of the present paper consist of generalizing those from Part 1 for

relevant prismatic tanks with an almost square base. Two experimental series with
the 60 × 66 cm2 base tank, which are analysed in § 4.3, have been conducted within
the framework of preparation of Part 2, in parallel with analogous experiments with
the square 60 × 60 cm2 base tank. The emphasis was on types of steady-state regimes
with the same forcing amplitudes and on effective frequency domains of these regimes.
The result was that, on the one hand, both geometries exhibit the same type of steady-
state wave regime, but, on the other hand, the effective frequency domains of these
regimes differ considerably. In one experimental series with the 60 × 66 cm2 base tank,
we were not even able to find ‘chaotic’ waves, but analogous excitations of the square-
base tank clearly exhibited a sufficient frequency range where irregular, ‘chaotic’
motions occur. Hence, the relevance of non-square-base tanks and the striking exper-
imental observations have formed the objective of the present investigations: to de-
scribe steady-state wave regimes and quantify their effective frequency domains versus
the base ratio r . We restricted ourself to finite fluid depths, i.e. the depth/breadth
ratio is larger than h1 = 0.3368 . . . (h1 is the critical depth computed by Waterhouse
1994; Faltinsen et al. 2003), and, under certain asymptotic assumptions matching the
scaled forcing amplitude ε with deviations of the base ratio µ = r − 1 = O(ε2/3),
performed mathematically tedious analysis of local branching of the response curves
implying the dominating steady-state wave amplitudes. The results are documented in
§ 4. These confirmed the existence of the same steady-state waves as in tanks of square
base and demonstrated that small non-zero µ may redistribute effective frequency
domains significantly. Good agreement with two experimental series was established.

Later on, we found a mismatch between our theoretical and experimental results
and applied mathematical results by Bridges (1985, 1987) who studied free-standing
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in tanks of nearly square base and did not report ‘swirling’. In order to clarify whether
‘swirling’ appears only for resonant waves, we conducted an independent asymptotic
analysis based on the modal technique. Our derivations showed the presence of free-
standing ‘swirling’ formed by the lowest (1, 0)–(0, 1)-dominating modes, for the case,
which has not been analysed by Bridges (1985, 1987). The details are given in § 3.

In contrast to Part 2, the present paper did not pursue simulations of resonant
waves, any estimates of damping and/or consequent experimental validation of
steady-state and transient amplitudes. The present modal system captures only the
smooth dominating component of the resonant flows and, obviously, it is of limited
applicability for quantitative validation of, for instance, wave elevations. However,
we believe that successful simulations are possible (limited by occurrence of local
phenomena) by using the appropriate adaptive multimodal models developed in
Part 2. The present studies can also be generalized to more complicated excitation,
e.g. motion along the diagonal of the rectangular base as well as angular motions.
Further, the theoretical results by Ockendon et al. (1996) and Ockendon & Ockendon
(2001) on imperfections of the wall for the shallow-fluid sloshing suggest future
investigations for resonant regimes in nearly square tanks with non-flat walls, for
intermediate depths and so on. This should require significant modifications of the
modal technique (see Faltinsen & Timokha 2002). A special problem consists of
the theoretical description of the local phenomena that have been found in our
experiments and reported by many others (Faltinsen et al. 2003; Royon, Hopfinger
& Cartellier 2005).
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