
J. Fluid Mech. (2002), vol. 470, pp. 319–357. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002002112 Printed in the United Kingdom

319

Asymptotic modal approximation of nonlinear
resonant sloshing in a rectangular tank with

small fluid depth

By O D D M. F A L T I N S E N1

AND A L E X A N D E R N. T I M O K H A2

1Department of Marine Hydrodynamics, Faculty of Marine Technology, NTNU, Trondheim,
N-7491, Norway1

2Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska, 3 str.,
Kiev, 01601, Ukraine

(Received 21 November 2001 and in revised form 12 April 2002)

The modal system describing nonlinear sloshing with inviscid flows in a rectangular
rigid tank is revised to match both shallow fluid and secondary (internal) resonance
asymptotics. The main goal is to examine nonlinear resonant waves for intermediate
depth/breadth ratio 0.1 . h/l . 0.24 forced by surge/pitch excitation with frequency
in the vicinity of the lowest natural frequency. The revised modal equations take
full account of nonlinearities up to fourth-order polynomial terms in generalized
coordinates and h/l and may be treated as a modal Boussinesq-type theory. The
system is truncated with a high number of modes and shows good agreement with
experimental data by Rognebakke (1998) for transient motions, where previous finite
depth modal theories failed. However, difficulties may occur when experiments show
significant energy dissipation associated with run-up at the walls and wave breaking.
After reviewing published results on damping rates for lower and higher modes,
the linear damping terms due to the linear laminar boundary layer near the tank’s
surface and viscosity in the fluid bulk are incorporated. This improves the simulation
of transient motions. The steady-state response agrees well with experiments by
Chester & Bones (1968) for shallow water, and Abramson et al. (1974), Olsen &
Johnsen (1975) for intermediate fluid depths. When h/l . 0.05, convergence problems
associated with increasing the dimension of the modal system are reported.

1. Introduction
Violent fluid sloshing under gravity is of concern in many industrial applications. A

systematic collection of experimental studies for spacecraft applications was presented
by Abramson (1966) (conducted by NASA, USA) and Mikishev (1978) (Central
Research Institute of Machinery, SSSR). These studies focused mainly on axial-
symmetric fuel tanks with non-shallow fluid depth and fluid mass comparable with the
weight of the vehicle. Important fundamental conclusions were also made. Examples
are that unbaffled motions of a low-viscosity fluid can, to a large extent, be modelled
as a perfect fluid with irrotational flow and that nonlinear steep waves can occur either
in transient flows or due to resonant oscillations of the tank. The horizontal/angular
(surge/pitch) resonant excitations are especially dangerous in the vicinity of the
lowest natural frequency of the fluid oscillations. This paper concentrates on this last
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case with two-dimensional fluid flows. This is relevant for prismatic rigid containers
in marine applications (sloshing in ship tanks, oil/water containers on offshore
structures, anti-rolling tanks, etc.) and liquid tuned dampers (LTD) widely used to
prevent damage of tower buildings. Typical depth/breadth ratios are h/l . 0.6. This
range overlaps the domains of finite, intermediate and shallow depths theories (Dean
& Dalrymple 1992).

Pioneering analytical studies of nonlinear resonant sloshing in a horizontally
oscillated rectangular container with finite fluid depth were carried out by Moiseyev
(1958). The forcing amplitude/tank breadth ratio was assumed to be small and of
O(ε), whereas the periodic wave response/breadth was O(ε1/3). Resonant steady-state
(periodic) fluid motions due to surge/pitch excitations were studied by Ockendon
& Ockendon (1973), Faltinsen (1974), Shemer (1990), Tsai, Yue & Yip (1990) and
many others. These studies revealed the dominating behaviour of the primary mode
governed by a Duffing-like amplitude response. This has led to well-predicted steady-
state motions and beating waves modelled by a single nonlinear differential equation
associated with the primary dominant mode. Another critical situation happens for
shallow depth (h/l . 0.1). Verhagen & Wijngaarden (1965) conducted theoretical
and experimental studies of steady-state finite-amplitude shallow fluid sloshing in a
rectangular tank harmonically excited by surge. Spectral dispersion and dissipation
were neglected and only a limited agreement with experimental results was realized.
Chester (1968) derived for this case a viscous and dissipative theory agreeing with ex-
periments by Chester & Bones (1968). Ockendon & Ockendon (1973) and Ockendon,
Ockendon & Johnson (1986) combined the Moiseyev detuning with Korteveg–de Vries
scaling and derived the equation of shallow-water resonant theory in a rectangular
tank for inviscid flows (we refer interested readers to the paper by Ockendon, Ock-
endon & Waterhouse (1996) studying three-dimensional effects). An objective was to
derive a general mathematical theory of periodic (steady-state) solutions with small
dispersion and dissipation (by incorporation of artificial damping terms). Lepelletier
& Raichler (1988), Fujino et al. (1992), Armenio & La Rocca (1996), Modi & Seto
(1997), Reed et al. (1998) and van Daalen et al. (1999) performed a series of combined
experimental and numerical studies of resonant sloshing with shallow depth. Their
calculations were based mainly on dissipative and dispersive models and exhibited
satisfactory agreement with experiments for h/l < 0.09 and sufficiently small forcing
amplitude relative to the mean fluid depth.

There is a tendency towards applying general purpose CFD codes to the study of
sloshing in tanks. Advantages and disadvantages in ship applications are discussed
by Faltinsen & Rognebakke (2000). Our emphasis is more on an analytically oriented
technique. This requires due consideration of differences in fluid behaviour at dif-
ferent fluid depths, excitation amplitudes and frequencies. There is then a lack of
understanding of what is happening at intermediate fluid depth 0.1 . h/l . 0.24
(the upper bound is estimated by Faltinsen & Timokha 2001) when both finite- and
shallow-depth asymptotic theories may formally be implemented but typically dis-
agree with experiments. In addition, increasing amplitude excitation would for small
depths lead to a paradigm in which the forcing keeps its smallness relative to the
breadth, but may with equal success be considered as either small or of the order of
the depth. Asymptotic theories are then questionable and we do not know their exact
limitations.

The weak nonlinear resonant fluid response is, as remarked by Ockendon et al.
(1996), best classified according to the distribution of the natural frequencies of the
system. When the fluid depth is not small, the natural frequencies σi complete a
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non-commensurate spectrum, such that σi 6≈ iσ1. Since nonlinearities of the periodic
resonant fluid motions cause higher harmonics iσ, where σ is the forcing frequency
near σ1, this mechanical system has no internal (secondary) resonances and higher
modes are not excited. The undamped steady-state resonance is then according to
Moiseyev’s theory analogous to the Duffing oscillator. However, the response for
shallow depth is quite different when any of the natural frequencies are commensu-
rate, or, due to small dispersion, nearly commensurate. A commensurable spectrum
means that all or at least a large number of modes may be progressively activated
and result in shock waves (bores). The use of infinite-dimensional nonlinear modal
theory was first proposed by Miles (1976) and Lukovsky (1976) and generalized by
Faltinsen et al. (2000). This is a possible basis for studying sloshing with shallow,
intermediate and finite depth. The modal approach reduces the original free-boundary
problem to an infinite-dimensional system of nonlinear ordinary differential equations
(modal system), where the unknowns are generalized coordinates describing nonlinear
evolution of natural modes. Linearization decouples the system into a set of linear
oscillators associated with natural sloshing by each mode. The hydrodynamic forces
and moments may also be explicitly expressed in terms of the generalized coordi-
nates and external forcing. This facilitates analysis of coupled fluid/vessel motions
(Rognebakke & Faltinsen 2002). A limitation of the modal approach is that it can-
not describe overturning waves. The tank walls in the equilibrium position must be
vertical at the mean free surface. Since the free surface must be perpendicular to
the wall, run-up cannot be modelled. Further, the tank should have no roof. There
are two possible ways to use this discrete system. The straightforward method is to
truncate it. Another approach is to use asymptotic relationships between generalized
coordinates to simplify the structure of the model and keep only the modes that give
a lower asymptotic contribution than the small (forcing) parameter ε. The first way
seems to be the most general. It is roughly speaking equivalent to the method by
Moore & Perko (1964) and Perko (1969) (furthermore, it is a Perko-like method).
This method uses two Fourier series to represent the free surface and the velocity
potential. La Rocca, Sciortino & Boniforti (2000) reported successful simulations of
sloshing by using truncated modal systems. However, we found that their scheme
failed to describe many of the experimental observations at intermediate depth range.
A possible reason is that the set of natural modes adopted by Perko-like methods
is not complete for arbitrary instantaneous free-surface positions. This is due to
singularities at contact lines (Lukovsky, Barnyak & Komarenko 1984).

This paper continues the previous studies by Faltinsen et al. (2000) and Faltinsen &
Timokha (2001) based on the multi-modal approach. Faltinsen et al. (2000) assumed
a single dominant mode and derived the asymptotic modal system to be consistent
with Moiseyev’s theory. Their multi-modal system couples nonlinearly generalized
coordinates corresponding to the three lowest modes. This theory agreed well with
both previous analytic theories and made it possible to describe transient waves
occurring in experiments. However, the single dominant modal modelling failed for
sufficiently large excitation amplitudes and near critical fluid depth/tank’s breadth
ratio h/l = 0.337 . . . (the third-order Moiseyev-type theories change between soft
and hard spring types of amplitude response at this critical depth). The situation
could not be explained by the fifth-order approximation by Waterhouse (1994), who
examined this critical depth case by an improved fifth-order Moiseyev detuning.
Faltinsen & Timokha (2001) established that Waterhouse’s asymptotic scheme gave
finite but much larger amplitudes than measured by Olsen & Johnsen (1975) (forced
sway(surge) amplitude/tank breadth ratios H/l = 0.025 and 0.1). Although the
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spectrum of natural frequencies for this depth is not commensurate, they assumed
that the secondary (internal) resonance by a few of the lowest modes may matter
(see also, discussion on internal resonance phenomena in circular cylindrical tanks
by Bryant 1989). Appropriate intermodal asymptotics implied a coupled Duffing-
like resonance by the lowest modes. It has shown a high level of applicability in
describing large-amplitude sloshing with finite depth. The maximum amplitude A of
steady-state waves near the vertical wall of an open tank reached numerical values
A/l ≈ 0.9 and A/h ≈ 3 and agreed well with experiments. Moreover, Faltinsen &
Timokha (2001) showed that dissipation for large-amplitude steady regimes is of less
importance than nonlinear transfer of energy between the 2–3 lowest modes. This
was documented by using damping which was only 10−4 of the theoretical values
by Keulegan (1959). The latter damping accounts for the dissipation near the tank’s
surface due to Stokes boundary layer. They examined the applicability of this concept
to nonlinear resonant sloshing with intermediate depths. A reason was that shallow-
fluid theory also employs the secondary resonance of higher modes. They illustrated
that this is unfortunately impossible for many cases. A critical value of the depth is
estimated near h/l ≈ 0.24. The nonlinear resonant sloshing in a rectangular tank with
mean fluid depth in intermediate range 0.1 . h/l . 0.24 and excitation amplitude
H/h→ O(1) is the primary focus of this paper.

Assuming as usual that forcing is formally small and has highest order O(ε), we
start in § 1 with matching the shallow-fluid asymptotic proposed by Ockendon &
Ockendon (1973) and asymptotics emerging from the concept of secondary resonance
for finite depth. This causes both generalized coordinates and h/l to be O(ε1/4). The
asymptotic modal system should then contain fourth-order polynomial terms in gen-
eralized coordinates and depth/tank breadth ratio. It is under certain circumstances
a discrete analogy to the Boussinesq equation by Wei et al. (1995) and Bredmose et
al. (2002). Dispersion of this modal theory is also handled by a Padé approximant.
This inviscid model will be extensively validated by comparing with resonant tran-
sient sloshing experiments by Rognebakke (1998) for h/l= 0.173 and 0.116, surge
excitation amplitude H/l = 0.028 and periods where the experimental data did not
show strong dissipative character.

In § 2, we will modify the modal system by incorporating linear damping terms.
The damping coefficients are expressed by the logarithmic decrements and account
for shear layers at the bottom and wetted walls as well as dissipation in the fluid
bulk. Although this improves our model and the robustness of the calculations, there
are some experimental measurements of transient flows where agreement cannot
be reached. The systematic analysis of these experiments shows significant run-up
near the wall with subsequent overturning of the free surface during run-down.
Some typical examples when run-up leads to failure of the modal system will be
discussed. Reasons may be due both to lack of proper modelling of dissipation
caused by local breaking and the Fourier representation of the free surface, which
does not describe the actual wave steepness near the wall, and, therefore, cannot
model the instantaneous run-up shapes (Fourier series has only weak convergence
near the walls owing to the singularity of the original solutions at the free surface–
wall intersection). Our dissipative modal system will also be tested for periodic
(steady-state) motions. Comparisons are made with Chester & Bones (1968) aiming to
establish the applicability of our theory for shallow depths and, since these experiments
do not observe strong breaking and run-up, to test the system in idealized cases, when
perhaps only viscous dissipation is the main concern. Our calculations agree well
with the experiments and it seems to be better than the shallow-fluid theory of
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Figure 1. Sketch of a moving tank and adopted nomenclature.

Chester (1968). However, it runs into numerical difficulties for strong shallow-fluid
sloshing (in our calculations h/l < 0.05), where there is no satisfactory convergence
and very large dimensions of the modal system should be used. We have also
compared our results with the experimental studies by Abramson et al. (1974) and
Olsen & Johnsen (1975) for h/l = 0.12 and 0.2. When the excitation amplitude
was sufficiently small, our dissipative modal system model agrees well with these
experiments. However, some difficulties occurred to reach steady-state motions with
larger excitation amplitudes. A reason is that linear viscous damping does not account
for dissipation caused by local breaking, which may become the primary dissipative
source. An insight into this phenomenon can be made by comparing experimental
measurements by Abramson et al. (1974) for low- and high-viscosity fluids. When
the excitation amplitude H/l is small, i.e. 0.01, the viscosity clearly influences the
force amplitude response of periodic (steady-state) motions. However, the fluids of
different viscosities with H/l = 0.1 (H/h = 0.83333) exhibit statistically the same
force response.

2. Inviscid theory
2.1. Free-boundary problem and modal system

Let an inviscid incompressible fluid partly occupy a rigid tank (cavity) of a moving
solid body, as shown in figure 1. Motion of the body can be described by introducing
a pair of time-dependent vectors vO(t) and ω(t) denoting instantaneous translatory
and angular velocities of a mobile Cartesian coordinate system Oxyz rigidly framed
with the body relative to an absolute coordinate system O′x′y′z′. Since any absolute

position vector r′(t) = (x′, y′, z′) can be decomposed into the sum of r′O(t) = ~O′O and
the relative position vector r = (x, y, z), the gravity potential U depends on the spatial
coordinates (x, y, z) and time t, namely, U(x, y, z, t) = −g · r′, r′ = r′O + r, where g is
the acceleration due to gravity.

Describing the fluid behaviour in the mobile coordinate system is more convenient
than in the absolute coordinate system. However, the formulation of the boundary
problem requires due consideration of operating in an accelerated coordinate frame.
After introducing the absolute velocity potential Φ(x, y, z, t), we arrive at the following
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free-boundary problem (Faltinsen et al. 2000)

∆Φ = 0 in Q(t),
∂Φ

∂ν
= vO · ν + ω · [r × ν] on S(t), (2.1a, b)

∂Φ

∂ν
= vO · ν + ω · [r × ν]− ξt

|∇ξ| on Σ(t),

∫
Q(t)

dQ = const, (2.1c, d )

∂Φ

∂t
+ 1

2
(∇Φ)2 − ∇Φ · (vO + ω × r) +U = 0 on Σ(t). (2.1e)

Here, S(t) is the wetted body surface, Σ(t) is the free surface, Q(t) is the fluid volume,
ξ(x, y, z, t) = 0 is the equation of the free surface and ν is the outer normal to Q(t).

Derivation of this free-boundary problem is given in many fundamental mono-
graphs (see, for instance, Moiseyev & Rumyantsev 1968; Narimanov et al. 1977).
When vO(t) and ω(t) are known vectors (prescribed motion of the tank), it couples
ξ (free-surface evolution) and Φ. The first two lines of (2.1) can mathematically be
interpreted as the Neumann boundary-value problem with respect to Φ. The integral
condition of (2.1) states the fluid volume (mass) conservation rule, and is equivalent
to the solvability condition of the Neumann boundary-value problem. This can be
shown by using the equality∫

S(t)+Σ(t)

(vO · ν + ω · [r × ν]) dS = 0,

and this solvability condition (Aubin 1972) re-written as∫
S(t)+Σ(t)

∂Φ

∂ν
dS =

∫
Σ(t)

(
− ξt

|∇ξ|
)

dS =
d

dt

(∫
Q(t)

dQ

)
= 0.

Equation (2.1e) (dynamic part of the problem) of (2.1) follows from the Cauchy–
Lagrange integral re-written in a mobile coordinate system (Narimanov et al. 1977 or
Faltinsen & Timokha 2001) and the pressure-constant condition on the free surface.

The evolutional free-boundary problem (2.1) should be completed by either initial
or periodicity conditions. The initial (Cauchy) conditions require

ξ(t0, x, y, z) = ξ0(x, y, z),
∂Φ

∂ν

∣∣∣
Σ(t0)

= Φ0(x, y, z), (2.2)

to be known at t = t0. The periodicity conditions are in many applied problems
associated with periodicity of wave pattern and velocity field, i.e.

ξ(t+ T , x, y, z) = ξ(t, x, y, z), ∇Φ(t+ T , x, y, z) = ∇Φ(t, x, y, z), (2.3)

where the last equality is justified by the first one (for ξ) establishing the equivalence
of instantaneous fluid shapes at t and t+ T , namely, Q(t+ T ) = Q(t).

Narimanov (1957)† was probably the first to show how the original free-boundary
problem (2.1) can be replaced by a system of nonlinear ordinary differential equations
(modal system) to model weak nonlinear interaction between natural modes. He exem-
plified the derivation of a small-dimensional approximate modal system for sloshing
in a moving circular cylindrical tank. His derivation used a third-order asymptotic
relationship between primary and secondary natural modes leading to a Duffing-like

† He obtained his results in the early 1950s, but they were published in the open scientific
literature later.
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response of the steady-wave amplitude. This relationship was extensively treated by
Moiseyev (1958) for resonant sloshing in a rectangular tank (see also Ockendon &
Ockendon 1973; Faltinsen 1974; Shemer 1990 etc.) An alternative approach to de-
rive the modal systems was independently proposed by Miles (1976) and Lukovsky
(1976). This method was based on the Bateman–Luke variational principle. It did not
rest upon any asymptotic relation between natural modes in its original statement.
Contrary to the Narimanov–Moiseyev asymptotic scheme, this way led to an infinite-
dimensional modal system. Lukovsky and Miles considered translatory tank motions
and associated the Fourier basis with natural (eigen) modes of linear sloshing. Faltin-
sen et al. (2000) generalized their derivation to the case of arbitrary motions of the
carrying body. Their modal systems are completely equivalent to the free-boundary
problem (2.1), but assume vertical walls near the equilibrium state of the free surface,
so that the normal representation z = f(x, y, t) of Σ(t) is allowed within the invari-
able definition domain of f. Our analysis will use the infinite-dimensional system by
Faltinsen et al. (2000) instead of the free-boundary problem (2.1).

In two-dimensional fluid flows, the modal system is based upon modal representa-
tion of the free surface z = f(x, t) and velocity potential Φ(x, z, t) as follows:

f(x, t) = βi(t)fi(x), Φ(x, z, t) = vOxx+ vOzz + ω(t)Ω(x, z, t) + Rk(t)ϕk(x, z), (2.4)

(the repeated upper–lower indices mean summation and v0 = {vOx, 0, vOz},ω = {0, ω, 0}).
Here, the set {fi(x)} is a basic system of functions on the planar mean (static
equilibrium) free surface and {ϕn(x, z)} should be a complete set of harmonic functions
in Q(t). (Note, that Miles (1976) and Lukovsky (1976) demanded {fi(x)} and {ϕn(x, z)}
to be natural modes, but the procedure by Faltinsen et al. (2000) does not require this
assumption.) The completeness of the basis functions is suggested in suitable Sobolev
metrics defined, for example, by Aubin (1972).

Following Faltinsen et al. (2000) we obtain the following modal system coupling βi
and Rn

d

dt
An − AnkRk = 0 (n > 1), (2.5)

Ṙn
∂An

∂βi
+

1

2

∂Ank

∂βi
RnRk +

[
ω̇
∂lω

∂βi
+ ω

∂lωt

∂βi
− d

dt

(
ω
∂lωt

∂β̇i

)]
+ (v̇Ox − g1 + ωvOz)

∂l1

∂βi

+(v̇Oz − g3 − ωvOx) ∂l3
∂βi
− 1

2
ω2 ∂J

1
22

∂βi
= 0 (i > 1). (2.6)

Here, g1 and g3 are the projections of the vector of the acceleration due to gravity
on the x- and z-axes. An overdot means time derivative and An, Ank , lω , lωt, l1, l3 and
J1

22 are integrals over the time-dependent domain Q(t), and, therefore, are nonlinear
functions of βi. We can write

An =

∫
Q(t)

ϕn dQ, Ank =

∫
Q(t)

∇ϕn · ∇ϕkdQ, (2.7)

lω =

∫
Q(t)

Ω dQ, lωt =

∫
Q(t)

∂Ω

∂t
dQ,

∂l3

∂βi
=

∫
Σ0

f2
i dSβi;

∂l1

∂βi
=

∫
Σ0

xfi dS, (2.8)

J1
22 =

∫
Q(t)

(
z
∂Ω

∂x
− x∂Ω

∂z

)
dQ =

∫
S(t)+Σ(t)

Ω
∂Ω

∂ν
dS, (2.9)
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Figure 2. Body-fixed coordinate system and sketch of the tank in the (O, x, z)-plane.

where Σ0 is the mean free surface. Ω(x, z, t) given in (2.8) and (2.9) is the Stokes–
Zhukovsky potential defined by the Neumann boundary-value problem

∆Ω = 0 in Q(t),
∂Ω

∂ν

∣∣∣
S(t)+Σ(t)

= zν1 − xν3, (2.10)

(ν = {ν1, 0, ν3} is outer normal to Q(t)). Since Ω depends parametrically on Q(t), the
integrals (2.8) and (2.9) vary with βi, i > 1 so that

Ω(x, z, t) = Ω0(x, z) + χj(t)ϕj(x, z). (2.11)

Here, Ω0(x, z) is a known harmonic function (typically, Ω0 is the solution of (2.10) in
mean fluid domain Q0) and χj are nonlinear functions of βi.

2.2. Asymptotic modal theory for small fluid depth

2.2.1. Normalized modal system

Let us consider a fluid that partly fills an open cylindrical tank with rectangular
cross-section. The fluid occupies a prismatic domain in its static equilibrium position
with breadth l, length B and depth h. When confining the sloshing to two-dimensional
flows in the (O, x, z)-plane with no overturning waves and placing the origin O in the
middle of the mean (equilibrium) free surface Σ0 : z = 0, the fluid volume evolution
Q(t) = {− 1

2
l < x < 1

2
l,−h < z < f(x, t)} (figure 2) can be defined by the function

f(x, t), x ∈ [− 1
2
l, 1

2
l], t > 0.

We use l as a characteristic spatial scale and consider dimensionless Q∗(t) = {−1 <
x∗ < 1,−h∗ < z∗ < f∗(x∗, t)}, where

x∗ =
2

l
x, z∗ =

2

l
z, (2.12)

together with

f∗ =
2

l
f, h∗ =

2

l
h, B∗ =

2

l
B, g∗ =

2

l
g, v∗0 =

2

l
v0, (2.13)

and

β∗i (t) :=
2

l
βi(t), R∗i (t) :=

(
2

l

)2

Ri(t) (i = 1, 2, . . . ). (2.14)
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The asterisk ∗ will be omitted from the spatial coordinates, the modal functions βi, Ri
and other expressions (except h∗, g∗, H∗ and v∗0x).

The set of the basic system of functions used in (2.4) should be defined explicitly.
A typical way is to use the natural modes of linear sloshing, i.e.

fi(x) = cos({i(x+ 1)), ϕi(x, z) = fi(x) cosh({iz̄), z̄ = z + h∗, {i = 1
2
πi (i > 1).

(2.15)

Here, {fi(x), i > 1} represents a full set of standing wave shapes. This collection
forms a Fourier basis on (−1, 1) in mean square metrics for a square integrable

function and
∫ 1

−1
fi(x) dx = 0 (the integral condition guarantees volume conservation

rule). The natural modes {ϕi, i > 1} form a complete set of harmonic functions
in any rectangular domain (−1, 1) × (−h∗, C), where C > −h∗. They satisfy zero-
Neumann boundary condition on the bottom and the vertical walls. Such a set of
harmonic functions will, owing to (2.4), satisfy all the boundary conditions of (2.1)
on wetted bottom and walls. However, as we remarked in § 1, {ϕi, i > 1} is not a
complete system of harmonic functions for curvilinear (instantaneous) shapes. Its
use is therefore restricted by asymptotic modal schemes associated with the mean
(rectangular) fluid domain.

We did not incorporate 1/ cosh({ih∗) into the scaling of ϕi, as commonly done in a
finite-depth theory. This is motivated by both h∗ and z̄ being sufficiently small (this
implies in particular that cosh({ih∗)→ 1 as h∗ → 0 and the scaling disappears).

2.2.2. Intermodal asymptotics for resonant sloshing

Let us consider the surge and pitch harmonic excitation of the tank

v∗Oz ≡ 0, v∗Ox(t) = −H∗σ sin(σt), ψ(t) = ψ0 cos(σt), (2.16)

(H is the amplitude of horizontal oscillations, H∗ = 2H/l, ψ0 is the angular amplitude
in radians and σ is the circular frequency). The presence of rotational motions sets up
restriction on h∗ to avoid a partly dry tank bottom. Assuming a quasi-static situation
as in figure 3 means that

h∗ > tanψ0. (2.17)
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Even if h∗ is assumed to be small, (2.17) is a minor limitation. Since our asymptotic
scheme assumes the forcing amplitudes H∗ and ψ0 to be O(ε), (2.17) will be satisfied
if h∗ is of lower order than ε, i.e.

1� h∗ � ψ0 ∼ H∗ = O(ε). (2.18)

Our main emphasis is on fluid sloshing (transient or steady-state motions)
due to harmonic excitation (2.16) near the lowest natural frequency σ → σ1 =√
g∗{1 tanh({1h∗). Weak nonlinear resonant steady-state sloshing with finite fluid

depth (h∗ = O(1)) is modelled by a Duffing-like response. Standard analysis by
Faltinsen (1974) or Ockendon & Ockendon (1973) captured this case with asymp-
totics λ1 = 1− (σ1/σ)2 = O(ε2/3) (λ1/ε

2/3 = Moiseyev’s detuning) accompanied by the
condition R1 ∼ β1 = O(ε1/3) (in terms of modal decomposition). Faltinsen et al. (2000)
showed how to derive from (2.5) and (2.6) an approximate asymptotic modal theory
for this case. Generally speaking, this derivation was not based upon the condition
λ1 = O(ε2/3), but rather required the following asymptotics for both primary and
higher modes

R1 ∼ β1 = O(ε1/3), R2 ∼ β2 = O(ε2/3), Ri ∼ βi 6 O(ε) (i > 3), (2.19)

to be adopted by (2.5) and (2.6). Gathering terms up to O(ε) led to a three-dimensional
system of ordinary differential equations of nonlinear polynomial structure with
respect to β1, β2 and β3 and their derivatives. Contrary to Moiseyev’s asymptotic
schemes, which keep only terms of the same order, some nonlinear terms of this
system may be of lower order than ε. When σ was far away from the first natural
frequency, both the steady-state (periodic) regimes and transients calculated by this
system are nearly linear. When λ1 → 0, this three-dimensional modal system gave the
Duffing-like amplitude response for periodic solutions coinciding with solutions by
Faltinsen (1974). The system was validated for simulation of transients and steady-
state motions and agreed well with experimental data for a wide range of excitation
parameters.

Later on, a limitation of this modal system in describing the large-amplitude
sloshing was detected. Faltinsen & Timokha (2001) analysed much experimental
data and established that the theory may be improved by assuming a number of
natural modes to be of the same order as the primary dominant β1. They discussed
this problem by using the concept of secondary (internal) resonance. The secondary
resonance by the ith mode happens when λ1 ∼ λi = i2 − (σi/σ)2 → 0. Theoretically,
the structure of the natural spectrum with finite depth h∗ = O(1) does not permit
λ1 ∼ λi � 1 to be fulfilled for i > 2. Even for intermediate depths, the range of σ
where several λi are small is absent or at least very narrow. However, the smallness
of λi should be related to scale ε. Increasing forcing amplitude ε implies larger
effective domains for both primary and secondary resonances (typically by a few
lowest modes) even if h∗ is not small. Faltinsen & Timokha (2001) showed that
intermodal secondary resonant interaction between several lowest modes becomes the
predetermining mechanism to simulate large-amplitude waves with finite depth. The
concept of secondary resonance explains also the nonlinear resonant amplification of
higher modes and hence the steepness of transient waves. This is due to the multi-
frequency character of oscillations such that there may be a harmonic component σ∗
with |i2 − (σi/σ∗)2| � 1 for an index i > 2. Considering the two-dimensional sloshing
in a rectangular tank as a system where a few of the lowest modes may interact as
coupled Duffing oscillators, Faltinsen & Timokha (2001) have derived an adaptive
asymptotic modal system of variable dimension accounting for secondary resonance
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with N modes. Its asymptotics was

Ri ∼ βi = O(ε1/3) (i = 1, . . ., N). (2.20)

Using the language of the Moiseyev detuning, (2.20) means for periodic solutions
that λ1 = O(ε2/3), λi > O(ε2/3) where i = 2, . . ., N. The single dominant modal system
by Faltinsen et al. (2000) corresponds to N = 1 and can be obtained from the
system based on (2.20) by crossing out a number of nonlinear terms. This means
that the modal system ‘adapts’ itself to forcing parameters. When forcing scale ε is
sufficiently small and λi = O(1) where i > 2, or, at least, λi > O(ε2/3), these terms imply
asymptotically negligible contribution, and it therefore turns back to the Duffing-like
response by the primary mode. The limiting case λi 6 O(ε2/3) where i = 1, . . ., N
implies N nonlinear coupled Duffing oscillators. Faltinsen & Timokha (2001) have
extensively validated the adaptive system by experimental data for violent large-
amplitude sloshing with h/l > 0.24. The adaptive modal system leads to much better
agreement with steady-state experimental data by Olsen & Johnsen (1975) than the
Moiseyev-type prediction. Faltinsen & Timokha (2001) tested the implementation of
the adaptive model for smaller depths. Because shallow-fluid asymptotics also suggests
the smallness of λi as a condition for higher modes to be progressively activated
(Ockendon et al. 1996), this seemed possible with increasing N. However, their
numerical simulations in general failed or disagreed with experiments for h/l < 0.24.
A possible reason might be the stiffness of the system, which could be explained
by the multi-frequency structure of the solutions. Another problem is caused by the
increase of some coefficients in their modal system when fluid depth decreases. For
instance, (Ank)0 implies a diagonal matrix as βi → 0. This matrix should be inverted in
the framework of Faltinsen & Timokha (2001). However, diagAnk = O(h∗) as h∗ → 0.
This means that the smallness of the fluid depth yields singularly perturbed systems
of ordinary differential equations, and, therefore, shallow-fluid asymptotics should
be accounted for prior to considering large-amplitude sloshing with intermediate
depth.

Ockendon & Ockendon (1973) and Ockendon et al. (1986) combined the Moiseyev
and Korteveg–de Vries scaling to describe resonant waves for shallow-fluid depths h∗.
The corresponding modal system must, by using the language of modal decomposi-
tion, include terms up to O(ε) within relationships

Rn = O(ε1/2), O(h∗) = O(βi) = O(ε1/4) (i > 1). (2.21)

However, the (2.21) does not match (2.20), because the corresponding modal system
will omit some nonlinear terms, for instance, proportional to RiRnβk , which appeared
in the adaptive system by Faltinsen & Timokha (2001). In order to save those third-
order terms we should simply change in (2.21) the asymptotics for Rn, namely, demand
that

Ri ∼ βi ∼ h∗ = O(h∗) = O(ε1/4). (2.22)

The asymptotic modal system emerging from (2.22) will account for the smallness of
h∗, keep the quantities of the adaptive modal system by Faltinsen & Timokha (2001)
and, with decreasing h∗, include all the necessary second-order terms required by
Ockendon’s asymptotics (2.21). By surveying appropriate asymptotics of shallow-fluid
sloshing, we found that (2.22) implies a modified Boussinesq model in the form by
Wei et al. (1995) and Bredmose et al. (2002) translated to modal language. Our model
should, for long enough waves, take full account of the nonlinearity up to the fourth
order.
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2.2.3. Asymptotic modification of (2.5) and (2.6)

Now the derivation procedure becomes transparent. Considering h∗, β1 and Rn as
O(ε1/4) and forcing parameters ψ0 and H∗ as O(ε) we should keep in (2.5) and (2.6)
only terms lower than O(ε). This implies first of all the tensors ∂An/∂βi and Ank to
be derived correctly to O(ε3/4). Their explicit expressions are then as follows

∂An

∂βi
=
[
A(0)
n (h∗)Λ(0)

ni + A(1)
n (h∗)Λ(1)

nijβ
j + A(2)

n Λ
(2)
nijkβ

jβk
]
, (2.23)

Ank = {n{k
[
Π

(0)
nk (h∗) +Π

(1)
nk,j(h

∗)βj +Π
(2)
nk,jl(h

∗)βjβl +Π
(3)
nk,jlmβ

jβlβm
]
, (2.24)

where

A(0)
n (h∗) = 1 + 1

2
{2
nh
∗2, A(1)

n (h∗) = {2
nh
∗, A(2)

n = 1
2
{2
n, (2.25)

Π
(0)
nk (h∗) = (h∗ + 1

6
h∗3({n + {k)2)Λ(−0)

nk ,

Π
(1)
nk,j(h

∗) = Λ
(−1)
nk,j + 1

2
h∗2(Λ(−1)

nk,j ({2
n + {2

k) + 2{n{kΛ
(1)
nkj),

Π
(2)
nk,jl(h

∗) = 1
2
h∗(Λ(−2)

nk,jl({
2
n + {2

k) + 2{n{kΛ
(2)
nkjl),

Π
(3)
nk,jlm = 1

6
(Λ(−3)

nk,jlm({2
n + {2

k) + 2{n{kΛ
(3)
nkjlm).


(2.26)

The tensors Λ are

Λ
(0)
ni =

{
2, n = i = 0,

δni otherwise,

Λ
(1)
nij = 1

2
(Λ(0)
|n−i|j + Λ

(0)
|n+i|j), Λ

(2)
nijk = 1

2
(Λ(1)
|n−i|jk + Λ

(1)
|n+i|jk), . . .,

 (2.27)

Λ
(−0)
nk =

{
0, n = 0 or k = 0,

δnk otherwise,

Λ
(−1)
nk,j = 1

2
(Λ(0)
|n−k|j − Λ(0)

|n+k|j), Λ
(−2)
nk,jl = 1

2
(Λ(1)
|n−k|jl − Λ(1)

|n+k|jl), . . .

 (2.28)

(
δij =

{
1, i = j
0, i 6= j

is the Kronecker delta

)
.

In addition,

∂Ank

∂βi
= {n{k

[
Π

(1)
nk,i(h

∗) + 2Π (2)
nk,il(h

∗)βl + 3Π (3)
nk,ilmβ

lβm
]
. (2.29)

The dynamic modal system (2.6) has the following quantity defining the forcing[
ω̇
∂lω

∂βi
+ ω

∂lωt

∂βi
− d

dt

(
ω
∂lωt

∂β̇i

)]
+ (v̇∗Ox − g∗1 + ωv∗Oz)

∂l1

∂βi

+ (−g∗3 − ωv∗Ox) ∂l3∂βi −
1
2
ω2 ∂J

1
22

∂βi
.

Its part, associated with translatory motions of the tank, takes an explicit form that
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is independent of the asymptotic relationships. By noting that

∂l3

∂βi
= βi;

∂l1

∂βi
=

(
2

iπ

)2

((−1)i − 1), (2.30)

and v∗Oz = 0, we obtain the following forcing terms caused by horizontal translatory
motions

v̇∗Ox

(
2

iπ

)2

((−1)i − 1) + g∗βi. (2.31)

Another part of the forcing terms is related to angular excitation. Faltinsen &
Timokha (2001) described a way to calculate these quantities asymptotically by the
Taylor series in βi. This required the expansion of the solution of the Neumann
boundary-value problem (2.11). The zero-order approximation Ω0 is found in the
mean fluid volume Q0. Our analysis shows that this procedure does not satisfy (2.22).
The reason is that the zero-order approximation is associated with zero mean depth
and the corresponding boundary-value problem for Ω0 becomes invalid in an empty
domain. A more important point is that such zero-order approximation does not
allow any angular movement of the tank. A reason is that (2.17) leads to ψ0 = 0
in zero-order approximation. Mathematically, it is not only motivated by failure
of the calculation of zero-order asymptotic approximation, but also related to the
impossibility of considering the expansion in βi up to fourth-order terms, as required
by our asymptotics for terms describing intermodal interaction (see, the discussion
given by Faltinsen & Timokha 2001). Thus, the forcing terms associated with angular
excitation have to be considered asymptotically in the framework of the theory of
sloshing with finite depth. Faltinsen & Timokha (2001) gave the following asymptotic
solution of (2.11) (re-written to the normalized form)

Ω = Ω0 +
(
O

(1)
µ,i β

i(t) + O
(2)
µ,k,pβ

k(t)βp(t)
)
fµ(x)Gµ(z). (2.32)

Here,

Ω0 = xz − 2aif
i(x)Fi(z), ai =

8

(iπ)3
X

(0)
i ,

Fi(z) =
sinh({i(z + 1

2
h∗))

cosh( 1
2
{ih∗)

, Gi(z) =
cosh({i(z + h∗))

cosh({ih∗)
,

 (2.33)

where X(0)
i = (−1)i − 1 and {i = 1

2
πi. The tensors O(1) and O(2) are calculated by the

formula

O
(1)
µ,k =

{iaiT i({iΛ
(1)
kiµ − {kΛ(−1)

ki,µ )

Eµ
, T i = tanh({i

1
2
h∗) En = 1

4
πn tanh({nh

∗), (2.34)

and

O
(2)
µ,k,p =

X
(0)
i (2{i)−1({iΛ

(2)
ikpµ − 2{kΛ

(−2)
ik,pµ) + 0.5{iO(1)

i,k ({pΛ
(−1)
pi,µ − {iΛ(1)

piµ)

Eq
. (2.35)

Equations (2.32) give Ω up to second order in βi and it is the highest order allowed
by the asymptotic scheme. However, Faltinsen & Timokha (2001) have shown that
this order of smallness is enough to describe all the asymptotic quantities in the
context of the finite-depth theory. The reason is that expressions in terms of Ω will
always be recombined with other nonlinear quantities.
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When repeating the derivations by Faltinsen & Timokha (2001), we obtain the
desired asymptotic form of the modal system

∂An

∂βk
β̇k = AnjR

j (n > 1), (2.36)

Ṙn
∂An

∂βi
+

1

2

∂Ank

∂βi
RnRk + ω̇

(
−2

(
2

iπ

)3

((−1)i − 1) tanh( 1
4
iπh∗)

)

+ (v̇∗0x − g∗ψ)

(
2

iπ

)2

((−1)i − 1) + g∗βi = 0 (i > 1). (2.37)

Here, ω̇(t) = −ψ0σ
2 cos σt, v̇∗0x(t) = −H∗σ2 cos σt, ψ(t) = ψ0 cos σt and ∂An/∂βi, Ank

and ∂Ank/∂βi are calculated by (2.23), (2.24) and (2.29), respectively. (In contrast to
the derivation by Faltinsen & Timokha (2001), we did not solve Rj by (2.36), because,
as remarked above, ||Aij || → 0, h∗ → 0.)

The system (2.36) and (2.37) is of polynomial nonlinearity in βi and Rn. In contrast
to the modal system by Faltinsen & Timokha (2001), coefficients of (2.36) and (2.37)
are also polynomial in h∗, because of the Taylor expansion of the governing equations
in h∗. Aiming to display the dispersive properties of our model, there is an interest
in examining the difference between the exact natural spectrum and linear sloshing
theory based upon (2.36) and (2.37). When considering the limits βi → 0, Rn → 0 in
the governing equations (2.36) and (2.37), we obtain

diag(Anj)0 = {2
nh
∗(1 + h∗2 2

3
{2
n), diag

(
∂An

∂βk

)
0

= 1 + h∗2 1
2
{2
n. (2.38)

This leads to the following expressions for the natural frequencies

σ2
n = g∗{2

nh
∗ 1 + h∗2 2

3
{2
n

(1 + h∗2 1
2
{2
n)

2
. (2.39)

When comparing it with either exact solution in the framework of exact linear
theory

σ2
n = g∗{n tanh({nh

∗), (2.40)

or the limit of the natural frequencies in the framework of the linear shallow fluid
(non-dispersive) theory

σ2
n = g∗{2

nh
∗, (2.41)

we can see, that (2.39) expresses the natural frequencies by a Padé-like approximation
in h∗ instead of (2.41) adopted by non-dispersive theory. This approximation can
be considered as a ‘compromise’ between shallow- and finite-fluid approximations in
intermediate range. This is demonstrated in figure 4, where we show relative square
error in approximating the natural frequencies by (2.39) and (2.41).

Ockendon et al. (1996) discussed the secondary resonance as the main mechanism
for shallow-fluid sloshing, by which the higher modes may be progressively activated
with decreasing fluid depth h∗. Since our asymptotics is matched with shallow-fluid
relationships by Ockendon & Ockendon (1973), we expect the modal theory should
give qualitatively similar results in the limit h∗ → 0. However, our governing equations
are multidimensional and it is easier not to think in terms of Chester’s or Ockendon’s
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Figure 4. The relative error between the exact spectrum of natural sloshing σn and their approxima-
tions in the framework of our theory (2.39) and non-dispersive theory (2.41). Here |σ2

(Shallow)n − σ2
n |/

σ2
n – ‘shallow’, |σ2

(Modal)n − σ2
n |/σ2

n – ‘modal’. (a) h/l = 0.2 corresponds to the experimental series of

Olsen & Johnsen (1975); (b) h/l = 0.12 corresponds to the experimental series of Abramson et al.
(1974). +, ‘shallow’; ×, ‘modal’.

equations, but rather in terms of commensurability of the spectrum (2.39). This
implies that there exist at least a few indices n > 2 for which |λn| =

∣∣σ2
n/σ

2 − n2
∣∣� 1

as σ → σ1. Substituting the non-dispersive approximation (2.41) leads to λn = 0 with
σ = σ1. This means that (2.41) implies an infinite number of secondary resonances
and infinite modes are progressively activated with possible shock wave formation.
Although the Padé-approximation (2.39) defines a dispersive spectrum, and as shown
in figure 4 can be close to (2.41) only for a few lower modes, it is analytically
seen that (2.39) tends to (2.41) as h∗ → 0 and we may predict that many secondary
resonances will occur. The region in the excitation frequency/depth plane, where
the secondary resonances are expected, may be asymptotically estimated by the
general scheme developed by Ockendon et al. (1996) for an acoustic resonator. A
descriptive comparison can be made by introducing the Moiseyev detuning λO (λ̄O)
as adopted by Ockendon et al. (1986), i.e. σ2 = σ2

1(λO + 1), (λO = 1/(1 + λ1)) relating
to O(ε1/2) = λO = ε1/2λ̄O . Further, we should define h∗ = O(ε1/4) and introduce
δ = ( 1

2
h∗π)2 = δ̄ε1/2 characterizing the dimensionless depth in shallow-fluid theory.

After inserting (2.39) into expression for λn, n > 1 we obtain

λn = −n2ε1/2(λ̄O + δ̄ 1
3
(n2 − 1)) + O(ε) (n > 1).

The resonant regions are in accordance with shallow-fluid sloshing prediction
associated with λ̄O and δ̄, where |λn| � O(ε1/2), n > 1. This occurs in the vicinity of
the solutions λ̄0 = 0, n = 1 (the primary resonance) and λ̄O + δ̄ 1

3
(n2 − 1) = 0, n > 2

(the secondary resonances). Those regions are in the (λ̄O, δ̄) (detuning/depth) plane
confined to narrow ‘fingers’, each of which corresponds to Duffing-like superharmonic
resonance. They are shown schematically in figure 5. However, the ‘fingers’ in figure 5
may be ‘rounded off’ dramatically by dissipation. We will show this in § 3.1 by using
a dissipative modal system. In order to compare the qualitative theory with these
forthcoming results on steady-state response, we intersected the ‘fingers’ by horizontal
lines implying different fluid depths. First of all, we should note that intersections
with ‘fingers’ are expected near the main resonance (finger 1) and for negative λ̄O
(σ/σ1 < 1). For larger depths, we can see that the line will not cross the region of
possible shock waves (owing to ‘round off’), or, at least will cross it away from the
main resonance, namely with sufficiently large negative detuning λ̄O . The number
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Figure 5. Possible secondary resonances in the detuning/depth (λ̄O, δ̄) plane. Here, the numbers of

the ‘fingers’ correspond to various amplification modes: 1 (near the line λ̄O = 0 implies the primary
resonance, 2 (near the line δ̄ = −λ̄O) corresponds to the secondary resonance of the second mode,
3 (near the line δ̄ = − 3

8
λ̄O) corresponds to the secondary resonance of the third mode and so on.

of possible intersections may dramatically increase with decreasing δ̄ (depth). This
means the secondary resonance by a large set of modes and possible shock waves.

2.2.4. Hydrodynamic forces and moments

The following expressions for hydrodynamic forces and moments are based on
potential flow and consistent with previously presented modal theories. The horizontal
hydrodynamic force acting on the tank owing to sloshing inside the tank’s cavity is a
function of βi, β̇i, β̈i, i > 1 and can be calculated (in non-scaled form) by the formula
by Faltinsen & Timokha (2001) keeping the necessary asymptotic terms. We obtain

Fx = mg∗ψ − m(v̇∗0x + ω̇zC + ẍC), (2.42)

where m is the fluid mass,

v∗0x = −H∗σ sin σt, ω = ψ0σ sin σt,

and (xC, zC) is the mass centre defined by the formula

xC = − 2

π2h∗

∞∑
i=1

βi(t)
1

i2
(1 + (−1)i+1), zC = − 1

2
h∗ +

1

4h∗

∞∑
i=1

β2
i (t). (2.43)

Faltinsen & Timokha (2001) gives the asymptotic scheme for the calculation of
the hydrodynamic moment on the tank relative to the axis through point P and
perpendicular to Oxz

MP = rPO × F +M 0, (2.44)

where hydrodynamic force is given by (2.42) and M 0 = (0,M, 0) is the angular
hydrodynamic moment relative to origin O as follows (in normalized form)

M = m(xC(−g∗3 + v̇0z)− zC(−g∗1 + v̇0x))− 2ρω̇J (0) − ρ(β̈mL(0)
m

+ β̈mβpL(1)
p,m + β̈mβkβpL

(2)
k,p,m + L(1)

p,mβ̇
mβ̇p + 2L̄(2)

kp,mβ̇
mβ̇kβp). (2.45)

Here, the coefficients are functions of the fluid depth and generalized coordinates βi(t).
The explicit expressions for the coefficients can be found in Faltinsen & Timokha
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(2001) as follows (in normalized form)

L(0)
µ = −2X(0)

µ ({µ)
−3Tµ, L

(1)
i,µ = O

(1)
µ,i − 2π−2X

(1)
iµ , (2.46)

L
(2)
k,p,µ = O

(2)
µ,k,p + EmO

(1)
m,k2Λ

(1)
mpµ − TmX(0)

m (2πm)−14Λ(2)
mkpµ, (2.47)

J (0) = 1
3
h∗(h∗2 − 1)−

∞∑
i=1

1

{5
i

(X(0)
i )2

[
h∗{i − 4Ti

]
, (2.48)

J
(1)
k = ({k)

−2X
(−0)
k −

∞∑
i=1

O
(1)
i,k

2

{i
X

(0)
i TiEi, (2.49)

J
(2)
k,p =

∞∑
i=1

(
2Ti
π3i2

X
(0)
i [iX(2)

ikp − Y (2)
i,kp]− 2O(1)

i,k Eiπ
−2X

(1)
ip − 2O(2)

i,k,p{
−3
i X

(0)
i TiEi

)
, (2.50)

where

Y
(1)
i,k =

X
(0)
i+k

i+ k
+


X

(0)
i−k

i− k , i− k 6= 0,

0, i− k = 0,

Y
(2)
i,kp = Y

(1)
i,|k−p| + Y

(1)
i,k+p. (2.51)

2.3. Transient regimes

Although the derived modal system (2.36) and (2.37) has infinite dimensions, it can
be truncated to simulate transient sloshing. However, this solution may not converge
to the solution of the original modal system (2.5) and (2.6). The reason is that the
asymptotic modal system does not account for the full set of nonlinearities of order
higher than four that may matter. This means that increasing N and M may lead to
a more accurate solution only if the original solution satisfies (2.22) and amplification
of higher modes is physically argued. The dimensions 4 6 N = M 6 20 are almost
always used in our calculations. This implies that expected nonlinear waves are formed
by a maximum of 20 natural modes. It is on one hand desirable to use maximum
dimension for calculations. However, on the other hand, this leads to exponentially
increasing calculation time and, in addition, the time-integration may break down
for very large dimensions owing to the stiffness problem. Since the system becomes
stiffer with increasing dimensions, the backward differentiation code in the package†
for solving a stiff system of differential equations was used.

The simulations were made on a Pentium-II 366 computer. The simulation time
depended on the dimension of the system and excitation parameters. It varied between
1
10

and 46
3

of real sloshing time in the experiments.
The measurement of wave elevations near the walls and video recordings of tran-

sient sloshing due to horizontal resonant excitation were documented by Rognebakke
(1998). Figure 6 shows the tank used in the experiments. It had a front plate made of
Plexiglas which is stiffened by two vertical L-beams and was placed on a wagon that
could move back and forth controlled by a hydraulic cylinder. The hydraulic system
was strong enough to ensure that the motion inside the tank had little or no effect
on the tank motion. The tank height, breadth and length were, respectively, 1.05, 1.73

† L. F. Shampine & H. A. Watts. DEPAC – Design of a User Oriented Package of ODE Solvers.
SAND-79-2374.
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l =1.73 m

Figure 6. The rectangular tank used by Rognebakke (1998). FS1, FS2 and FS3 are positions of
wave probes.

and 0.2 m. The observed free-surface elevation did not vary in the length direction,
namely, transverse waves in (O, y, z)-plane were not excited. The amplitude of surge
excitation was between 0.02 and 0.08 m. The water depth was varied between 0.2 and
0.6 m, which means depth/breadth ratios between h/l = 0.116 and 0.34. The tank
was equipped with three wave probes, referred to as FS1, FS2 and FS3. Wave probes
FS1 and FS2 consist of adhesive copper tape placed directly on the tank wall. FS3 is
made of steel wire and situated at 0.05 m from the left-hand wall. The tank position
was measured by a position gauge. The sampling frequency was 50 Hz and the time
series of measured free-surface elevations were 50 s long. Video recordings and visual
observation of longer simulations up to 5 min were made.

Part of the experimental series was previously studied by using either single dom-
inant or adaptive theory. The results were reported by Faltinsen & Rognebakke
(1999), Faltinsen et al. (2000), Faltinsen & Rognebakke (2000) and Faltinsen & Tim-
okha (2001). The studies confirmed the applicability of the modal technique even
for very large free-surface amplitudes. Only the time series for the smallest water
depths (with depth/breadth ratios h/l = 0.173 and h/l = 0.116) were not examined
in detail. Faltinsen & Timokha (2001) gave some comments for one isolated case
with h/l = 0.173 and showed how to detune the adaptive modal system to obtain
qualitative agreement with experiments. They, in particular, noted that even with
small changing excitation parameters (frequency or amplitude), this asymptotics may
fail and other relations between modal functions may matter.

The experimental set-up required typically up to 5–10 s to reach maximum am-
plitude of excitation. During this time- the free-surface elevation remained small, in
general. Although non-zero initial conditions may effect different transient flows, their
influence is small relative to other physical effects, and gives, therefore, minor changes
in time history. That is why we have uniformly used zero-initial conditions of a calm
fluid (f0(x) = 0 and Φ0 = 0 in terms of (2.2)), namely,

βi(0) = Ri(0) = 0 (i > 1). (2.52)

Several experiments showed strong periodic (steady-state) fluid motions after 1–2
forcing periods. This occurred, for instance, for finite fluid depth, when water hits the
tank roof. Simple analysis shows that the initial condition (2.52) cannot be associated
with periodicity conditions βi(0) = Ri(0) = βi(T ) = Ri(T ) = 0, i > 1 (T is the forcing
period for sway (surge) or roll (pitch) excitations) for both the original system (2.5)
and (2.6) and its approximations. The rapid decay of transients should therefore be
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Figure 7. The measured and calculated wave elevation near the wall at wave probe FS3 for surge
(sway) excited resonant sloshing. The tank is shown in figure 6. h/l = 0.173, H/l = 0.028, T = 1.7 s.
—, experiment; · · ·, calculations.
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Figure 8. The same as in figure 7, but T = 1.8 s.

related to damping. Since our modal system is a conservative mechanical system,
we will validate our modal theory only for cases where the measurements showed
transient flows during the first 50 s.

Some appropriate cases can be found in the experiments for h/l = 0.173 (highest
natural period is T1 = 2.115 s). This series contains the measurements of wave eleva-
tions at FS2 and FS3 for the excitation periods T = 1.1, 1.17, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3
and 2.4 s. Since the records for T = 1.9, 2.0 and 2.1 s showed steady-state periodic
solutions after two forcing periods, the damping is high. We tried to simulate other
forcing periods. The typical examples are given in figures 7 and 8. Note, that the
case in figure 8 was extensively discussed by Faltinsen et al. (2000) and, later on, by
Faltinsen & Timokha (2001) as an example, when their previous asymptotic modal
systems failed. They demonstrated the importance of complex secondary resonance
phenomena between four modes and showed, that only qualitative agreement can
be reached by accounting for these resonances. The calculations in figures 7 and 8
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Figure 9. The same as in figure 7, but T = 2.3 s.
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Figure 10. The same as in figure 7, but T = 2.2 s.

are now in general agreement with experimental data. However, we note that the
maximum measured elevation during the first beating period exceeds the calculated
values for the case in figure 7. This point is especially clear for the first and second
peaks (P1 and P2). In general, this discrepancy disappears for larger t. Figure 8 shows
a similar discrepancy for several of the initial maximum peaks. Whereas the difference
between experiments and calculations in figure 7 may be explained by non-zero initial
conditions, the measurements of the wave elevation in figure 8 corresponded to very
calm wave profiles during the first 5 s. There is a clear difference between experiments
and calculations in the time range Z1 in figure 8. The video recordings reveal a series
of run-up, which increases local measurements at the wall.

Two more complicated time series in figures 9 and 10 describe the case, where
the experiments show the effect of dissipation, but the steady-state regime was not
realized during the first 50 s. At least five modes were required (N = M = 5) to
reach satisfactory converged results. The theory shows satisfactory agreement with
experiments during the first beating period. Later on, we found only qualitative
agreement and the difference increases owing to amplification of higher modes. (Note,
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Figure 11. The same as in figure 7, but h/l = 0.116, T = 1.9 s.
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Figure 12. Convergence study of calculated wave elevation near the wall for surge excited resonant
sloshing for the case in figure 11. The curves are labelled by the number N = M used in our modal
approximation. —, N = M = 5; - - -, 12; – - –, 20.

however, the satisfactory agreement for the case in figure 10 can be affected by small
changes of initial conditions, which are close but not equal to zero in the experiments.)
Increasing the dimensions N and M often improved the approximation during the
first beating period, but has led to lack of agreement on a longer time scale.

The next examples in figure 11 are for the lower depth h/l = 0.116. The experimental
excitation periods T were 1.9, 2.1, 2.3 and 2.5 s (with natural period T1 = 2.25 s),
H/l = 0.028. Most of these cases demonstrate strong periodic waves after 1–2 forcing
periods. This means that damping for this lower-fluid-depth case is too large and
our model without dissipation fails. Only the case of T = 1.9 s demonstrated beating
during the first 50 s. Figure 11 compares our numerical simulations and experimental
data for this case. The simulations were made with N = M = 7. The agreement
with experimental data is satisfactory for the first beating period as was illustrated
for the cases in figures 9 and 10. In addition, we see that the amplitude of the
elevation in our simulations decreases with time, even if damping is not accounted



340 O. M. Faltinsen and A. N. Timokha

(a) (c)

(b) (d )

Figure 13. Experimental instantaneous free surface shapes. Surge (sway) excitation with excitation
period T = 2.3 s (highest natural period is T1 = 2.115 s), excitation amplitude H/l = 0.028, the
depth–breadth ratio h/l = 0.173. Measured and calculated wave elevations at FS3 are given in
figure 9.

for. The reason is energy redistribution between the lower and higher modes. Figure 12
presents a convergence analysis for different N and M. These calculations show good
convergence for the first beating period, but not for longer time series. One viewpoint
is that we excluded higher-order quantities from our system and, therefore, we should
increase the polynomial order of the system together with the dimension of the system.
On the other hand, the physical improvement of the modal system by incorporating
damping terms in higher modes may improve the convergence.

In order to estimate what kind of sloshing is simulated, clarify what types of physical
phenomena have been ignored by our asymptotic model and explain the discrepancy in
figures 9 and 10, we have used the video recordings. Corresponding photos are shown
in figures 13 and 14. These instantaneous wave profiles are typical for experimental
series with small depths. These show a series of local nonlinear phenomena with
breaking waves (see figures 14a and 13c), overturning (see figures 14d and 13b, d ),
tank roof impact (see figure 13a, b) or thin jet (run-up) near the vertical wall. Our
Fourier series representation of the free surface, (2.4), guarantees convergence only
in mean square metrics. This Fourier series can of course uniformly converge for
smooth wave profiles which are perpendicular to the vertical walls. Breaking waves
and run-up means that uniform convergence is impossible. Then the contribution of
the higher modes during the breaking is large and they must be accurately accounted
for by our modal approximation. Further, our modal system does not account for
the energy dissipation associated with breaking waves. Both matching of the modal
system with the local flows illustrated in figures 13 and 14 and the introduction of
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(a) (c)

(b) (d )

Figure 14. The same as in figure 13, but T = 2.2 s. Measured and calculated wave elevations at
FS3 are given in figure 10.

damping effects are required to reach better agreement with the experimental data in
figures 9 and 10.

Steady-state regimes (periodic solutions of the modal system) can be calculated by
an appropriate software combining shooting and path-following procedures for two-
point boundary problems (see, for instance, the algorithms by Bader & Ascher (1987)
realized in COLSYS and COLNEW packages). However, in view of the discrepancy
between experiments and the theory caused by damping and local phenomena, this
problem becomes irrelevant. Of course, it is an interesting mathematical problem and
corresponding studies are encouraged.

3. Dissipative theory
The dissipative effect on sloshing may be introduced in several ways. A common

procedure is to estimate logarithmic decrements for natural linear sloshing. This can
be included in a linear approximation of our modal system. The sloshing problem is
then associated with the following system of linear independent oscillators without
forcing(

∂An

∂βk

)
0

β̇k =
(
Anj
)

0
Rj (n > 1), Ṙn

(
∂An

∂βi

)
0

+ g∗βi = 0 (i > 1). (3.1)

Here, (Anj)0 and (∂An/∂βk)0 are diagonal matrices, (2.38). This linear system can be
re-written in the form

β̈i + σ2
i βi = 0 (i > 1), (3.2)
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where σ2
i are the natural frequencies calculated by (2.39). When introducing the

logarithmic decrements (damping rates) γi for each mode and each equation (3.2), we
obtain

β̈i + 2γiβ̇i + σ2
i βi = 0 (i > 1). (3.3)

Here, the damping coefficients γi can be split into terms associated with different
physical phenomena including viscosity, i.e.

γi = γ
tank ′surface
i + γbulki + γothersi . (3.4)

Systematic experimental examination of the decrements for various tanks can be
found in Benjamin & Ursell (1954), Case & Parkinson (1957), Keulegan (1959),
Cocciaro, Facti & Nobili (1991), Henderson & Miles (1994), Yalla (2001) and many
others. Theoretical estimates are made for viscous dissipation near the tank’s walls and

bottom γ
tank ′surface
i by using linear laminar (Stokes) boundary-layer flow and viscous

dissipation in the fluid bulk γbulki . Some papers calculated the contribution to γothersi

due to capillary hysteresis (see, for instance Benjamin & Ursell 1954; Miles 1991;
Henderson & Miles 1994; Cocciaro et al. 1991; some references in Martel, Nicolás &
Vega 1998), due to the effect of surface contamination or thin films on a free surface
(see Van Dorn 1966; Miles 1967; Henderson & Miles 1994; Modi & Seto 1997; Miles
& Henderson 1998; Nicolás & Vega 2000; and references in these papers) or due to
surface viscosity analysed by Barnyak (1982). However, those contributions seem to
be of higher order than viscous dissipation and local breaking.

The most general model to estimate γi due to viscosity for laminar flow is based
upon linearized Navier–Stokes equations with corresponding linearized free-surface
and body boundary conditions. This model reduces to a spectral boundary problem
with the spectral parameter−λn±Iσ̄n, n > 1 (I2 = −1). Here, λn represents logarithmic
decrement and σ̄n is the frequency component associated with different natural modes.
Both the boundary-layer effect near the tank’s surface and dissipation in the fluid
bulk are accounted for by these spectral values. Its rigorous mathematical spectral
theory was first given by Krein (1964) (see, also, reviews of these and related results
by Krein & Langer (1978a, b), Kopachevskii, Krein & Can 1989). It was shown that
the spectrum contains only eigenvalues with λn > 0 and that there is only a finite
number of actual eigenvalues, for which σ̄n 6= 0. This implies only a finite number
of natural frequencies for linear sloshing of viscous fluid with laminar flow and an
infinite number of modes of pure decaying character. We arrive, by increasing the
wavenumber, at a range where there does not exist any frequency component in
the spectrum, and, therefore, at the range of strongly viscous fluid. However, there
are numerical problems to solve the spectral boundary problem. Barnyak (1992) and
Barnyak (1997) have shown that the solution of such a problem is equivalent to
a boundary integral equation with a singular kernel. They also provided a special
numerical scheme to solve these integral equations, but their original works do not
contain appropriate examples. We can, however, mention some cases where this
problem has analytical solutions. The first example is given by Landau & Lifshitz
(1987, example 2 below paragraph 25) for linear standing deep-water gravity waves.
The damping rates are there associated with the complex numbers Λ = Iλ− σ̄ to be
found from the equation(

2− I Λ
ν{2

)2

+
g

ν2{3
= 4

√
1− I Λ

ν{2
, (3.5)
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where ν is the viscosity coefficient and { is the wavenumber. Obviously, the estimate
made by (3.5) accounts only for linear dissipation in the fluid bulk. However, Landau
& Lifshitz (1987) showed that equation (3.5) with large wavenumber { has solutions
with σ̄ = 0 which confirms the theoretical prediction by Krein (1964) and established
that dissipation in the fluid bulk may be of primary concern for higher modes.

Two other appropriate solutions of the viscous linear spectral problem in a rigid
tank is given by Martel et al. (1998) (vertical circular cylindrical tank) and La Rocca
et al. (2000) (prismatic tank). The studies by La Rocca et al. (2000) are closely related
to our case, and, therefore, we made some effort to re-derive their results. Their
method assumes that shear stresses at the vertical walls can be ignored and that
the eigenfunctions of the viscous theory can be approximated by the natural modes
of inviscid theory. This means that their approximation of logarithmic decrements
accounts for dissipation at the bottom Stokes layer and linear damping in the fluid
bulk.

Another way to estimate linear damping rates is to use the solution of inviscid theory
and calculate energy loss per period at the bottom and walls (due to Stokes boundary-
layer flow) and in the fluid bulk. Appropriate formulae were derived by Keulegan
(1959) and Landau & Lifshitz (1987, formula (25.4)). When adding dissipation at the
bottom to that in the fluid bulk, we come formally to the estimates by La Rocca
et al. (2000). Our calculations showed a maximum of 5% difference between those
methods for { = {i, i 6 20 with viscosity of ‘fresh water’. The difference increased
for both λi and σ̄i with increasing {i. A similar comparison with calculations by
Martel et al. (1998) was made by Miles & Henderson (1998) for sloshing in a vertical
circular cylindrical tank aiming to estimate the contribution of dissipation in the
fluid bulk. The difference was also negligible. The calculations by Miles & Henderson
(1998) and Nicolás & Vega (2000) proved that even if the Stokes layer dissipation
is proportional to

√
ν and the fluid bulk dissipation is proportional to ν (ν � 1),

both effects give comparable values of logarithmic decrements, especially for higher
wavenumbers. This made it possible for Miles & Henderson (1998) and Nicolás &
Vega (2000) to obtain much better agreement with experiments by Henderson & Miles
(1994), relative to calculations accounting exclusively for the Stokes layer. (Miles &
Henderson (1998) have also shown that contamination of the fluid (see, Miles 1967)
and properties of the tank’s surface may matter.)

Existing approximations of γi are correctly estimated for linear steady-state motions.
However, there is an alternative approach to estimate shear stress for shallow water by
Chester (1968) (this formula was earlier derived by Chester (1964) for shear stresses
in organ pipes), which may be applied for transient laminar flows. (He associated
the dominating dissipation with shear stress near the bottom, ignoring those near the
vertical walls and in the fluid bulk.) We can easily see, that his damping term in the
governing equation is equivalent to the formula for the shear stress on an oscillating
plate (see, for instance, the formula (24.8) from Landau & Lifshitz (1987) or formula
(7) from § 334a of Lamb (1932)). Using the language of modal approximation it
replaces 2γnβ̇n by integrals proportional to

√
ν

∫ t

−∞
Ṙn(τ)

1√
t− τ dτ (n > 1). (3.6)

Direct substitution of solutions of natural sloshing from (3.1) into (3.6) shows
that the formula is equivalent to the linear damping terms above with γi calculated
by the scheme of Keulegan (1959), in which the dissipation at the walls is omitted.
The integral term by Chester (1968) is probably more relevant for calculation of the
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dissipation near the bottom during transient flows. However, it dramatically changes
the numerical integrations, which would then need a special solver for stiff system of
nonlinear integro-differential equations. Thus, the special examination of the terms
(3.6) is required as an independent research project.

Our expression for natural frequency (2.39) differs from (2.40). When revising the
results by Keulegan (1959) (shear layer at the tank’s surface) and Landau & Lifshitz
(1987) (formula (25.4) with natural modes ϕn) to make them consistent with the Padé
approximation, (2.39), we obtain

γbulki =
4

3
ν

{4
i (h
∗)2

1 + (h∗)2 2
3
{2
i

,

γ
tanksurface
i =

1

2

√
νσi

2

1

B∗

[
1 + 1

2
B∗ + B∗

1− h∗
2h∗(1 + 2

3
(h∗)2{2

i )

]
. (3.7)

Linear damping rates can be adopted by the nonlinear modal system. It is based on
the equivalent linearization of damping and Lagrange theorems. So, if a conservative
mechanical system is associated with generalized coordinates pi and generalized
impulses qi, then we can introduce a dissipation function D(ṗ1, . . ., ṗi, . . .) as quadratic
functional of the variables. The Lagrange equation takes then the following form

d

dt

∂L

∂ṗi
+
∂L

∂pi
= −∂D

∂ṗi
(i > 1). (3.8)

The quadratic dissipation function may formally be defined (see, for instance, argu-
ments by La Rocca et al. 2000) as

D =

∞∑
i=1

g∗γi
σ2
i

β̇2
i . (3.9)

Keeping kinematic subsystem (2.5) without changes, (2.6) will take the form

Ṙn
∂An

∂βi
+ 2γi

g∗

σ2
i

β̇i +
1

2

∂Ank

∂βi
RnRk + ω̇

(
−2

(
2

iπ

)3

((−1)i − 1) tanh

(
iπ

4
h∗
))

+ (v̇∗0x − g∗ψ)

(
2

iπ

)2

((−1)i − 1) + g∗βi = 0 (i > 1), (3.10)

where σ2
i and γi should be expressed by (2.39) and (3.4) with γtank ′surface

i and γbulki given
by (3.7).

Although the dissipation function gives the correct expression in linearized case,
it causes nonlinearities in equation (3.10). These are associated with inversion of the
tensor ∂An/∂βi for each time step. In addition, when substituting β̇i from (2.36) we
find also additional nonlinearities in terms of Rn and βi. This is a typical drawback
of incorporating linear damping terms in nonlinear conservative mechanical systems.
Each formal structure of the dissipation function will lead to different nonlinearities,
although all the equations agree with each other in their linearized form.

Even if the experiments by Modi & Seto (1997), Rognebakke (1998) and Yalla
(2001) showed that linear viscous damping is of lower importance with increasing
excitation amplitude and decreasing fluid depth, we still cannot indicate a way to
derive nonlinear damping terms for modal systems. First of all, this is because the
number of possible nonlinear dissipation factors increases significantly with decreasing
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fluid depth and increasing excitation amplitude. Along with the viscous dissipation
near the tank’s walls and bottom and in the fluid bulk (nonlinearities associated with
changing wetted surface and convective acceleration or turbulent boundary layers
may matter in reality) and dissipation in the fluid bulk (of nonlinear character) we
have to mention run-up/overturning of the free surface near the wall and subsequent
water impact on the free surface, shear boundary layer near the free surface, local
breaking waves away from the walls, capillary boundary layer near the free surface
and dynamic hysteresis of the contact angle, surfactant on the free surface, roof impact
(in closed tanks). So, for instance, the large magnitude flow near the surface should be
considered irrotational. Since the fluid has a small but non-zero viscosity (Longuett-
Higgins 1992a, b, 1994), the free surface generates a vorticity field, which increases
with increasing curvature of the free surface. Usually, the vorticity remains localized
in a subsurface layer which is thin compared to the characteristic wavelength. (For
other examples of rotational surface waves see Milinazzo & Saffman 1990; Fedorov &
Melville 1998.) This causes breaking waves as established in the experimental studies
by Abramson et al. (1974), Rognebakke (1998) and Faltinsen et al. (2000). The
physical reason for the increase of vorticity is the amplification of higher harmonics
of the natural modes due to secondary resonances. It is especially important for large-
amplitude transient waves and small fluid depth. Another significant nonlinear source
of dissipation is thin jet flow (run-up) along the wall, subsequent overturning of free
surface and water impact on another part of the free surface. An estimate of this
phenomena on global damping was recently made by Rognebakke & Faltinsen (2002)
by measuring the fluid volume of the jet and relating this to maximum potential
energy. When assuming that this energy may be dissipated owing to overturning of
the free surface and subsequent impact on the free surface, they showed that the
damping caused by run-up exceeds the dissipation due to laminar boundary layer
near the tank’s surface. Although there are some well-established theories of many
of those phenomena, authors were still not able to implement them in the inviscid
modal theory, as was done by Faltinsen & Rognebakke (1999) for roof impact.
(Damping terms were calculated for each excitation period by estimating the energy
loss in the framework of Wagner’s slamming theory by examining the potential and
kinetic energy in the jet flow created due to the impact and assuming this energy was
dissipated after the water subsequently fell like rainfall on the free surface.)

Even if linear viscous damping contributes only a part of the dissipation, the

presence of damping terms in (3.10) with γi = γ
tank ′surface
i + γbulki may improve the

agreement with experiments. This is demonstrated in figure 15. New simulations
with linear viscous damping give better predictions for the maximum and minimum
amplitudes than in figure 8. There is still a discrepancy at the ranges Z1 and Z2.
However, this is earlier explained to be due to run-up. Better agreement is caused
by the fact that, probably, for this case, the run-up gives negligible contribution in
dissipation and that viscous dissipation is of primary concern. Some improvements
can be obtained for the cases in figures 9 and 10. However, accounting exclusively for
linear viscosity does not lead to reasonable improvement in the major cases. This is
demonstrated in figure 16 repeating the calculation in figure 9 with linear dissipative
terms. Of course, new calculations become better in prediction of the maximum and
minimum elevations near the wall, especially for the first beating period. However,
the calculated time series does not reflect actual evolution on a large time scale.

Another typical example when viscous dissipation rates in the modal equations
could not improve the simulations, and run-up along the vertical walls are significant,
will be illustrated. Figures 17 and 18 show the time recordings and calculations of
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Figure 15. The same as in figure 8, but the simulations were made with linear damping rates (3.4)
in (3.10) accounting for viscosity in the fluid bulk and Stokes boundary layer. —, experiment; - - -,
calculations with damping.
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Figure 16. The same as in figure 9, but the simulations were made with linear damping rates (3.4)
in (3.10) accounting for viscosity in the fluid bulk and Stokes boundary layer.

the wave elevation at wave probes FS2 and FS3 from the test series by Rognebakke
(1998) for h/l = 0.116 with excitation frequency T = 2.7 s. Our calculations without
linear damping terms failed after 1–2 forcing periods in this case. The simulations
with viscous damping terms became better. (The time series used N = M = 18, but
increasing the dimensions did not improve the results.) We had to terminate our
calculations after gentle touching of the bottom by the free surface near FS3. The
experimental data in figures 17 and 18 show a clear difference between elevations at
FS3 and FS2. Here, FS2 is at the wall and FS3 is only 5 cm from the wall. This large
difference between measurements at FS2 and FS3 indicates that run-up occurs at the
points R1, R2, . . . . The numerical results show a difference at FS2 and FS3, but not
so large as in the experiments. The reason is that the Fourier modal presentation
demands the free surface to be perpendicular to the vertical walls and contradicts the
surface shapes illustrated in figure 19.



Modal approximation of sloshing 347

0.6

0.4

0.2

0

–0.2
5 10 15 25

t (s)

E
le

va
ti

on
 a

t F
S

3 
(m

)

353020

0.5

0.3

0.1

–0.1

R4

R2

Figure 17. Experimental measurements and numerical simulations at wave probe FS3 for
h/l = 0.116 with excitation frequency T = 2.7 s (natural period is T1 = 2.25 s), and excitation
amplitude H/l = 0.028. The photographs of run-ups R2 and R4 are shown in figure 19. —,
experiment; - - -, theory.
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Figure 18. The same as figure 17, but at FS2.
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Figure 19. Experimental photos for the series of the first run-ups occurring at the right-hand and
left-hand walls. The case in figure 18.
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Figure 20. Dimensions of the tank used in experiments by Chester & Bones (1968). Tank length is
B = 0.1524 m.

3.1. Steady-state response

The prediction of steady-state (periodic) solutions by inviscid theory with decreasing
fluid depth is best demonstrated by figure 5. When h∗(δ̄) becomes sufficiently small,
the horizontal line intersects several ‘fingers’ with negative λ̄O beginning from finger 2,
where the first superharmonic secondary resonance occurs. Crossing through several
‘fingers’ can lead to multiple periodic solutions, each with a different number of
oscillations in each period. The number of solutions for any fixed excitation frequency
(detuning) increases as h∗ → 0 and possibly jumps from one to another. Since the
dissipation increases with mode number, it should ‘round off’ first of all ‘fingers’ with
large indices in figure 5 and connect the solutions in a bounded response.

Our validation of the dissipative modal theory rest upon long time series aiming to
reach a periodic solution. The calculation procedure falls into two steps. In the first
step we ‘shoot’ with zero initial conditions until the periodic solution is reached. A
path-following procedure by changing excitation period is used in the second stage
starting from the steady-state numerical solution obtained from the first step. This
makes it possible to detect multiple solutions and jumps in the response. The first
validation example is chosen from experimental shallow-water results by Chester &
Bones (1968). The tank dimensions are shown in figure 20. Since the surge amplitudes
were very small and Chester & Bones (1968) did not mention observed run-up
and breaking, we expect that only viscous damping may matter. These comparisons
should also test the validity of our intermediate depth sloshing model for shallow
water sloshing. Owing to small damping it took up to 100 forced periods to reach a
periodic solution. Chester & Bones (1968) presented four experimental and theoretical
results of wave amplitude response near the wall for surge excited sloshing with
h/l = 0.083333 and 0.0041667. The first case from the experiments by Chester & Bones
(1968) is presented in figure 21. Here, the mean depth h = 0.0508 m (h/l = 0.08333)
and amplitude H = 0.00077874 m (H/h = 0.0155). The results in figure 21 agree well
with the experiments. It gives better theoretical results than presented by Chester &
Bones (1968). Even if we consider other experimental data from their series with twice
as large a forcing amplitude, we would also find good agreement with our calculations.
This is shown in figure 22. Here, both theoretical and numerical results demonstrate
only three jumps. These are associated with the primary resonance and secondary
resonances of the second and third mode. The secondary resonance of the fourth
mode is predicted near σ/σ1 = 0.91, but damping and higher nonlinearities ‘round
off’ expected jumps between solutions. Here, we used only N = M = 8; however,
increasing the dimension led to less than relative error 10−4 between simulations with
(N − 1)th and Nth dimensions. This implies good convergence. When comparing
with the experimental results for the smaller depth h/l = 0.00416667, we obtained
convergence problem with our modal method. With N = M = 8, we obtained
reasonable agreement with experiments. If N and M were further increased, the
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Figure 21. Dimensionless wave elevation near the vertical wall proposed by Chester & Bones
(1968) a = (fmax − fmin)/h vs. excitation σ/σ1 s. The rectangular tank in figure 20 with
h/l = 0.08333, H/l = 0.001254. H is the surge (sway) excitation amplitude. The calculated data are
for water with ν = 1.1× 10−6 m2 s−1. —p—, modal theory; ©, experiment; —, Chester & Bones.
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Figure 22. The same as in figure 21, but H/l = 0.002583.

convergence with relative error 10−4 was not reached. Accounting for exponentially
increasing calculation time and the stiffness with increasing dimension of the system,
we were not able to test very large dimensions, and, therefore, do not present those
results.

Two appropriate experimental examples to validate our modal theory for inter-
mediate depths were reported by Abramson et al. (1974) and Olsen & Johnsen
(1975). These were performed in the tanks shown in figures 23 and 24, respectively.
Abramson et al. (1974) presented lateral force measurements for depth/breadth ratio
h/l = 0.12, H/l = 0.01 and 0.1. The effect of fluid viscosity was also examined. Our
first comparison was for ‘fresh water’ (ν = 1.1 × 10−6 m2 s−1) and H/l = 0.01. The
measured and calculated lateral forces presented in figure 25 show generally good
agreement. As in the shallow fluid sloshing, the steady-state wave amplitude response
demonstrates several branches and the possibility of multiple solutions. The branches
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Figure 23. Prismatic tank used by Abramson et al. (1974). All dimensions in mm.
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Figure 24. Rectangular tank used by Olsen & Johnsen (1975). All dimensions in mm.
⊕ is the position of rotation axis.

imply theoretically four subharmonic resonances (jumps) in the response. These are
very small and not so clearly seen as for shallow flows. We denoted them as j1, j2
and j3. The jump j1 is associated with the primary resonance. The jumps j2 and
j3 are caused by secondary resonance by the second and third modes, respectively,
and are estimated near T = 2.37 s (i2) and T = 2.61 s (i3) (in the framework of our
approximation of the natural frequencies (2.39)). We found also the jump j0 in our
calculations, which we originally considered as an error. Later on, by comparing with
measured data, a similar jump in the experiments was revealed. The average time to
reach periodic solutions with viscous damping coefficients was between 400 and 600
forcing periods. This corresponds to approximately 20–25 min of real sloshing time
in model scale. This is likely to be inconsistent with real observations and means
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Figure 25. Dimensionless lateral force 1000Fx/(ρgl
2L) vs. excitation period T s of the prismatic tank

in figure 23 with h/l = 0.12, H/l = 0.01. H is the surge (sway) excitation amplitude. The measured
and calculated data are for water with ν = 1.1 × 10−6 m2 s−1. —p—, calculation; ×, experiment; ∗,
Verhagen–Wijngaarden.

16

12

8

4

0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Excitation period T (s)

D
im

en
si

on
le

ss
 la

te
ra

l f
or

ce

Figure 26. The same as in figure 25, but the fluid is ‘glycerol–water 85%’ with
ν = 1.1× 10−4 m2 s−1. · · · , calculation with shear force.

that real dissipation during transients is much larger than predicted by linear viscous
theory. The discrepancy for 2.0 s 6 T 6 2.1 s is caused by run-up, demonstrated by a
photograph in Abramson et al. (1974). There is also some disagreement in response
and the value of corresponding jumps between j0 and j2. This may be influenced by
corners near the bottom of the tank, i.e. the tank is not of pure rectangular shape.
Since the corners increase the natural periods, i2 and i3 would move to higher periods.
This drift may also explain the measured value for the highest excitation period as
shown in figure 25. Abramson et al. (1974) presented also measured lateral force for
resonant sloshing of ‘glycerol–water 85%’ (ν = 1.1× 10−4 m2 s−1). The measured and
calculated values are presented in figure 26. This confirms also the effect of secondary
resonance of the second mode.

If we compare the numerical results in figures 25 and 26, we do not find a significant
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Figure 27. The same as in figure 25, but H/l = 0.1. The experimental data show the influence of
viscosity. —p—, calculation; ×, fresh water; ∗, Reginol–oil; �, glycerol–water 63%; �, glycerol–water
85%; – · – ◦ – · –, Verhagen–Wijngaarden.

influence of viscosity. The experimental results show a larger effect. This is particularly
true for T < 2.0 s. However, this difference can be explained by introducing viscous
shear stress due to boundary-layer flow at the bottom and the sidewalls parallel to
our two-dimensional potential flow. Since the amplitudes of the modes were small
for T < 2.0 s, we can use linear theory for the flow outside the boundary layer in
combination with Stokes boundary-layer flow. Figure 26 shows that the disagreement
between theory and experiments disappears by accounting for shear forces on the
bottom and the wall of the tank. We should also note, that the effect of lateral
shear force may be important for other excitation periods. However, these ranges
are associated with strong nonlinearities and we must consider them by a nonlinear
model of the boundary layer. This requires further study, where other measurements
by Abramson et al. (1974) for ‘reginol–oil’ (ν = 4.35 × 10−4 m2 s−1) and ‘glycerol–
water 63%’ may play an important role. Figures 25 and 26 present also comparisons
with theoretical predictions by the non-dispersive shock-wave theory by Verhagen &
Wijngaarden (1965). The theory agrees with our calculations for periods between 2.2 s
and 2.4 s, but, generally speaking, our theory is in better agreement with experiments.

Abramson et al. (1974) measured also the lateral forces for H/l = 0.1, i.e. H/h =
0.833. They show photographs of breaking waves, bores and heavy fluid impacts on
the walls for this case. This case is definitely connected with shock waves. Since, in
addition, the experimental results do not depend strongly on the viscosity, the major
damping is probably not associated with viscous boundary layer and dissipation in the
fluid bulk. Therefore, our previous predictions of γi are only symbolic lower bounds of
the actual damping. Although our Fourier series is not able to describe the breaking
waves and bores, we tried to use it for calculation of lateral hydrodynamic force. The
reason is that the formula for hydrodynamic force is based on integration over the
Fourier series representing the free surface, and, even if our Fourier series has only
weak convergence, the integration can imply uniform convergence. This means that
even a few of the lowest terms in modal approximation may give adequate calculation
of force response. We used N = M = 7 in our numerical calculations presented in
figure 27. The first three modes were damped in accordance with viscous decrements,
but the higher modes were damped overcritically, i.e. γ2

i > σ2
i . Our calculations are
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Figure 28. Wave elevation near the wall vs. ‘period–first natural period ratio’ of the rectangular
tank in figure 24 with ψ0 = 0.1 rad. T/T1 = i2 = 1.1446 for the secondary resonance by the
second mode, T/T1 = i3 = 1.3226 for the secondary resonance by the third mode. Results are also
compared with the theoretical prediction of the third-order asymptotic theory by Faltinsen (1974).
—, tank top; - - -, Faltinsen (1974); +, experiment; ×, calculation.

generally in satisfactory agreement with experiments. The discrepancy is largest in the
vicinity of T = 2.0 s. It is possible that a more realistic damping estimate may have
further improved our calculations. We note that, contrary to the smaller-amplitude
excitation case, the shock-wave theory by Verhagen & Wijngaarden (1965) shows
better agreement with experiments.

Olsen & Johnsen (1975) reported measured steady-state free-surface elevation in a
rectangular tank owing to roll/pitch excitation. The shape of the tank is shown in
figure 24. Most of the tests were for h/l > 0.24 and can be described by the adaptive
modal approach by Faltinsen & Timokha (2001). However, one series of tests was
carried out for h/l = 0.2. Faltinsen & Timokha (2001) documented that even a uniform
adaptive model accounting for the secondary resonance could not accurately explain
these experimental results. We will instead use our modal system for intermediate
depth. The sloshing in the rectangular tank in figure 24 was excited by pitch (angular)
with amplitude ψ0 = 0.1 rad. The experimental measurements and numerical results
are compared in figure 28. The two values of T/T1, i2 and i3, correspond to the
secondary resonance prediction by Faltinsen & Timokha (2001). Figure 28 shows that
theory and experiments agree well. We should note that linear damping terms were the
most important, but some additional damping was introduced to reach steady-state
sloshing. A reason is that energy dissipation during transient conditions is believed to
be larger than for steady-state motions. That is why we started our calculations with
higher damping coefficients. The coefficients γi were multiplied by the factor 1 + δ{2

i .
The total simulation time was divided into a number of time intervals. The value
δ = 1 was used in the initial time interval. The parameter δ was divided by the factor
5 for subsequent time intervals. For the final time interval, δ = 10−4. This means
that steady-state values are consistent with predictions of linear viscous damping.
In addition, we remark that the path-following procedure, as discussed in figure 25,
with minimum damping rates was impossible in the range 0.95 < T/T1 < 1.3. Even
small changes in the excitation amplitude led to breakdown of the calculations, owing
to large-amplitude transients. That is why we could not find clearly the presence
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or the absence of jumps between different branches of steady-state solutions in this
range.

4. Conclusions
1. The problem of violent resonant two-dimensional sloshing in a prismatic tank

with intermediate depth (0.1 . h/l . 0.24) forced by surge/pitch in the vicinity of
the lowest natural frequency is studied in detail. Even if the forcing amplitude is
sufficiently small and of O(ε) relative to tank breadth, the problem cannot be solved
in the framework of either finite- or shallow-depth theories. To obtain theoretical
predictions of wave response in both transient and steady regimes, we have asymp-
totically revised the general modal system by Faltinsen et al. (2000). The asymptotic
procedure matches the shallow-fluid theory by Ockendon & Ockendon (1973) and the
modal theory by Faltinsen & Timokha (2001) derived for large-amplitude sloshing
with finite depth. The secondary resonance of higher modes causes many modes to
have equal contribution. Matching shows that both the depth/breadth ratio (h/l)
and generalized coordinates describing the different modes should be O(ε1/4). This
leads to an infinite-dimensional modal system with fourth-order polynomial terms in
generalized coordinates and h/l. Dispersive properties are taken care of by a Padé-like
approximant of the natural spectrum.

2. The derived modal approximation can be considered as a conservative mechan-
ical system and applied for simulation of transient sloshing. We have validated it
extensively with experimental recordings by Rognebakke (1998) when the previous
modal theory by Faltinsen & Timokha (2001) failed. We give examples on both
successful and unsuccessful implementations. The numerical failure is explained as
improper handling of dissipation owing to breaking waves and run-up along the
vertical walls, which are clearly established in photos and video recordings. A series
of validation studies established the minimum 5 modes to be dominant. The necessary
number of modes depends on the excitation parameters and should be increased for
decreasing mean fluid depth. The maximum number of modes allowed by the nu-
merical time integration procedure depends on the forcing parameters. The nonlinear
modal system becomes stiffer and more difficult to handle with an increasing number
of modes.

3. In view of the increased damping with decreasing fluid depth and/or increasing
forcing amplitude, we included linear damping terms in our model based on prediction
of logarithmic decrements of each mode. This accounts for laminar shear layer
at the bottom and the walls and dissipation in fluid bulk and presents a lower
bound of possible energy losses due to sloshing. In addition, we give a survey of
mathematical and physical papers related to other damping sources. Unfortunately, we
must conclude that no well-established theory of dissipation due to local breaking and
run-up (with following overturning) can be adopted by the modal systems. This limits
our theory to describe the resonant sloshing of strongly dissipative character occurring
in many experiments for intermediate and shallow fluid depths. This limitation is also
partly related to the Fourier decomposition of the velocity potential and free surface,
which requires the surface to be perpendicular to the walls and prevents the correct
modelling of run-up. We have extensively validated our model by Abramson et al.’s
(1974) experimental data, which display the effect of viscosity.

4. The dissipative modal theory confirmed its applicability for small-amplitude
forcing to describe both transient and steady-state flows for intermediate depth when
dissipative effects due to local breaking are not important. In several cases, it gave
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much better results than the inviscid one. It can, in addition, be extended to shallow
fluid flows. There are, however, numerical limitations associated with increasing the
dimensions. This causes difficulties in distinguishing solutions from different response
branches with passage to shallow water. These difficulties appeared in comparisons
with the experiments of Chester & Bones (1968) for h/l = 0.041666, but results for
h/l = 0.083333 are in excellent agreement.

5. Further development of the modal methods for lower depths and larger excitation
amplitudes are probably associated with revision of the modal representation to allow
the analytical decomposition of the free surface to describe the singular character of
the solution near contact points with wall. There is also a need to obtain an accurate
estimation of dissipation due to local phenomena and to match it with the existing
modal presentation.

A. N. T. is grateful for support from Anders Jahre’s Foundation for Advancement
of Science. The authors thank Olav Rognebakke for providing necessary experimental
data.
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