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Abstract This paper generalizes earlier authors’ results on the analytical approximation of the singularly perturbed
boundary problem describing the eigenoscillations of a thin-walled axisymmetric shell. The asymptotic behavior of
the eigenmodes at the clamped ends is studied, and a set of trial functions capturing this behavior is constructed to
be used in the Ritz method. [llustrative numerical examples demonstrate a fast convergence so that the eigenmodes
are accurately approximated in a uniform metric together with their second-, third-, and fourth-order derivatives.
The numerical results are validated by comparing them with an asymptotic eigensolution and computations done
by the ANSYS codes based on the finite-element method.

Keywords Singularly perturbed problems - Thin-walled shell - Variational methods

The literature contains a variety of analytical and numerical approaches to the problem of forced and eigenoscillations
of thin-walled shells. In our previous paper [1], where a semianalytical approach was developed to solve the problem
of axisymmetric eigenoscillations of a closed shell of revolution, a short survey referred readers to [2—6]. The present
paper focuses on thin-walled azimuthally closed, axially open axisymmetric shells. Because there is a broader set
of publications for this shell shape associated, first of all, with cylindrical and conical shells, one should extend the
reference list to include the fundamental works [7-15].

Our research goal consists of generalizing the semianalytical approach [1] to the spectral boundary problem on
eigenoscillations of a thin-walled azimuthally closed, but axially open, axisymmetric shell. This implies establishing
analytical features of the eigenmodes, which includes a description of the boundary layer behavior at the shell ends,
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84 I. Gavrilyuk et al.

and developing the Ritz scheme, which constructs an approximate eigensolution possessing the aforementioned
boundary layer behavior. The Ritz approximation should provide convergence to the eigenmodes, together with the
first- to fourth-order derivatives. This will facilitate computation of the bending force and moment.

The studied spectral boundary problem involves a system of ordinary differential equations (ODEs) within a
small parameter in the front of the highest-order derivative. This means that we deal with the so-called singularly
perturbed problem, whose solutions are difficult to approximate by employing traditional numerical tools. It is the
same as in [1]. A novelty is that, because antisymmetric eigenmodes are of concern for thin-walled azimuthally
closed, axially open axisymmetric shells, separation of the angular variable yields the governing ODEs, which
are parametrically dependent on the “angular” integer number n. This means that the analytical properties of the
eigenmodes are different from those in [1]. Furthermore, there exist the two shell end conditions for the axially
open axisymmetric shells.

For the studied shell shape, an asymptotic eigensolution in terms of the nondimensional shell thickness was
constructed, e.g., in [16,17] based on Koiter’s shell equations. Bearing in mind our previous paper [1], we adopt the
technical theory of shells. However, the proposed semianalytical approach can be extended to other shell equations
as well as different boundary conditions. To get an accurate approximation of the eigenmodes for the realistic
thickness, the approach constructs the boundary layer trial functions and employs them in the Ritz scheme together
with the Legendre polynomials. A bonus is that this approximation guarantees the uniform convergence to the
second-, third-, and forth-order derivatives that are involved in computing the bending forces and moments.

Section 1 starts by formulating the spectral boundary problem on the eigenoscillations of shells, which is well
known from other publications. The technical theory of shells is adopted with clamped boundary conditions. This
is to be consistent with earlier studies in [1] and, of course, for brevity’s sake.

The eigenmodes and their analytical features are studied in Sect. 2. Based on these studies, a set of trial functions
that possess the boundary layer behavior at shell edges is constructed. This set is parametrically dependent on
the unknown eigenfrequencies, and therefore, employing them in numerical methods requires a special iterative
procedure. Section 3 develops the corresponding iterative Ritz scheme employing the constructed trial functions.
Numerical experiments for cylindrical and conical shells are reported in Sect. 4. The results are validated by com-
parison with Nau and Simmonds [17] and finite-element calculations by means of ANSYS codes. Whereas the Ritz
method uses exclusively a regular basis (represented by the Legendre polynomials), it gives a quite fast stabilization
of significant figures for the eigenvalues, but the approximate eigenmodes are found with a reasonable error in the
vicinity of the shell ends. Including the constructed trial functions provides an accurate uniform approximation of
the eigenmodes and their higher-order derivatives for a broad range of the shell thickness values. Even though [17]
employs the Koiter equations of shells, the asymptotic solution calculations in [17] are consistent with our approx-
imate results based on the technical theory of shells. A discrepancy becomes nonnegligible only with increasing
shell thickness. Our calculations on eigenfrequencies are also consistent with those following from the ANSYS
codes when the latter are conducted with a relatively small shell thickness.

1 Problem statement

We consider linear-free oscillations of a thin-walled azimuthally closed, axially closed axisymmetric shell as shown
in Fig. 1. Along with the Or6Z cylindrical coordinate system, we consider the lines of longitude (meridians)
parameterized by the natural meridian-length parameter s (s; < s < s2) and the corresponding natural local
coordinate system in which longitudinal, latitudinal, and normal small-magnitude displacements of the midsurface
are defined by U, V, and W, respectively. Figure 1 demonstrates these displacements as well as the coordinate r
of the shell midsurface, which is, in fact, the distance r = r(s) between a midsurface point and the symmetry axis.
Pursuing a compact formulation of the corresponding boundary value problem on the linear-free shell oscillation,
we introduce two variables, Ry = R;(s) and Ry = R (s), which define the two principal curvatures of the shell. The
first principal curvature R (s) is associated with curvatures of the meridional curves; the second principal curvature
R (s) equals the distance between the midsurface and the symmetry axis measured along the normal line.
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Eigenoscillations of a thin-walled shell of revolution 85

Fig. 1 Sketch of thin-walled azimuthally closed, axially closed axisymmetric shell. Along with the Or6Z cylindrical coordinate
system, we introduce the local coordinate system at the midsurface shell points in which U, V, and W imply, respectively, longitudinal,
latitudinal, and normal displacement of the freely oscillating shell. The s-longitudinal variable gives the natural parameterization of the
lines of longitude; it changes from s; to s2. The variable R» is the distance between the midsurface and the symmetry axis measured
along the normal line, and 6 is the angle between the normal /ine and the O Z-axis

Eigenoscillations of the axisymmetric shell are studied implying separation of the spatial coordinates and time
as follows:

Us, @, 1) = e“u(s)cosng, V(s, @, 1) =ev(s)sinng, W(s,p,1) = e w(s)cosng. (1)

Here i = ~/—1, u(s) = (u(s), v(s), ws))? is the eigenmode, and w is the eigenfrequency. After choosing a
characteristic shell radius Ry, which can be either upper or lower or mean radius of the shell, and introducing the shell
thickness /4, the Young modulus E, the Poisson coefficient v, and the shell density p, we define the characteristic time
V(1 =v2)p2Ry/E and focus on a nondimensional formulation of the problem. The nondimensional eigensolution
(u and w) satisfies the following ODEs (Chaps. 5 [2] and 10 [18]):

h? (1 —v?)pR30?

— 2 2 _ —

Au—ru=0, A=cK+L, c =12R(2)’ A= z . 2)
Here the components of the matrix operator L = {L;;} are as follows:
L“:_iliJrl—v(ﬁ_ 2 ) Lu:_nil 1—vnd

ds r ds 2 2 R|R, ds r 2 2 ds

l—vd d/1 1 2 1—v (1-v)ydld
b= a‘a(R—ﬂe—)’ Lzz:(rz RR) > dsrds”

2 1 2 1482

L23=E(L+i), L3y =~ ( )i _l_viL’

r \R; Ry ‘ d r ds R
L32=E(L+L) L33=i+ + =

r\Ri Ry’ TR R1R2 R%’
L4, (d-vwndl

rZ ds 2 dsr’

where r(s), R1(s), and R>(s) are known functions of s, 51 < s < s;. Furthermore, the matrix operator K = {K;;}
contains the nondimensional parameter ¢, which vanishes as /Ry tends to zero. The operator deals with the
second-order derivatives for i, j < 2, the thlrd—order derivatives for 2 < i + j < 6, and the fourth-order derivatives
fori = j = 3, respectively.

Bearing in mind the authors’ earlier results on closed shells of revolution [1] and pursuing a succession between
[1] and the present paper, we will furthermore adopt the fechnical theory of shells and the Kirchhoff-Love kinematic
model (Chap. 10 [18] and [1]) implying

) . 1—v/d
Kij =0 fori+j <6, Kz3=A,A,+ —

rod n? 1d d n?
r ds RiRyds rRiR;

= 3)
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One should note that the technical theory of shells can be poor for predicting beam-type eigenmodes corresponding
to n = 1. More accurate theories of cylindrical shells are exemplified by Koiter’s equations [11,12], which replace
A, in (3) by d?/ds? — n® + 1. The latter expression was adopted in [17] for constructing an asymptotic solution of
the corresponding spectral boundary problem based on (2). However, we will show in Sect. 4 that results by Nau
and Simmonds [17] are consistent with our results based on the technical theory of shells.

Furthermore, we concentrate on the clamped shell ends suggesting the boundary conditions

dw
u=v=w=—=0 for s =s1,5 4)
ds
on both sides of an axisymmetric shell. Even though these conditions can appear in many practical problems (the
authors have encountered them in modeling multicomponent beam-shell mechanical systems [19]), they look, to
some extent, artificial, used for simplifying the analytical derivations below. The reported analytical studies can,

however, be extended to other boundary conditions, if required.

2 Asymptotic behavior of eigenmodes

The ODEs (2) reduce to the following differential equation with respect to w(s):

m k ! k
_ d“w d“w

PINW) = M) =0, NW) =D ani)—p.  Mw) =D bi(s) . m>1, 5)

ds ds

k=0 k=0

where m = 8 and [ = 4 for antisymmetric eigenmodes (n 7 0) and m = 6 and / = 2 for axisymmetric eigenmodes
(n = 0). For cylindrical, conical, and other shell shapes, @;(s) and b;(s) are known analytical functions of s on
51 < s < s, and
ap(s) = 1, bo(s) =2 — (1 = v*)/R3. (6)
Equation (5) contains the small parameter ¢ = /"~
solution, we assume that

bo(s) <0 fors; <s <57, 7

at the highest-order derivative. To get an analytical asymptotic

which implicitly means that A corresponds to a lower eigenvalue.
Employing the general theory of singularly perturbed problems [20-22], we postulate linearly independent
solutions of (5) in the form

wj(s, ) = > wP" Dw; (). ®)
p=0

Substituting (8) into (5) and comparing coefficients at the lowest power of 1 leads to the linear ODE M (w o (s)) = 0,
where wj o(s), j = 1,2, ..., [, where! is the number of linearly independent solutions. Obviously, the higher-order
approximations w; ,(s) can be found by gathering the terms at the higher-order powers of 1, which leads to the
recursion formula

Mw;j p(s)) = Nw;j p-1(s)), p=12,.... ©)

Here, the right-hand side depends on the already determined functions w;, ,—1(s) starting withw; o(s), j = 1,..., L.
Hence, representation (8) gives [ linearly independent analytical solutions on the interval s1 < s < §2, j =
1,2, ..., 1. Explicit analytical expressions for the lower-order terms of (8) (for particular shell shapes) can be found,
e.g., in [23-26].
To find all the remaining (m — [) linearly independent solutions, we use the representation

00 1 .
wij(s, ) = Zﬂpwl+j,p(s)exp[;/@j(t)dt]» J=12,...,(m =1, s0¢€l[s1,s] (10)

P =0 S0

@ Springer



Eigenoscillations of a thin-walled shell of revolution 87

Substituting (10) into (5) and equating the terms at the same powers of  leads to the functions w;+ j, , (s) and @; (7).
In particular, if we take the terms with 2=/, the following equation appears with respect to ¢ 7 (s):

(9; ()™ — by(s) =0, (11)

which has four different roots:

—1+i 4 —1—i 1/4 1+i 1/4 1—i 1/4
pi(s) = bol'*, @a(s) = lbol™ "™, @3(s) = —=Ibol" "™, @als) = —=Ibo| "". (12)
V2 V2 V2 V2
Furthermore, the terms at u_l“ yield a linear homogeneous ODE with respect to wy4; 0(s), and the terms at
w P p = 1,2, give linear ODEs with respect to w4 j,p(s) whose left-hand side is the same as for

wy+,0(s), but the right-hand side contains expressions that depend on wyy;x(s) (k < p) and their derivatives.
One can show that the functions wy j,,(s) in (10) are analytical on the considered interval and can therefore be
expressed as a Taylor series in neighborhoods of s = 51 and s = s», respectively.

Substituting (12) into the multiplier exp ﬁ fs“:) @;()dt (with s = s1 and s = ) and separating the real and
imaginary parts gives the following two linearly independent solutions:

N
—1)k
PO cos fiu(s) and PO sin B(s). k=1.2. where Bi(s)= \/)5 /Ibo(t)|1/4dt- (13)
m
S,

k

They imply boundary layer behavior since, for k = 1 and (s — s1) > O(w), the functions ef1) cos By (s) and
eP19) sin By () decay rapidly, but for k = 2 and (s> — s) > O(w) they have only a small influence on the entire
solution behavior. The boundary layers at s; are therefore of the order O ().

In summary, taking together the linearly independent solutions (8) and (10) leads to the conclusion that the
expression

f) =" fios' +"cos Bi() D firls —s1) + PP sinBi(s) D fials —s1)’

i=0 i=0 i=0

+e20 cos Ba(5) D fials — )" + PO sina(s) D frals — 52)’ (14)

i=0 i=0

stands for u(s), v(s), and w(s), where f; ; are unknown coefficients depending on w. Solution (14) should satisfy
the clamped-end boundary conditions, which yield additional restrictions for f; ;.

Even though b is, normally, an analytically given function determined by the shell shape, the functions B (s)
cannot generally be expressed in terms of elementary or special functions. In that case, as remarked in [27], one
can admit the alternative analytical representations

o
S — 951
wiyj(s. ) = > uP PP (z)exply;(sth. T = o Rep; <0,
=0
T (15)
p p(P) 52—
wigj(s, w) = D uP PP (x)explej(s2)7), = o Repj >0,
p=0

where P ;p ) (7) are the Vishik—Lusternik polynomials in 7 of the order 2 p whose coefficients are functions of a; (s)
and b; (s) and their derivatives at s = s and s = s2. When Egs. (15) are used, the functions B in (14) must be
replaced by (— ¥ |bo(si) |/ (s — $)/(V21).
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88 I. Gavrilyuk et al.

3 Using the Ritz method to obtain a semianalytical solution
Functions u, v, and w restricted to (4) satisfy the variational equation [1]

52
81 = /[‘I’n(u, Su) + Wiz (v, 8u) + Wiz (w, $u) + Wi2(8v, v) + W (v, 8v) + Waz(w, 8v) + Wi3(Sw, 1)

S1

52
+Wr3(w, v) + W33 (w, Sw)]rds — A/(uSu + vév + wdw)rds = 0, (16)

S1

with trial functions éu, v, and w subject to (4), where

cos?6  vin? dp wvcos6® \dg vcosOdp
Yulp.g)=\—z-+t 7 Jpa+t\4 + p)—-+ -

’

ds r ds rds
ncosf vincos6 vn dg vin dp
Y. =\—7—+—2: ) TP T

1 vsinf\ dg cos@sind  vcosfd
Vis(p.g) =\ - —+ + ;

r2 rRy

nsin@ vn
Vo3(p, q) = 2 +m rq,

n?  vicos?o dp vicos® \dg vicos@dp
S+—5—)ra+ P - —

Vi—/— — 5
]ds r ds r dsq

d’p d’q vcos@(dzp dg d’q dp) vn? (dzp d%q )

w2a2 Ty \a2as Taszas ) 2 \a2d Tt ae?

cos20 +2(1 —v)n*dpdg n?cos6(3 —2v) [dg dp

n 1 sin? 6 n 2vsin @ n c2n* 4+ 2(1 — v)e2n? cos? 0
R? r2 rRi r4 Pg,

v1 = (1 —v)/2, and 0 is the angle between the outer normal to the midsurface and the symmetry axis Oz.
Furthermore, we use the Ritz method suggesting the following approximate solution:

N N N

u(s) =D xjUj(s), v(s) = D xjpnVils), wls) = D xjanWjs), (17)
j=1 j=1 j=1

where x; (j = 1,2, ..., 3N) are unknown coefficients and {U;}, {V;}, and {W;} are sets of trial functions satisfying

boundary conditions (4). Substituting (17) into (16) and setting u = Uy, v = Vi, and Sw = Wy yields the algebraic
eigenvalue problem

(A—AB)x=0, x=(x1,x2,...,x33)", (18)
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with symmetric matrices A and B whose elements are

52 52 52
a;j =/‘P11(Uj, Ui)rds, @, j+N =/‘P12(Vj, Ui)rds, ai, j+2N =/‘1’13(Wj, Ui)rds,
S1 S S1
52 52 52
Ai+N,j+N =/‘1’22(Vj, Virds, Ai+N,j+2N =/‘I’23(Wj, Vi)rds, aitan,j1on =/‘I’33(Wj, Wi)rds,
S1 81 S1
52 52 52
b,',j = / UjU,'rdS, bi-‘,—N,j—i—N = / VjVirds, bi+2N,j+2N = / W,‘ Wirds,
S1 S S1

bi,j+N = bi j+oN = bitn, j+on = 0.

The trial functions should constitute a complete functional basis in an appropriate functional space with a mean-
square metric involving their first- and second-order derivatives (Chap. 5 in [28]). This means that the Ritz method
does not guarantee a uniform approximation of u, v, w, and their third- and fourth-order derivatives as N increases.
Moreover, because the functional basis is not orthogonal, increasing N may lead to the ill-conditioned matrices
A and B. As a consequence, whereas practical convergence demands a sufficiently large N, the Ritz method
may become numerically unstable. To provide a fast and uniform convergence with a relatively small number of
coordinate functions, the basis should possess the most important analytical properties of the eigenmodes.

Whereas the ratio /R decreases, parameter ¢ before K33 tends to zero and the governing ODEs become
singularly perturbed. Therefore, the eigenmodes u, v, and w should exhibit the boundary layer behavior at the end
of the interval [sq, s2], that is, u, v, and w have both regular, slowly varying components and rapidly decaying
components vanishing away from s; and sp. Coordinate functions that capture the boundary layer behavior may
provide the needed uniform convergence on [s1, s2] (including higher-order derivatives) for intermediate and small
values of ¢ (see pp. 50-54 in [29]).

Henceforth, we employ the (s — 51)%1 (s — s2)¥2-weighted Legendre polynomials, satisfying the clamped-end
conditions, and the boundary layer trial functions (14) and (15). For w(s), the variational solution (17) is based on
the functional set

N . .
{Wi}i:]={W17"‘7WWL7 Wm+]s~--an+ml,9 Wm+mp+17-~-an+2mp7 Wm+2mp+l7---9Wm+3mp7Wm+3m,,+]a
s Wonsam, } (19)

consisting of the five different families separated by the semicolons. The first family contains m functions represented
by the weighted Legendre polynomials. The second and third families include m,, functions each, responsible for
the boundary layer behavior at s = s1, while the fourth and fifth families describe the same boundary layer behavior
ats = s». Analogous functional sets are suggested for u(s) and v(s). Moreover, because u(s) and v(s) are restricted
to the same boundary conditions, one can enforce V; = U; (i =1,2,..., N).
The explicit expressions for {U;}, {V;}, and {W;} are as follows:
2s s — 81
Uj(s) = (s —s1)(s —52) Pj (l_ - 1), Un+1(5) = g¢, —1+s2 o Un+m,+1(s) = &s;,

N

2
W;(s) = (s — s1)%(s —sz)zp,»(l—s — 1), i=12....m,
s

s—s1 (s =s)(s —s2)[p1(s —s1)(s2 —s1) + 1]

Wm+l(s) = 8c; — 1 +

82 =81 (s1 —$2)(s2 = 51)
(5 =506 —s2)[pi(s = s1)(s2 = 51) +2]
(s2 = s1)3 ’

(s =sD(s =92 (s =sD*(s —s2)

Winga(s) = 8cy (s —s1) +

)

(s2 — 1) (s2 — 51)?
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Um-i—j(s) = ge (s — Sl)sj_l» Um+mp+j(s) = g5 (s — sl)sj_l,

s — 91 .
Um+2mp+1(s) =8¢, — [ s Um+2mp+j(s) = gcz(s - SZ)SJ la
Untam,+j () = 85, (s = 528771 Ungam,41(9) = gy, J=2.3.....mp,
piGs —s)2(s —s52)  pi(s —s1)°(s — 52)
W, S) = + —
eyt 8) = g (52— 51) (52 — 51)?

Wintm,12(5) = g5 (s = 5105 Wi, (8) = gy, (s — s1)%s7 7",

(s=51)  (=sD6=5) (=s5)—s)pas —s)02—s1)—2]

(s2 —s1) (s1 — 52)? (s2 — s1) ’

5= s =)
(52— s1)?

Wm+2m,,+l(s) =8c —

Wit 2m,+2(8) = 8y (s — $2) o Wi j(5) = gey (s —s)%s7 71,

pa(s — s1)%(s — 52)°

2.j—1
Wm+2m,,+j(s) = ch(S —52) s/ , Wm+3mp+l(s) = &5 —

(s2 — 51)? '
Wintam,42(5) = 8o, (s = 52), Wingam,+j(8) = g5, (s —s2)%s/ 7, j =3.4,....m,,
where
1—v? (=1 |bo s ()]'/*
l=s2—s1; box(M=r——5—, pr=pA)=-—-r"r
’ R3(sx) 2
8ep = PO cos pr(s — s), gy = €T sin pr(s —sp), k=1,2. (20)

In the preceding equations, the functions P;(s) denote the Legendre polynomials, which can be computed directly
or by adopting the Bonnet recursive formulas.

Whereas m , > 0, parameters py in (20) are functions of A, and therefore problem (18) is nonlinearly dependent
on A. To solve (18), one can use the fact that the purely regular basis, that is, the case m, = 0, gives a quite good
approximation of A (but not the eigenmodes!). This means that an iterative algorithm may start withm , = 0 (without
the correcting boundary layer-type functions) and a purely linear statement of (18) to find an initial approximation
of A. By substituting this value into the formulas for m;, > 0, one can find a new approximation of A and the
corresponding eigenmodes by solving the matrix spectral problem (18). The newly found X is used for the next
iteration, and so on.

4 Convergence analysis, numerical experiments, and validation

Our focus is on cylindrical and conical shells admitting the parameterization

-z | +ssina, 6= Lo 21
, r(s)=1+ssine, _E—a, R_l_ , (21)
where [ and o are the nondimensional shell height (projection of shell length on the Oz-axis) and the semiapex
angle (o = O for a cylindrical shell), respectively. For cylindrical shells, / implies the nondimensional shell length.
The ratio of the shell radius Ry, at s = sy to the shell thickness is denoted by § = Ry, /. Numerical results are
reported for n = 1 (first antisymmetric modes, “beam type” modes, bending modes).

Tables 1 and 2 are devoted to the cylindrical shell case. Table 1 demonstrates a typical convergence to the three-
nondimensional natural frequencies w; = VA, i =1,2,3,of the bending modes as well as the normal deflections
and their derivatives. The derivatives are computed at a point whose distance to the shell end is 1% of the shell
length (z* = z/I = 0.99 in calculations). We fix m, = 2 but increase the number of the Legendre polynomials,
m, from 2 to 14. The table shows a rapid stabilization of the ten significant figures for the eigenfrequencies. At
least four significant figures are also stabilized for the normal deflections w; and their derivatives. The convergence

S =
cos o
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Table 1 Convergence to nondimensional eigenfrequencies (w;), eigenmodes, and their derivatives computed in a neighborhood of the
shell edge

/ " n "
! w'

m w; w; w; w; w; ;
i=1
2 0.308517870 0.078491224 1.94629204 —49.2411 —487.1545 214,694.6
4 0.305471542 0.073404538 1.82463596 —41.1166 —372.7503 157,571.2
6 0.305466854 0.073336305 1.82233157 —41.3056 —373.4445 159,370.3
8 0.305466852 0.073334715 1.82230788 —41.3002 —373.4579 159,328.0
10 0.305466852 0.073334712 1.82230756 —41.3002 —373.4571 159,328.4
12 0.305466852 0.073334712 1.82230756 —41.3002 —373.4571 159,328.4
i=2
2 0.586145017 —0.06180331 —2.3513934 39.979 4,031.075 —409,828
4 0.573173561 —0.05370921 —1.8803672 —8.3382 658.7091 —22,648
6 0.573034958 —0.05432720 —1.9245913 —1.3104 1,112.712 —77,168
8 0.573034593 —0.05429076 —1.9222202 —1.7433 1,087.452 —173,778
10 0.573034592 —0.05429182 —1.9222798 —1.7287 1,088.174 —173,893
12 0.573034592 —0.05429179 —1.9222787 —1.7290 1,088.161 —73,890
14 0.573034592 —0.05429179 —1.9222787 —1.7290 1,088.161 -73,890
i=3
2 0.883718637 -7 x107° 2 x 10'2 —1x 108 -2 x 10V 7 x 1016
4 0.774417089 —0.104089 4.07655 1.1506 4,020.9 286,538
6 0.759725088 —0.073384 2.76494 17.021 1,460.9 48,932
8 0.759391036 —0.071862 2.71864 12.825 1,657.9 78,466
10 0.759388888 —0.071696 2.71191 13.158 1,637.3 75,412
12 0.759388882 —0.071694 2.71184 13.137 1,638.0 75,572
14 0.759388882 —0.071694 2.71184 13.137 1,638.0 75,565
The first three bending modes (n = 1,i = 1,2, 3) for a cylindrical shell with § = 1,000 and the Poisson coefficient v = 0.3. The

eigenmodes and their first to fourth derivatives, w;, w;, ..., w;”, are presented at the point z* = 0.99(z* = z/1I), where [ is the shell

height (length) as defined in (21). The number of Legendre polynomials m in (19) increases, but the number of boundary layer trial
functions is always fixed, m, = 2

is slower for the third- and fourth-order derivatives. Table 2 shows analogous results for the first eigenmode with
8 = 100 and § = 2,000, confirming the fact that the accuracy is not affected by the shell thickness.

To demonstrate that the method provides a uniform convergence to the eigenmodes on the entire interval 0 <
7* < 1, we introduce the error functions &; = ¢;(z*), i = 1, 2, 3 (the eigenmodes are scaled to reach a maximum
displacement equal to 1) that characterize the errors in satisfying the three governing ODEs (2). Figure 2 shows the
typical behavior of &; = &;(z*),i = 1,2, 3, form = 16 and m,, = 0 (purely regular basis) versus the case with
m = 16 and m, = 2 (two boundary layer functions are used). The figure shows that using Legendre polynomials
withm, = 0 gives a maximum uniform error equal to 0.1, but incorporating the two boundary layer-type functions
improves the convergence so that the maximum uniform error equals 4 x 1077,

Our semianalytical approach can be validated using the asymptotic results in [17] and finite-element computa-
tions. Nau and Simmons [17] constructed an asymptotic approximation of the eigensolution for the Koiter cylindrical
shell with clamped edges. As we remarked in Sect. 1, this is not the same as the technical theory of shells. However,
Table 5, which presents a comparison of the eigenvalues following from our semianalytical approximation and
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Table 2 The same as in Table 1, but for § = 100 and § = 2,000

/

1"

n

g

m w1 wi w) w) w) w)
§ =100
2 0.307311264 0.02252671 0.995807 15.2577 —450.78 3,971.5
4 0.305888225 0.02220086 0.957923 13.4822 —430.34 6,712.7
6 0.305886926 0.02217318 0.957495 13.5140 —430.49 6,613.6
8 0.305886926 0.02217323 0.957486 13.5134 —430.47 6,614.9
10 0.305886926 0.02217323 0.957486 13.5134 —430.47 6,614.9
12 0.305886926 0.02217323 0.957486 13.5134 —430.47 6,614.9
§ = 2,000
2 0.308791219 0.09326250 1.3600325 —72.722637 3,868.800 118,159.9
4 0.305439921 0.08763065 1.3531353 —64.163059 2,832.105 81,459.66
6 0.305434417 0.08750605 1.3477016 —64.215450 2,866.972 82,253.77
8 0.305434415 0.08750464 1.3477495 —64.212269 2,866.097 82,241.17
10 0.305434415 0.08750463 1.3477485 —64.212274 2,866.106 82,241.19
12 0.305434415 0.08750463 1.3477485 —64.212274 2,866.106 82,241.19
h=0.001;m=16;m =0 h=0.001; m=16; m =2
P -9 p
04 x 10

0.05 |

1,2,3)

e (i=

0 0.2

0.6

z

z

Fig. 2 Error functions ¢; (z*) for cylindrical shell with § = 1,000 and v = 0.3; the first bending eigenmodes

numerical results from [17], shows that the eigenfrequencies by different theories and methods are close to each
other. Our computations were made with m = 16 and m, = 2. The nondimensional frequencies w; are linked to
the normalized values A; in [17] by the formula A; = a)?/(l —v?).

The method demonstrates a slightly slower convergence for conical shells. Table 3 illustrates this fact for the
three lower eigenfrequencies (bending eigenmodes, n = 1) and the two different shell heights, / = 20 and [ = 30,
respectively, with § = 2,000 and o = 15°. The four to five significant figures are stabilized for eigenfrequencies
with m, = 2 and m = 16. The convergence becomes slower with increasing /. Table 3 shows that when [ = 20,
we need m = 10 to stabilize the six significant figures, whereas the case / = 30 requires m = 18 to stabilize the

four significant figures.
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Table 3 Convergence to the three lowest nondimensional frequencies for the beam-type eigenmodes (n = 1)

m =20 [ =30
w] )2 w3 w1 ) w3

2 0.059030 0.111711 0.146790 0.038377 0.074419 0.103706
4 0.057773 0.105058 0.144611 0.037463 0.068582 0.099733
6 0.057679 0.104800 0.143988 0.037363 0.068313 0.098588
8 0.057672 0.104789 0.143981 0.037351 0.068287 0.098567
10 0.057671 0.104788 0.143978 0.037348 0.068282 0.098562
12 0.057671 0.104788 0.143978 0.037345 0.068279 0.098559
14 0.057671 0.104788 0.143978 0.037340 0.068274 0.098557
16 0.057671 0.104788 0.143978 0.037335 0.068269 0.098554

Conical shell with Ry, /h = § = 2,000 and two different nondimensional shell heights, / = 20 and / = 30, respectively. The semiapex
angle is oo = 15°; Poisson coefficient equals 0.3. Integer m implies the number of Legendre polynomials in (19); m, =2

Table 4 Convergence to lowest eigenfrequency wmin = min w,; = min /A,;
n,i n,i

@min
6=100,n=7 6§ =400,n =11 6 =1,000,n =12 § =2,000,n =15
2 0.0494923 0.0285036 0.0183033 0.0137052
4 0.0481154 0.0260378 0.0161554 0.0115560
6 0.0481085 0.0259863 0.0161529 0.0115525
8 0.0481084 0.0259860 0.0161528 0.0115523
10 0.0481084 0.0259860 0.0161527 0.0115523
12 0.0481084 0.0259860 0.0161527 0.0115523

Conical shell with different values of Ry, /h = 8. Furthermore, / = 4, the semiapex angle « = 30°, and the Poisson coefficient is
v = 0.3. Integer m implies the number of Legendre polynomials, but m , = 2

Our numerical studies show that increasing the semiapex angle « does not affect the convergence. For conical
shells with [ = 4, « = 30°, and different thicknesses, Table 4 shows the convergence to the lowest eigenfrequency
®min = Minw,; = min+/A,;. As long as [ is sufficiently small, the method provides a fast convergence to this

n,i n,i

eigenfrequency, and this result is not affected by the shell thickness. Figure 3 demonstrates the behavior of wj (z*)
and its derivatives in a neighborhood of the clamped end for @ = 30°. When the shell thickness decreases, a clear
slope zone is observed.

We have tried to validate our method by comparison with finite-element calculations. ANSYS codes were used that
utilize a fully three-dimensional finite-element scheme. The codes return the lowest dimensional eigenfrequencies,
but the shared-codes version does not provide an information on the eigenmodes (on the integer numbers n and 7).
The lowest 6 (12, since two antisymmetric modes correspond to each eigenfrequency) eigenfrequencies are presented
in Table 6. These eigenfrequencies correspond to different n, not only n = 1 as in the previous numerical examples.
The table illustrates that there is a discrepancy between our approximation and the ANSYS results with increasing
shell thickness. However, the discrepancy for lower thicknesses is relatively small, less than 1%. Unfortunately, the
shared version of the ANSYS codes does not provide an output on deflections and associated bending force and
moment.
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Table 5 Comparison of eigenfrequencies for cylindrical shell following from our approximation within the framework of the technical
theory of shells and those in [17] computed by an asymptotic method for the Koiter shell equations

i n=1 n=2 n=3

A w?/(1 =) A w?/(1 =) A w?/(1—1?)
1 0.06297 0.062985499 0.01746 0.017472752 0.00570 0.005706639
2 0.23623 0.236229128 0.07909 0.079102303 0.03043 0.030441250
3 0.48434 0.484341709 0.19350 0.193516205 0.08365 0.083669845
4 0.67091 0.670936785 0.33380 0.333809915 0.16324 0.163262364
5 0.71864 0.719243011 0.46780 0.467804162 0.25856 0.258572274
6 0.78434 0.784341168 0.57851 0.578507924 0.35650 0356511174
i n=4 n=>5

A o} /(1= %) A o7 /(1 =1?)
1 0.00225 0.002248236 0.00103 0.001030554
2 0.001338 0.013385540 0.00657 0.006578651
3 0.04002 0.040033110 0.02090 0.020914759
4 0.08451 0.084531225 0.04669 0.046712749
5 0.14487 0.144894267 0.08452 0.084548435
6 0.21575 0.215772921 0.13287 0.132899664

The nondimensional shell thickness is 0.0001, and the nondimensional shell length is 5 (normalization by shell radius Ry, ). The value
A; in [17] is the same as a)l.z/(l — v2) in our consideration

Table 6 Six lowest eigenfrequencies of cylindrical shell, o/A;,i = 1, ..., 6, obtained by means of present semianalytical method, and
lowest eigenfrequencies /A computed using ANSYS codes based on finite-element method

m VA (Hz) V/A* (Hz) n i m VA (Hz) VA* (Hz) n i
h = 0.01 (m) h =0.001 (m)
1 69.731 68.354 4 1 1 23.059 22.889 8 1
2 73.655 71.579 5 1 2 24.117 23.905 1
3 91.041 90.467 3 1 3 24.667 24.550 7 1
4 93.842 91.478 6 1 4 27.057 26.816 10 1
5 117.367 115.950 5 2 5 29.789 29.722 6 1
6 123.359 116.584 7 1 6 31.279 31.019 11 1
m VA (Hz) AE (Hz) n i
h = 0.0005 (m)
1 16.522 16.428 10 1
2 16.731 16.661 9 1
3 17.519 17.406 11 1
4 18.516 18.471 8 1
5 19.393 19.256 12 1
6 21.898 21.757 13 1

The dimensional eigenvalues are presented for dimensional shell thickness & as! =4 (m), Ry = Ry, =1 (m), E =2 x 101 (Pa), and
p =8 x 103 (kg/m?)
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Fig. 3 Behavior of wj(z*) and its four derivatives in neighborhood of clamped shell end for conical shell with & = 30°
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5 Concluding remarks

In [1], we proposed a semianalytical approach to describe axisymmetric oscillations of a thin-walled cupola-shaped
shell. The analysis included a study of the eigenmode behavior, constructed of special set of trial functions possessing
this behavior, and developed the corresponding Ritz scheme. These analytical and numerical results are generalized
in the present paper for the case of azimuthally closed, radially open shells. As in [1], the technical theory of
shells and the clamped end conditions are adopted. The developed Ritz scheme provides a fast convergence to both
eigenfrequencies and modes. The convergence to the eigenmodes is in a uniform metric so that both deflections and
their up-to-fourth derivatives are accurately approximated on the entire interval [s1, s2]. This should provide a good
approximation of bending forces and moment in the vicinity of the shell edges. The convergence was illustrated in
numerical experiments where the focus was on cylindrical and conical shells. The method accuracy is, generally,
not affected by shell thickness. For conical shells, the convergence may become slower for longer shells, but the
semiapex angle does not influence the accuracy.

Our analytically approximate results were validated by comparison with finite-element calculations using ANSYS
codes. The latter codes are based on the fully three-dimensional statement; thus, as was expected, the approximate
eigenfrequencies by these two methods become close with decreasing shell thickness. In the asymptotic limit by
the nondimensional shell thickness, we used the Nau and Simmonds [17] solution to validate our results. Even
though [17] employed the Koiter equation of shells, our analysis was based on the technical theory of shells, and the
eigenfrequencies for the bending modes obtained by the two methods remain very close, especially with decreasing
shell thickness.
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