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Abstract Potential-flow theory is employed with linear free-surface conditions, multimodal method, and a screen-
averaged pressure-drop condition to derive an analytical modal model describing the two-dimensional resonant
liquid motions in a rectangular tank with a vertical slat-type screen in the tank middle. The tank is horizontally
excited in a frequency range covering the two lowest natural sloshing frequencies. The model consists of a system
of linear ordinary differential [modal] equations responsible for liquid sloshing in compartments, as well as a non-
linear ordinary differential equation describing the liquid flow between the compartments. New experimental model
tests on steady-state wave elevations near the tank wall are reported for the solidity ratios 0.328 ≤ Sn ≤ 0.963
where Sn is the ratio between the solid area and the full area of the screen. The experiments generally support
the applicability of the model. The discrepancy can be explained by the free-surface nonlinearity. The screen acts
as a damping mechanism for low and intermediate solidity ratios, but it causes an increase in the lowest resonant
sloshing frequency at higher solidity ratios as if the screen had been replaced by an unperforated wall.

Keywords Multimodal method · Perforated screen · Sloshing

1 Introduction

Screens and perforated plates can provide important damping of sloshing in a tank. They may also affect the natural
sloshing frequencies. An important parameter is the solidity ratio, Sn, which is the ratio of the area of the shadow
projected by the screen on a plane parallel to the screen to the total area contained within the frame of the screen.
The solidity ratio is between zero and one, where Sn = 0 means no screen and Sn = 1 means that the screen
becomes an unperforated wall.

Perforated plates have been studied in the past century in the context of liquid sloshing in cylindrical fuel tanks
of spacecraft (see the NASA report [1, Sect. 4.4]). Other hydrodynamic-screen applications are associated with
anti-rolling tanks of ships, tuned liquid dampers (TLD) of tall buildings, swash bulkheads of ships, and perforated
plates of oil–gas separators on a floating platform (see for instance [2–5]). A design requirement for anti-rolling
tanks and TLDs is that the lowest natural sloshing frequency should not be significantly affected by the screen and
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approximately equal to the roll natural frequency and the lowest important structural natural frequency, respectively.
The damping should be large. The consequence is that either the wave-induced roll motions of a ship or wind- and
earthquake-excited vibrations of tall buildings are clearly reduced. A rough guideline is that the solidity ratio ought
to be about 0.5. The objectives for a swash bulkhead in cargo liquid tanks of ships and perforated plates in oil–gas
separators on floating platforms are to provide sloshing damping as well as to change the lowest natural sloshing
frequency to a higher frequency range where the wave-induced ship and platform velocities and accelerations are
less severe. The consequence is a high solidity ratio.

Our focus is on analytical modeling of liquid sloshing in a rectangular tank with a slat screen (interested readers
may find a review on appropriate CFD methods in the recent paper by Maravani and Hamed [5]) to be applicable
for Sn ≥ 0.3. The excitation is horizontal and harmonic, and the flow is nearly two-dimensional.

Existing analytical modeling techniques typically assume that the screen has a minor effect on the natural sloshing
frequencies. Under this assumption, we may use the flow in a clean tank as an ambient flow and estimate the energy
dissipation due to the screen. This estimate can be done by empirical drag-force formulations that account for flow
parameters such as the Reynolds number and the geometrical screen shape [6, Chap. 6], or employing the empirical
pressure-drop condition [3,4,7,8]. Thereafter, the found damping rates can be incorporated into either modal [6,9]
or equivalent (pendulum, spring-mass etc.) mechanical systems [3,4] by using an equivalent linearization technique
in steady-state conditions. Such a procedure based on empirical drag formulation is exemplified in [6, Sect. 6.8]
for a screen placed in the middle of a rectangular tank with two-dimensional ambient flow. The ambient flow was
described by the linear potential-flow theory of an incompressible liquid. The relatively small effect of viscous
boundary-layer damping was incorporated. There was good agreement with the experimental values of damping
ratio, steady-state wave amplitude and longitudinal force for a rectangular tank with a wire mesh screen by Warn-
itschai and Pinkaew [2]. The experimental conditions for forced tank oscillations was a water depth-to-tank length
ratio of 0.3, and longitudinal forcing amplitude divided by tank length equal to 0.005. The solidity ratio was 0.48.

A different procedure has to be followed for higher solidity ratios when the screen significantly affects the res-
onance sloshing frequencies which tends to the natural frequencies in the compartmental tanks, i.e., the tanks that
result from replacing the screen with an unperforated wall. A large change in the pressure and free-surface profiles
occurs then across the screen. Which lower solidity ratio causes this change in two-dimensional flow depends during
harmonic excitation on the liquid depth-to-the tank width ratio and the ratio between the lateral forcing amplitude
and the tank width. When the change in the lowest resonance sloshing frequency occurs, the sloshing is less severe
relative to a clearly lower or higher solidity ratio.

The main goal of this paper is to show that employing multimodal methods makes it possible to derive an analyt-
ical [modal] model for sloshing in a rectangular tank with a screen which can be applied for any solidity ratio. The
corresponding modal system is derived from the original boundary-value problem with linear free-surface condi-
tions by employing the pressure-drop condition as a transmission condition at the screen in a domain decomposition
scheme. The pressure-drop condition describes the effect of the jet flow through the screen at higher solidity ratio,
and the flow separation (wake) at lower solidity ratios. The modal system explicitly handles discontinuity of the
free surface (pressure). New experiments with slat-type screens are reported which support the applicability of the
derived modal system when the free-surface nonlinearity does not have a dominant effect.

We start the analysis with the linear sloshing boundary problem formulated for each compartment (Sect. 2.1)
and, in addition, introduce two transmission conditions (Sect. 2.2) at the screen. The first transmission condition
(Neumann-type) implies continuity of normal velocity, but the second (Dirichlet-type) condition governs the screen-
averaged pressure drop. In Sect. 2.2, we discuss applicability of the second condition for the slat screen used in our
experiments.

There is a variety of external wave problems with screens and porous barriers that have been studied by using an
analytical technique with the corresponding transmission conditions. In the list of these studies, we should mention
the papers by E. Tuck [10,11] whose concept of the transmission conditions is, for instance, realized in [12]. Reviews
on wave interaction with porous media are given in [13], or in the more recent book [14] where the transmission
conditions are based on Darcy’s law. Another approach to the pressure-drop condition developed for wind-tunnel
engineering is outlined in the review [15] as well as in the handbook [16, pp. 314–316]. It assumes a uniform steady
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flow. Based on this approach, a version of the pressure-drop conditions for external wave problems is adopted in
[17,18]. The latter papers deal with porous-type screens characterized by small sharp-edged openings providing the
flow separation through the holes so that the rotational wakes and jets remain in a neighborhood of the screen. For
these screens, a local-averaging procedure is possible (as described by Molin [17]) leading to a pressure-drop con-
dition to be mathematically satisfied at each point of the screen. Our approach averages the pressure-drop condition
over the mean submerged screen area by accounting for the exponential decay of the velocity field.

As will be shown in Sect. 2.3, employing the screen-averaged pressure-drop condition leads to non-unique solu-
tions of the linear sloshing problem under consideration. To avoid non-uniqueness, we assume that the velocity
profile at the slat screen keeps the same shape for 0 ≤ Sn ≤ 1. In other words, our hypothesis is that the velocity
profile (exponentially decaying from the free surface to the bottom) remains close to that occurring for steady-state
sloshing in the smooth tank (Sn = 0). This assumption is not in conflict with the asymptotic limit Sn → 1. The
formula for the pressure loss coefficient K of the screen is taken from [19,20]. Even though the formula is for a
steady flow, its applicability for unsteady wave flows was experimentally confirmed in [3].

In Sect. 3, we derive the modal system described above. Because linear free-surface conditions are assumed,
the system includes two subsystems of linear ordinary differential equations which governs liquid sloshing in the
compartments. This sloshing is excited by both horizontal motions of the tank and cross-flow at the screen. The
free-surface elevation described by these subsystems has a jump in the tank middle at the assumed screen position.
The presence of the jump is consistent with the fact that there is a pressure drop across the screen. The subsystems
are coupled by a nonlinear ordinary differential equation with respect to a generalized coordinate responsible for
the liquid flow through the screen.

In Sect. 4, we report new experimental model tests, and compare the experimental measurements on steady-state
wave elevations at the tank wall with those following from our modal theory. Agreement is satisfactory and the
experiments generally support the theory for smaller forcing amplitude (the forcing amplitude-to-the-tank-width
ratio η2a/ l is about 0.001). Theoretical predictions for the larger forcing amplitude (η2a/ l = 0.01) are consistent
in some cases with the primary Fourier harmonics of the measured output signal. The higher harmonics in the mea-
sured resonant wave elevations contribute up to 35% and, we believe (see discussion in [21,22]), they are associated
with amplification of the higher modes due to the free-surface nonlinearity. The linear potential-flow theory used
here is only relevant in resonant conditions if the damping is sufficiently large. Otherwise nonlinear free-surface
effects are dominant [6]. We do not know appropriate analytical studies on nonlinear liquid sloshing in tanks with
perforated screens. The proposed analytical modal scheme generally allows for the corresponding generalization.

2 Statement of the problem

We consider a two-dimensional rigid rectangular tank with a width l = 2a and a mean liquid depth h (see Fig. 1).
A perforated plate (screen) is mounted vertically in the tank middle. The tank is forced horizontally with small
amplitudes relative to the tank width. The liquid is incompressible with irrotational flow except in limited jet or wake
regions caused by cross-flow at the screen. The free-surface nonlinearity is neglected. Assuming purely piston-like
transverse flow velocity at the screen, a steady-state analysis was performed in [6]. The forthcoming study is more

Fig. 1 Geometric
definitions for the sloshing
analysis with a screen Sc0 in
the middle of the tank
dividing the tank into two
compartments
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Fig. 2 Typical instantaneous wave profiles for two-dimensional sloshing in a rectangular tank due to horizontal excitation. Screen Sc0
with 0 < Sn < 1 in the middle is installed (part a). Parts b and c illustrate primary antisymmetric wave profiles for the limit cases
Sn = 0 and Sn = 1, respectively

general. It accounts more properly for the fact that the transverse velocity at the screen decays with depth which
matters in particular for larger liquid depths and at higher sloshing frequencies. This latter fact results in a correct
prediction of the second natural sloshing frequency, in the present study with h/ l = 0.4 and a frequency range that
covers the two lowest natural sloshing frequencies. In addition, the presented modal method may handle transient
waves.

2.1 Boundary-value problem in compartments

The corresponding linear liquid theory deals with the following boundary-value problems in the unperturbed liquid
domains Q±

0 (see Fig. 1).
The theory introduces the absolute velocity potentials Φ±(y, z, t) in Q±

0 , which should satisfy the Laplace
equation and the Neumann boundary conditions on the wetted tank surface

∇2Φ± = 0 in Q±
0 ; ∂Φ±

∂z
= 0 (z = −h); ∂Φ±

∂y
= ±η̇2 (y = ±a), (1)

where η2(t) describes the horizontal motions of the rigid tank.
Furthermore, the theory defines the free-surface elevations z = ζ±(y, t) and states the kinematic,

∂Φ±

∂z
= ∂ζ±

∂t
(z = 0), (2)

and dynamic,

∂Φ±

∂t
+ gζ± = 0 (z = 0), (3)

boundary conditions on the unperturbed free surfaces �±
0 . These conditions couple Φ±(y, z, t) and ζ±(y, t) sepa-

rately for the two compartments. Here, g is the gravity acceleration.
Further, the liquid conservation condition should be fulfilled

0∫

−a

ζ−dy +
a∫

0

ζ+dy = 0. (4)

The problem (1)–(3) requires initial conditions expressing the initial perturbation (function ζ0(y)) and its initial
velocity (function ζ1(y)) of the free surface to be given, i.e.,

ζ(y, 0) = ζ0(y),
∂ζ

∂t
(y, t) = ζ1(y). (5)

Even though the free surface is discontinuous at Sc0 (see Fig. 2a), the initial conditions should, due the required time
to generate a pressure drop at the screen, involve smooth functions ζ0(y) and ζ1(y) on the whole interval (−a, a).
That is why the ±-sign in conditions (5) is omitted.
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2.2 Transmission conditions on Sc0

As long as Sn = 0 (smooth rectangular tank), the velocity potential and its normal derivative are continuous in the
middle provided by an appropriate combination of Neumann and Dirichlet-type boundary conditions (see mathe-
matical details in [23, Chap. 2]). Another limit case, Sn = 1, suggests a rigid non-perforated wall in the middle
which requires the zero normal derivative; there is no Dirichlet condition stated in this case. For both limit cases (see
Fig. 2b, c), there exist analytical [modal] models reducing the linear sloshing problem (1)–(4) to the corresponding
linear [modal] systems of linear ordinary differential equations [6, Chap. 5].

As long as the solidity ratio is between 0 and 1, the first transmission condition does not change, i.e.,

ur (z, t) + η̇2(t) = ∂Φ−

∂y
= ∂Φ+

∂y
(y = 0), (6)

providing equal flux across Sc0. Here ur (z, t) is the relative normal velocity on Sc0.
The second condition should reflect the fact that the hydrodynamic pressure undergoes a jump. This condition is

normally formulated for uniform flows which should, generally, be perpendicular to the flat screen. In accordance
with definitions in [16] the pressure drop at the screen is

P− − P+ = 1

2
ρKU |U |. (7)

Here, U = U (t) is the horizontal liquid velocity at the screen, P± = P±(t) is the pressure at different sides of the
screen so that the right direction is assumed to be positive, K ≥ 0 is the so-called pressure-loss coefficient depending
on the screen geometry, the solidity ratio Sn, the Reynolds number and, generally, the Keulegan–Carpenter number
KC which may be defined as KC = UM T/D where UM is the amplitude of U, T is the forced oscillation period
and D is a characteristic length of the screen such as the slat height. When the uniform in-flow velocity is not
perpendicular to the flat screen, the pressure-loss coefficient becomes also a function of the in-flow angle.

When discussing the condition (7), we should remark that all the forces due to viscous effects are commonly
expressed as quadratic functions of a reference velocity. An example for that is the Morison’s equation commonly
used for offshore structures. Formulations such as these rely on experimental values for drag coefficients. The
formulations must give a good fit to experimental data. Then comes what parameters affect the drag coefficient.
As we have mentioned, that is, for instance, the Reynolds number, the Keulegan–Carpenter number, the structural
form (see [21, Chap. 7] where this is extensively discussed). Here we talk about a pressure-loss coefficient which
has a similarity with the drag formulation in Morison’s equation when viscous-flow separation matters. It is once
more an empirical formulation that has been extensively investigated for ambient steady and space-independent
flow [16]. Using linear formulations will not fit experimental data.

Our focus is on the slat screens depicted in Fig. 3. They are characterized by openings with sharp edges where
flow separation occurs. The latter fact implies that the Reynolds-number dependence of the pressure-loss coefficient
is negligible. The values of K for the slat screens with Sn > 0.3 and KC > 2 (with characteristic dimension equal to
the slat height) are, according to [3] (the authors refer to [19,20] where the following expressions were established
for steady flow), approximated by the formulas

K =
(

1

Cc (1 − Sn)
− 1

)2

, Cc = 0.405 exp(−πSn) + 0.595. (8)

The pressure-loss coefficient monotonically increases with the solidity ratio from zero (at Sn = 0) to infinity (at
Sn = 1).

Even though formulas (8) are originally proposed for steady uniform flows, it was illustrated in [3] by experi-
ments for certain values of the solidity ratios that (8) is applicable in a screen-averaged sense (with mean values of
the velocity and pressure over Sc0) for sloshing problems with vertical screens, namely, it holds

1

h

0∫

−h

[
∂Φ+

∂t
− ∂Φ+

∂t

]
dz = 1

2
KU |U |, where U = 1

h

0∫

−h

ur dz. (9)
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Fig. 3 A schematic
distribution of the openings
for different value of
solidity ratios in our
experimental slat screen.
The dimensions are in
meters. The screen
thickness is 5 mm; it is
neglected in our analysis.
Because there is a limited
number of slats, the solidity
ratio varies with the mean
liquid depth depending on
how many openings become
submerged. For the liquid
depth 0.4 m, the solidity
ratio is (from left to right)
0.328, 0.52, 0.713, 0.808,
0.855, 0.905, 0.928, 0.948
and 0.963
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This condition will be adopted in our forthcoming analysis.
The pressure-drop condition plays the role of damping at small and intermediate solidity ratios. When Sn tends

to 1, the flow experiences the screen as a barrier that is difficult to flow through. The consequences are small
damping due to cross-flow and that the flow as a first approximation behaves as if the screen is an unperforated
wall. The result is that the lowest resonant frequency changes to that in the separated compartments. The change of
the resonant frequencies depends on the forcing amplitude, i.e., it cannot be explained by linear theory. Both theory
and experiments confirm this fact.

2.3 Non-uniqueness and additional assumptions

According to the multimodal method, the velocity potentials Φ± should be presented by a Fourier-type series in
the natural sloshing modes (see [6, Chap. 5]). For the whole tank without screen, there are antisymmetric (relative
to the Oz-axis) and symmetric natural modes. The antisymmetric (odd) modes take the form

ϕi (y, z) = sin

(
1

2
π(2i − 1)y/a

)
cosh

( 1
2π(2i − 1)(z + h)/a

)
cosh

( 1
2π(2i − 1)h/a

) , i = 1, 2, . . . . (10)

Only these modes are directly excited within the framework of the linear sloshing approximation as Sn = 0.
The symmetric (even) natural modes are

φi (y, z) = cos(π iy/a)︸ ︷︷ ︸
fi (y)

cosh(π i(z + h)/a)

cosh(π ih/a)
, i = 1, 2, . . . . (11)

These modes are not excited (within the framework of linear sloshing theory) for Sn = 0, but, whereas Sn = 1,
projections of these modes,

φ±
i = φi |Q±

0
, f ±

i = fi |�±
0
,

constitute the full set of the natural sloshing modes for sloshing in the compartment tanks followed by replacing the
screen with a rigid non-perforated wall in the middle. This means that the natural sloshing modes φ±

2n−1 are directly
excited by lateral tank motions for the limit case Sn = 1 (see the wave profile associated with φ±

1 in Fig. 2c).
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The natural modes ϕi and φi correspond to the natural sloshing frequencies σ2i−1 and σ2i , respectively, where

σ 2
k = gκk, κk = πk

2a
tanh

(
πkh

2a

)
, k ≥ 1. (12)

The antisymmetric modes ϕi determine the relative horizontal velocity in the tank middle, but give zero contri-
bution to the hydrodynamic pressure at Sc0. Contrary, the symmetric modes φi do not affect the relative horizontal
velocity at y = 0, but determine the linear hydrodynamic pressure (Dirichlet trace of the velocity potential) in the
tank middle. Because the transmission conditions (6) and (9) imply continuous horizontal velocity, but discontinuous
pressure, the absolute velocity potentials Φ± take the form

Φ±(y, z, t) = η̇2 y +
∞∑

i=1

V̇i (t)ϕi (y, z) +
∞∑

i=0

R±
i (t)φ±

i (y, z) in Q±
0 , (13)

where Vi and R±
i are originally unknown time-dependent functions (generalized coordinates). Here, η̇2 y expresses

the liquid motions as a solid body. Modal solution (13) automatically satisfies (1) and (6).
The relative horizontal velocity ur at y = 0 is

ur (z, t) = π

2a

∞∑
i=1

V̇i (t)
(2i − 1) cosh

( 1
2π(2i − 1)(z + h)/a

)
cosh

( 1
2π(2i − 1)h/a

) . (14)

Because the {cosh(λi y), λ0 < λ1 < · · · }–type exponential functions constitute a complete set of functions
on the interval [0, a] for any positive a (see [24, Chap. 1]), any function ur (z, t) can uniquely be presented in
the series (14) on the interval [−h, 0]. Let us fix {Vi (t), i ≥ 1} and find ζ±(y, t) and R±

m (t) by solving (2)–(4).
Appropriate solution is possible by using, for instance, a Fourier technique from [6, Sect. 5.4.2.4] developed for the
problem on liquid sloshing due to deformations of the side wall governed by the normal velocity ur (z, t). Due to this
solution, ζ±(y, t) and R±

m (t) become linearly dependent functions of the generalized coordinates {Vi (t), i ≥ 1}.
Furthermore, substituting R±

m (t) in the modal representation (10) and the integral-type transmission condition (9),
we arrive at a single scalar relation coupling the infinite set of functions {Vi }. This single relation for the infinite set
of input generalized coordinates can not provide a unique solution.

To get a unique solution from this single relation, Vi (t) must be functions dependent on a single generalized
coordinate β−1(t). Appropriate β−1(t) may be obtained from the assumption that the velocity profile at Sc0 (but not
the amplitude!) weakly depends on K (or Sn), namely, remains close to that occurring for the steady-state solution
in the limit case K = 0. Adopting this velocity profile poses no conflict with another limit case K → ∞ (Sn=1).
Passage to Sn = 1 implies that the amplitude parameter β−1(t) tends to zero.

Faltinsen and Timokha [6, Sect. 5.4] give the steady-state solution for Sn = 0 (smooth rectangular tank) occurring
due to harmonic forcing. The corresponding relative velocity potential ϕ = Φ − η̇2 y is then as follows

ϕ(y, z, t; σ) =
(

−ση2a sin(σ t)
8Nr

π2

)
︸ ︷︷ ︸

f(t)

∞∑
i=1

a(−1)i sin
( 1

2π(2i − 1)y/a
)

Nr (2i − 1)2(1 − σ̄ 2
2i−1)

cosh
( 1

2π(2i − 1)(z + h)/a
)

cosh
( 1

2π(2i − 1)h/a
)

︸ ︷︷ ︸
ϕ−1(y,z;σ)

. (15)

Here, η2(t) = η2a cos(σ t), where σ is the forcing frequency, and η2a is the forced sway amplitude of the tank;
σ̄i = σi/σ , and

Nr =
√√√√ ∞∑

i=1

1

(2i − 1)4(1 − σ̄ 2
2i−1)

2

is the norm providing the finiteness of ϕ−1 for any forcing frequency σ . The function ϕ−1 in (15) depends on the
forcing frequency σ and determines the relative horizontal velocity at y = 0 expressed in terms of f(t) and ϕ−1

ur (z, t; σ) = f(t)
∂ϕ−1

∂y

∣∣∣∣
y=0

= f(t)
∞∑

i=1

π(−1)i

2Nr (2i − 1)(1 − σ̄ 2
2i−1)

cosh
( 1

2π(2i − 1)(z + h)/a
)

cosh
( 1

2π(2i − 1)h/a
)

︸ ︷︷ ︸
Ur (z;σ)

. (16)
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100 O. M. Faltinsen et al.

Equation (16) defines Ur (z) which represents the horizontal velocity profile along the interval [−h, 0] for the
considered steady-state sloshing with Sn = 0, namely, without screen. The time-dependent function f(t) is then
an amplitude parameter defined by (15). As we discussed above, we impose the horizontal velocity profile Ur to
keep the same shape for 0 < Sn < 1, i.e., when there is a screen. The screen effect is therefore associated with a
modification of the time-dependent function f(t). We replace the harmonic function f(t) by an unknown generalized
coordinate β̇−1(t) governing the magnitude of the profile Ur (z) when Sn is not zero. Comparing (14) and (16) leads
to the conclusion

V̇i = β̇−1(t)
a(−1)i

Nr (2i − 1)2(1 − σ̄ 2
2i )

. (17)

The assumption (17) makes the problem (1)–(4), (6), (9) uniquely solvable with the corresponding initial condi-
tions (5). The velocity potential (13) then takes the form

Φ±(y, z, t) = η̇2 y + β̇−1(t)ϕ−1(y, z) +
∞∑

i=0

R±
i (t)φ±

i (y, z) in Q±
0 . (18)

3 Analytical modal model

According to the multimodal methods, the free surfaces �±(t) (see Fig. 2) are described (in the tank-fixed co-
ordinate system Oyz) by the Fourier-type representation

z = ζ±(y, t) = β−1(t) f−1(y) +
∞∑

i=1

β±
i (t) fi (y), (19)

where f−1(y) = ∂ϕ−1/∂z at z = 0 and β−1(t) is the same as in (18).
The component β−1(t) f−1(y) is continuous on (−a, a) for any instant t . It is responsible for the wave eleva-

tions due to liquid flow between the compartments, the time-dependent mean liquid level in the compartments, and
provides the volume-conservation condition with

0∫

−a

f−1(y)dy = −
a∫

0

f−1(y)dy �= 0.

Projections of fi (y), i ≥ 1 on (−a, 0) and (0, a) are exactly the natural surface modes on �−
0 and �+

0 , respectively.

These satisfy volume conservation in the compartments, namely,
∫ 0
−a fi dy = ∫ a

0 fi dy = 0, i ≥ 1.
Substituting (19) and (18) in relations (2) and (3) and using orthogonality of { fn(y), n ≥ 0} on the intervals

[−a, 0] and [0, a] gives

Ṙ±
0 = ±

[
−1

2
η̈2 + v∗

0 β̈−1 + gv0β−1

]
, R±

n = β̇±
n

κ2n
(20)

and the following system of linear modal equations

β̈±
n + σ 2

2nβ±
n = ±2κ2n

(
an η̈2 + v∗

n β̈−1 + gvnβ−1
)
, n ≥ 1, (21)

where

an =
0∫

−a

y fndy = − (−1)n − 1

π2n2 a, (22)

v∗
n =

0∫

−a

ϕ−1 fndy = 2a

π Nr

∞∑
i=1

(−1)i+1

((2i − 1)2 − 4m2)(2i − 1)(1 − σ̄ 2
2i−1)

,

vn =
0∫

−a

∂ϕ−1

∂z

∣∣∣∣
z=0

fndy = 1

Nr

∞∑
i=1

(−1)i+1 tanh( 1
2π(2i − 1)h/a)

((2i − 1)2 − 4m2)(1 − σ̄ 2
2i−1)

.
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The modal system (21) governs the generalized coordinates determining the component
∑∞

i=1 β±
i (t) fi (y) in

representation (19). This component satisfies the volume-conservation conditions on �−
0 and �+

0 , and, therefore,
does not describe the time-dependent change of the mean liquid levels in the compartments. It looks similar to the
case when the compartments are separated by a rigid non-perforated wall. However, in our case, β±

n also depend on
the inflow/outflow through Sc0 associated with the generalized coordinate β−1(t). Formulas (20) give R±

n (t), n ≥ 0
in Eq. (18) as functions of β±

n (t) and β−1(t).
Furthermore, the right-hand sides in (21) are proportional to

an η̈2 + v∗
n β̈−1 + gvnβ−1 =

∫

�−
0

(
yη̈2 + ϕ−1β̈−1 + g

∂ϕ−1

∂z
β−1

)
fndS. (23)

When β̇−1(t) coincides with f(t), i.e., when there is no screen for a horizontal harmonic forcing, expression (23)
vanishes. As a consequence, the right-hand sides in modal equations (20) becomes zero. This means that we can
expect amplification of β±

n , n ≥ 1 only for non-small solidity ratios.
Using formulas (20) in representation (18) and substituting them in the transmission condition (9) gives the

following ordinary nonlinear differential equation with respect to β−1(t)

2hv∗
0 β̈−1 −

⎡
⎣ K

2h

0∫

−h

Ur (z)dz

∣∣∣∣∣∣
0∫

−h

Ur (z)dz

∣∣∣∣∣∣

⎤
⎦ β̇−1|β̇−1| + 2ghv0β−1 − ahη̈2 + a2

∞∑
n=1

β̈+
n − β̈−

n

(πn)2 = 0. (24)

An equivalent form of (24) can be written as follows

[
a(σ )β̈−1 + b(σ )β̇−1(t)|β̇−1(t)| + c(σ )β−1 + d(σ )η̈2

] + ga
∞∑

n=1

tanh(πnh/a)

πn

(
β−

n − β+
n

) = 0, (25)

where β±
n (t) are solutions of (21) and

a(σ ) =
0∫

−a

ϕ−1|z=0F(y)dy = 2hv∗
0 + 4a

∞∑
n=1

tanh(πnh)

πn
v∗

n , (26)

b(σ ) = − K

2h

0∫

−h

Ur (z)dz

∣∣∣∣∣∣
0∫

−h

Ur (z)dz

∣∣∣∣∣∣ , (27)

c(σ ) =
0∫

−a

∂ϕ−1

∂z

∣∣∣∣
z=0

F(y)dy = g

[
2hv0 + 4a

∞∑
n=1

tanh(πnh)

πn
vn

]
, (28)

d(σ ) =
0∫

−a

yF(y)dy = −ah + 8a
∞∑

i=1

tanh(π(2i − 1)h)

π3(2i − 1)3 (29)

with

F(y) = 2h + 4a
∞∑

n=1

tanh(πnh)

πn
cos(πny).

The system of differential equations (21), (25) couples the generalized coordinates β−1(t), β±
n (t), n ≥ 1. It can

be solved by any numerical method subject to the initial conditions β−1(0) = β
(0)
−1 , βn(0) = β

(0)
n , n ≥ 1, and

β̇−1(0) = β
(1)
−1, β̇n(0) = β

(1)
n , n ≥ 1. In our calculations, we used the fourth-order Runge–Kutta method. These

initial conditions govern the initial free-surface shape and initial free-surface velocity defined by (5) and (19).
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4 Steady-state sloshing due to harmonic horizontal excitation

4.1 Preliminaries

We consider steady-state sloshing due to harmonic sway excitation η2(t) = η2a cos(σ t), where η2a is the forcing
amplitude, and the forcing frequency σ is in a range including the two lowest natural sloshing frequencies, σ1 and
σ2. The steady-state sloshing corresponds to the 2π/σ -periodic solution of the system (21), (25).

As before, there are two limit cases associated with sloshing in a smooth tank (there is no screen, K = 0) and
sloshing in two smooth compartments without cross-flow (the screen is an unperforated wall, K = ∞, Sn = 1).
Straightforward (but tedious) algebra shows that, if K = 0 (Sn = 0), the steady-state (periodic) solution of (21),
(25) is β̇−1 = f(t) and β±

n (t) = 0, n ≥ 1. This solution implies the resonant behavior at σ1, but not at σ2, because
the symmetric modes are not excited within the framework of linear sloshing theory.

Passage to K = ∞ (Sn = 1) in (25) leads to β̇−1(t) = 0 which gives together with the fact that both compart-
ments, by definition, contain the same liquid volumes, that β−1(t) = 0. Substituting β−1(t) = 0 in modal equations
(21) gives the well-known linear modal equations for sloshing in smooth rectangular tanks (compartments) with
the width a and the filling liquid depth h; see [6, Chap. 5]. For this case, the limit σ → σ2 leads to the linear
resonance response by modes φ±

1 = φ1|Q±
0

with wave profiles shown in Fig. 2c, but there is no resonance at
σ = σ1.

4.2 Model tests

A rectangular tank was installed in a rig located at the Marine Technology Center in Trondheim, Norway. The Plexi-
glas-made tank dimensions are 1.0 m×0.98 m×0.1 m (width×height×breadth). The tank was forced horizontally
with a sinusoidal signal. To provide a nearly two-dimensional sloshing, a slat screen (Fig. 3) was used. Meniscus
effects at the intersection between the free surface and the tank walls are secondary and cause three-dimensional
capillary waves that are riding on the gravity waves.

The tank was equipped with two resistant wave probes installed 1 cm away from the end walls in order to
avoid possible local run-up effects which cannot be described by this theory. The wave elevation is recorded with
a sampling rate of 100 Hz and measured relative to the unperturbed free surface. The error in the measured wave
elevation is less than 1 mm.

Our focus is on model tests with h/ l = 0.4 and nondimensional forcing amplitudes close to η2a/ l = 0.001 and
0.01. The frequency range covers the two lowest natural sloshing frequencies. The wide range of tested solidity
ratios of the submerged screen part, as it is accepted in our two-dimensional sloshing analysis with h/ l = 0.4, is
listed in the caption of Fig. 3. Note that the actual experimental setup included narrow (about 5 mm) vertical rigid
constraints mounting the screen to the tank walls. The effects of these constraints on perturbing a local three-dimen-
sional flow at the mounting lines, as well as on the solidity ratio of the considered screens as three-dimensional
structures, are neglected. The fact that the slot height is not perfectly constant across the screen is an error source
for high-solidity ratios.

To account for the free-surface nonlinearity hysteresis effect (see [6, Chap. 8]), the forcing frequency for a pre-
scribed forcing amplitude changes ‘stepwise’ after reaching an experimental steady-state regime. The signal with
a fixed forcing frequency lasts for about 300 cycles; 200 cycles were sufficient to reach the steady-state condition.
After 300 cycles, the forcing frequency changes to a lower value. The reason for decreasing the forcing frequency
is to detect the maximum wave elevation. The latter fact follows from the character of the nonlinear steady-state
response at a depth larger than the critical depth for sloshing in a smooth two-dimensional rectangular tank (see
[6, Chap. 8]). The initial runs were performed with frequency steps of about 0.05 Hz which enabled localization of
the peaks in the steady-state wave-amplitude response. Afterwards, the frequency steps were in the range of 0.01Hz
to 0.001Hz, in the frequency domains where the initial tests have detected the resonance peaks in order to more
accurately quantify the response peaks. The forcing amplitude might slightly change for technical reasons when
switching to another forcing frequency.
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4.3 Comparison with experiments

Numerical steady-state solutions are found by using direct numerical simulations by the modal system (21), (25).
Our simulations adopt the experimental stepwise change of the forcing frequency and corresponding amplitude
with the consequence that simulations with each new forcing parameters employed the initial conditions from the
previous steady-state solution. Because (21) and (25) imply a dissipative mechanical system, the long-time simu-
lations always led to a periodic (steady-state) numerical solution. Usually, about 300 cycles are required to get this
solution within a two-digits accuracy. This is generally consistent with experiments. The final simulations include
up to 1500 cycles providing a four-five digits accuracy for the periodic solution.

When h/ l = 0.4, the lowest theoretical resonances for Sn = 0 and Sn = 1 are at σ/σ1 = 1 and σ/σ1 = σ2/σ1 ≈
1.52 with σ1 = 5.12 ( rad/s), respectively.

Comparison of theoretical and experimental maximum steady-state wave elevation as a function of forcing fre-
quency is presented in Figs. 4, 5, 6, 7, and 8. The figures show the theoretical values (solid lines), the actual measured
maximum wave elevations (empty boxes) at the wave probe (in left compartment), and the amplitude of the primary
harmonics of the experimental output signal (associated with exp(iσ t), i2 = −1) marked by the filled boxes. The
figures give also information on the experimental forcing amplitude as a function of the forcing frequency.

The experiments showed in some cases that different steady-state solutions occur in the compartments in a
neighborhood of σ/σ1 = σ2/σ1 = 1.52. The presence of two stable steady-state solutions is a well-known fact for
sloshing in a two-dimensional rigid rectangular tank (here, the compartments) with a finite liquid depth [21,22].
The reason is the free-surface nonlinearity which is not included in the present theory. The corresponding experi-
mental records with different steady-state results in the two compartments are therefore not included in the present
comparison.

4.3.1 Lower values of the solidity ratio

Figure 4 shows experimental and numerical values of the maximum wave elevations for Sn = 0.328 and 0.52
(K = 1.025 and 4.371, respectively). Both theory and experiments give in the considered frequency range only a
resonant peak at σ/σ1 = 1, i.e., there is no resonant amplification at σ2/σ1 = 1.52. This means that the generalized
coordinate β−1(t) describing the cross-flow at the screen dominates, while β±

n , n ≥ 1 are of lower importance.
Because β±

n , n ≥ 1 determine the jump of the free surface at the screen, this jump does not provide a dominant
contribution to the sloshing. The pressure loss coefficient K plays the role of damping at the corresponding quadratic
damping term in (25).

Figure 4 (panels a and b) shows that the numerical results by the analytical modal model generally agree with
the experiments for the smaller nondimensional forcing amplitude η2a/ l ≈ 0.001. We see larger theoretical values
relative to experiments in case (a) for Sn = 0.328. This fact can, in part, be related to non-accurate prediction
of K by empirical formulas (8). As we reported ahead of (8), the values of the empirical formula do not depend
on the Reynolds number and assume KC > 2. An alternative is the table with empirical K in [16, pp. 314–316].
The latter values do not depend on KC and the Reynolds number. We could have tried to fit the K -value to agree
with the experimental results and, in that way, for instance, detect a KC-dependence. However, a procedure like
that is questionable because it does not account for the fact that a reason for discrepancies can be due to nonlinear
free-surface effects. In the presented calculations from Fig. 4a, K = 1.025 leads to ζa/η2a = 50 for σ/σ1 = 1,
but K = 1.32 (this value of K follows from the empirical loss coefficients in [16, p. 314]) gives ζa/η2a = 43.5.
Because β−1 dominates, one can, in a qualitative analysis, neglect the β±

n -quantities from (25) which, as explained
previously, are responsible for the free-surface jump at the screen. This means that (25) becomes similar to a sin-
gle-dimensional mass–spring system with quadratic damping where the damping coefficient is proportional to K
and, therefore, the screen should act as a damper. As shown in [25, Chap. 3] for a lightly damped one-degree of
mass–spring system, the resonant nondimensional response ζa/η2a should then be proportional to 1/

√
Kη2a/ l.

The nondimensional resonant response is consistent with this general prediction.
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Fig. 4 Nondimensional theoretical (solid line) and experimental (filled and empty boxes) maximum wave elevations (denoted as ζa) at
the wave probe 1 cm away from the wall versus nondimensional forcing frequency σ/σ1. The empty boxes represent the actual measured
maximum wave elevations, but the solid (filled) boxes denote amplitude of the primary Fourier harmonics of the measured signal.
Because the experimental horizontal forcing amplitude η2a slightly varies with changing the forcing frequency, their dimensional values
are also presented; this variation is taken into account in the numerical analysis. Panels a and b present the case of smaller forcing
amplitudes (η2a/ l ≈ 0.001), but c and d demonstrate the case of larger forcing amplitudes (η2a/ l ≈ 0.01). The left panels a and c,
corresponds to Sn = 0.328(K = 1.025). The right panels, b and d, show results for Sn = 0.52 (K = 4.371)

A major reason why the experimental and theoretical peak values and corresponding frequencies do not agree
perfectly are believed to be due to free-surface nonlinearities. The latter is well known from the potential-flow
sloshing in a smooth (clean) tank, when a linear sloshing theory based on potential flow wrongly predicts an infinite
resonance response. Nonlinear resonant free-surface effects cause transfer of energy to other, higher modes than the
primary excited, dominant mode and, thereby, limit the response of the primary excited mode at the lowest resonant
frequency. Another consequence of nonlinear sloshing in a clean tank with h/ l > 0.3368 . . . is a drift of the peak
response to a lower frequency than the lowest natural frequency σ1. The latter effect is evident in the experimental
results. If the dissipation (damping) due to cross-flow through the screen had been sufficiently high, i.e., larger than
theoretically predicted in this case, the nonlinear free-surface effect would be negligible.
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Fig. 5 Nondimensional theoretical (solid line) and experimental maximum wave elevations (denoted as ζa) at the wave probe ver-
sus nondimensional forcing frequency σ/σ1. The empty boxes represent the measured maximum wave elevations, but the solid boxes
denote amplitudes of the primary harmonics, exp(iσ t). The experimental variation of the forcing amplitudes is taken into account in
the numerical analysis. Sn = 0.713 (K = 19.89). Panel a corresponds to the lower excitation amplitudes, η2a/ l ≈ 0.001, and panel
b implies η2a/ l ≈ 0.01

Fig. 6 The experimentally
observed fallout of the
liquid going through the
screen into the air domain of
the opposite compartment
and subsequently impacting
on the underlying free
surface

Furthermore, increasing the forcing amplitude may lead to a nonlinear amplification of higher modes which give
a non-negligible contribution to the maximum steady-state wave elevation. This contribution is associated with
higher harmonics. The cases (c) and (d) in Fig. 4 are for the larger nondimensional forcing amplitude η2a/ l ≈ 0.01.
In these cases, the analytical modal model gives lower nondimensional values of the maximum steady-state eleva-
tion at the wave probes relative to the experimental measurements. To explain why this happens, we had to perform
a Fourier analysis and extract the primary Fourier harmonics contribution from the measured output signal. It is
marked by the filled boxes. Cases (a) and (b) show that the primary harmonics (associated with primary excited
mode) clearly dominates for smaller forcing amplitude. This is not so for the larger forcing amplitude in cases
(c) and (d), where higher harmonics (associated with higher modes) give sufficient contribution. Amplification of
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Fig. 7 The same as in Fig. 5, but for Sn = 0.928 (K = 462.8). In case b, the maximum peak at σ/σ1 = σ2/σ1 = 1.52 is computed to
be ζa/η2a = 50
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Fig. 8 The same as in Fig. 5, but for Sn = 0.963 (K = 1,846). In case a, the maximum peak at σ/σ1 = σ2/σ1 = 1.52 is computed to
be ζa/η2a = 23, but case b gives this theoretical maximum equal to 102

these harmonics with increasing forcing amplitude was extensively discussed in [27]. It was shown that this is a
nonlinear free-surface effect. To describe this amplification, one should use the nonlinear multimodal theory which
links the higher harmonics with nonlinear energy transfer from the lowest, primary excited mode to higher modes.
Our theoretical model with linear free-surface conditions and damping due to the cross-flow through the screen
demonstrates a good agreement with the primary harmonics contribution associated with the primary excited mode.

4.3.2 Intermediate values of the solidity ratio

Increasing the solidity ratios to Sn = 0.713(K = 19.89) leads to the theoretical and experimental nondimen-
sional maximum steady-state wave elevations shown in Fig. 5. The generalized coordinate β−1(t) dominates with
respect to β±

n (t) in case (a), and, therefore, the system behaves as a one-degree lightly damped mass-spring system
with quadratic damping. The consequence is that the resonant nondimensional response ζa/η2a is proportional to
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1/
√

Kη2a/ l which is consistent with the theoretical results in Fig. 4 for lower solidity ratios. The experimental
results in case (a) show small influence of higher harmonics and there is good agreement with quasi-linear theory.

The larger excitation amplitude in Fig. 5b leads to β−1 ∼ β±
n with many dominant generalized coordinates. A

consequence of coupling between modes is a double-peak response at the lowest natural sloshing frequency σ1. The
experimental primary harmonic response is, in general, in good agreement with the theoretical prediction. However,
the experiments demonstrate the presence of non-negligible higher harmonics, for instance at σ/σ1 = 1.28 and 1.4.
A plausible reason is nonlinear free-surface effects. We do not know to what extent the water flow through the air
illustrated in Fig. 6 matters. A water-jet flow that originates from the screen opening impacts on the underlying free
surface and, thereby, can excite higher-harmonics wave (see discussion in [26]).

4.3.3 Larger values of the solidity ratio

Passage to higher solidity ratios is studied in Figs. 7 and 8. Figure 7a corresponds to Sn = 0.928 and η2a/ l = 0.001.
When σ/σ1 is in the vicinity of 1, β−1 ∼ β±

n in the theoretical model. The consequence is that both cross-flow
quadratic damping due to the screen and coupling between many generalized coordinates of the liquid motions
matter. The result is a relatively small nondimensional wave amplitude response with the presence of a double peak.
The agreement with the experiments is reasonable. The theoretical response is largest at σ/σ1 = 1.65, i.e., at a
higher frequency than the second natural sloshing frequency σ2 = 1.52σ1. The experimental results do not show a
clear effect of higher harmonics and agree that there is a peak response at σ/σ1 = 1.65. However, the magnitudes
of theoretical and experimental wave elevations differ at the second natural frequency with the experimental results
being clearly higher. A reason can be errors in the theoretical damping model in the considered frequency range.
Furthermore, there is a clear minimum in the experimental results at σ/σ1 = 1.35 which is not supported by the
theoretical model.

A very large theoretical amplification occurs at σ/σ1 = 1.52 for the cases presented in Figs. 7b and 8a, b. The
reason is associated with the fact that β±

n � β−1 in the theoretical model which can be explained as follows.
Because there is a larger coefficient K in the front of the quadratic damping term in (25), the generalized coordinate
β−1 is highly damped to become of non-dominant (higher order) with respect to β±

n , n ≥ 1. The latter general-
ized coordinates are solutions of the linear equations (21) without damping terms and, therefore, the β±

i -related
oscillations can only be reduced due to energy transfer to β−1. The pressure-drop condition no longer plays the
role of a damping mechanism, as it happened for lower and intermediate solidity ratios. An indication of the fact
that the cross-flow at the screen does not act as a quadratic one-dimensional damping mechanism at σ = σ2 is that
we predict an increased nondimensional response ζa/η2a with increasing forcing amplitude η2a/ l. The generalized
coordinates β±

n governed by the linear non-damped linear oscillator equations (21) should determine both the pri-
mary response as well as the corresponding resonance peak which is now expected at σ = σ2. The latter fact means
that the screen can in a first approximation be considered as an unperforated wall which isolates wave motions
in the compartments whose interplay is now associated with a higher-order flow component β−1. It was shown in
[6, Sect. 6.8] that increasing the excitation amplitude causes a decrease in the threshold value of the solidity ratio for
which the screen changes its role from a damper to an isolator of the compartment tank. This explains why we see a
clear resonance peak at σ/σ1 = σ2/σ1 = 1.52 and not at σ/σ1 = 1 in Fig. 7b. Case (a) in Fig. 7 with η2a/ l = 0.001
corresponds to a Sn-value where the dominant resonant response changes from being at σ/σ1 = 1 to σ/σ1 = 1.52.

The experimental results in a frequency range around the second natural frequency do not agree well with the
theoretical results in Figs. 7b and 8a, b. The experiments show a frequency of the peak response that is lower than
σ2 for η2a/ l = 0.01 (Figs. 7b, 8b) and larger than σ2 for η2a/ l = 0.001 (Fig. 8a). Furthermore, the maximum
experimental values are clearly lower than the theoretical values. The presence of higher-harmonics contribution
in the experiments indicates nonlinear free-surface effects causing transfer of energy from lowest primary excited
mode to higher modes. The experimental behavior for η2a/ l = 0.01l is consistent with a theoretical nonlinear
behavior of resonant sloshing for depths that are larger than the critical depth in a rectangular tank with small
damping. For instance, jumps between stable steady-state solution branches occur according to the multimodal
method with nonlinear free-surface nonlinearity effects described in [6, Chap. 8]. The response has similarities
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with the response of a Duffing-type nonlinear oscillator. Because there is a small flow exchange between the tank
compartments, the relevant theoretical tanks are the compartment tanks. We are not able to theoretically explain
why the maximum experimental response occurs for a frequency larger than the second natural frequency in Fig. 8a
with η2a/ l = 0.001 and Sn = 0.963.

5 Concluding remarks

A modal model based on linear free-surface conditions has been derived to describe sloshing in a two-dimensional
rectangular tank with a slat-type screen in the middle. An empirical pressure-drop condition as well as continuity
of the transverse velocity were used as transmission conditions between the two compartments. The derived modal
model consists of two modal systems to describe sloshing in the two compartments, and an ordinary differential
equation governing the generalized coordinate β−1(t) responsible for liquid flow between compartments. The first
modal systems are similar to that in [6, Chap. 5], but with other right-hand sides. These right-hand sides include terms
depending on β−1(t). The last differential equation with respect to β−1(t) contains the nonlinear, β̇−1|β̇−1|–term
coming from the pressure-drop condition.

The theoretical pressure-drop condition across the screen plays the role of a damper for low and intermediate
solidity ratios. For low solidity ratio, this role is similar to that in a single-degree mass–spring system with quadratic
damping. A consequence of the latter fact is that the resonant nondimensional response ζa/η2a is proportional to
1/

√
Kη2a/ l where K is the pressure-drop coefficient. The same similarity to a spring–mass system is applicable

for intermediate solidity ratios and smaller forcing amplitudes (η2a/ l = 0.001 in our studies). However, increasing
the forcing amplitude makes inapplicable the single-degree mechanical analogy. There are then many generalized
coordinates and corresponding natural modes which should give comparable dominant contributions, and the actual
response results from a complex interplay between them. The pressure-drop condition does not act as a damping
mechanism for higher solidity ratios, but causes the lowest resonance sloshing frequency to increase to the lowest
sloshing frequency in the tank compartments isolated by the screen as an unperforated wall. Which lower solidity
ratio causes the change in the resonance frequency under harmonic sway excitation in a two-dimensional tank
depends on the liquid depth-to-the-tank-width ratio and the ratio between the sway amplitude and the tank width.

Even though we use linear free-surface conditions and a screen-averaged pressure-drop condition, comparison
of the numerical results by the derived analytical modal model and new experimental model tests on steady-state
wave elevations show satisfactory agreement in many cases. The most serious discrepancy can be explained by the
free-surface nonlinearity. Mathematically, the nonlinearity at the second natural frequency σ2 (for larger solidity
ratios) can be handled by replacing the left-hand sides of (21) with the corresponding adaptive modal system taken
from paper [27]. However, we anticipate a non-trivial analysis accounting for a very special liquid flow associated
with a liquid jet that originates at the screen, goes through the air and subsequently impacts on the underlying free
surface (see Fig. 6).

Because of the specific slat-type screen, we adopted a mean (screen-averaged) pressure-drop condition. Gen-
erally speaking, the sloshing problem needs a modification of this condition that accounts for the local approach
velocity and pressure drop at each opening in the screen.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
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