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The present paper extends the multimodal method, which is well known for liquid sloshing
problems, to the free-surface problem modeling the levitating drop dynamics. The generalized
Lukovsky-Miles modal equations are derived. Based on these equations an approximate modal
theory is constructed to describe weakly-nonlinear axisymmetric drop motions. Whereas the drop
performs almost-periodic oscillations with the frequency close to the lowest natural frequency, the
theory takes a finite-dimensional form. Periodic solutions of the corresponding finite-dimensional
modal system are compared with experimental and numerical results obtained by other authors.
A good agreement is shown.

1. Introduction

Drops levitating in an ullage gas appear in chemical industry [1–3] and space technology
[4–6]. The levitation is provided by weightless conditions or/and acoustic and/or electro-
magnetic fields created in the gas. When these external fields do not affect the static spherical
drop shape, namely, there is no flattening caused by the fields as described, for example, in
[7–9], one can assume that the drop dynamics is primary determined by the surface tension
as if the drop levitates in zero-gravity conditions.

The relative drop dynamics with respect to the static spherical shape driven by
the surface tension has been studied, experimentally [10–12] and theoretically [13]. Small-
amplitude (linear) dropmotions were analytically described by Lord Rayleigh [14, 15] in 1879.
He found the corresponding natural (linear eigen) modes and frequencies in terms of the
spherical harmonics. Theoretical studies of the nonlinear drop dynamics were mainly done
numerically by employing different discretization schemes [16–18]. An alternative approach



2 ISRN Mathematical Physics

to numerical simulations could be theoretical methods developed, for example, in [19–21]
where a Fourier approximation by the Rayleigh natural modes was combined with vari-
ational and asymptotic methods. This approach looks similar to nonlinear multimodal
methods elaborated in the 70 s for liquid sloshing dynamics.

The multimodal methods took their canonical form in the pioneering papers by
Lukovsky [22] and Miles [23] and, furthermore, were generalized by others. An extensive
review on the multimodal methods can be found in the book by Lukovsky [24] and Faltinsen
and Timokha [25]. The Lukovsky-Miles version of the multimodal methods makes it possible
to derive a well-structured infinite-dimensional (modal) system of nonlinear ordinary differ-
ential (modal) equations with respect to generalized coordinates and velocities which, under
certain circumstances, is fully equivalent to the original free-surface problem. Naturally,
the generalized coordinates in sloshing correspond to the natural sloshing modes. Being
“asymptotically-detuned” to a class of liquid sloshing phenomena the Lukovsky-Milesmodal
equations reduce to a rather compact, finite-dimensional form. The detuning suggests pos-
tulating a series of asymptotic relations between the generalized coordinates. Representative
examples of such “asymptotic modal equations” can be found in the aforementioned books
[24, 25] as well as in [26–30] and references therein.

The present paper generalizes the Lukovsky-Miles multimodal method for the free-
surface problem describing the nonlinear dynamics of a levitating drop. This generalization
includes derivation of general modal equations of Lukovsky-Miles’ type as well as examples
of asymptotic modal equations. The paper plan is as follows. In Section 2, we present both
differential and variational formulations of the problem. Following Lukovsky and Miles as
well as recalling [19], the variational formulation is based on the Bateman-Luke principle
(see, also, [25], Ch. 7). In Section 3, we rederive the Rayleigh-type eigensolution to show
that, from a mathematical point of view, the set of natural modes is not complete and extra
four spherical harmonics should be included into the modal solution. In Section 4, we derive
the general modal equations analogous to those in [24, 25, 31]. An approximate form of
these equations describing the weakly-nonlinear axisymmetric drop dynamics is constructed
in Section 5. These equations keep up to third-order polynomial terms as it has been in
[27, 32] for sloshing problems. Based on these approximate equations, we derive in Section 6
a finite-dimensional system of “asymptotic” modal equationsmodeling theweakly-nonlinear
almost-periodic drop motions with the frequency close to the lowest natural frequency.
Periodic solutions of these equations are compared with experimental [12] and numerical
[19, 33, 34] results. A good agreement is shown.

2. Statement of the Problem

We consider a levitating dropQ(t) of an ideal incompressible liquid that performs oscillatory
motions as illustrated in Figure 1. Due to the surface tension, the drop takes spherical shape
in its hydrostatic state. We choose the radius R0 of the sphere as the characteristic length and

introduce the characteristic time t∗ =
√
ρR3

0/Ts (Ts is the surface tension coefficient). The
nondimensional drop dynamics is considered in the spherical coordinate system x =
r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (r ≥ 0, 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π) so that the free
surface Σ(t) is described by the equation

r = ζ
(
θ, ϕ, t

)
= 1 + ξ

(
θ, ϕ, t

)
. (2.1)
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Figure 1: Geometric notations.

According to (2.1), perturbations of Σ(t) relative to the static spherical shape are subject to
the volume conservation condition

Vl =
∫

Q(t)
dQ =

4
3
π =⇒

∫2π

0

∫π

0

(
1
3
ξ3 + ξ2 + ξ

)
sin θdθdϕ = 0 (2.2)

playing the role of a holonomic constraint.
The free-surface problem describing the nonlinear drop dynamics couples the function

ζ and the velocity potential Φ (see, e.g., [19]):

∇2Φ =
1
r2

∂

∂r

(
r2

∂Φ
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1

r2sin2θ

∂2Φ
∂ϕ2

= 0 inQ(t), (2.3a)

ζΦr −Φθζθ −
Φϕζϕ

sin θ
= ζζt on Σ(t), (2.3b)

(
∂Φ
∂t

+
1
2
(∇Φ)2

)
+

⎡
⎢⎣
2 + (ζθ/ζ)

2 +
(
ζϕ/(ζ sin θ)

)2
√
ζ2 + ζ2

θ
+
(
ζϕ/ sin θ

)2 − 1
ζ2 sin θ

∂

∂θ

⎛
⎜⎝ ζζθ sin θ√

ζ2+ζ2
θ
+
(
ζϕ/ sin θ

)2

⎞
⎟⎠

− 1

ζ2sin2θ

∂

∂ϕ

⎛
⎜⎝ ζζϕ√

ζ2 + ζ2
θ
+
(
ζϕ/ sin θ

)2

⎞
⎟⎠

⎤
⎥⎦ + p0(t) = 0 on Σ(t),

(2.3c)

subject to the volume conservation condition (2.2). Here, the Laplace equation (2.3a) and
the Neumann boundary condition (2.3b) constitute together the kinematic subproblem and
(2.3c) is the so-called dynamic boundary condition in which the square bracket term is the
sum of the principal curvatures [k1 + k2]. The dynamic boundary condition expresses the
pressure balance on the free surface assuming that the ullage pressure is a constant value and
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using the Bernoulli equation written for an incompressible inviscid liquid with irrotational
flow. The time-dependent function p0(t) implies the difference of the mean pressure between
liquid and gas domains caused by the surface tension.

The free-surface problem (2.3a), (2.3b), and (2.3c) requires either the initial conditions

ζ
(
θ, ϕ, 0

)
= ζ0
(
θ, ϕ
)
, Φ

(
r, θ, ϕ, 0

)
= Φ0

(
r, θ, ϕ

)
(2.4)

defining initial drop shape and velocity field or the periodicity condition ζ(θ, ϕ, t) = ζ(θ, ϕ, t+
T), Φ(r, θ, ϕ, t) = Φ(r, θ, ϕ, t + T), where T = 2π/σ is a fixed period.

Following Lukovsky and Miles [24, 25], we employ the Bateman-Luke variational
formulation which states that the free-surface problem (2.3a), (2.3b), and (2.3c) follows from
the necessary extrema condition of the action

A(Φ, ζ) =
∫ t2

t1

BL(Φ, ζ)dt (2.5)

within arbitrary instants t1 and t2 (t1 < t2) and independent variables ζ and Φ restricted to

δΦ|t1,t2 = 0, δζ|t1,t2 = 0, (2.6)

where the Lagrangian reads as

BL(Φ, ζ) = −
∫

Q(t)

(
∂Φ
∂t

+
1
2
(∇Φ)2

)
dQ − |Σ(t)| − p0

(∫

Q(t)
dQ − Vl

)
. (2.7)

Here, |·| defines the area and p0 is the Lagrangemultiplier (a time-dependent function) caused
by the holonomic constraint (2.2).

The Bateman-Luke variational principle is based on the sum of the pressure-integral
and potential energy associated with the surface tension. In addition, there is the Lagrange
multiplier p0 which is the same as the mean pressure difference. Equivalence of the Bateman-
Luke variational formulation and free-surface problems in fluid dynamics is, for instance,
proven in [24, 25] and the book by Berdichevsky [35].

3. Linear Eigensolution and Natural Modes

Let us consider small-amplitude drop oscillations with respect to its static spherical shape by
linearizing the volume conservation as well as kinematic (2.3b) and dynamic (2.3c) boundary
conditions in terms of Φ and ξ. The linearized volume conservation condition (2.2) takes the
form

∫2π

0

∫π

0
ξ sin θdθdϕ = 0, (3.1)



ISRN Mathematical Physics 5

but the linearized boundary conditions

∂Φ
∂r

=
∂ξ

∂t
,

∂Φ
∂t

+

{
−2ξ −

(
1

sin θ
∂

∂θ

[
sin θ

∂ξ

∂θ

]
+

1

sin2θ

∂2ξ

∂ϕ2

)}
= 0 (r = 1) (3.2)

can be combined to exclude ξ as follows:

∂2Φ
∂t2

−
{
2
∂Φ
∂r

+
∂

∂r

[
1

sin θ
∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1

sin2θ

∂2Φ
∂ϕ

]}
= 0 (r = 1). (3.3)

Postulating Φ(r, θ, ϕ, t) = φ(r, θ, ϕ) exp(iσt) where σ is the so-called natural (linear
eigen) frequency leads to the spectral boundary problem

∇2φ = 0 (r < 1),
∫2π

0

∫π

0

∂φ

∂r

∣∣∣∣
r=1

sin θdθdϕ = 0,

−σ2φ =

{
2
∂φ

∂r
+

∂

∂r

[
1

sin θ
∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

sin2θ

∂2φ

∂ϕ2

]}
(r = 1)

(3.4)

with respect to spectral parameter σ2 and eigenfunction φ.
The spectral boundary problem (3.4) can be solved by separating the spatial variables

φ(r, θ, ϕ) = Y lm(r, θ, ϕ) = rlYlm(θ, ϕ), l ≥ 0 which leads to the equation

1
sin θ

∂

∂θ

(
sin θ

∂Ylm

∂θ

)
+

1

sin2θ

∂2Ylm

∂ϕ
= −l(l + 1)Ylm. (3.5)

The analytical eigensolution follows from (3.5) and consists of the eigenfrequencies

σ2 = σ2
lm = l(l − 1)(l + 2), l = 0, 1, . . . , m = 0, . . . , l (3.6)

and the eigenfunctions

φlm = Y lm

(
r, θ, ϕ

)
= Nlmr

lP
(m)
l (cos θ)

{
cosmϕ,
sinmϕ,

Nlm =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
(2l + 1)(l −m)!
4π(l +m)!

, m = 0,

√
(2l + 1)(l −m)!
2π(l +m)!

, m ≥ 1,

(3.7)

where P (m)
l

are the associated Legendre polynomials.
Four eigenfunctions with l = 0 and 1 imply the zero eigenfrequencies and, from the

physical point of view, these eigenfunctions do not belong to the set of natural modes by Lord
Rayleigh [14, 15]. The case l = 1 withm = 0 gives φ10 = z = r cos θ that describes a translatory



6 ISRN Mathematical Physics

drop motion (as a solid body) along Oz, but l = 1 and m = 1 yield y = r sin θ sinϕ and
x = r sin θ cosϕ describing the same translatory motions but along Oy and Ox, respectively.
The case l = 0 corresponds to φ00 = 1/2

√
π . Excluding these four eigenfunctions, that is,

concentrating on the Rayleigh solution, makes the functional basis (3.7) incomplete from the
mathematical point of view [36, 37].

4. Nonlinear Modal Equations

The Lukovsky-Miles multimodal method suggests the modal solution of the free-surface
problem (2.3a), (2.3b), and (2.3c) as follows:

ζ
(
θ, ϕ, t

)
= 1 +

∑
I

βI(t)fI
(
θ, ϕ
)
, Φ

(
r, θ, ϕ, t

)
=
∑
N

FN(t)φN

(
r, θ, ϕ

)
, (4.1)

where {fI} and {φN} are the complete sets of functions to define admissible shapes Q(t)
satisfying the volume conservation condition and approximating the velocity field, respec-
tively. Dealing with the star-shaped domains Q(t), the solid harmonics (3.7) provide the
completeness [36, 37] so that we can write down

φl = Nl0r
lPl(cos θ), l ≥ 0,

φlm,c = φlm(r, θ) cosmϕ = Nlmr
lP

(m)
l (cos θ) cosmϕ, l ≥ 1, m = 1, . . . , l,

φlm,s = φlm(r, θ) sinmϕ = Nlmr
lP

(m)
l (cos θ) sinmϕ, l ≥ 1, m = 1, . . . , l,

(4.2a)

fl = Nl0Pl(cos θ), l ≥ 0,

flm,c = flm(θ) cosmϕ = NlmP
(m)
l (cos θ) cosmϕ, l ≥ 1, m = 1, . . . , l,

flm,s = flm(θ) sinmϕ = NlmP
(m)
l (cos θ) sinmϕ, l ≥ 1, m = 1, . . . , l.

(4.2b)

This transforms the modal solution (4.1) to the form

ζ
(
θ, ϕ, t

)
= 1 +

∞∑
l=0

βl(t)fl(θ) +
∞∑
l=1

l∑
m=1

(
βc,lm(t) cosmϕ + βs,lm(t) sinmϕ

)
flm(θ), (4.3a)

Φ
(
r, θ, ϕ, t

)
=

∞∑
l=0

Fl(t)φl(r, θ) +
∞∑
l=1

l∑
m=1

(
Fc,lm(t) cosmϕ + Fs,lm(t) sinmϕ

)
φlm(r, θ). (4.3b)

Accounting for (4.3a) in (2.2) gives the holonomic constraint

2
√
πβ0 +

∞∑
i=0

β2i +
∞∑
l=1

l∑
m=1

(
β2c,lm + β2s,lm

)
+ G̃3

(
βi, βc,lm, βs,lm

)
= 0, (4.4)
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where G̃3 implies the cubic, fourth, and so forth polynomial terms. Using the implicit function
theorem resolves β0 as follows:

β0 = G
(
βi, βc,lm, βs,lm, i ≥ 1, l ≥ 1

)
= − 1

2
√
π

[∑
i=1

β2i +
∞∑
l=1

l∑
m=1

(
β2c,lm + β2s,lm

)]

− 1
2
√
π
G3
(
βi, βc,lm, βs,lm, i ≥ 1, l ≥ 1

)
(4.5)

(G3 also denotes the cubic and other higher-order polynomial terms in β∗) and transforms
(4.3a) to the form

ζ
(
θ, ϕ, t

)
= 1 − 1

4π

( ∞∑
i=1

β2i +
∞∑
l=1

l∑
m=1

(
β2c,lm + β2s,lm

)
+G3

)
+

∞∑
l=1

βl(t)fl(θ)

+
∞∑
l=1

l∑
m=1

(
βc,lm(t) cosmϕ + βs,lm(t) sinmϕ

)
flm(θ)

(4.6)

defining the free surface as a function of βi, βc,lm, βs,lm, i ≥ 1, l ≥ 1. Representation (4.6)
automatically satisfies the volume conservation condition and, as a consequence, the Lagrange
multiplier in (2.7) should equal to zero, that is, p0 = 0.

The generalized velocity F0 can also be excluded from consideration due to the identity

2
3
√
π

∫ t2

t1

δḞ0dt =
2
3
√
π[δF0(t2) − δF0(t1)] = 0, (4.7)

provided by (2.6) or, more precisely, by

δβi(t1) = δβi(t2) = δβc,lm(t1) = δβc,lm(t2) = δβs,lm(t1) = δβs,lm(t2) = δFi(t1) = δF(t2)

= δFc,lm(t1) = δFc,lm(t2) = δFs,lm(t1) = δFs,lm(t2) = 0.
(4.8)

Substituting (4.3b) into (2.7) yields the Lagrangian as a function of generalized
coordinates and velocities

BL = −
∞∑
i=1

AiḞi −
∞∑
l=1

l∑
m=1

Ac,lmḞc,lm −
∞∑
l=1

l∑
m=1

Ac,lmḞc,lm − 1
2

∞∑
n,k=1

An,kFnFk

− 1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

A(c,l1m1),(c,l2m2)F(c,l1m1)F(c,l2m2)

− 1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

A(s,l1m1),(s,l2m2)F(s,l1m1)F(s,l2m2)
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−
∞∑

l1,l2=1

l1,l2∑
m1,m2=1

A(c,l1m1),(s,l2m2)F(c,l1m1)F(s,l2m2) −
∞∑
n=1

∞∑
l=1

l∑
m=1

An,(s,lm)FnF(s,lm)

−
∞∑
n=1

∞∑
l=1

l∑
m=1

An,(c,lm)FnF(c,lm) − TS = 0,

(4.9)

where

An =
∫

Q(t)
φndQ =

∫2π

0

∫π

0

∫ ζ

0
φnr

2 sin θdr dθ dϕ, (4.10a)

Ac,lm =
∫

Q(t)
φlm cos

(
mϕ
)
dQ =

∫2π

0

∫π

0

∫ ζ

0
φlm cos

(
mϕ
)
r2 sin θdr dθ dϕ, (4.10b)

As,lm =
∫

Q(t)
φlm sin

(
mϕ
)
dQ =

∫2π

0

∫π

0

∫ ζ

0
φlm sin

(
mϕ
)
r2 sin θdr dθ dϕ, (4.10c)

An,k = Ak,n =
∫

Q(t)

(∇φn · ∇φk

)
dQ =

∫2π

0

∫π

0

∫ ζ

0

(∇φn · ∇φk

)
r2 sin θdr dθ dϕ, (4.11a)

An,(c,lm) = A(c,lm),n =
∫

Q(t)

(∇φn · ∇
[
φlm cosmϕ

])
dQ

=
∫2π

0

∫π

0

∫ ζ

0

(∇φn · ∇
[
φlm cosmϕ

])
r2 sin θdr dθ dϕ,

(4.11b)

An,(s,lm) = A(s,lm),n =
∫

Q(t)

(∇φn · ∇
[
φlm sinmϕ

])
dQ

=
∫2π

0

∫π

0

∫ ζ

0

(∇φn · ∇
[
φlm sinmϕ

])
r2 sin θdr dθ dϕ,

(4.11c)

A(c,l1m1),(s,l2m2) = A(s,l2m2),(c,l1m1) =
∫

Q(t)

(∇[φl1m1 cosm1ϕ
] · ∇[φl2m2 sinm2ϕ

])
dQ

=
∫2π

0

∫π

0

∫ ζ

0

(∇[φl1m1 cosm1ϕ
] · ∇[φl2m2 sinm2ϕ

])
r2 sin θdr dθ dϕ,

(4.11d)

A(c,l1m1),(c,l2m2) = A(c,l2m2),(c,l1m1) =
∫

Q(t)

(∇[φl1m1 cosm1ϕ
] · ∇[φl2m2 cosm2ϕ

])
dQ

=
∫2π

0

∫π

0

∫ ζ

0

(∇[φl1m1 cosm1ϕ
] · ∇[φl2m2 cosm2ϕ

])
r2 sin θdr dθ dϕ,

(4.11e)
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A(s,l1m1),(s,l2m2) = A(s,l2m2),(s,l1m1) =
∫

Q(t)

(∇[φl1m1 sinm1ϕ
] · ∇[φl2m2 sinm2ϕ

])
dQ

=
∫2π

0

∫π

0

∫ ζ

0

(∇[φl1m1 sinm1ϕ
] · ∇[φl2m2 sinm2ϕ

])
r2 sin θdr dθ dϕ,

(4.11f)

TS =
∫

Σ(t)
dS =

∫2π

0

∫π

0
ζ

√
ζ2 + ζ2

θ
+

ζ2ϕ

sin2θ
sin θdθdϕ. (4.12)

Performing a variation of independent generalized velocities Fi, Fc,lm, Fs,lm, i ≥ 1, l ≥ 1
in the action (2.5)within the Lagrangian (4.9) leads to the equations

dAn

dt
=

∞∑
k=1

An,kFk +
∞∑
k=1

k∑
m=1

(
An,(c,km)Fc,km +An,(s,km)Fs,km

)
, n ≥ 1, (4.13a)

dAc,lm

dt
=

∞∑
k=1

A(c,lm),kFk +
∞∑
k=1

k∑
n=1

(
A(c,lm),(c,kn)Fc,kn +A(c,lm),(s,kn)Fs,kn

)
, (4.13b)

dAs,lm

dt
=

∞∑
k=1

A(s,lm),kFk +
∞∑
k=1

k∑
n=1

(
A(s,lm),(c,kn)Fc,kn +A(s,lm),(s,kn)Fs,kn

)
, (4.13c)

(l ≥ 1, m = 1, . . . , l). Derivations leading to (4.13a), (4.13b), and (4.13c) are quite tedious but,
under certain circumstances, these are similar to those in [24, 25] for sloshing problems.

The differentiation rule

dAn

dt
=

∞∑
i=1

∂An

∂βi
β̇i +

∞∑
l=1

l∑
m=1

(
∂An

∂βc,lm
β̇c,lm +

∂An

∂βs,lm
β̇s,lm

)
, (4.14a)

dAc,lm

dt
=

∞∑
i=1

∂Ac,lm

∂βi
β̇i +

∞∑
j=1

j∑
n=1

(
∂Ac,lm

∂βc,jn
β̇c,jn +

∂Ac,lm

∂βs,jn
β̇s,jn

)
, (4.14b)

dAs,lm

dt
=

∞∑
i=1

∂As,lm

∂βi
β̇i +

∞∑
j=1

j∑
n=1

(
∂As,jn

∂βc,jn
β̇c,jn +

∂As,lm

∂βs,jn
β̇s,jn

)
, (4.14c)

shows that (4.13a), (4.13b), and (4.13c) is a system of nonlinear ordinary differential equa-
tions with respect to generalized coordinates where the mass-matrix depends on β∗. On the
other hand, relations (4.13a), (4.13b), and (4.13c) can be considered as a system of algebraic
equations with respect to generalized velocities Fi, Fc,lm, Fs,lm, i ≥ 1, l ≥ 1, where An,k are
nonlinear functions of generalized coordinates βi, βc,lm, βs,lm, i ≥ 1, l ≥ 1 but the left-hand side
dAn/dt, dAc,lm/dt, dAs,lm/dt implies expressions with respect to generalized coordinates βi,
βc,lm, βs,lm, i ≥ 1, l ≥ 1 and their first derivative. Equations (4.13a), (4.13b), and (4.13c) are
interpreted as kinematic equations or a nonholonomic constraint.
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The Euler-Lagrange equations follow from the extrema condition of the action with
respect to generalized coordinates βi, βc,lm, βs,lm, i ≥ 1, l ≥ 1. They are often called the dynamic
modal equations and take the form

∞∑
n=1

∂An

∂βμ
Ḟn +

∞∑
l=1

l∑
m=1

(
∂Ac,lm

∂βμ
Ḟc,lm +

∂Ac,lm

∂βμ
Ḟc,lm

)
+
1
2

∞∑
n,k=1

∂An,k

∂βμ
FnFk

+
∞∑

n,l=1

l∑
m=1

Fn

(
∂An,(c,lm)

∂βμ
Fc,lm +

∂An,(s,lm)

∂βμ
Fs,lm

)

+
∞∑

l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fs,l2m2

∂A(c,l1m1),(s,l2m2)

∂βμ

+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fc,l2m2

∂A(c,l1m1),(c,l2m2)

∂βμ

+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fs,l1m1Fs,l2m2

∂A(s,l1m1),(s,l2m2)

∂βμ
+
∂TS

∂βμ
= 0, μ ≥ 1,

(4.15a)

∞∑
n=1

∂An

∂βc,μν
Ḟn +

∞∑
l=1

l∑
m=1

(
∂Ac,lm

∂βc,μν
Ḟc,lm +

∂Ac,lm

∂βc,μν
Ḟc,lm

)
+
1
2

∞∑
n,k=1

∂An,k

∂βc,μν
FnFk

+
∞∑

n,l=1

l∑
m=1

Fn

(
∂An,(c,lm)

∂βc,μν
Fc,lm +

∂An,(s,lm)

∂βc,μν
Fs,lm

)

+
∞∑

l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fs,l2m2

∂A(c,l1m1),(s,l2m2)

∂βc,μν

+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fc,l2m2

∂A(c,l1m1),(c,l2m2)

∂βc,μν

+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fs,l1m1Fs,l2m2

∂A(s,l1m1),(s,l2m2)

∂βc,μν
+

∂TS

∂βc,μν
= 0, μ ≥ 1, n = 1, . . . , μ,

(4.15b)

∞∑
n=1

∂An

∂βs,μν
Ḟn +

∞∑
l=1

l∑
m=1

(
∂Ac,lm

∂βs,μν
Ḟc,lm +

∂Ac,lm

∂βs,μν
Ḟc,lm

)
+
1
2

∞∑
n,k=1

∂An,k

∂βs,μν
FnFk

+
∞∑

n,l=1

l∑
m=1

Fn

(
∂An,(c,lm)

∂βs,μν
Fc,lm +

∂An,(s,lm)

∂βs,μν
Fs,lm

)

+
∞∑

l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fs,l2m2

∂A(c,l1m1),(s,l2m2)

∂βs,μν
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+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fc,l1m1Fc,l2m2

∂A(c,l1m1),(c,l2m2)

∂βs,μν

+
1
2

∞∑
l1,l2=1

l1,l2∑
m1,m2=1

Fs,l1m1Fs,l2m2

∂A(s,l1m1),(s,l2m2)

∂βs,μν
+

∂TS

∂βs,μν
= 0, μ ≥ 1, n = 1, . . . , μ.

(4.15c)

The derivative by β∗ is done assuming that (4.6) accounts for the volume conservation
condition so that, for instance,

∂TS

∂βμ
=
∫2π

0

∫π

0
(k1 + k2)ζ2

[
fμ − 1

2π
βμ − 1

4π
∂G3

∂βμ

]
sin θdθ dϕ

=
∫

Σ(t)

ζ(k1 + k2)√
ζ2 + ζ2θ +

(
ζϕ/ sin θ

)2

[
fμ − 1

2π
βμ − 1

4π
∂G3

∂βμ

]
dS,

(4.16a)

∂TS

∂βc,μν
=
∫2π

0

∫π

0
(k1 + k2)ζ2

[
fμν cos

(
νϕ
) − 1

2π
βc,μν − 1

4π
∂G3

∂βc,μν

]
sin θdθ dϕ

=
∫

Σ(t)

ζ(k1 + k2)√
ζ2 + ζ2

θ
+
(
ζϕ/ sin θ

)2

[
fμν cos

(
νϕ
) − 1

2π
βc,μν − 1

4π
∂G3

∂βc,μν

]
dS,

(4.16b)

∂TS

∂βs,μν
=
∫2π

0

∫π

0
(k1 + k2)ζ2

[
fμν sin

(
νϕ
) − 1

2π
βs,μν − 1

4π
∂G3

∂βs,μν

]
sin θdθ dϕ

=
∫

Σ(t)

ζ(k1 + k2)√
ζ2 + ζ2

θ
+
(
ζϕ/ sin θ

)2

[
fμν sin

(
νϕ
) − 1

2π
βs,μν − 1

4π
∂G3

∂βs,μν

]
dS.

(4.16c)

In summary, the Lukovsky-Miles modal equations (4.13a), (4.13b), (4.13c), (4.15a),
(4.15b), and (4.15c) constitute an infinite-dimensional system of nonlinear ordinary differen-
tial equations with respect to generalized coordinates and velocities. A direct Runge-Kutta
simulation with this system (Perko-type method [25, 26]) is possible adopting appropriate
initial conditions following from (2.4). However, when the goal consists of analytical studies
and/or description of almost-periodic motions, it would be better to reduce the system to
a simpler approximate form by postulating asymptotic relationships between generalized
coordinates and velocities and neglecting the higher-order terms. The reduced (asymptotic)
modal system may in particular cases possess a finite-dimensional form.

5. Weakly-Nonlinear Modal Equations for
Axisymmetric Drop Motions

For the axisymmetric drop dynamics, the velocity potential takes the form

Φ
(
r, θ, ϕ, t

)
=

∞∑
l=1

Fl(t)φl(r, θ) (5.1)
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and the free-surface equation is as follows:

ζ
(
θ, ϕ, t

)
= 1 − 1

4π

⎛
⎝

∞∑
i=1

β2i +
1
3

∞∑
i,j,k=1

Λ(3)
ijkβiβjβk +G5

⎞
⎠ +

∞∑
l=1

βl(t)fl(θ), (5.2)

where

Λ(3)
ijm = 2π

∫π

0
fifjfm sin θdθ =

1
2

√
(2i + 1)

(
2j + 1

)

π(2m + 1)

(
Cm0

i0,j0

)2
(5.3)

and Cm0
i0,j0 are the Clebsch-Gordan coefficients [38].
Henceforth, adopting ideas from [27, 32], we will construct a weakly-nonlinear, third-

order modal equations by postulating the relationships

βl ∼ Fl = O
(
ε1/3
)
, ε 
 1, (5.4)

and neglecting the o(ε)-terms in the Lukovsky-Miles modal equations (4.13a), (4.13b),
(4.13c), (4.15a), (4.15b), and (4.15c).

Accounting for (4.14a), kinematic modal equations (4.13a) read as

∞∑
i=1

∂An

∂βi
β̇i =

∞∑
k=1

AnkFk, n ≥ 1, (5.5)

where neglecting the o(ε)-terms implies that ∂An/∂βi and Ank keep only the second-order
polynomial quantities, that is,

∂An

∂βi
= δni + (2 + n)

∞∑
j=1

Λ(3)
nijβj +

(n + 1)(n + 2)
2

∞∑
j,k=1

Λ(4)
nijkβjβk

− 2 + n

4π

⎡
⎣δni

∞∑
j=1

β2j + 2βiβn

⎤
⎦ = δni +

∞∑
j=1

χ
(1)
n,i,jβj +

∞∑
j,k=1

χ
(2)
n,i,jkβjβk,

(5.6)

Ank = nδnk +
∞∑
j=1

[
nkΛ(3)

knj
+ Λ(−3)

nk,j

]
βj +

n + k

2

∞∑
i,j=1

[
nkΛ(4)

knij
+ Λ(−4)

nk,ij

]
βiβj

− n(n + k + 1)
4π

δnk
∞∑
j=1

β2j = nδnk +
∞∑
j=1

(1)∏
nk,j

βj +
∞∑

i,j=1

(2)∏
nk,ij

βiβj .

(5.7)
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Here, Λ(3)
ijk is defined by (5.3) and Λ(4)

ijkm is also expressed via the Clebsch-Gordan coefficients

Λ(4)
ijkm

= 2π
∫π

0
fifjfkfm sin θdθ

=

√
(2i + 1)

(
2j + 1

)
(2k + 1)(2m + 1)

4π

min(i+j,k+m)∑

n=max(|i−j|,|k−m|)

1
2n + 1

(
Cn0

i0,j0 · Cn0
k0,m0

)2
.

(5.8)

Furthermore,

Λ(−2)
nk = 2π

∫π

0

∂fn
∂θ

∂fk
∂θ

sin θdθ = n(n + 1)δnk,

Λ(−3)
in,k

= 2π
∫π

0

∂fi
∂θ

∂fn
∂θ

fk sin θdθ = −1
2

√
i(i + 1)(2i + 1)n(n + 1)(2n + 1)

π(2k + 1)
Ck0

i0,n0C
k0
i(−1),n1,

Λ(−4)
in,kj = 2π

∫π

0

∂fi
∂θ

∂fn
∂θ

fkfj sin θdθ =
1
4π

√
i(i + 1)(2i + 1)n(n + 1)(2n + 1)

×
√
k(k + 1)(2k + 1)j

(
j + 1
)(
2j + 1

) min(i+n,k+j)∑

m=max(|i−n|,|k−j|)
1

2m + 1
Cm0

i0,n0C
m0
i(−1),n1C

m0
k0,j0C

m0
k(−1),j1.

(5.9)

Kinematic equations (5.5) can be considered as linear algebraic equations with respect
to Fk whose asymptotic solution (neglecting o(ε)) should admit the form

Fl =
β̇l
l
+

∞∑
i,j=1

V
(2)
l,i,j β̇iβj +

∞∑
i,j,k=1

V
(3)
l,i,j,kβ̇iβjβk, l ≥ 1. (5.10)

Substituting (5.10) into (5.5) and gathering all the similar polynomial terms give

V
(2)
n,i,j =

χ
(1)
n,i,j −Π(1)

ni,j/i

n
, V

(3)
n,i,j,k

=
χ
(2)
n,i,j,k

−Π(2)
ni,jk

/i −∑∞
l=1 V

(2)
l,i,j

Π(1)
nl,k

n
. (5.11)

For the axisymmetric drop dynamics, the dynamic modal equations (4.15a), (4.15b),
and (4.15c) take the form

∞∑
n=1

∂An

∂βμ
Ḟn +

1
2

∞∑
n,k=1

∂An,k

∂βμ
FnFk +

∂TS

∂βμ
= 0, μ ≥ 1. (5.12)
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Pursuing the announced weakly-nonlinear theory, we should employ (5.6), (5.7) and expand
(4.16a) up to the third-order polynomial terms, that is,

∂TS

∂βμ
= 2π

∫π

0
ζ2 sin θ

⎛
⎜⎝2 + (ζθ/ζ)

2

√
ζ2ζ2θ

− 1
ζ2 sin θ

∂

∂θ

⎛
⎜⎝ζζθ sin θ√

ζ2ζ2θ

⎞
⎟⎠

⎞
⎟⎠

×
⎡
⎣fμ − 1

2π
βμ − 1

4π

∞∑
i,j=1

Λijμβiβj

⎤
⎦dθ

= 2π
∫π

0
(2 + 2ξ)

⎡
⎣fμ − 1

2π
βμ − 1

4π

∞∑
i,j=1

Λijμβiβj

⎤
⎦ sin θdθ + 2π

∫π

0

[
ξθ − 1

2
ξ3θ

]
∂fμ

∂θ
sin θdθ

=
(
μ + 2

)(
μ − 1

)
βμ +

∞∑
i,j=1

T
(2μ)
ij βiβj +

∞∑
i,j,k=1

T
(3μ)
i,j,k

βiβjβk,

(5.13)

where

T
(2μ)
ij = −2Λ(3)

ijμ, T
(3μ)
i,j,k = −1

2
Λ(−4θ)

ijkμ +
1
π
δiμδjk, Λ(−4θ)

ijkμ = 2π
∫π

0

∂fi
∂θ

∂fj

∂θ

∂fk
∂θ

∂fμ

∂θ
sin θdθ.

(5.14)

Substituting (5.6), (5.7), (5.10), and (5.13) into (5.12) and neglecting the o(ε)-terms
yield the following weakly-nonlinear modal equations:

∞∑
i=1

⎡
⎣δμi +

∞∑
j=1

d
1,μ
i,j βj +

∞∑
j,k=1

d
2,μ
i,j,k

βjβk

⎤
⎦β̈i +

∞∑
n,k=1

[
t
0,μ
n,k

+
∞∑

m=1

t
1,μ
n,k

βm

]
β̇nβ̇k + σ2

μβμ

+
∞∑

i,j=1

[
μT

2μ
ij

]
βiβj +

∞∑
i,j,k=1

[
μT

3μ
i,j,k

]
βiβjβk = 0, μ ≥ 1,

(5.15)

where σμ = σμ0 are the nondimensional frequencies (3.6) and

d
1,μ
i,j = μ

⎡
⎣χ

(1)
i,μ,j

i
+ V

(2)
μ,i,j

⎤
⎦, d

2,μ
i,j,k = μ

⎡
⎣χ

(2)
i,μ,j,k

i
+

∞∑
α=1

χ
(1)
α,μ,jV

(2)
α,i,k + V

(3)
μ,i,j,k

⎤
⎦,

t
0,μ
n,k = μ

⎡
⎣V (2)

μ,n,k +
Π(1)

nk,μ

nk

⎤
⎦,

t
1,μ
n,k,m

= μ

⎡
⎣V (3)

μ,n,k,m +
Π(2)

nk,μm

nk
+

∞∑
α=1

⎛
⎝χ

(1)
α,μ,mV

(2)
α,n,k

+
Π(1)

αk,μ
V

(2)
α,n,m

k
+
Π(1)

αn,μV
(2)
α,k,m

n

⎞
⎠
⎤
⎦.

(5.16)
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We see that the weakly-nonlinear modal equations (5.15) constitute an infinite-dimen-
sional system of ordinary differential equations (with respect to generalized coordinates βn)
that are not resolved relative to the highest derivative. Again, one can use (5.15) for direct
numerical simulations (see, e.g., [32]). However, as in [27] and other analytical papers on
sloshing, the derived weakly-nonlinear modal equations can reduce to a finite-dimensional
form by employing a Duffing-type asymptotics. Using this asymptotics in sloshing problems
implicitly suggests that we look for almost-periodic solutions with the frequency close to the
lowest natural frequency of the mechanical system. For the studied case within no external
excitations, these periodic solutionsmean the nonlinear eigenoscillations of a freely-levitating
drop.

6. Nonlinear Axisymmetric Eigenoscillation

We consider almost-periodic oscillations of an axisymmetric drop with the frequency σ close
to the lowest linear eigenfrequency (natural frequency) σ20 subject to the Duffing-type third-
order asymptotics implying the dominant character of the primary generalized coordinate
β2 = O(ε1/3). Analyzing the nonzero coefficients in (5.15) shows that this asymptotics yields

β2 = O
(
ε1/3
)
, β4 = O

(
ε2/3
)
, β6 = O(ε), βl = o(ε), l /= 2, 4, 6 (6.1)

so that neglecting the o(ε)-terms in (5.15) leads to the finite-dimensional system of nonlinear
modal equations

β̈2 + σ2
2β2 + d1β̈2β4 + d2β̈4β2 + d3β̇2β̇4 + d4β̈2β

2
2 + d5β̇

2
2β2 + t1β

2
2 + t2β2β4 + t3β

3
2

+ c1β̈2β2 + c2β̇
2
2 = 0,

(6.2a)

β̈4 + σ2
4β4 + d6β̈2β2 + d7β̇

2
2 + t4β

2
2 + t5β2β4 + c3β̈4β2 + c4β̇4β̇2 = 0, (6.2b)

β̈6 + σ2
6β6 + d8β̈2β4 + d9β̈4β2 + d10β̇4β̇2 + d11β̈2β

2
2 + d12β̇

2
2β2 + t6β2β4 + t7β

3
2 = 0, (6.2c)

where σ2 = σ20, σ4 = σ40, σ6 = σ60 and

d1 =
24

4
√
π
, d2 =

15
14
√
π
, d3 =

75
14
√
π
, d4 = − 67

98π
, d5 = − 585

196π
,

d6 =
15

7
√
π
, d7 = − 9

7
√
π
, d8 =

105
√
65

286
√
π
, d9 =

30
√
65

143
√
π
, d10 = − 75

√
65

143
√
π
,

d11 =
135

√
65

1001π
, d12 =

135
√
65

2002π
; t1 = − 4

√
5

7
√
π
, t2 = − 24

7
√
π
, t3 = − 76

7π
,

t4 = − 24
7
√
π
, t5 = −160

√
5

77
√
π
, t6 = −180

√
65

143
√
π
, t7 =

540
√
65

143π
; c1 =

9
√
5

14
√
π
,

c2 =
4
√
5

7
√
π
, c3 =

75
√
5

154
√
π
, c4 =

185
√
5

154
√
π
.

(6.3)

Other modal equations in (5.15) do not include nonlinear terms.
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To construct a periodic asymptotic solution of (6.2a), (6.2b), and (6.2c) we assume, as
usually [26], the asymptotic closeness condition between σ and σ2:

σ − σ2

σ2
= O
(
ε2/3
)

(6.4)

(the nonlinear eigenfrequency σ is unknown). The wanted periodic solution takes then the
form

β2 = A cos(σt) +A2(E1 + E2 cos(2σt)) +O
(
A3
)
,

β4 = A2(E3 + E4 cos(2σt)) +O
(
A3
)
, β6 = O

(
A3
)
, A = O

(
ε1/3
)
,

(6.5)

where A is the unknown dominant amplitude and substituting (6.5) into (6.2a) and (6.2b)
and accounting for (6.4) give

E1 =
−t1 + (c1 − c2)σ2

2σ2
2

=
−t1 + (c1 − c2)σ2

2

2σ2
2

+O
(
A2
)
, (6.6a)

E2 =
−t1 + (c1 + c2)σ2

2
(
σ2
2 − 4σ2

) =
t1 − (c1 + c2)σ2

2

6σ2
2

+O
(
A2
)
, (6.6b)

E3 =
−t4 + (d6 − d7)σ2

2σ2
4

=
−t4 + (d6 − d7)σ2

2

2σ2
4

+O
(
A2
)
, (6.6c)

E2 =
−t4 + (d6 + d7)σ2

2
(
σ2
4 − 4σ2

2

) =
−t4 + (d6 + d7)σ2

2

2
(
σ2
4 − 4σ2

2

) +O
(
A2
)
. (6.6d)

Gathering theA3-order terms at the first harmonics in (6.2a) and using (6.4) lead to the
secular equation to find the dependence between the normalized nonlinear eigenfrequency
(σ − σ2)/σ2 = O(ε2/3) and the nondimensional amplitude parameter A2 = O(ε2/3)

σ − σ2

σ2
+

6347
7840π

A2 = 0. (6.7)

Secular equation (6.7) determines the so-called “soft-type” spring behavior suggesting that
amplitude A increases with decreasing frequency σ.

Figure 2 compares our asymptotic result (6.7) with experimental data from [12] (see,
also [19]) where dependence between (σ − σ2)/σ2 and the maximum ratio (H/W) between
the instant drop height and width were reported. The experimental data for R0 = 0.49 cm
are denoted by •, but ◦ marks measurements made for R0 = 0.62 cm. In the lowest-order
approximation, the Legendre polynomials properties deduce that

H

W
=

1 +
√
5/(4π)A

1 − (1/2)
√
5/(4π)A

, (6.8)

where A is defined by (6.7).
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Figure 2: Theoretical ((6.8), solid line)) and experimental dependence between (σ − σ2)/σ2 (σ2 is the first
linear eigenfrequency, σ is the corresponding nonlinear eigenfrequency) and the maximum ratio between
the drop heights and width (H/W). Experimental values [12] are for R0 =0.49 cm (•) and R0 =0.62 cm (◦).
Theoretical results do not depend on R0 and Ts within the framework of an ideal incompressible liquid
model. The figure also shows numerical results from [19] (dashed line), [33] (�) and [34] (�).

Figure 2 shows that (6.8) provides a good agreement with the numerical values
from [19] (dashed line), [33] (�), and [34] (�) in which the studies were also based on
the incompressible ideal liquid model (the results do not depend on R0). Our theoretical
values are in good agreement with experimental measurements for R0 = 0.63 cm. For lower
drop radius, an qualitative agreement with experimental measurements is established. The
discrepancy can be related to viscous effects discussed, for example, in [19].

7. Concluding Remarks

The present paper gives a generalization of Lukovsky-Miles’ multimodal method and derives
the corresponding general nonlinear modal equations describing the nonlinear dynamics of
a levitating drop. The modal equations are a full analogy of the original free-surface problem
and look similar to those known for the nonlinear liquid sloshing problem [24, 25, 31].

The derived nonlinear modal equations are used to construct weakly-nonlinear
modal equations for axisymmetric drop motions. The weakly-nonlinear equations possess
a finite-dimensional form for the case of almost-periodic drop motions with the nonlinear
eigenfrequency close to the lowest linear eigenfrequency. The latter case was studied by
other authors, experimentally and numerically. To compare our analytical asymptotic results
with earlier experimental [11, 12] and numerical [19, 33, 34] results, we constructed periodic
solutions of the finite-dimensional modal system. All the results on periodic solutions from
different sources are in a good agreement.
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