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Abstract

Sloshing of an ideal incompressible liquid in a rigid truncated (tapered)
conical tank is considered when the tank performs small-magnitude oscillatory
motions with the forcing frequency close to the lowest natural sloshing
frequency. The multimodal method, the non-conformal mapping technique
and the Moiseev type asymptotics are employed to derive a finite-dimensional
system of weakly nonlinear ordinary differential (modal) equations. This
modal system is a generalization of that by Gavrilyuk et al 2005 Fluid
Dyn. Res. 37 399-429. Using the derived modal equations, we classify the
resonant steady-state wave regimes occurring due to horizontal harmonic tank
excitations. The frequency ranges are detected where the ‘planar’ and/or
‘swirling’ steady-state sloshing are stable as well as a range in which all steady-
state wave regimes are not stable and irregular (chaotic) liquid motions occur
is established. The results on the frequency ranges are qualitatively supported
by experiments by Matta E 2002 PhD Thesis Politecnico di Torino, Torino.

(Some figures may appear in colour only in the online journal)

1. Introduction

The multimodal method is a rather popular analytically approximate approach to the nonlinear
liquid sloshing problem. The method makes it possible to replace, in a rigorous mathematical
way, the original free-boundary problem by a low-dimensional system of nonlinear ordinary
differential equations (modal equations) and, thereby, it facilitates analytical studies of the
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contained liquid dynamics and associated hydrodynamic loads. Examples are reviewed in
the books by Lukovsky (1990) and Faltinsen and Timokha (2009) as well as in Ikeda and
Ibrahim (2005), Ikeda ef al (2012), Takahara and Kimura (2012) and Lukovsky et al (2012).
Along with the aforementioned low-dimensional modal systems providing analytical studies,
the literature contains computationally oriented versions of the multimodal method. The latter
versions deal with multi-dimensional modal systems of complex structure and relatively large
dimension. Normally, they are used for simulating the transient sloshing. The computationally
oriented modal equations are well represented by the fully nonlinear Perko’s systems
(see Moore and Perko 1964, Perko 1969, La Rocca et al 2000) and weakly nonlinear
adaptive multimodal systems appearing in the papers by Faltinsen er al (2006, 2011),
Limarchenko (2007), Love et al (2011), Love and Tait (2010, 2011).

The nonlinear multimodal method was originally proposed for tanks with vertical
walls at the free surface. Using the non-conformal mapping technique by Lukovsky (1975)
makes it possible to generalize the method for tanks with non-vertical walls. However,
practical examples of the generalization are rare and almost fully represented by Lukovsky
and Timokha (2002), Gavrilyuk er al (2005), Limarchenko (2007) and Faltinsen and
Timokha (2013). A reason is that the multimodal method is rather sensitive to errors
in satisfying the volume (mass) conservation condition, and, therefore, it is desirable to
have analytically approximate natural sloshing modes which exactly satisfy the Laplace
equation and the zero Neumann condition on the wetted tank walls. The required analytically
approximate natural sloshing modes have been constructed for a non-truncated circular
conical tank (Gavrilyuk et al 2005) and, recently, for a truncated circular conical tank
(Gavrilyuk et al 2008). Bearing in mind that applications normally deal with truncated conical
shapes, the constructed modes will be used in this paper to derive a seven-dimensional
asymptotic nonlinear modal system of the Moiseev type which is, in fact, a generalization
of that by Gavrilyuk et al (2005).

In section 2, we give differential and variational formulations of the problem. Applying
the multimodal method combined with the non-conformal mapping technique yields a fully
nonlinear infinite-dimensional (modal) system of nonlinear ordinary differential equations
coupling the generalized coordinates and velocities. These equations are known for upright
tanks as Perko-type modal equations (Moore and Perko 1964, Perko 1969, La Rocca
et al 2000). Section 3 shortly outlines results by Gavrilyuk et al (2008) on the analytically
approximate natural sloshing modes which are used in derivations of the Moiseev-type
(Narimanov—Moiseev) asymptotic modal equations. In section 4, the latter equations are
presented in an explicit form. Because derivation of these equations is a tedious analytical
procedure with cumbersome formulae involved, the required technical details are reported in
appendix A. Practically oriented readers do not need to follow computations of the appendix
but, alternatively, may take the numerical non-dimensional hydrodynamic coefficients
at nonlinear terms tabled for certain realistic tank proportions and liquid fillings. The
hydrodynamic coefficients at the linear terms can be found in Gavrilyuk et al (2008, 2012).

The derived Moiseev type asymptotic modal equations are used to classify the steady-
state resonant sloshing occurring due to a small-amplitude harmonic (horizontal or angular)
tank excitation. The forcing frequency is close to the lowest natural sloshing frequency.
In section 5, we construct an approximate time-periodic solution of the nonlinear modal
equations which describes the steady-state wave regimes implying ‘planar’ and ‘swirling’
motions. Based on this solution, we study the possibility of secondary resonances. In contrast
to Gavrilyuk et al (2005), these resonances depend on the two input parameters which can be
interpreted as the semi-apex angle and the non-dimensional liquid depth. When a secondary
resonance occurs, the Moiseev-type modal equations may be inapplicable. The first Lyapunov
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Figure 1. Sketch of the tapered conical container and adopted notations.

method is implemented in section 7 to distinguish stable and unstable steady-state wave
regimes. We draw the response curves and detect the frequency ranges where the steady-
state regimes are stable. The response curves are qualitatively similar to those reported by
Gavrilyuk et al (2005) for a non-truncated conical tank. Along with the stability ranges for
‘planar’ and ‘swirling’, a frequency interval is indicated where irregular (chaotic) swirling
may happen. The results on the frequency ranges are qualitatively supported by the model
tests conducted by Matta (2002).

2. Statement of the problem

We consider a rigid truncated (tapered) conical tank of the semi-apex angle 6. The tank
performs small-magnitude oscillatory motions with six degrees of freedom. These degrees
are associated with translatory tank velocity vo(¢#) = (71, 72, 773) and the angular tank motions
which could be defined by the instant angular velocity @(¢) = (74, 75, f16). The tank is partially
filled by an ideal incompressible liquid performing an irrotational flow. The liquid motions
as well as vo(#) and w(¢) are considered in the tank-fixed coordinate system Oxyz whose
origin O is superposed with the artificial cone vertex so that the Ox-axis coincides with the
symmetry axis (figure 1). The gravity acceleration vector g has the opposite direction to O'x’.

2.1. Free-boundary problem

When introducing the absolute velocity potential ®(x, y, z, t) defined in the O xyz-coordinate
system and function ¢ (x, y, z, t) implicitly defining the free surface X(¢) : ¢{(x, y,z,1) =0,
the free-boundary sloshing problem can be written in the form (see chapter 2 in Faltinsen and
Timokha 2009)

V2o =0, reQ@), )]
0P
E=v0~v+w~(rxv), resS@), 2)
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I ac /ot

E:v0~v+w-(r><v)— Vel rex@), 3)
od 1 )

¥+§|V¢| — Vo -(vg+woxr)+U =0, reX(), “4)
/ dQ = V; = const, 5)
Q)

where v is the outer normal vector, Q(¢) is the liquid domain, S(¢) = S;(t) U S is the wetted
tank surface (S, is the tank bottom and S;(z) is the wetted tank walls), r = (x, y, z) is
the radius vector, U =r - g is the gravity potential (g is the gravity acceleration vector).
Equality (5) expresses the liquid volume V; conservation which is, in addition, the necessary
solvability condition of the Neumann boundary problem (1)—(3).

The free-boundary problem (1)—(5) needs initial conditions determining the instant
free-surface pattern and the normal velocity on X(r) at t=1ty, ie. {(x,y,z,5) =
So(x,y,2), 9P/Ivl5) = Polx, ¥, Dlxw), Where fo(x, y, z) and Po(x, y, 2)|5(,) are the
two known functions. For the steady-state wave solutions, the periodicity condition should be
adopted.

2.2. The Bateman—Luke formulation

Instead of dealing with the free-boundary problem (1)—(5), the multimodal method normally
employs the Bateman—Luke variational formulation whose equivalence to the original free
surface problem is, for instance, proved in section 2.5.3.2 by Faltinsen and Timokha (2009)
and in chapter 2 by Lukovsky and Timokha (1995). According to this formulation, the solution
(® and ¢) coincides with the extrema points of the action

5]
A(§,¢)=/ (/ [P—Po]dXdydz)dt (6)
1 o)
for arbitrary #; and 1, (f; < t,) subject to the variations satisfying
5(1)|th,2 = 07 5§|Z],Iz =0. (7)

The pressure field p(x, y, z, t) can be determined by using the Bernoulli equation rewritten
in the non-inertial coordinate system Oxyz as follows:
P 1 P— Do

— + - |VOPP =V (vy+oxr)+U =—"—"""—, 3
a2 0

where py is the ullage pressure and p is the liquid density.

2.3. General modal equations

The Bateman—Luke variational formulation was extensively used by many authors to derive
nonlinear modal equations for upright tanks (the tanks having vertical walls at the free
surface) when the single-valued presentation of ¥(¢): ¢ =x — f(y, z,t) =0 is possible.
The derivation assumed that f is expanded in a Fourier series with the time-dependent
coefficients {8y ()} playing the role of the generalized coordinates. For non-vertical walls,
the Fourier representation is impossible and, therefore, we have to introduce the generalized
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coordinates implicitly

¢=¢x, y, z {Bn (D} &)

subject to the volume conservation condition (5) considered as a holonomic constraint.
We introduce the modal representation of the velocity potential

oo
O(x,y,2,0) =00 r+0-Qx, y,2, {Bv(ON+ Y Fy(Den(x,y,2),  (10)
N=1
where {py} is a complete set of linearly independent harmonic functions defined in Q(¢) for
any admissible instant liquid shapes, = (€21, 2;, €23) are the Stokes—Joukowski potentials
which are parametrically dependent functions of By as being the solution of the Neumann
boundary value problem

a2 o
V2Q =0in Q(), — =yv.—2v,, —— =zV, —xV,,
av av
0823
a—z)cvv—yv)C on X(H)US(t). an
b )

Here, v; are the projections of the outer normal on the coordinate axes and {Fy(¢)} play
the role of the generalized velocities. The Fourier-type solution (10) should keep the volume
(mass) conservation that requires {¢y} to exactly satisfy the Laplace equation and the zero-
Neumann boundary condition on the wetted tank surface.

Because ¢ and @ are independent variables in the Bateman-Luke formulation, the
generalized coordinates {8y} and velocities { Fy} are also independent and, due to (7), satisfy
the condition § Fy |;=s, ., = 8BN|t=1,., = 0. Substituting (10) into (6) and varying Fy (Faltinsen
and Timokha (2009), chapter 5) leads to the kinematic modal equations

dg% = %BK =Y AykFg forall N. (12)
K K
Following the derivations in (Faltinsen and Timokha (2009), pp 301-3) leads to the dynamic
modal equations

Ak . 1 < 9A a1 A
Z KFK+—Z KLFkFL+(wxv0—g)-———wiw

< 9Bw 2 47 9B i 2 i
) 1 l d al
+Q.<a—w_af‘">+w<a C"[——af”t)=0 for all N. (13)
B 9B 0B dr 9p;

The modal equations (12) and (13) are formulated with respect to the aforementioned
generalized coordinates and velocities, where

AN=/ o dO, ANK=/ (Vox - Vox) Q.
Q) o)

h =/ xdQ, lz=/ ydo, l3=/ zdQ, (14)
0 0 0
02 02
lszp/ 2, dQ, lsz:)O/ _kde ‘Iz; :p/ Q,—de,
0 ow 0t so+x@ 0t
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Figure 2. The physical and transformed meridional cross-sections.

Jl'] =JL i j.k=1,2,3 are implicitly defined nonlinear functions of generalized

Ji?
coordinates By (the time evolution of Q(¢) is fully determined by (9)). Here, J' is the inertia
tensor of the contained liquid, //V; is the dynamic liquid mass center, but the vectors /,, and

1,,; have no a clear physical interpretation.

3. Analytically approximate natural sloshing modes

Normally, the functional set {¢y} in (10) is associated with the natural sloshing modes which
are the eigenfunctions of the spectral boundary problem

] ]

3 . ¢

V=0, reQo, res, —=ko, re, / a—‘pdszo (15)
ov av 5, OV

formulated in the hydrostatic (mean) liquid domain Q¢ bounded by the hydrostatic free
surface ¥ and the mean wetted tank surface S.

A mathematical inconsistency is that the natural sloshing modes are defined in the
unperturbed domain Q but, to make the integrals (14) mathematically correct, the multimodal
method requires the eigensolution of (15) which is expandable over ¥, into the ‘ullage’
domain. Another important limitation is that the modal solution should be as precise as
to satisfy the mass (volume) conservation and, therefore, the functional set {¢y} must be
harmonic functions satisfying the zero-Neumann condition on the wetted tank surface.

To get an explicit definition of (9), we employ the non-conformal mapping technique by
introducing the curvilinear coordinate system Oxx,Xx3

X=X, Y=X1X2C08X3, Z=X|XSinxs (16)

(x3 = n is the angular coordinate) transforming the conical domain to the circular cylindrical
shape as demonstrated in figure 2 for the meridional cross-section of the static (mean) liquid
domain in the physical G and transformed G* planes. Considering the eigensolution of (15)
in the curvilinear coordinate system

sinm x3

(x1, X2, X3) = Y (X1, X2) cosmxs ’ m=0,1,2,... an
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makes it possible to separate the spatial variables (xj,x;) and x3 so that one yields the
following m-family of spectral boundary problems:

Y Y | 0% OV
2 + +d —m*cy,, =0 in G*, 18
ax? Tomom Vo T, Y . (1%
0V Yy
— + =0 L3, 19
s 8x2 19+, 8x1 on ! ( )
OVm OV
/4 =K m LY, 20
8x1 8)62 . pw on 0 ( )
0w OYm
—=0 L3, 21
Py d X1 4 d x> on 2 @D
|Wm(xl70)| <OO7 m=071527"'5 (22)
X20
/ Yoxr dxy =0, (23)
0
where G* = {(x1, x2) : xo < X1 < X109, 0 < X2 <x0}, p=xix2, ¢ = —x1x3, s = x2(x3 + 1),

d=1 +2x§, ¢=1/x; and L§, L] and L; are defined in figure 2. The natural sloshing
frequencies are
gKWLI’l

Omn = g’zmn = s (24)
ro

where «,,,, = rokm, are the non-dimensional eigenvalues normalized by the mean free surface
radius r(. The lowest natural sloshing frequency is associated with «1;. Dependences of the
non-dimensional spectral parameters «,,, on the lower-to-upper radii r; = r /ry (see figure 2)
are extensively discussed by Gavrilyuk et al (2008).

By using the Trefftz method, Gavrilyuk et al (2008) constructed the required analytically
approximate Trefftz solution of (18)—(23) which exactly satisfies (18), (19) and (21)

Y wmn(xl,xz)—za(”}fw,ﬁm) Z a,") ", (25)

k=1

where  w{™ (x;,x2) = N x{"™ T (x5),  w"™ (xp,2x0) = N x7' 7" T (xy)  with
T\™(xy) and T\"(x,) expressed via the associate Legendre polynomials of the first
kind, P (), as follows:

vk 1 . 1
T (x2) = (14+x3) % P . T () = P ——
J1+ x% W1+ x%

The numbers v, are the roots of 8P(’”)(cos 0)/069=g, =0 and N(m) and N('") are the
normalizing multipliers introduced to satisfy the condition ||w(m) 1 LoLs = [lw <m) 12 L3ULE =1,
where || - || implies the mean square-root norm on Lj U L.
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4. Weakly nonlinear modal equations

4.1. Modal solution
We consider (9) in the x;x,x3-coordinates, i.e. ¢ = {(xy, X2, X3, {Bmi}), and postulate it as

C =X — f(-x27-x37 t) =X — f(-x27-x37 {pmi}a

{rmi)) =x1 = X10 = Bo(t) = Y Y (i (1) COS(MX3) + 7y (£) sin(x3)) foni (X2), (26)

m=0 i=1

where x is the distance between the origin and the mean free surface (see figure 2) and
Omi
Smi(x2) = ?wmi(xw, X2) 27)

defines the radial natural surface profiles and o,,; are the natural sloshing frequencies by (24).
Satisfying the volume conservation condition (5) makes fBy(¢) a function of other generalized
coordinates, 8o = G({pmi}, {rmi}).

The modal representation of the velocity potential (10) takes the form

D(x1, 32,43, 1) =00 7 4@ R+ Y 3 (Pi(1) cos(mx) + Ry (1) sin(mx) ) i (1, x2).
m=0 i=1
(28)

According to (26) and (28), integrals (14) are fully determined by the generalized
coordinates {p,,;} and {r,,;} in which the capital indices should be replaced by the complex
indices (mi, cos) and (mi, sin) so that, for instance, when N = (mi, cos),

7 pro S O2X3,{Pmi b {rmi}) 5
AN = Anicos) = / / / Xy X2Wmi (X1, X2) cos(mxs) dx; dx dxs.
- JO X0

4.2. The Moiseev asymptotics

Henceforth, we assume that the problem is scaled by the mean free surface radius so that all
geometric parameters and generalized coordinates are non-dimensional and, of course, the
circle X has the unit radius. The ratio between the bottom and free-surface radii is denoted
by ry =r/ro.

We adopt the Moiseev asymptotics (Narimanov 1957, Moiseev 1958, Lukovsky et al
2012) for the introduced generalized coordinates and velocities. This asymptotics holds true
for resonant tank excitations with the mean forcing frequency close to the lowest natural
sloshing frequency and the secondary resonances are neglected. The Moiseev asymptotics
has been widely used in the papers on the multimodal method (Faltinsen et al 2000,
Gavrilyuk er al 2005, 2007, Ikeda and Ibrahim 2005, Lukovsky er al 2012, Takahara and
Kimura 2012, Faltinsen and Timokha 2013) as well as in other semi-analytical approaches
to the nonlinear sloshing problem with a finite liquid depth (Ockendon and Ockendon 1973,
Bridges 1986, 1987, Waterhouse 1994, Ockendon et al 1996).

The Moiseev asymptotics suggests that the non-dimensional forcing magnitude is of
the order € « 1. For axisymmetric tanks, this causes the two primary excited lowest
modes, differing only by the 7 /2-azimuthal angle, and associated with the non-dimensional
generalized coordinates py; and r|; to dominate. These are of the order O(e!/?). A simple
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Associated with p11 and r11 Associated with po1 Associated with p21 and 721 Associated with p3; and r3;

Figure 3. Wave patterns associated with the generalized coordinates included into our nonlinear
modal analysis. Except for po;, these patterns appear twice differing by 7 /2-azimuthal rotation.
The drawings for 8y = 30° and the non-dimensional ratio of the lower (bottom) and upper (the
mean free surface) radii is ry = 0.5.

trigonometric analysis by the angular coordinate leads to the following asymptotic relations
for the generalized coordinates and velocities:
P Ry

1/3
~—~py~rn=0(e / ),
o11 011 O2p O2p Oon

Py Ron  Pon

~

2/3)

~ Do ™~ Fan ™~ pon = O (€

Py Rsn  Pinry  Rigen

~

~ Pan ™~ 3 ™ Pty ~ Mgy = 0(€),  n > 1. (29)
O3n O3y Ol(n+1) O1(n+1)

Remaining non-dimensional generalized coordinates and velocities are of the order o(¢) and
can be neglected within the framework of the Moiseev asymptotics.

4.3. Finite-dimensional asymptotic modal equations

Derivation of asymptotic modal systems based on the Moiseev asymptotics (29) implies
neglecting the o(e)-order terms in the modal equations (12) and (13). As a consequence,
we arrive at an infinite-dimensional system of nonlinear ordinary differential equations
with respect to the generalized coordinates and velocities (29). Examples of such infinite-
dimensional systems are given by Lukovsky et al (2012) and Faltinsen and Timokha (2013).
Other existing asymptotic analytically oriented modal equations, e.g. in Lukovsky (1990),
Gavrilyuk et al (2005), involve two dominant, r;; and p;;, and three second-order
generalized coordinates and velocities associated with pg;, p»; and rp;. Faltinsen and
Timokha (2009) showed that these five-dimensional nonlinear modal equations enable an
accurate approximation of the steady-state sloshing due to resonant excitations of the lowest
natural modes. This means that the weakly nonlinear modal equations of the Moiseev type do
not require to include a large set of generalized coordinates of the second and third order. A
physical reason for that is that the major of kinematic energy is normally accumulated by the
natural sloshing modes possessing the lower natural sloshing frequencies.

For an upright circular cylindrical tank, it was enough to account for three second-order
generalized coordinates associated with po;, p2; and r,; in addition to the two dominant
generalized coordinates r;; and p;;. Based on this fact, we include in our modal analysis
the aforementioned five lowest modes associated with and, in addition, the two third-order
generalized coordinates p3; and r3;. The wave patterns of the adopted natural sloshing modes
are shown in figure 3.

Technical derivation details for the seven-dimensional Moiseev-type modal system
are outlined in appendix A. For brevity, the generalized coordinates and velocities are

9
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denoted as follows:
por = po, ru=ri, pu=p, ri=ry, pa=p2 I3n=r3 p3i=ps3,
Phn=PF, Riu=R;, Pi=P, Ry=R;,, Py=PF, R3yi=R;, Py=~.

The result is the following system of ordinary differential equations coupling the non-
dimensional generalized coordinates:

Po+0§ po+dg(pt +77) +dio(p1p1 +#1r1) +03go(pi+11) =0, (30)

Fi+ofry+dsr(prpr +ir + pi+ i) +da(pr(Fipy — pir) +2p1(Fipy — pirt))
+ds(P1ra — F1 p2+ piia — par) +da(F2p1 — Pary) +ds (i1 po +71 po) +ds Pori
+07(g81por1 +82(p1ra — par1) +83(pi +r)r1) + A(vos + g62) =0, €3]
Pr+olpi+dspi(prpr+ir + pl+ i) +da(r (prry — F1p1) + 27 (prry — 71 p1))
+dz(p1p2+Fira+ p1pa+iria) +da(Papr +iarr) +ds(P1po + p1po) +de Popi

+0l(g1pop1 +g2(p1p2+rir) +gs(pr+rD) p) + A(b — g63) =0, (32)
i+ 031y +2d7 i +dg (P17 + 71 p1) +205gapirs =0, (33)
pa+0Fpa+dr(pt— i) +do(pr1p1 — Fir1) +03ga(pt — 1) =0, (34)

3+ 0573 +dia (P (p] — 1) +2p1 pirt) + daa (r (p7 — 1) + 2p1iy p1) +daa(Prra + 71 p2)
+dya(Pory +F2p1) + dis(pria + par1) + 03 (gs(pira + pary)
+ger1(3p; — 1)) =0, (35)

Py +0oyps+dan(pr(pr —ri) — 2F pir1) +daa(pr(pT — F1) — 2p1#iry) + das(P1 pa — Fi72)
+dya(Pap1 — Fary) + dis (P12 — F172) + 03 (gs(p1 p2 — 1172)
+gsp1(p; —3r})) =0. (36)

Here, the non-dimensional hydrodynamic coefficients are functions of the mean liquid domain
parameters; the corresponding formulae for them are given in appendix A. The natural
sloshing frequencies o; = 0;; are defined by (24) where «,,; are the corresponding non-
dimensional eigenvalues whose numerical values (as well as those for A) can be found in
Gavrilyuk et al (2008, 2012).

4.4. Non-dimensional hydrodynamic coefficients

Whereas r; — 0, the tank becomes non-truncated and, as expected, the non-dimensional
hydrodynamic coefficients tend to the numerical values by Gavrilyuk et al (2005). For
another limit case 6y — 0, the tank tends to the upright circular cylindrical shape and modal
equations (30)—(36) should transform to the corresponding seven modal equations taken from
the infinite-dimensional modal system by Lukovsky et al (2012).

Figures 4 and 5 illustrate how the non-dimensional hydrodynamic coefficients d; and g;
depend on 0 < 6y < 45° for the fixed non-dimensional liquid depth 2 = 1. The limit values

10



Fluid Dyn. Res. 45 (2013) 055512 I P Gavrilyuk et al

35 40 45

Figure 4. Coefficients d;, i =1,...,6, dg,d10 and g;,i =0, 1, 2, 3 as functions of 6 for the
non-dimensional depth 7 = 1.

Figure 5. Coefficients dv7, dg, dj, i =11,..., 15, and g;, i =4, 5, 6 as functions of 6 for the
non-dimensional depth 7 = 1.

on the vertical axis (6p = 0) coincide with the coefficients in the front of the corresponding
nonlinear terms computed for an upright circular cylindrical tank which were calculated by
using the exact natural sloshing modes (Lukovsky er al 2012). The limit values are marked
by d.

The modal equations (30)—(36) contain the hydrodynamic coefficients g; which are not
zero only for tanks with non-vertical walls. The graphs confirm that the limit numerical values
g; tend to zero when the semi-apex angle tends to zero.

Tables 1-3 present the numerical non-dimensional hydrodynamic coefficients d; and g;
m=0,1,2,3,i=1,...,15,j =0, ..., 6) for three semi-angles, but «,, and A can be found
in Gavrilyuk et al (2008, 2012).

The hydrodynamic coefficients of the modal equations can be rewritten in the dimensional
form using the formulae

_i _ {I'o d;, fori = 1, 2, 9, 10, {ro gi, fori = O, 1, 2, 4, 5, (37)

r2d;, fori=3,....8,11,....15, 87 |r2g. fori=3.6.

5. The time-periodic solution of the modal equations

We consider forced steady-state resonant liquid sloshing occurring due to harmonic
translatory tank excitations. For brevity, the excitations are assumed along the Oz-axis in
notations of figure 1 implying that n; =0, i #3 and n3; = Hcos(ot). Our task consists of
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Table 1. Non-dimensional hydrodynamic coefficients d; (i =1, ..., 8) computed within the five
significant figures.

Ty di do ds dg ds de dz ds

6y = 30°

0.0 —0.31755 —0.45374 1.7656 0.63550 2.1563 0.81179 —0.58151 —0.31082
0.1 —0.31755 —0.45374 1.7656 0.63550 2.1563 0.81179 —0.58151 —0.31083
0.2 —0.31754 —0.45374 1.7656 0.63548 2.1563 0.81177 —0.58155 —0.31085
0.3 —0.31733 —0.45359 1.7656 0.63524 2.1563 0.81142 —0.58224 —0.31139
0.4 —0.31575 —0.45251 1.7651 0.63347 2.1564 0.808 79 —0.58734 —0.31538
0.5 —0.308 11 —0.44726 1.7629 0.62529 2.1573 0.796 78 —0.61114 —0.33393
0.6 —0.278 06 —0.42657 1.7573 0.59733 2.1633 0.756 89 —0.69595 —0.400 16
0.7 —0.16037 —0.34523 1.7530 0.51923 2.2053 0.653 10 —0.960 10 —0.607 74
0.8 0.390 82 0.040 81 1.7969 0.31993 2.4525 0.424 26 —1.7657 —1.2405
0.9 4.6122 3.0301 2.1361 —0.31200 3.7413  —0.21207 —4.6357 —3.3619
0y = 45°

0.0 —1.2608 —0.706 38 2.4092 0.98722 2.7093 1.2837 —0.54021 —0.11391
0.1 —1.2608 —0.706 38 2.4092 0.987 20 2.7093 1.2837 —0.54026 —0.11395
0.2 —1.2609 —0.706 15 2.4091 0.986 64 2.7091 1.2828 —0.54183 —0.11528
0.3 —1.2618 —0.704 53 2.4080 0.982 84 2.7080 1.2769 —0.55256 —0.12436
0.4 —1.2638 —0.697 89 2.4048 0.968 87 2.7046 1.2555 —0.59303 —0.15879
0.5 —1.2612 —0.67499 2.3994 0.931 86 2.7021 1.2004 —0.70771 —0.25774
0.6 —1.2115 —0.59601 2.4011 0.851 54 2.7304 1.0891 —0.99201 —0.50925
0.7 —0.903 65 —0.29957 2.4498 0.69375 2.9141 0.8996 —1.6680 —1.1160
0.8 0.749 10 1.0075 2.6648 0.36171 3.6445 0.5639 —3.3135 —2.4986
0.9 13.491 10.277 3.4655 —0.67481 6.3098 —0.4646 —8.3283 —6.1156
6y = 60°

0.0 —3.7205 —1.4932 3.6640 1.6104 3.8492 2.0245 —0.573 67 0.21702
0.1 —3.7210 —1.4932 3.6639 1.6101 3.8490 2.0241 —0.57440 0.21638
0.2 —3.7290 —1.4926 3.6627 1.6062 3.8462 2.0181 —0.584 89 0.207 16
0.3 —3.7611 —1.4892 3.6584 1.5900 3.8355 1.9934 —0.629 80 0.167 19
0.4 —3.8354 —1.4735 3.6503 1.5478 3.8149 1.9305 —0.754 61 0.05273
0.5 —3.9396 —1.4080 3.6466 1.4619 3.8058 1.8096 —1.0439 —0.22627
0.6 —3.9260 —1.1545 3.6803 1.3091 3.9032 1.6188 —1.6713 —0.864 77
0.7 —3.1285 —0.19336 3.8422 1.0442 4.3899 1.3477 —3.0166 —2.2332
0.8 1.7161 3.8947 4.3398 0.502 09 5.9802 0.86045 —6.0081 —4.8447
0.9 39.837 32.072 5.8808 —1.2416 11.085 —0.84727 —14.725 —11.053

finding a time-periodic solution of (30)—(36) implying the steady-state wave regimes. The
lowest-order generalized coordinates r;(¢) and p;(¢) are presented by the Fourier series

o0 o0
r(t) = Z(AZk_] cos(kat) + Ay sin(kot)), pi(t) = Z(B%_1 cos(kat) + By sin(kot)),
k=1 k=1

where, according to the Moiseev asymptotics, the leading asymptotic contribution is
associated with the first harmonics, i.e.

ri(t) =A;cosot+ A, sinot+0(61/3); pi1(t) =Bjcosot+ B,sinot +0(€1/3) (38)

and Aj ~ Ay~ By~ B,=0(e'?), e = H.
As follows from substituting (38) into the modal equations (30), (33) and (34), the
generalized coordinates po(t), r2(¢) and p,(¢) are functions of the dominant amplitude

12
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Table 2. Non-dimensional hydrodynamic coefficients d; (i =9, ..., 15) computed within the five
significant figures.

Ty do dio dig dio dis dia dis
6o = 30°

0.0 1.4942 094738 059258 0.04699 2.0917
0.1 1.4942 0.94738  0.59258  0.04699 2.0917
0.2 1.4942 094738 059259 0.04704 2.0917
0.3 1.4942 094731  0.59280 0.04805 2.0917
0.4 1.4939 094675 059435 0.05562 2.0916
0.5 1.4918 0.94403  0.60186 0.09239 2.0910
0.6 1.4777 093262 0.63131 0.23791 2.0873
0.7 1.3954 0.88293  0.74553 0.81412 2.0567
0.8 0.97647 0.65623  1.3319 3.6853 1.7952

09 —1.0481 —0.34231  7.6923 29.046 —0.28513

0o = 45°

0.0 2.4532 2.0600 1.5573 —0.106 32 3.3797
0.1 2.4533 2.0600 1.5573 —0.10625 3.3797
0.2 2.4536 2.0600 1.5578 —0.10391 3.3801
0.3 2.4554 2.0603 1.5615 —0.08757 3.3828
0.4 2.4603 2.0604 1.5760 —0.02259 3.3927
0.5 2.4621 2.0542 1.6192 0.18536 3.4174
0.6 2.4205 2.0087 1.7407 0.83990 3.4553

0.7 2.1786 1.8011 2.1378 3.1767 3.4196
0.8 1.2347 1.1195 4.1352 13.820 2.7763
09 —2.3343 —0.78501 24.725 95.558 —1.2179
0y = 60°

0.0 4.1682 4.3989 4.4451 —0.29165 5.7152
0.1 4.1685 4.3990 4.4455 —0.29035 5.7155
0.2 4.1722 4.4008 4.4507 —0.27158 5.7202
0.3 4.1858 4.4069 4.4733 —0.18749 5.7400
0.4 4.2106 4.4138 4.5367 0.07251 5.7924
0.5 4.2226 4.3879 4.6888 0.81501 5.8945
0.6 4.1197 4.2067 5.0618 3.0797 6.0249
0.7 3.5918 3.5520 6.2379 11.025 5.9604
0.8 1.8087 1.9574 12.419 45.741 4.6430
09 —4.3714 —1.4656 75.970 298.86 —2.5376

1.2362 —2.0910
1.2362 —2.0910
1.2362 —2.0910
1.2361 —2.0919
1.2361 —2.0988
1.2357 -2.1317
1.2314 —2.2562
1.1960 —2.6836
0.93805 —4.1936
—0.82751 —10.602

2.0406 —2.2336
2.0406 —2.2336
2.0406 —2.2357
2.0407 —2.2500
2.0409 —2.3061
2.0385 —2.4758
2.0139 —2.9347
1.8650 —4.1575
1.1277 —7.6159
—2.2344 —19.347

3.4673 —2.7985
3.4674 —2.7994
3.4677 —2.8131
3.4690 —2.8739
3.4710 —3.0538
3.4638 —3.5037
3.3930 —4.5695
3.0276 —7.1431
1.5193 —13.761
—4.3806 —34.457

parameters A, Ay, By and B, i.e.
2, 42, w2, p2y O 1
po(t) = — (AT+ A3+ B +B3) o, — 5
— (A1 A2+ B By) o)) sin2at +0 (¢2°),
_ (] 2)
r(t)=-2(A1Bi1+AB,) 0y — (A1B;y — AyB)) 0, COS 20t

— (A1 By+ Ay B)) 0 sin 201 +0(e?),

pa(t) = (A} + A2 — B} — B2) o + 1 (A} — A3 — B} + B2) 0" cos 201

+ (A Ay — B By) o8 sin 201 +0(e??).

(A% — A% + 312 — 822) 0(()2) cos2ot

(39)

(40)

(41)
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Table 3. Non-dimensional hydrodynamic coefficients g5 (j =0, 1,...,6) computed within the
five significant figures.

ry g0 g1 82 g3 g4 g5 86

6o = 30°

0.0 021045 093612 0.82877 —0.37319 0.56156 1.1259  0.07939
0.1 021045 093612 0.82877 —0.37319 0.56156 1.1259  0.07939
02 021045 093611 0.82877 —0.37319 0.56157 1.1259 0.07939
0.3 021045 093598 0.82875 —0.37324 0.56161 1.1259  0.07940
04 021040 0.93499 0.82856 —0.37365 0.56195 1.1262 0.07946
05 021019 093055 0.82777 —0.37549 0.56344 1.1276  0.07972
0.6 020938 091653 0.82581 —0.38164 0.56803 1.1326 0.08058
0.7 020646 0.88630 0.82431 —0.39756 0.57812 1.1474  0.08280
0.8 0.19705 0.85642 0.83581 —0.42905 0.59116 1.1782  0.086 64
09 0.17778 0.89285 0.88571 —0.47153 0.59266 1.1977 0.08840

b = 45°

0.0 042446 15482 13767  —1.0000 096784 19415 0.23640
0.1 042446 15482 13767  —1.0000 096785 19415 0.23640
02 042442 15476 13766  —1.0004 096802 19416 0.23645
03 042417 15439 13758  —1.0028 096916 19426 0.23677
04 042317 15308 13732  —1.0118 097316 19463 0.23795
05 042004 14987 13680  —1.0356 098285 19571 0.24107
06 041129 14431 13631  —1.0859  1.0005 19826 0.24759
0.7 038972 13877 13727  —1.1740 10233 20302 0.25821
0.8 034853 14080 14275  —1.2982  1.0374 20863 0.26877
09 030214 15593 15441  —14306  1.0269  2.0818 0.26632
b = 60°

00 084732 25394 23194  —2.7525 16750  3.3611 0.70893
0.1 084728 25390 23193  —2.7529 16751  3.3612  0.70898
02 084678 25340 23181  —2.7585  1.6766  3.3623  0.70965
03 084457 25133 23134  —2.7820  1.6824 33674 0.71250
04 083793 24628 23031  —2.8438  1.6966  3.3822  0.72002
05 082120 23737 22804  —29712 17225  3.4160 0.73548
0.6 078379 22649 22857  —3.1932 17596 34801 0.76171
07 071113 22159 23265  —3.5243 17967  3.5768  0.79660
08 060375 23582 24590  —3.9380  1.8086  3.6610 0.82165
09 050862 26915 26835  —43466 17800  3.6193 0.80277

Analogously, one can find

r3(t) = (A1(A2 + A2 —3B? — B}) —2A,B,B,)ol" cos o1 + (Ay (A2 + A2 — B> —3B2)
—2A, B By)o" sinot+ (A (A2 —3A2 —3B>+3B2) +6A, B By)o}” cos 30t
+(Ay(342 — A2 —3B2 +3B2) — 6A, B By)o} sin3a1 +0 (€) (42)

p3(t) = (B1(3A3+ A3 — B} — B?) +2A, A3 By)0Y" cos o1 + (By (A} +3A% — B? — B?)
+2A1A;B1)0" sinot + (B (3A2 —3A2 — B +3B2) —6A,A,B,)0Y cos 30t
+(By(3A2 —3A2 — 3B+ B2)+6A,A,B)0y sin 30t +0 (€) (43)
where coefficients of, are defined in appendix A.

14
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Substituting (38), (39)—(41) into the modal equations (32) and (31) and gathering the
lowest-order terms at the first harmonics lead to the system of algebraic equations

(mi(A2+ A3+ B2)+maB3) A +m3A2B 1By + (G2 — DA = HA,

(ml(A%+A%+B22)+m2Blz)A2 +m3A1B1B2+(612 — 1)A2 =O,
(44)
(ml(A%+B]2+Bzz)+m2A%)B1 +m3A1AzB2+(612 — I)Bl =O,

(ml(A%+B]2+Bzz)+m2A%)B2+m3A]AgBl +(612 — I)Bz =0

with respect to the dominant amplitude parameters, where coefficients m; depend on
hydrodynamic coefficients of the modal equations; see formulae (B.1) in appendix A.

The algebraic system (44) is similar to those by Gavrilyuk et al (2005) where we showed
that its solvability condition consists of Ay = B; = 0 and, therefore, there are only two non-
zero amplitude parameters which can be found from the system

miA} +myA1 By + (67 — 1) Ay = HA, miB; +myAiBy+ (5] —1) B, =0, (45)

whose solution obviously depends on m; and, in turn, on the non-dimensional ratio of the
bottom and free surface radii ry, 6;(r;) and 6y (m; = m; (61, ry, 6p)).

As shown by Gavrilyuk et al (2005), one can distinguish two types of solutions of (45)
and the corresponding steady-state wave regimes. The first solution type, A; #0, B, =0,
implies the so-called planar waves. The second solution type, A; # 0, B, # 0, leads to the
so-called swirling. The planar waves are described by the asymptotic solution

pi=r=p3=0, ri=Acosot+o(e), pr= Afoéo) + %A%of) cos 20t +o0(€?),

r3=A30{" cosor+A}0f cos3or+o(e®), po=—Alo) — LA cos20t +o(€?),
(46)
where the amplitude parameter A; is the root of the cubic equation
my A3 +(@GE—1)A — HA =0. 47)
Swirling implies
ri(t)y=Ajcosot+o(e), pi(t)=Bysinot+o(e),
ra(t) = —A; Byot? sin 201 + 0(€?),
po(t) = — (A2 + B3) 0" — L (A2 — B3) 0 cos 201 +0(€?),
p2(t) = (A% - B%) 0&0) + % (A% + 322) 0&2) cos 20t +o0(€?), @9
r3(t) = A1(A2 — B))o{" cos a1 + A1 (A2 +3B2)0 cos 301 +0(e?),
p3(t) = Ba(AT — B2o" sinot + B,(3A2 + B})oY sin301 +0(e?),
where the amplitude parameters A; and B, are computed from the equations
meA3 +ms(GE— 1A —HA =0, BI=(mAl—(2—1)/my>0, (49)

ms = ms3/m; and mg = myms. The latter inequality in (49) is the solvability condition.



Fluid Dyn. Res. 45 (2013) 055512 I P Gavrilyuk et al

0.9 ; — 0.9 , —

osl” " —hoill osf7f 21,

0.7} —lo2lf o7} 1 "2

0.6 sl el | sl

0.5 fall s el

o4l ‘sl o4l 3 s |

0.3} 0.3} 1

0.2 0.2} |

0.1} lO,n 1 o.1f lz’n
0 2 25 0 1 25

0.9 0.9 —

0.8} o8t "1 —

0.7} 0.7} 2]

0.6f , 0.6f ; _23»3 1

0.5} 1 0.5} 1 34N

0.4f 0.4f EEll

0.3} 1 0.3} :

0.2} 0.2}

0.1} Yin 0.1 B3
006 08 1 12 14 16 18 ' 06 08 I 12 14 16 18

Figure 6. The graphs of r| = r|(i),,,) (r) is the ratio of the bottom and free surface radii) for the
semi-apex angle 6y = 30°. The secondary resonance is expected at r; = 0.8116, 0.5939, 0.8926,
0.835 and 0.651.

6. Secondary resonances

When constructing the time-periodic solution, we assumed that the forcing frequency o is
close to the lowest natural sloshing frequency o7y, i.e.

oxXo. (50)

The constructed solution is valid if and only if coefficients in front of the polynomial terms
by the amplitude parameters are of the order O(1). However, these coefficients become
large when 20 is close to one from the natural sloshing frequencies o,; and oy;, i > 1, or,
alternatively, when 30 tends to one from the natural sloshing frequencies o3;, i > 1 and oy;,
i > 2. This closeness is associated with the so-called secondary resonances. The necessary
condition of the secondary resonance consists of satisfying the relations

20 X og,, 200y, 3003, 30X0impa), h=1 5D

together with (50). The secondary resonance is not avoidable with the strong equalities in (51)
and (50).

To analyze the secondary resonances with strong equalities in (51) and (50), we plot in
figures 68 the graphs of i,, , (6o, r1) as functions of the non-dimensional parameter r; (r; is

16



Fluid Dyn. Res. 45 (2013) 055512 I P Gavrilyuk et al

0.9 == 0.9 ——
0.8} —ill g )
0.7+ - 1.0,2 {1 o7} — bl
0.6} o3lt o) i),
0.5} all o 2]
0.4} sl 0.t b))
0.3} 0.3}
0.2} 0.2}
, i , i
0.1 on] ©° 2n
0 2.5 3 0 2 25 3
0.9 0.9 -
0.8} 0.8} 1 —
0.7} 0.7} 2]
1 ]
0.6} 0.6} ; 330
L
0.5} 0.5} } 34/
1 l
0.4f 0.4f ! =1
0.3} 0.3} 1
0.2} 0.2}
At l 1 ! i
0 1,n 0 | 3n
0 1.5 2 %0 1 1.5 2

Figure 7. The graphs of r{ = r|(i),,,) (r) is the ratio of the bottom and free surface radii) for the
semi-apex angle 6y = 45°. The secondary resonance is expected at r| = 0.6386, 0.7972 and 0.7.

the ratio of the bottom and free surface radii) with a fixed value of the semi-apex angle

. O0n 1 [kon . O2n L [kon
lO,n(GO’rl)Z ==/ > 12,,1(90,1'])2 =—|—,
2011 2V kn 2011 2V k11

. 03 1 [k3 . Oy 1 [Kigsn
l3,n(901 rl) = - = K_ns ll(n+1)(907 rl) = : =3 & ) n 2 1'
1

(52)

3014 3 3011 3 K11

The functions iy, , = im .. (6o, r1) do not depend on the forcing frequency o and one can see
that the condition

i =1 (53)

for certain indices m and #n is equivalent to the strong equality in the corresponding m, n-
equation of (51) and (50), simultaneously. The case r; =0 corresponds to the V-shaped
conical tank but the limit r; — 1 implies the shallow water condition.

The calculations were done for the three semi-apex angles 6y = 30°, 45° and 60°. The
strong equality ip ; = 1 happens for r; = 0.8926 implying that the first axisymmetric mode
is subject of the secondary resonance for larger r; and the double harmonics 20 can then
be amplified. As for the triple harmonics 3o, it can occur for the modes (1,3), (1,4), (3,2)
and (3,3). So, for r; = 0.651, the modes (3,3) are subject to the secondary resonance but the
modes (3,2) is resonantly excited at r; = 0.835. Finally, the modes (1,3) are exposed to the
secondary resonance at r; = (0.8116 and the modes (1,4) at r; = 0.5939. The strong secondary

17
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Figure 8. The graphs of r| = r{ (i) (r] is the ratio of of the bottom and free surface radii) for
the semi-apex angle 6y = 60°. The secondary resonance is expected as r1 = 0.67 and 0.3196.

resonances for the semi-apex angle 6y = 30° are not expected for the non-dimensional ratio
I S 0.5.

As follows from figure 7, the secondary resonances also exist for 6y = 45° at r; = 0.6386
(modes (1,3)), r; =0.7972 (mode (0,1)) and r; = 0.7 (modes (3,2)). This implies that the
constructed Moiseev type modal equations can be applicable for the non-dimensional ratios
r; < 0.6. Figure 8 demonstrates two critical values of ry for 6y = 60°. These are r| = 0.67
(the secondary resonance by the mode (0,1)) and r; = 0.3196 (the secondary resonance for the
modes (3,2)). Moreover, i3, is close to 1 for r; < 0.5 but ip; &~ 1 for 0.55 < r;. This means
that the derived modal equations may need revision accounting for secondary resonances for
this semi-apex angle.

7. Stability analysis

The hydrodynamic instability of the time-periodic solutions (46) and (48) can be studied by
employing the first Lyapunov method. This implies introducing small perturbations of these
solutions denoted by «, 8, 1, v, 8, u and v, i.e. po(t) = po(t) +n(t), p1(t) = p1(t) + B(¢),
r@) =r@®)+a@), pat) =pa() +8(t), r(t) =r2(t) +y (1), p3(t) = p3(t) +v(@), r3(1) =
73(t) + u(t), and constructing the following linear differential variational equations with
respectto o, 8,1, ¥, 8, i, v:

il +0gn +dio(Fra + pi B +ary + Bp1) +2dg(@iy + B p1) +203go(ers + Bp1) =0,
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d+ofa+ds (a(p?+7it+ prpy+271r1) +r1 (Bpi +ar + pif+2Bp1 +2d7))
+do(p1(@py — Bri+2a p1) + B2priy +2p1F1 — 11 p1) — a(prpr +2p7)
+2B(F1py —2p1r1)) +ds(Bra — apy + Bin — a po+y pr — 8i +y 1 — 8F))
+da(BF, — apy+7 p1 — 8r1) +ds (& po + & po + 0)ify +niy) +de (o po + iiry)
+07 (g1 (apo+1r1) + g2 (Bry — apy +ypi — 8r1)
+g3(2Bp1r1 +a(pi+3r7))) =0,

B+oiB+di(B(p+it+2p1p1+Fir) + pi(Bpi +2Bp1 +ar +2ai +ai))
+da (ri (Bry +2BF — @ py) +a(2piry +2p1iy — Fipr) — B(Fir +2i7)
+26(p1r1 — 271 p1)) +ds(Bpa + B o +Giry +cin + 8 p1 +8py + Vi + yi)
+dg (8 p1 +Pri+aiy+Bpa) +ds(Bpo+ B po+ipi+np1) +de(B po+iip1)
+01(g1(Bpo+1p1) +g2(ara+ Bpa +yr1 +8p1)
+gs(2apir +BGBpi+17)) =0,

7 +03y +do(pra+#1B+api + Bri) +2d7(a p1 + Bi1) + 205 ga(apr + Bri) =0,
§+038+dg(Fra — Bp1 — ary — p1f) +2d7(Bp1 — aiy) +205g4(Bp1 —ary) =0,

fi+ofp+dys(@(pf —rd) + 2B piry +20(py pr — Firy) +2B(piry + 71 p1))
+d1(26(p1 p1 — r171) +a(pt — D) +2B(pii1 +r1p1) + 2B prit)
+dy3(&py + Bra+ 87 +y p1) + dua(apy + Bita + 7 p1 +8r1)
+d5 (6o + Bia+ 7 p1 +8i1) + 05 (gs (apa + Bra+8r1 +ypr)
+3gs(a(p — 1) +2Bp1r1)) =0,

403V +dis (B(pi —r7) —2apiry +2B(p1 pr — riFy) — 2a(r py + piiy))
+d12(2B(p1 1 — riF1) — 26 (r1 1 + pii) + B(pi — i) — 2a i)
+d13(Bpa — @y +8p1 — y#1) +dia(Bpa — @i +8p1 — yr1)
+di5(Bpr — diy+8p1 — yi1) +03 (gs(Bp2 — ary +8p1 —yr1)
+3ge(B(pi —r1) —2apiry)) =0.
Here,d; (i =1,...,15)and g; (j =0, ..., 6) are the coefficients of derived nonlinear modal
system.
Equations above constitute a system of linear ordinary differential equations with periodic

coefficients. Its fundamental solution can be obtained by employing the Floquet theory
suggesting the solution

a(n)y=e"y1(t), B@)=e"Yr(t), y@)=eys3(r), 81)=e"yu(r),
n@) =eMyst), ) =e"Pet), vr)=eyr(),

where A is the characteristic exponent and ; are the 27 /o —periodic functions. The instability
of (46) and (48), as follows from the expressions (54), depends on the values A. At least one
of the values should have the positive real part.

(54)
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Figure 9. The response curves for planar and swirling resonant steady-state sloshing drawn for the
semi-apex angle 6y = 30°, the non-dimensional ratio ry = 0.5 and the non-dimensional excitation
amplitude H = 0.01. The amplitude parameters A; and B, imply longitudinal and transverse wave
components.

To get the characteristic exponent approximate values we pose the periodic functions
Y1 (¢) and Y, (¢) in the Fourier series

Yi1(t) =ajcosat+azsinat+---, Yp(t) =bjcosat+bysinot+--- (55)

and substitute them, together with (54), into equations in variations. Using the
Bubnov—Galerkin method leads to the following system of linear homogeneous equations:

Ciiai +Cipar +Ci3b1 +Ciaby =0,

Cora1 +Copar + Cp3by + Coyby =0,

(56)
Csia1 +Cspar + Cs3b1 + Cyyby =0,
(C4](11 + C42(12 +(C43b] +(C44b2 =0
with respect to a; and b; (i =1, 2), where coefficients C;; (i, j =1, ..., 4) are functions of

the hydrodynamic coefficients d; and g; of the original nonlinear modal equations system as
well as of A (A = 1 /o) and the amplitude parameters A and B, of the generalized coordinates
p1(t) and | (¢) whose expressions are given by formulae (B.3).
Requiring a non-trivial solution of (56) with respect to a; and b; (i =1, 2) leads to the
zero-determinant condition
Cn Cp Ci Cu
C Cyp C C
DO = 21 22 13 24 _0 57)
Cs1 Cxn G333 Cyy

(C4 1 (C42 (C43 (C44

whose roots are the required characteristic exponents A.

8. The response curves

Figures 9 and 10 present the response curves (in terms of the amplitude parameters A; and
B;) associated with the steady-state wave motions. Accounting for the secondary resonance
analysis in section 6 and the related limitations of the Moiseev-type modal equations, the focus
is on the semi-apex angles 6y = 30° and 45° and the ratios r; = 0.5 and 0.4, respectively.
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Figure 10. The same as in figure 9 but for 6p = 45°, r1 = 0.4 and H = 0.01.

Analyzing the response curves makes it possible to estimate the effective frequency ranges
for planar and/or swirling sloshing. The amplitude parameter A; measures the longitudinal
wave component but B, corresponds to the cross-wave component. The solid lines mark stable
steady-state wave regimes but dashed lines are used to denote their instability.

The figures demonstrate that the response curves are qualitatively similar to those known
for non-truncated conical tanks Gavrilyuk et al (2005). Firstly, the planar sloshing (branches
K' K? and M'M?) is always unstable in a neighborhood of the linear resonance (o /0 = 1);
the instability is expected for the forcing frequencies laying between the abscissas of K and
M. Here, K is the turning point but M is the Poincaré bifurcation point from which the
branch M M? corresponding to unstable swirling emerges. Secondly, stable swirling exists at
o /o) = 1. The ‘swirling’ branch, N?N', is divided by the Hopf bifurcation point N so that
subbranch NN corresponds to stable steady-state wave motions (the abscissa of N is less
than 1) but the subbranch N N? implies unstable steady-state swirling. Thirdly, the interval
between the abscissas of N and M marks the frequency range where both planar and swirling
steady-state wave regimes are unstable. In this frequency range, irregular (chaotic) waves are
expected.

The literature on experimental studies devoted to nonlinear resonant sloshing in a
truncated conical tank is almost empty. Being interested in these experiments to validate our
theoretical results, we paid attention to Casciati et al (2003) where appropriate experiments
were mentioned in the context of the tuned liquid dampers equipped with a conical tank.
Thanks to Professor Fabio Casciati and Dr Emiliano Matta (Politecnico di Torino, Italy),
we have got a more detailed report on these experiments documented in the PhD Thesis by
Matta (2002). In the Thesis, the experimental tank with the semi-apex angle 6y = 30° was used
for measuring the hydrodynamic force occurring due to a horizontal harmonic tank excitation.
The thesis reports a set of the hydrodynamic force recordings as well as trying to classify the
liquid motions based on both measurements and observations. Because the experimental series
were conducted on a relatively short time scale, the classification was only partly successful.
In some cases, it was possible to conclude on almost steady-state wave regime (planar or
swirling), but many of the Matta’s experimental series reported strong breaking waves and
irregular motions which may be explained as either continuing transients or hydrodynamic
instability. However, these irregular and almost steady-state liquid motions were found as they
follow from our analysis: irregular waves were established for o /o) < 1, a few stable model
series demonstrated swirling for o /o] > 1 and stable planar waves were detected far from
the linear resonance o/o; = 1. This qualitatively supports our theory. As for a quantitative
validation, we think that it is difficult to do because the experimental series were relatively
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short in the time. Moreover, the experiments were done with relatively small (almost shallow)
liquid depths causing the ratio r; = 0.852. Section 6 shows that, unfortunately, this ratio is
too close to r; = 0.8926 (the secondary resonance by the mode (0,1)) and ry = 0.835 (the
secondary resonance by the mode (3,2)). This means that the Moiseev type modal equations
are most likely inapplicable to this shallow water sloshing to get a quantitative agreement
due to these secondary resonances. The secondary resonances are implicitly confirmed in
observations of Matta (2002). Breaking waves and overturning are almost always detected for
the forcing frequencies in a neighborhood of o /o) = 1 where our theory predicts irregular
waves or swirling. As was discussed in chapters 8 and 9 by Faltinsen and Timokha (2009),
these phenomena are a typical attribute of multiple secondary resonances, especially, for the
shallow water case.

9. Conclusions

Employing the non-conformal mapping technique by Lukovsky (1990) and the Moiseev-
type asymptotics, we derived approximate weakly nonlinear modal equations which describe
resonant liquid sloshing in the V-shaped truncated conical tank. The modal system couples
seven generalized coordinates of the considered infinite-dimensional mechanical system. The
generalized coordinates are associated with perturbations of the seven lowest natural sloshing
modes. The considered weakly nonlinear resonant sloshing is assumed to be due to a small-
magnitude excitation of the lowest natural sloshing frequency and there are no secondary
resonances amplifying higher generalized coordinates. Arguments in choosing the seven
generalized coordinates (see section 4.3) are based on physical circumstances and referring to
earlier successful nonlinear modal systems for an upright circular cylindrical tank.

Along with ideas and derivation details, the present paper presents the numerical non-
dimensional hydrodynamic coefficients which can be useful for practically oriented readers.
We studied the limit cases to ensure that there are no algebraic and arithmetic errors.

Using the nonlinear Moiseev-type modal equations, we studied the resonant steady-state
sloshing occurring due to harmonic tank excitations with the forcing frequency close to the
lowest natural sloshing frequency. Combining the Bubnov—Galerkin and asymptotic schemes,
we constructed a time-periodic solution of the nonlinear modal equations and, using the first
Lyapunov method, studied stability of this solution.

Physically, the time-periodic solution yields two types of steady-state wave motions,
planar and swirling. The planar sloshing implies liquid motions in the excitation plane
but swirling means a rotary wave. The response curves were drawn to show a similarity
between the steady-state sloshing in truncated conical tanks and upright circular cylindrical
tanks. Qualitative agreement was found with experimental observations on steady-state wave
motions by Matta (2002).
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Appendix A. Technical details of derivations

The employed natural sloshing modes are ¢; = v, ¢ =Ssinx3y¥i, @3 =cosx3y, @s =
Sin 2x3v, @5 = cos2x3Yn, @ = sin3x3yn, @7 =cos3x3y, that implies f(xz, x3) = Bo+
Jo(x2) po + f1(x2) p1 cos x3 + f1(x2)ry sinxs + f2(x2) p2 €08 2x3 + f2(x2)r2 sin 2x3 + f3(x2) p3 X
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cos 3x3 + f3(xp)r3 sin3x3 in (26) where the time-dependent function By(¢) follows from the
volume conservation condition

27[ 0 2 2 1 3
/ / X7 <x10f+x10f +§f')dXQdX3 =0
0 0

and takes (neglecting the higher—order terms) the form By = k; p0 +k2(P1 +r2) +k3 po(r1
P+ kaQpirirs — pa(ri + ph)) + ks(p3 +13) + ke(p3 +13) + k(pirars + p1paps — riraps +

r1par3) +- - - . The coefficients k; are computed by the formulae
2eqo enl eot el en
k1=—h , 2=—2h7 3=—hz—2, 4 = — h2 s 5=—h s
%20 X0 %20 2hixy, %30
€33 €123 T o4 .4y .2 2 2
ke =——7, ki=———5. ks=—(hj—hy) x5, k9=—ht€11, k1o = mh; eqo,
hi x5y hix3 4 2

T
2 2
ki = Eh, en, kp= Ehtesm ki3 =2mhieor, ks =mhiern, kis=2mhies,

3 e1111 6%1 b
k = — —_— N k = — ,
16 ) < 3 x%o 17 461113

where h; = h| =14 cotBy, h, = hg = 1y cotby and €ijk = fO 2%2]‘, ()Q)fj (x2) fr(x2)dx,.
The vector (I, I, I3) by (14) reads as

27 f+hy 2r Sf+h
I = / / / xlxzdxl dy,dxs, L=p / / / x1x2 cos x3 dx; dxp dxz,
hy hy
2w f+h,
3= / / / x1x2 sin x3 dx; dx, dx3
hy

and takes the form

11=k10+k11(pf+r12)+---, (A1)
L =1 p1+2ap1 (PT+71) +Aaapopi +Aas (p1p2+rir) +- -+, (A2)
Iy =A31ry +Aaary (pi+77) + A3 port +Ass (pira — par) ++ -, (A.3)

where  Ajg=kg, An=ko, A=Ay =A3=XAi1, An=An=2»Li2, Apn=A»A33=2»A;
and Ay =XA3s =Au, are computed by the formulae X = n,ohf 55100’ Aix =
3ph, _ 2.2 3 2.2 1

4, (xzo S0300 — 45020030100) Aiz =37ph7 s7100  Ais = 5TPRT SG1105  Spp0 = €11, and

quadratures sijkl @, j, k,1=0,1,2,3) are defined by

= [ ) (Al () () d
0

where the coefficients i, j, k,/ mean the power of functions f,(x;). Coefficients
Lije are given by the formulae Arip =Aszi =Ai, A2z = A3i31 = %(3)»1'2 G 0(()0) +
o iz — (403 +05)hia),  Aaim = Aain = H(ia — (40l — 0 )hiz+ 40y =305 ),
A233 = A333 = Z()WZ - 0(()2)?»1'3 - 022))»1'4)-

Explicit representation of (A.1) appearing in (13) takes the form /| = kg + ko ( p% +r12) +
kiopg +kii(p3 +r3)+kia(p3 +r])+kiaQRpirira +pa(pt — i)+ ki3 po(r} +p%)+k16(2p1r1 +
pl+rH) +kis(ri(pars — p3r2) + pi(rars + pap3)) + kir(p1 pa(pt = 3rd) +rirsBpi — r})).

23



Fluid Dyn. Res. 45 (2013) 055512 I P Gavrilyuk et al

Within the introduced seven generalized coordinates, the asymptotic expansion of (14)
leads to

Ay = by +bypo+bs(pi +17) +bapd +bs(r3 + p3) +bepo(pi +r7)
+b7(pipa+2pirirs — pari),

Az = bgry +bor(p} +17) + by pory + bio(pir2 — 11 p2) + bia(pars — r2p3)
+b13(r3(pt — i) —2pir1p3).

A3 =bgpi +bopi(p7 +r1) +b11 pop1 +bio(p1 p2+1172) + bia(p2ps +r2r3)
+b13(p3(pT — 1) +2pirir3),

Ay =biary+2b1spiry +bigpora +2b1o popir1 + bigra(p +11) + bis(pirs — par1),

As = biypr+bi5(p} — 1) +bigpopa + b1 pa(pi + 1) +big(p1 ps +1173) + biopo(pt — 1),

Ag = byors +bar1(3pT — i) + b pors + baa(r1 pa+ pir2) + bysrs(pi +17),

A7 = byops +by1 pr(pi —3r7) +baspops + b (prpa — rira) + baz pa(pi +717),

A1 = bys + by po+ by (pi +17),

Aty = bagry +bagpory +byo(pira — rip2) +byiri (pt +717),

At3 = bagp1 +bao pop1 +b3o(p1 pa+1172) + b3 pi(pT +77),

Ay = bxary +2b33piry +baa(pirs —rip3),

Ais = by py +bss(pt — 1) +baa(pip3 +1173),

A6 = b3srs +bsg(pira+r1pa),

A7 = bssp3 +bse(p1p2 —rira),

Ay = b7 +b3g po +bsopa + bag pi +barri + bas(p1p3 +1173),

Az = —bsora +bazpir1 +bap(r1 p3 — pir3),

Ay = byy p1 +bas p3 +bas pop1 +baz pr pa +bagrira + bao pi (pi +717),

Ass = —buyry — basrs — bys por1 — baz pira +bagry pr — baori (p +17),

Ase = bsopa +bsi(p} — 1) + bsyp1 p3 + bssrir,

Az = —bsora — 2bsi p1ri — bsy p1r3 + bsary ps,

Asz = b7 +bag po — bso pa + baori +bay pt — baa(p1p3 +1173),

Ay = byar — bysrs +bag pory — bazry pa+bag pira +baori (p3 +17),

Ass = baap1 — baspz +bagpop1 + bagriry +bag p1pa2 + bag pi (P% +r12)’

Az = bsora +2bsy pir1 — bsari p3 + bs3 pirs,

Az7 = bsops +bs1(p; — 17) +bsyrirs +bs3 pi ps,

Aus = bsy +bss po +bse(pi + 1) +bsy(p1 p3 — r1r3),

Aygs = —bsi(rips+ pir3),  Aer =0,

Ase = bsgp1 +bso pop1 +beo(p1p2 +r1r2) + be1 p1(pt +17),

Ag7 = —bsgry — bsopor1 +beo(r1 pa — pir2) +beir1 (17 — pi),

Ass = bsq +bss po + bsg(p1 +717) +bsy(r1r3 — p1p3),
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Ase = bsgry +bso pory +beo(p1r2 — r1p2) +berr1 (py +17),
As7 = bsgp1 +bso pop1 +beo(p1 p2 +1172) + b1 p1(pT +77),
Ags = bea + b3 po +bea(pt +17),
A7 = bgy +be3 po +bea(pi +17).
Considering (12) as a system of linear equations with respect to the generalized velocities
gives the asymptotic solution
Py =cipo+capipi+cariiy,
Ry = c37y +cary po+ s poit + Cep1ia — Cer1 p2 + C7ra p1 — €7 paf1 +Cgpiri pi
+C9r127"1 +6‘10p%f'1,
Py = c3p1+cap1po+cspopr +cep1pa+ceriia+cipap1+cirafy +cgpirii
+C9P%l'71 +010”121'71,
Ry =cyimp+cipripr+eppiin,  Pr=cup2+cipipr —cori,
R3 = c1373 +c1apiia +ciari pa + cispai1 +Ci5r2 pi +C16P%f’1 +2ci6p1r1 p1 — C16r12r'1,
P3 = c13p3 +c1ap1 p2 — crariia +c15p2 p1 — C1s5rafy +Cl6P%P1 —2ci16p17171 — Clerlzpl,

where

b 1 b bgbog bg 1 b bobog
=—, c=— - . 3= —, Ccg=— _ ,
! ? by > by Ty UM hys

(b 1 b8b38> o= 1 (bm b14b44> o 1 (b . b8b39>
T , =— - , cg=—|\bw— ,
b3y b3; bs4 b3 b3;
1 b3b28> bg ( b%8>>
s = — (2 (b — O (=23,
' by ( ( *7 by by \ 0 bos
2b bgb b b> b bgb
o2 o) ) 2 82,
bys b3 by bys bs4 b3
1 bishy by b2, 1 bsbso
=— (bo— — 2 (bo—2)), cis=— (bn— ,
co b3; ( K bs4 b3; ( O s € ba \ by

by 1 bgbyy by 1 bi4bsg
cn=—, cnn=—|\2b;s~— , 3=—, ciu=—|bn— ,
4 bea bey bs4

1 bg bysbsg 2bsg bgbus
= 36y — 2 (b + 2 (s —
cte b62< 7 by < T by ) bs4 ( P by >>

in which b; (i =1, ..., 64) are expressed by the following formulae b; = 2ggy, b3 = go211 +
2ka 801, b2 = 28010, ba = 280200 + 2k1 801, b5 = go222 + 2ks801, bs = 3803011 +4k28020 + 2k3 801,
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3 3
b7 =3580112+2ka go1,  bs =g, bio=gu22, by =3813111 +2kag121, b1 = 281201,
3 1 3
b2 = gi223, b13 = 31813113, b1a = g12, bis = 382011, b6 = 28202, b17 = 5823112+ 2k28222,
3 i 3
big = €213, b1o = 5823011, b2o = 313, ba1 = 3833111, b2 = gn12, baz = 5833113 + 2ka8323,
bas = 283203, bas =2qo00, bas = 2qo010, bas = qo111, b2z = qooa11 +2k2qo01, b29 = 2qo1201,
1
b3o = qo1212, b3t = 2kaqo121, b32 = qoz12, b33 = 3902211, B34 = qox13, b3s = qo31z, big =
1 1 1
qo3212, b37 = q110, b3g = q1110, D390 = 541112, bao = koqi11 + 7q112111, ba1 = kaq111 + 79112112
1 I
by = 3q11213, bz = 3q11211,  baa=quan1,  bas = qi213,  bas = qio01,  bar = 2q120121,
1 1
big = q122122, bao = koqi221, bso = 5q1312, bs1 = 7913211, bs2 =3q132131, bs3 = qi32132,
bss = g0, bss =qni0, bse = ka2 g1 +qui1,  bs1 =qan13, bss =g, bso = qa301,
beo = q23212, be1 = k2 q2321, be2 = 4330, D63 = q3310, bea = k2 @331 + g33211 With quadratures

gikj1n=77/ X2 B} (x2) [ (x2) f1(x2) fu (x2) dixo
0

and  qooo = Ggo»  Got1 = dayy1» 61110—61110"‘61110, 611110—91110"‘511110’ g2 =q% ., —
‘11112"1111—‘1111+‘11f11"111213—q”213 5111213351112111—3‘]11211""111211"1112112—‘111211+
3‘111211’ 91211—41211""11211/2 ‘11213—‘11213 q1213/2 41312—3‘11312""11312» q13211 =
341511 +913211»51220 —4‘1220+qzzo4 g1 =343, +q23”/2 4330 —9‘1230‘*%30 within

20 B”(xz) R
qibjkln =7 / —— fi(x2) fu(x2) dx2, q,-’;kln = 71/ F (x2) fi(x2) f (x2) dx,.
0 0

Here, the integrands F,fj (x2), B,ij (x2) and Bj (x») depend on b,((m) (x2) and l_al((m) (x2):

F'(x3) = x, D™ — x3(EM™ — EF) + xo(1+x3)C,

B{”(xz)_E sbk+§ stby. i=0,....3, B =XJ5b!bY),
k=0
where
q1  q1 91 92 92 q 2 ¢
11 12 - 21 = 2-=
”k(x )=k E E Ry xy+§ E 85 xy+E E s; xy+E E sixy |,
i=ly j=lx i=ly j=lx i=ly j=I i=ly j=l
=1t =0 o
| = k=
172, 1=2, ’
within
140+ 14vpi+v Vi —Vkj Vni —Vkj Vkj = Vni Vkj = Vni
11_hz —hy 12_ht —hy 21_hz —hy
S() —_— [l s[) - SO -
L+ v + v Vni — Vij Vkj — Vni
—1—vpi—vy; —1=vni—vyj
n_ M —h, 11 i+Vkj —l+vpi— vy —L—vni+v

Vpi+V) 1+v,i—y
55”0 = ,osit=h"T 5P =, v st =n, ,
=1 —=vp — g

’

22 _ h—2—vni—ka sl = h—1+vm
- "t - 't

12 —2+vpi—
.85 =h,

+Vg; Vii
Yo ¥ 0kj), 8y Y (i — vk — 1),
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” 3 h Uk +3 h Uk +3
—2—vyi+y, —3—vui—V t -
st =h T g — o =D, st =k T kg +2), sy =,
Vk +3
2=V 2=V
1 Vmk+2 2 ht h 2 1=V 1 1 Vpk+1
:ht . ’ s(): ’ s1 th ’ S2 z_ht . (mG+2)a
2—Vun 2
1—v 1 1
2 mn 1 Vimk 2 —Vmn—1
$; = v 53 = —h" Wi+ 1) (Vi +2) §3 = —h, Win — 1) Vi
2 6 6

k k k k k k k k k k k k
Cr = Xp(ep. by, D =Xk, db,  EfF=Xpar Sty Ef =Xk db

provided by df' = v,ib}, d§ = v;bk, d' = (=1 —vp)b}, d¥ = (=1 — )b’ and

n nn k Hk
! 3X2 ’ ! sz ’ J 8x2 ’ J 8}(2

Functions b{" (x2) = a{’v{™ (x2), b (x2) =aj;’ 00" (x2), m=0,1,2,3 are taken
from expansion of the surface natural sloshing modes

fulx2) =ajy + Zb(m)(xz) +ayy +Zb<’")(x2> (m=0,1,2,3)

provided by alo) #0, _(0) o #0, v(O) = v(g) =1, ai'o) = '(') =0, i = 1,2, 3, where the natural
sloshing modes read as

q1 q2
Y (1, 62) = )t "™ b (62) + D37 B (x)

Vink
k=0

and a,ik)_A(m)/Nmn, 'i’,’:)_'(?/Nmn, is the normalization based on N, =
Vmn(x10, X20) = 1. A detailed definition of the functions v{"(x;) and (") (x;) was
given by Gavrilyuk et al (2005).

The non-dimensional hydrodynamic coefficients d; and g; (m=0,1,2,3,i=

,15,j=0,...,6) follow after substituting the above expressions in the dynamic
equations and neglecting the higher-order terms than O (¢). This gives
d d d d d d d
dj=—, dy=-—, dag=-—, dy=-—, ds=—>, dg=-—, dr=-—",
"1 M1 "1 M“1 231 H“1 n2
ds dy dip d din di3 dis
dg=—, do=—, diyo=—, du=—, dpp=-—, diz=—, du=—,
Mo [2%) Ko "3 3 J2%] w3
dis ki3 2ky3 2k14 4k6 kis
dis = go = , B1= , B2= , 8= , Ba= )
w3’ Ko1 M0 K1ip Kiip Kiip K21 42
kis k17

, 86 = ,
K31 /43 K31 43

where A = A/u; and

wo=bycr, 1 =bgcy, pa=bycy, w3 =bycis,
dz = b9C3 +b86‘10 +2b15€12, dl = 2b3C2 + 3b9€3 +b86‘9 +2h156‘12,
dr = bocs +bgcio+2bisci2,  dy=biocz+bger,  dy =bgcs+2biscyy,  ds =byicz +bges,
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dg =2bsci+bgcs,  d7 =bisciy — 3(b3oc3), dg =bocr+5(bssc3),  do=biocs +bicr,

1 2
dio =baca+biics,  dia =Dbigcia — 5(baacy) — bascscia +2byocis,  diz = biacs +bayocis,

dis =bigcri +bycis,  dis = —bascicir +bycia+bycis,  dip = bizcz +bigcin +bycis.

Appendix B. Important expressions

Coefficients of the algebraic system (44) take the form

d 1 1
mi= -2 q, <og>> - ZO;2>> +dgo + s (ogm - Zoge) +dgo?

2
3 o, 1 o o, 1 o\]-
+|:Zg3—g1 (00 +ZOO — g2 02 +102 012,

ms3 =mp —my,

1 3 1
my = Edl —2dy, —ds (0;0) + 10;2)) + 3d40§2) +ds (0(()0) + 1062)) - deoéz)

1 0 1 o 3 o _
+[Zg3—g1(08)—10(()))+g2<0§)—10§) 012’

myqg =mi+mjp. (Bl)
The values o appearing in expressions for the periodic solution are

(0) dg — le + go 6()2 2) dg + d1o — go 6()2
0y = T 552 Oy =———F——= >

h 4—o0;

© _ d7—de+gs 0} @  d7+do—gs 0}

0, = #7 O =~ >
0; 4—o0;
1
Ogl) = —_2(3 d11 — d12 —4 d130;0) — (d13 +4d14 - 2d15)0§2)
41 —-03)
O
—(3gs —gs(40y +0,)67)), ol =", i=0.123,
1 _
oy = —-(di1+dip — (diz+4dia +2 di5)0y” — (gs — 505 )53). (B.2)
409 —o073)
Coefficients C;; (i, j =1,...,4) of the linear algebraic system (56) are expressed in

terms of d; and g5, A (A = A /o) and the amplitude parameters A; and B,

(C“:A%C7+B22C8+C14, (C12=A%C1+B§C2+C13, (C13=A1B2C5,

Cia= A1B,Cy, Cy = A}C3+B3Cs—Ci3, Cxn=A3Cio+B3Cy+Cia,

Cas =A1ByCra, Cou=A1ByCs, C31=—-A1BCs, Ci=A1BC, (B.3)

Cs3 = AJC11 +B3C10+Cra, Cia=—AjCs— B3C3+C13, Ca1 = A B, o,
(C42=—A132C5, (C43=—A%C2—BZZC1—C13, (C44=A%Cg+B§C7+C14.

Coefficients C; of (B.3) are defined as follows:
1) (1 3) 2 1) (1 He@ , T 3+ 4 4
Cr=7y81" = 300787 = 128" = 51,78y + A(di =285+ Jdseyy + 35473,
T 3- 2 4 32
Cr=2(dy =285 ) —dsys” + %d347/2( ) — %)/2( 557,
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Cy= %)/0(3)552) + %)/2(3)3§2) +A(—d; +23(()3+) +d5)/0(2) - %dseyo(4) - ds)/z(z) — %d34)/2(4)),
Co=—1"8" + 18P +i(=da +285 ) — L),

Cs=—p 8" - %7/(;3)5?) — 1380+ V8 + R(d) — 3dp — d3ys ) + %d56)/0(4) —duy, ),
om0 48 4y 41030+ asy i+ s — st

Y Y 0 Y 0 2) o (0 2) o(1 4) (2
C7=302=2)d; — (A — Ddsoy” — (A2 — D30y — Lof8 — P8l — 1y Ps?
1 (2)¢(0 2) o(D) 1,42 17 3) 3)
—1%2 8 4y 85 — 53/2( '8 — z)t(dsm/o( +daay)

+16209g3 — g8y — 285,

Cs=1di + 132 = 8)da + 10§78 — (32 — D)dso)” + (32 — 1)ds05” — Loi?8Y

4 2 Y 1 3 - 0~ 2-
18P — sy + ddun ) + ek (g — iy + 285 ).

Y Y 2)o(1 4) o2 2) o (0 2)o(1 4) o (2
Co=1(R2+M)d; — 102 +16)dy — 181" + Ly V817 — 1028 — 2550 — P68

- 3 1 3 = 2
+3(3dsey, +dzyy ) —dsayy )+ 5573 — g205)),

by by 0 by 0 2) o (0 4)o(2 2) o (0

Cio= 132 =2)d; — (A2 — Ddsoy” — (A2 — Ddzoy” + Log”8\” — 1yV61? + 1058
4) o (2 ¥ 1 3 1 3
—11 78 = 3AQ2asy” +dseyy” — 245y, +daayy”)

+162G3g — g8y — 2285 ),

by by 0 Y 0 2) o(0 2) o (0 2)o(1
Ciy = —3di +322d; — (32 = Ddso + (32 — 130y — 1o 8\” + L0285 — 255"

4.2 7 3 5 o d
—51 8y = hdaayy” +357 Ggs — sy +g28”).

_ - 2) o(1 4) .2 4) 02 2) (0
Co=102=Hd — 12 =8)dy — 1,78 + 1, 8y — Ly 6P — Loy

by 1 3 1 3 - 2
+A(dsyy — ddseyy” +days ) +dsays ) + 167 (g3 — 205,

C13=2)_u, C14=)_»2+6‘12—1.
Here we introduce (use) the following notations:

507 =400 — 0?58 =400 — 0P, 687 =as50” — 30, sy =ds — 4ds,
5" =400 40, 8% =400 +0P, 880 =ds50 +ds0), ds = ds —4ds,
80 =32ds+dss, 8\ =r’dg+gi62 —ds, 8 =2de+g 152 +ds,

80 =325 +day, 8V =22dy+ g6 —ds, 8P = 12dy+gr67 +dsy.
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