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Abstract
Sloshing of an ideal incompressible liquid in a rigid truncated (tapered)
conical tank is considered when the tank performs small-magnitude oscillatory
motions with the forcing frequency close to the lowest natural sloshing
frequency. The multimodal method, the non-conformal mapping technique
and the Moiseev type asymptotics are employed to derive a finite-dimensional
system of weakly nonlinear ordinary differential (modal) equations. This
modal system is a generalization of that by Gavrilyuk et al 2005 Fluid
Dyn. Res. 37 399–429. Using the derived modal equations, we classify the
resonant steady-state wave regimes occurring due to horizontal harmonic tank
excitations. The frequency ranges are detected where the ‘planar’ and/or
‘swirling’ steady-state sloshing are stable as well as a range in which all steady-
state wave regimes are not stable and irregular (chaotic) liquid motions occur
is established. The results on the frequency ranges are qualitatively supported
by experiments by Matta E 2002 PhD Thesis Politecnico di Torino, Torino.

(Some figures may appear in colour only in the online journal)

1. Introduction

The multimodal method is a rather popular analytically approximate approach to the nonlinear
liquid sloshing problem. The method makes it possible to replace, in a rigorous mathematical
way, the original free-boundary problem by a low-dimensional system of nonlinear ordinary
differential equations (modal equations) and, thereby, it facilitates analytical studies of the
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contained liquid dynamics and associated hydrodynamic loads. Examples are reviewed in
the books by Lukovsky (1990) and Faltinsen and Timokha (2009) as well as in Ikeda and
Ibrahim (2005), Ikeda et al (2012), Takahara and Kimura (2012) and Lukovsky et al (2012).
Along with the aforementioned low-dimensional modal systems providing analytical studies,
the literature contains computationally oriented versions of the multimodal method. The latter
versions deal with multi-dimensional modal systems of complex structure and relatively large
dimension. Normally, they are used for simulating the transient sloshing. The computationally
oriented modal equations are well represented by the fully nonlinear Perko’s systems
(see Moore and Perko 1964, Perko 1969, La Rocca et al 2000) and weakly nonlinear
adaptive multimodal systems appearing in the papers by Faltinsen et al (2006, 2011),
Limarchenko (2007), Love et al (2011), Love and Tait (2010, 2011).

The nonlinear multimodal method was originally proposed for tanks with vertical
walls at the free surface. Using the non-conformal mapping technique by Lukovsky (1975)
makes it possible to generalize the method for tanks with non-vertical walls. However,
practical examples of the generalization are rare and almost fully represented by Lukovsky
and Timokha (2002), Gavrilyuk et al (2005), Limarchenko (2007) and Faltinsen and
Timokha (2013). A reason is that the multimodal method is rather sensitive to errors
in satisfying the volume (mass) conservation condition, and, therefore, it is desirable to
have analytically approximate natural sloshing modes which exactly satisfy the Laplace
equation and the zero Neumann condition on the wetted tank walls. The required analytically
approximate natural sloshing modes have been constructed for a non-truncated circular
conical tank (Gavrilyuk et al 2005) and, recently, for a truncated circular conical tank
(Gavrilyuk et al 2008). Bearing in mind that applications normally deal with truncated conical
shapes, the constructed modes will be used in this paper to derive a seven-dimensional
asymptotic nonlinear modal system of the Moiseev type which is, in fact, a generalization
of that by Gavrilyuk et al (2005).

In section 2, we give differential and variational formulations of the problem. Applying
the multimodal method combined with the non-conformal mapping technique yields a fully
nonlinear infinite-dimensional (modal) system of nonlinear ordinary differential equations
coupling the generalized coordinates and velocities. These equations are known for upright
tanks as Perko-type modal equations (Moore and Perko 1964, Perko 1969, La Rocca
et al 2000). Section 3 shortly outlines results by Gavrilyuk et al (2008) on the analytically
approximate natural sloshing modes which are used in derivations of the Moiseev-type
(Narimanov–Moiseev) asymptotic modal equations. In section 4, the latter equations are
presented in an explicit form. Because derivation of these equations is a tedious analytical
procedure with cumbersome formulae involved, the required technical details are reported in
appendix A. Practically oriented readers do not need to follow computations of the appendix
but, alternatively, may take the numerical non-dimensional hydrodynamic coefficients
at nonlinear terms tabled for certain realistic tank proportions and liquid fillings. The
hydrodynamic coefficients at the linear terms can be found in Gavrilyuk et al (2008, 2012).

The derived Moiseev type asymptotic modal equations are used to classify the steady-
state resonant sloshing occurring due to a small-amplitude harmonic (horizontal or angular)
tank excitation. The forcing frequency is close to the lowest natural sloshing frequency.
In section 5, we construct an approximate time-periodic solution of the nonlinear modal
equations which describes the steady-state wave regimes implying ‘planar’ and ‘swirling’
motions. Based on this solution, we study the possibility of secondary resonances. In contrast
to Gavrilyuk et al (2005), these resonances depend on the two input parameters which can be
interpreted as the semi-apex angle and the non-dimensional liquid depth. When a secondary
resonance occurs, the Moiseev-type modal equations may be inapplicable. The first Lyapunov
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Figure 1. Sketch of the tapered conical container and adopted notations.

method is implemented in section 7 to distinguish stable and unstable steady-state wave
regimes. We draw the response curves and detect the frequency ranges where the steady-
state regimes are stable. The response curves are qualitatively similar to those reported by
Gavrilyuk et al (2005) for a non-truncated conical tank. Along with the stability ranges for
‘planar’ and ‘swirling’, a frequency interval is indicated where irregular (chaotic) swirling
may happen. The results on the frequency ranges are qualitatively supported by the model
tests conducted by Matta (2002).

2. Statement of the problem

We consider a rigid truncated (tapered) conical tank of the semi-apex angle θ0. The tank
performs small-magnitude oscillatory motions with six degrees of freedom. These degrees
are associated with translatory tank velocity v0(t)= (η̇1, η̇2, η̇3) and the angular tank motions
which could be defined by the instant angular velocity ω(t)= (η̇4, η̇5, η̇6). The tank is partially
filled by an ideal incompressible liquid performing an irrotational flow. The liquid motions
as well as v0(t) and ω(t) are considered in the tank-fixed coordinate system Oxyz whose
origin O is superposed with the artificial cone vertex so that the Ox-axis coincides with the
symmetry axis (figure 1). The gravity acceleration vector g has the opposite direction to O ′x ′.

2.1. Free-boundary problem

When introducing the absolute velocity potential8(x, y, z, t) defined in the Oxyz-coordinate
system and function ζ(x, y, z, t) implicitly defining the free surface 6(t) : ζ(x, y, z, t)= 0,
the free-boundary sloshing problem can be written in the form (see chapter 2 in Faltinsen and
Timokha 2009)

∇
28= 0, r ∈ Q(t), (1)

∂8

∂ν
= v0 · ν + ω · (r × ν), r ∈ S(t), (2)
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∂8

∂ν
= v0 · ν + ω · (r × ν)−

∂ζ/∂t

|∇ζ |
, r ∈6(t), (3)

∂8

∂t
+

1

2
|∇8|

2
− ∇8 · (v0 + ω × r)+ U = 0, r ∈6(t), (4)

∫
Q(t)

dQ = Vl = const, (5)

where ν is the outer normal vector, Q(t) is the liquid domain, S(t)= S1(t)∪ S2 is the wetted
tank surface (S2 is the tank bottom and S1(t) is the wetted tank walls), r = (x, y, z) is
the radius vector, U = r · g is the gravity potential (g is the gravity acceleration vector).
Equality (5) expresses the liquid volume Vl conservation which is, in addition, the necessary
solvability condition of the Neumann boundary problem (1)–(3).

The free-boundary problem (1)–(5) needs initial conditions determining the instant
free-surface pattern and the normal velocity on 6(t) at t = t0, i.e. ζ(x, y, z, t0)=

ζ0(x, y, z), ∂ 8/∂ ν|6(t0) =80(x, y, z)|6(t0), where ζ0(x, y, z) and 80(x, y, z)|6(t0) are the
two known functions. For the steady-state wave solutions, the periodicity condition should be
adopted.

2.2. The Bateman–Luke formulation

Instead of dealing with the free-boundary problem (1)–(5), the multimodal method normally
employs the Bateman–Luke variational formulation whose equivalence to the original free
surface problem is, for instance, proved in section 2.5.3.2 by Faltinsen and Timokha (2009)
and in chapter 2 by Lukovsky and Timokha (1995). According to this formulation, the solution
(8 and ζ ) coincides with the extrema points of the action

A(ζ,8)=

∫ t2

t1

(∫
Q(t)

[p − p0] dx dy dz

)
dt (6)

for arbitrary t1 and t2 (t1 < t2) subject to the variations satisfying

δ8|t1,t2 = 0, δζ |t1,t2 = 0. (7)

The pressure field p(x, y, z, t) can be determined by using the Bernoulli equation rewritten
in the non-inertial coordinate system Oxyz as follows:

∂8

∂t
+

1

2
|∇8|

2
− ∇8 · (v0 + ω × r)+ U = −

p − p0

ρ
, (8)

where p0 is the ullage pressure and ρ is the liquid density.

2.3. General modal equations

The Bateman–Luke variational formulation was extensively used by many authors to derive
nonlinear modal equations for upright tanks (the tanks having vertical walls at the free
surface) when the single-valued presentation of 6(t): ζ = x − f (y, z, t)= 0 is possible.
The derivation assumed that f is expanded in a Fourier series with the time-dependent
coefficients {βN (t)} playing the role of the generalized coordinates. For non-vertical walls,
the Fourier representation is impossible and, therefore, we have to introduce the generalized
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coordinates implicitly

ζ = ζ(x, y, z; {βN (t)}) (9)

subject to the volume conservation condition (5) considered as a holonomic constraint.
We introduce the modal representation of the velocity potential

8(x, y, z, t)= v0 · r + ω · �(x, y, z, {βN (t)})+
∞∑

N=1

FN (t)ϕN (x, y, z), (10)

where {ϕN } is a complete set of linearly independent harmonic functions defined in Q(t) for
any admissible instant liquid shapes, Ω= (�1, �2, �3) are the Stokes–Joukowski potentials
which are parametrically dependent functions of βN as being the solution of the Neumann
boundary value problem

∇
2�i = 0 in Q(t),

∂�1

∂ν
= yνz − zνy,

∂�2

∂ν
= zνx − xνz,

∂�3

∂ν
= xνy − yνx on 6(t)∪ S(t). (11)

Here, νi are the projections of the outer normal on the coordinate axes and {FN (t)} play
the role of the generalized velocities. The Fourier-type solution (10) should keep the volume
(mass) conservation that requires {ϕN } to exactly satisfy the Laplace equation and the zero-
Neumann boundary condition on the wetted tank surface.

Because ζ and 8 are independent variables in the Bateman–Luke formulation, the
generalized coordinates {βN } and velocities {FN } are also independent and, due to (7), satisfy
the condition δFN |t=t1,t2 = δβN |t=t1,t2 = 0. Substituting (10) into (6) and varying FN (Faltinsen
and Timokha (2009), chapter 5) leads to the kinematic modal equations

dAN

dt
≡

∑
K

∂AN

∂βK
β̇K =

∑
K

AN K FK for all N . (12)

Following the derivations in (Faltinsen and Timokha (2009), pp 301–3) leads to the dynamic
modal equations∑

K

∂AK

∂βN
ḞK +

1

2

∑
K ,L

∂AK L

∂βN
Fk FL + (ω × v0 − g) ·

∂ l
∂βi

−
1

2
ω ·
∂ J1

∂βi
· ω

+ ω̇ ·

(
∂ lω
∂βi

−
∂ lωt

∂β̇i

)
+ ω

(
∂ lωt

∂βi
−

d

dt

∂ lωt

∂β̇i

)
= 0 for all N . (13)

The modal equations (12) and (13) are formulated with respect to the aforementioned
generalized coordinates and velocities, where

AN =

∫
Q(t)

ϕN dQ, AN K =

∫
Q(t)
(∇ϕN · ∇ϕK ) dQ,

l1 =

∫
Q(t)

x dQ, l2 =

∫
Q(t)

y dQ, l3 =

∫
Q(t)

z dQ, (14)

lkω = ρ

∫
Q(t)
�k dQ, lkωt = ρ

∫
Q(t)

∂�k

∂t
dQ, J 1

i j = ρ

∫
S(t)+6(t)

�i
∂� j

∂t
dQ,

5



Fluid Dyn. Res. 45 (2013) 055512 I P Gavrilyuk et al

1r

r0

Figure 2. The physical and transformed meridional cross-sections.

J 1
i j = J 1

j i , i, j, k = 1, 2, 3 are implicitly defined nonlinear functions of generalized

coordinates βN (the time evolution of Q(t) is fully determined by (9)). Here, J1 is the inertia
tensor of the contained liquid, l/Vl is the dynamic liquid mass center, but the vectors lω and
lωt have no a clear physical interpretation.

3. Analytically approximate natural sloshing modes

Normally, the functional set {ϕN } in (10) is associated with the natural sloshing modes which
are the eigenfunctions of the spectral boundary problem

∇
2ϕ = 0, r ∈ Q0,

∂ϕ

∂ν
= 0, r ∈ S0,

∂ϕ

∂ν
= κ̄ϕ, r ∈60,

∫
60

∂ϕ

∂ν
dS = 0 (15)

formulated in the hydrostatic (mean) liquid domain Q0 bounded by the hydrostatic free
surface 60 and the mean wetted tank surface S0.

A mathematical inconsistency is that the natural sloshing modes are defined in the
unperturbed domain Q0 but, to make the integrals (14) mathematically correct, the multimodal
method requires the eigensolution of (15) which is expandable over 60 into the ‘ullage’
domain. Another important limitation is that the modal solution should be as precise as
to satisfy the mass (volume) conservation and, therefore, the functional set {ϕN } must be
harmonic functions satisfying the zero-Neumann condition on the wetted tank surface.

To get an explicit definition of (9), we employ the non-conformal mapping technique by
introducing the curvilinear coordinate system Ox1x2x3

x = x1, y = x1x2 cos x3, z = x1x2 sin x3 (16)

(x3 = η is the angular coordinate) transforming the conical domain to the circular cylindrical
shape as demonstrated in figure 2 for the meridional cross-section of the static (mean) liquid
domain in the physical G and transformed G∗ planes. Considering the eigensolution of (15)
in the curvilinear coordinate system

ϕ(x1, x2, x3)= ψm(x1, x2)
sin m x3

cos m x3
, m = 0, 1, 2, . . . (17)
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makes it possible to separate the spatial variables (x1, x2) and x3 so that one yields the
following m-family of spectral boundary problems:

p
∂2ψm

∂x2
1

+ 2q
∂2ψm

∂x1∂x2
+ s
∂2ψm

∂x2
2

+ d
∂ψm

∂x2
− m2cψm = 0 in G∗, (18)

s
∂ψm

∂ x2
+ q

∂ψm

∂ x1
= 0 on L∗

1, (19)

p
∂ψm

∂x1
+ q

∂ψm

∂x2
= κ̄m pψm on L∗

0, (20)

p
∂ψm

∂ x1
+ q

∂ψm

∂ x2
= 0 on L∗

2, (21)

|ψm(x1, 0)|<∞, m = 0, 1, 2, . . . , (22)

∫ x20

0
ψ0x2 dx2 = 0, (23)

where G∗
= {(x1, x2) : x0 6 x1 6 x10, 06 x2 6 x20}, p = x2

1 x2, q = −x1x2
2 , s = x2(x2

2 + 1),
d = 1 + 2x2

2 , c = 1/x2 and L∗

0, L∗

1 and L∗

2 are defined in figure 2. The natural sloshing
frequencies are

σmn =
√

gκ̄mn =

√
gκmn

r0
, (24)

where κmn = r0κ̄mn are the non-dimensional eigenvalues normalized by the mean free surface
radius r0. The lowest natural sloshing frequency is associated with κ11. Dependences of the
non-dimensional spectral parameters κmn on the lower-to-upper radii r1 = r1/r0 (see figure 2)
are extensively discussed by Gavrilyuk et al (2008).

By using the Trefftz method, Gavrilyuk et al (2008) constructed the required analytically
approximate Trefftz solution of (18)–(23) which exactly satisfies (18), (19) and (21)

ψm = ψmn(x1, x2)=

q1∑
k=1

a(m)n,k w
(m)
k +

q2∑
l=1

ā(m)n,l w̄
(m)
l , (25)

where w
(m)
k (x1, x2)= N (m)

k xνmk
1 T (m)

νmk
(x2), w̄

(m)
k (x1, x2)= N̄ (m)

k x−1−νmk
1 T̄ (m)

νmk
(x2) with

T (m)
νmk
(x2) and T̄ (m)

νmk
(x2) expressed via the associate Legendre polynomials of the first

kind, P (m)
ν (µ), as follows:

T (m)
νmk
(x2)= (1 + x2

2)
νmk

2 P (m)
νmk

 1√
1 + x2

2

 , T̄ (m)
νmk
(x2)= (1 + x2

2)
−1−νmk

2 P (m)
νmk

 1√
1 + x2

2

 .

The numbers νmk are the roots of ∂P (m)
ν (cos θ)/∂θ |θ=θ0 = 0 and N (m)

k and N̄ (m)
k are the

normalizing multipliers introduced to satisfy the condition ||w
(m)
k ||

2
L∗

2∪L∗

0
= ||w̄

(m)
k ||

2
L∗

2∪L∗

0
= 1,

where || · || implies the mean square-root norm on L∗

2 ∪ L∗

0.
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4. Weakly nonlinear modal equations

4.1. Modal solution

We consider (9) in the x1x2x3-coordinates, i.e. ζ = ζ(x1, x2, x3, {βmi }), and postulate it as

ζ = x1 − f (x2, x3, t)= x1 − f (x2, x3, {pmi },

{rmi })= x1 − x10 −β0(t)−
∞∑

m=0

∞∑
i=1

(pmi (t) cos(mx3)+ rmi (t) sin(mx3)) fmi (x2), (26)

where x10 is the distance between the origin and the mean free surface (see figure 2) and

fmi (x2)=
σmi

g
ψmi (x10, x2) (27)

defines the radial natural surface profiles and σmi are the natural sloshing frequencies by (24).
Satisfying the volume conservation condition (5) makes β0(t) a function of other generalized
coordinates, β0 = G({pmi }, {rmi }).

The modal representation of the velocity potential (10) takes the form

8(x1, x2, x3, t)= v0 · r + ω · � +
∞∑

m=0

∞∑
i=1

(
Pmi (t) cos(mx3)+ Rmi (t) sin(mx3)

)
ψmi (x1, x2).

(28)

According to (26) and (28), integrals (14) are fully determined by the generalized
coordinates {pmi } and {rmi } in which the capital indices should be replaced by the complex
indices (mi, cos) and (mi, sin) so that, for instance, when N = (mi, cos),

AN = A(mi,cos) =

∫ π

−π

∫ r0

0

∫ f (x2,x3,{pmi },{rmi })

x0

x2
1 x2ψmi (x1, x2) cos(mx3) dx1 dx2 dx3.

4.2. The Moiseev asymptotics

Henceforth, we assume that the problem is scaled by the mean free surface radius so that all
geometric parameters and generalized coordinates are non-dimensional and, of course, the
circle 60 has the unit radius. The ratio between the bottom and free-surface radii is denoted
by r1 = r1/r0.

We adopt the Moiseev asymptotics (Narimanov 1957, Moiseev 1958, Lukovsky et al
2012) for the introduced generalized coordinates and velocities. This asymptotics holds true
for resonant tank excitations with the mean forcing frequency close to the lowest natural
sloshing frequency and the secondary resonances are neglected. The Moiseev asymptotics
has been widely used in the papers on the multimodal method (Faltinsen et al 2000,
Gavrilyuk et al 2005, 2007, Ikeda and Ibrahim 2005, Lukovsky et al 2012, Takahara and
Kimura 2012, Faltinsen and Timokha 2013) as well as in other semi-analytical approaches
to the nonlinear sloshing problem with a finite liquid depth (Ockendon and Ockendon 1973,
Bridges 1986, 1987, Waterhouse 1994, Ockendon et al 1996).

The Moiseev asymptotics suggests that the non-dimensional forcing magnitude is of
the order ε � 1. For axisymmetric tanks, this causes the two primary excited lowest
modes, differing only by the π/2-azimuthal angle, and associated with the non-dimensional
generalized coordinates p11 and r11 to dominate. These are of the order O(ε1/3). A simple
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Associated with p11 and r11 Associated with p01 Associated with p21 and r21 Associated with p31 and r31

Figure 3. Wave patterns associated with the generalized coordinates included into our nonlinear
modal analysis. Except for p01, these patterns appear twice differing by π/2-azimuthal rotation.
The drawings for θ0 = 30◦ and the non-dimensional ratio of the lower (bottom) and upper (the
mean free surface) radii is r1 = 0.5.

trigonometric analysis by the angular coordinate leads to the following asymptotic relations
for the generalized coordinates and velocities:

P11

σ11
∼

R11

σ11
∼ p11 ∼ r11 = O(ε1/3),

P2n

σ2n
∼

R2n

σ2n
∼

P0n

σ0n
∼ p2n ∼ r2n ∼ p0n = O(ε2/3),

P3n

σ3n
∼

R3n

σ3n
∼

P1(n+1)

σ1(n+1)
∼

R1(n+1)

σ1(n+1)
∼ p3n ∼ r3n ∼ p1(n+1) ∼ r1(n+1) = O(ε), n > 1. (29)

Remaining non-dimensional generalized coordinates and velocities are of the order o(ε) and
can be neglected within the framework of the Moiseev asymptotics.

4.3. Finite-dimensional asymptotic modal equations

Derivation of asymptotic modal systems based on the Moiseev asymptotics (29) implies
neglecting the o(ε)-order terms in the modal equations (12) and (13). As a consequence,
we arrive at an infinite-dimensional system of nonlinear ordinary differential equations
with respect to the generalized coordinates and velocities (29). Examples of such infinite-
dimensional systems are given by Lukovsky et al (2012) and Faltinsen and Timokha (2013).
Other existing asymptotic analytically oriented modal equations, e.g. in Lukovsky (1990),
Gavrilyuk et al (2005), involve two dominant, r11 and p11, and three second-order
generalized coordinates and velocities associated with p01, p21 and r21. Faltinsen and
Timokha (2009) showed that these five-dimensional nonlinear modal equations enable an
accurate approximation of the steady-state sloshing due to resonant excitations of the lowest
natural modes. This means that the weakly nonlinear modal equations of the Moiseev type do
not require to include a large set of generalized coordinates of the second and third order. A
physical reason for that is that the major of kinematic energy is normally accumulated by the
natural sloshing modes possessing the lower natural sloshing frequencies.

For an upright circular cylindrical tank, it was enough to account for three second-order
generalized coordinates associated with p01, p21 and r21 in addition to the two dominant
generalized coordinates r11 and p11. Based on this fact, we include in our modal analysis
the aforementioned five lowest modes associated with and, in addition, the two third-order
generalized coordinates p31 and r31. The wave patterns of the adopted natural sloshing modes
are shown in figure 3.

Technical derivation details for the seven-dimensional Moiseev-type modal system
are outlined in appendix A. For brevity, the generalized coordinates and velocities are

9
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denoted as follows:

p01 = p0, r11 = r1, p11 = p1, r21 = r2, p21 = p2, r31 = r3, p31 = p3,

P01 = P0, R11 = R1, P11 = P1, R21 = R2, P21 = P2, R31 = R3, P31 = P3.

The result is the following system of ordinary differential equations coupling the non-
dimensional generalized coordinates:

p̈0 + σ 2
0 p0 + d8( ṗ

2
1 + ṙ2

1 )+ d10( p̈1 p1 + r̈1r1)+ σ 2
0 g0(p

2
1 + r2

1 )= 0, (30)

r̈1 + σ 2
1 r1 + d1r1( p̈1 p1 + r̈1r1 + ṗ2

1 + ṙ2
1 )+ d2(p1(r̈1 p1 − p̈1r1)+ 2 ṗ1(ṙ1 p1 − ṗ1r1))

+d3( p̈1r2 − r̈1 p2 + ṗ1ṙ2 − ṗ2ṙ1)+ d4(r̈2 p1 − p̈2r1)+ d5(r̈1 p0 + ṙ1 ṗ0)+ d6 p̈0r1

+σ 2
1 (g1 p0r1 + g2(p1r2 − p2r1)+ g3(p

2
1 + r2

1 )r1)+3(v̇03 + gθ2)= 0, (31)

p̈1 + σ 2
1 p1 + d1 p1( p̈1 p1 + r̈1r1 + ṗ2

1 + ṙ2
1 )+ d2(r1( p̈1r1 − r̈1 p1)+ 2ṙ1( ṗ1r1 − ṙ1 p1))

+ d3( p̈1 p2 + r̈1r2 + ṗ1 ṗ2 + ṙ1ṙ2)+ d4( p̈2 p1 + r̈2r1)+ d5( p̈1 p0 + ṗ1 ṗ0)+ d6 p̈0 p1

+ σ 2
1 (g1 p0 p1 + g2(p1 p2 + r1r2)+ g3(p

2
1 + r2

1 )p1)+3(v̇02 − gθ3)= 0, (32)

r̈2 + σ 2
2 r2 + 2d7 ṗ1ṙ1 + d9( p̈1r1 + r̈1 p1)+ 2σ 2

2 g4 p1r1 = 0, (33)

p̈2 + σ 2
2 p2 + d7( ṗ

2
1 − ṙ2

1 )+ d9( p̈1 p1 − r̈1r1)+ σ 2
2 g4(p

2
1 − r2

1 )= 0, (34)

r̈3 + σ 2
3 r3 + d11(r̈1(p

2
1 − r2

1 )+ 2 p̈1 p1r1)+ d12(r1( ṗ
2
1 − ṙ2

1 )+ 2 ṗ1ṙ1 p1)+ d13( p̈1r2 + r̈1 p2)

+ d14( p̈2r1 + r̈2 p1)+ d15( ṗ1ṙ2 + ṗ2ṙ1)+ σ 2
3 (g5(p1r2 + p2r1)

+ g6r1(3p2
1 − r2

1 ))= 0, (35)

p̈3 + σ 2
3 p3 + d11( p̈1(p

2
1 − r2

1 )− 2r̈1 p1r1)+ d12(p1( ṗ
2
1 − ṙ2

1 )− 2 ṗ1ṙ1r1)+ d13( p̈1 p2 − r̈1r2)

+ d14( p̈2 p1 − r̈2r1)+ d15( ṗ1 ṗ2 − ṙ1ṙ2)+ σ 2
3 (g5(p1 p2 − r1r2)

+ g6 p1(p
2
1 − 3r2

1 ))= 0. (36)

Here, the non-dimensional hydrodynamic coefficients are functions of the mean liquid domain
parameters; the corresponding formulae for them are given in appendix A. The natural
sloshing frequencies σi = σi1 are defined by (24) where κm1 are the corresponding non-
dimensional eigenvalues whose numerical values (as well as those for 3) can be found in
Gavrilyuk et al (2008, 2012).

4.4. Non-dimensional hydrodynamic coefficients

Whereas r1 → 0, the tank becomes non-truncated and, as expected, the non-dimensional
hydrodynamic coefficients tend to the numerical values by Gavrilyuk et al (2005). For
another limit case θ0 → 0, the tank tends to the upright circular cylindrical shape and modal
equations (30)–(36) should transform to the corresponding seven modal equations taken from
the infinite-dimensional modal system by Lukovsky et al (2012).

Figures 4 and 5 illustrate how the non-dimensional hydrodynamic coefficients di and gj
depend on 0< θ0 < 45◦ for the fixed non-dimensional liquid depth h = 1. The limit values

10
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Figure 4. Coefficients di, i = 1, . . . , 6, d8, d10 and gi, i = 0, 1, 2, 3 as functions of θ0 for the
non-dimensional depth h = 1.

11

13

14

12

157

9

Figure 5. Coefficients d7, d9, di, i = 11, . . . , 15, and gi, i = 4, 5, 6 as functions of θ0 for the
non-dimensional depth h = 1.

on the vertical axis (θ0 = 0) coincide with the coefficients in the front of the corresponding
nonlinear terms computed for an upright circular cylindrical tank which were calculated by
using the exact natural sloshing modes (Lukovsky et al 2012). The limit values are marked
by d∗i.

The modal equations (30)–(36) contain the hydrodynamic coefficients gj which are not
zero only for tanks with non-vertical walls. The graphs confirm that the limit numerical values
gj tend to zero when the semi-apex angle tends to zero.

Tables 1–3 present the numerical non-dimensional hydrodynamic coefficients di and gj
(m = 0, 1, 2, 3, i = 1, . . . , 15, j = 0, . . . , 6) for three semi-angles, but κm and3 can be found
in Gavrilyuk et al (2008, 2012).

The hydrodynamic coefficients of the modal equations can be rewritten in the dimensional
form using the formulae

d̄i =

{
r0 di, for i = 1, 2, 9, 10,
r20 di, for i = 3, . . . , 8, 11, . . . , 15,

ḡi =

{
r0 gi, for i = 0, 1, 2, 4, 5,
r20 gi, for i = 3, 6.

(37)

5. The time-periodic solution of the modal equations

We consider forced steady-state resonant liquid sloshing occurring due to harmonic
translatory tank excitations. For brevity, the excitations are assumed along the Oz-axis in
notations of figure 1 implying that ηi = 0, i 6= 3 and η3 = Hcos(σ t). Our task consists of

11
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Table 1. Non-dimensional hydrodynamic coefficients di (i = 1, . . . , 8) computed within the five
significant figures.

r1 d1 d2 d3 d4 d5 d6 d7 d8

θ0 = 30◦

0.0 −0.317 55 −0.453 74 1.7656 0.635 50 2.1563 0.811 79 −0.581 51 −0.310 82
0.1 −0.317 55 −0.453 74 1.7656 0.635 50 2.1563 0.811 79 −0.581 51 −0.310 83
0.2 −0.317 54 −0.453 74 1.7656 0.635 48 2.1563 0.811 77 −0.581 55 −0.310 85
0.3 −0.317 33 −0.453 59 1.7656 0.635 24 2.1563 0.811 42 −0.582 24 −0.311 39
0.4 −0.315 75 −0.452 51 1.7651 0.633 47 2.1564 0.808 79 −0.587 34 −0.315 38
0.5 −0.308 11 −0.447 26 1.7629 0.625 29 2.1573 0.796 78 −0.611 14 −0.333 93
0.6 −0.278 06 −0.426 57 1.7573 0.597 33 2.1633 0.756 89 −0.695 95 −0.400 16
0.7 −0.160 37 −0.345 23 1.7530 0.519 23 2.2053 0.653 10 −0.960 10 −0.607 74
0.8 0.390 82 0.040 81 1.7969 0.319 93 2.4525 0.424 26 −1.7657 −1.2405
0.9 4.6122 3.0301 2.1361 −0.312 00 3.7413 −0.212 07 −4.6357 −3.3619

θ0 = 45◦

0.0 −1.2608 −0.706 38 2.4092 0.987 22 2.7093 1.2837 −0.540 21 −0.113 91
0.1 −1.2608 −0.706 38 2.4092 0.987 20 2.7093 1.2837 −0.540 26 −0.113 95
0.2 −1.2609 −0.706 15 2.4091 0.986 64 2.7091 1.2828 −0.541 83 −0.115 28
0.3 −1.2618 −0.704 53 2.4080 0.982 84 2.7080 1.2769 −0.552 56 −0.124 36
0.4 −1.2638 −0.697 89 2.4048 0.968 87 2.7046 1.2555 −0.593 03 −0.158 79
0.5 −1.2612 −0.674 99 2.3994 0.931 86 2.7021 1.2004 −0.707 71 −0.257 74
0.6 −1.2115 −0.596 01 2.4011 0.851 54 2.7304 1.0891 −0.992 01 −0.509 25
0.7 −0.903 65 −0.299 57 2.4498 0.693 75 2.9141 0.8996 −1.6680 −1.1160
0.8 0.749 10 1.0075 2.6648 0.361 71 3.6445 0.5639 −3.3135 −2.4986
0.9 13.491 10.277 3.4655 −0.674 81 6.3098 −0.4646 −8.3283 −6.1156

θ0 = 60◦

0.0 −3.7205 −1.4932 3.6640 1.6104 3.8492 2.0245 −0.573 67 0.217 02
0.1 −3.7210 −1.4932 3.6639 1.6101 3.8490 2.0241 −0.574 40 0.216 38
0.2 −3.7290 −1.4926 3.6627 1.6062 3.8462 2.0181 −0.584 89 0.207 16
0.3 −3.7611 −1.4892 3.6584 1.5900 3.8355 1.9934 −0.629 80 0.167 19
0.4 −3.8354 −1.4735 3.6503 1.5478 3.8149 1.9305 −0.754 61 0.052 73
0.5 −3.9396 −1.4080 3.6466 1.4619 3.8058 1.8096 −1.0439 −0.226 27
0.6 −3.9260 −1.1545 3.6803 1.3091 3.9032 1.6188 −1.6713 −0.864 77
0.7 −3.1285 −0.193 36 3.8422 1.0442 4.3899 1.3477 −3.0166 −2.2332
0.8 1.7161 3.8947 4.3398 0.502 09 5.9802 0.860 45 −6.0081 −4.8447
0.9 39.837 32.072 5.8808 −1.2416 11.085 −0.847 27 −14.725 −11.053

finding a time-periodic solution of (30)–(36) implying the steady-state wave regimes. The
lowest-order generalized coordinates r1(t) and p1(t) are presented by the Fourier series

r1(t)=

∞∑
k=1

(A2k−1 cos(kσ t)+ A2k sin(kσ t)), p1(t)=

∞∑
k=1

(B2k−1 cos(kσ t)+ B2k sin(kσ t)),

where, according to the Moiseev asymptotics, the leading asymptotic contribution is
associated with the first harmonics, i.e.

r1(t)= A1 cos σ t + A2 sin σ t + o(ε1/3); p 1(t)= B1 cos σ t + B2 sin σ t + o(ε1/3) (38)

and A1 ∼ A2 ∼ B1 ∼ B2 = O(ε1/3), ε = H .
As follows from substituting (38) into the modal equations (30), (33) and (34), the

generalized coordinates p0(t), r2(t) and p2(t) are functions of the dominant amplitude

12
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Table 2. Non-dimensional hydrodynamic coefficients di (i = 9, . . . , 15) computed within the five
significant figures.

r1 d9 d10 d11 d12 d13 d14 d̄15

θ0 = 30◦

0.0 1.4942 0.947 38 0.592 58 0.046 99 2.0917 1.2362 −2.0910
0.1 1.4942 0.947 38 0.592 58 0.046 99 2.0917 1.2362 −2.0910
0.2 1.4942 0.947 38 0.592 59 0.047 04 2.0917 1.2362 −2.0910
0.3 1.4942 0.947 31 0.592 80 0.048 05 2.0917 1.2361 −2.0919
0.4 1.4939 0.946 75 0.594 35 0.055 62 2.0916 1.2361 −2.0988
0.5 1.4918 0.944 03 0.601 86 0.092 39 2.0910 1.2357 −2.1317
0.6 1.4777 0.932 62 0.631 31 0.237 91 2.0873 1.2314 −2.2562
0.7 1.3954 0.882 93 0.745 53 0.814 12 2.0567 1.1960 −2.6836
0.8 0.976 47 0.656 23 1.3319 3.6853 1.7952 0.938 05 −4.1936
0.9 −1.0481 −0.342 31 7.6923 29.046 −0.285 13 −0.827 51 −10.602

θ0 = 45◦

0.0 2.4532 2.0600 1.5573 −0.106 32 3.3797 2.0406 −2.2336
0.1 2.4533 2.0600 1.5573 −0.106 25 3.3797 2.0406 −2.2336
0.2 2.4536 2.0600 1.5578 −0.103 91 3.3801 2.0406 −2.2357
0.3 2.4554 2.0603 1.5615 −0.087 57 3.3828 2.0407 −2.2500
0.4 2.4603 2.0604 1.5760 −0.022 59 3.3927 2.0409 −2.3061
0.5 2.4621 2.0542 1.6192 0.185 36 3.4174 2.0385 −2.4758
0.6 2.4205 2.0087 1.7407 0.839 90 3.4553 2.0139 −2.9347
0.7 2.1786 1.8011 2.1378 3.1767 3.4196 1.8650 −4.1575
0.8 1.2347 1.1195 4.1352 13.820 2.7763 1.1277 −7.6159
0.9 −2.3343 −0.785 01 24.725 95.558 −1.2179 −2.2344 −19.347

θ0 = 60◦

0.0 4.1682 4.3989 4.4451 −0.291 65 5.7152 3.4673 −2.7985
0.1 4.1685 4.3990 4.4455 −0.290 35 5.7155 3.4674 −2.7994
0.2 4.1722 4.4008 4.4507 −0.271 58 5.7202 3.4677 −2.8131
0.3 4.1858 4.4069 4.4733 −0.187 49 5.7400 3.4690 −2.8739
0.4 4.2106 4.4138 4.5367 0.07251 5.7924 3.4710 −3.0538
0.5 4.2226 4.3879 4.6888 0.81501 5.8945 3.4638 −3.5037
0.6 4.1197 4.2067 5.0618 3.0797 6.0249 3.3930 −4.5695
0.7 3.5918 3.5520 6.2379 11.025 5.9604 3.0276 −7.1431
0.8 1.8087 1.9574 12.419 45.741 4.6430 1.5193 −13.761
0.9 −4.3714 −1.4656 75.970 298.86 −2.5376 −4.3806 −34.457

parameters A1, A2, B1 and B2, i.e.

p0(t)= −
(

A2
1 + A2

2 + B2
1 + B2

2

)
o(0)0 −

1
2

(
A2

1 − A2
2 + B2

1 − B2
2

)
o(2)0 cos 2σ t

− (A1 A2 + B1 B2) o(2)0 sin 2σ t + o
(
ε2/3

)
, (39)

r2(t)= −2 (A1 B1 + A2 B2) o(0)2 − (A1 B1 − A2 B2) o(2)2 cos 2σ t

− (A1 B2 + A2 B1) o(2)2 sin 2σ t + o(ε2/3), (40)

p2(t)=
(

A2
1 + A2

2 − B2
1 − B2

2

)
o(0)2 + 1

2

(
A2

1 − A2
2 − B2

1 + B2
2

)
o(2)2 cos 2σ t

+ (A1 A2 − B1 B2) o(2)2 sin 2σ t + o(ε2/3). (41)
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Table 3. Non-dimensional hydrodynamic coefficients gj ( j = 0, 1, . . . , 6) computed within the
five significant figures.

r1 g0 g1 g2 g3 g4 g5 g6

θ0 = 30◦

0.0 0.210 45 0.936 12 0.828 77 −0.373 19 0.561 56 1.1259 0.079 39
0.1 0.210 45 0.936 12 0.828 77 −0.373 19 0.561 56 1.1259 0.079 39
0.2 0.210 45 0.936 11 0.828 77 −0.373 19 0.561 57 1.1259 0.079 39
0.3 0.210 45 0.935 98 0.828 75 −0.373 24 0.561 61 1.1259 0.079 40
0.4 0.210 40 0.934 99 0.828 56 −0.373 65 0.561 95 1.1262 0.079 46
0.5 0.210 19 0.930 55 0.827 77 −0.375 49 0.563 44 1.1276 0.079 72
0.6 0.209 38 0.916 53 0.825 81 −0.381 64 0.568 03 1.1326 0.080 58
0.7 0.206 46 0.886 30 0.824 31 −0.397 56 0.578 12 1.1474 0.082 80
0.8 0.197 05 0.856 42 0.835 81 −0.429 05 0.591 16 1.1782 0.086 64
0.9 0.177 78 0.892 85 0.885 71 −0.471 53 0.592 66 1.1977 0.088 40

θ0 = 45◦

0.0 0.424 46 1.5482 1.3767 −1.0000 0.967 84 1.9415 0.236 40
0.1 0.424 46 1.5482 1.3767 −1.0000 0.967 85 1.9415 0.236 40
0.2 0.424 42 1.5476 1.3766 −1.0004 0.968 02 1.9416 0.236 45
0.3 0.424 17 1.5439 1.3758 −1.0028 0.969 16 1.9426 0.236 77
0.4 0.423 17 1.5308 1.3732 −1.0118 0.973 16 1.9463 0.237 95
0.5 0.420 04 1.4987 1.3680 −1.0356 0.982 85 1.9571 0.241 07
0.6 0.411 29 1.4431 1.3631 −1.0859 1.0005 1.9826 0.247 59
0.7 0.389 72 1.3877 1.3727 −1.1740 1.0233 2.0302 0.258 21
0.8 0.348 53 1.4089 1.4275 −1.2982 1.0374 2.0863 0.268 77
0.9 0.302 14 1.5593 1.5441 −1.4306 1.0269 2.0818 0.266 32

θ0 = 60◦

0.0 0.847 32 2.5394 2.3194 −2.7525 1.6750 3.3611 0.708 93
0.1 0.847 28 2.5390 2.3193 −2.7529 1.6751 3.3612 0.708 98
0.2 0.846 78 2.5340 2.3181 −2.7585 1.6766 3.3623 0.709 65
0.3 0.844 57 2.5133 2.3134 −2.7820 1.6824 3.3674 0.712 50
0.4 0.837 93 2.4628 2.3031 −2.8438 1.6966 3.3822 0.720 02
0.5 0.821 20 2.3737 2.2894 −2.9712 1.7225 3.4160 0.735 48
0.6 0.783 79 2.2649 2.2857 −3.1932 1.7596 3.4801 0.761 71
0.7 0.711 13 2.2159 2.3265 −3.5243 1.7967 3.5768 0.796 60
0.8 0.603 75 2.3582 2.4590 −3.9380 1.8086 3.6610 0.821 65
0.9 0.508 62 2.6915 2.6835 −4.3466 1.7800 3.6193 0.802 77

Analogously, one can find

r3(t)= (A1(A
2
1 + A2

2 − 3B2
1 − B2

2 )− 2A2 B1 B2)o
(1)
3 cos σ t + (A2(A

2
1 + A2

2 − B2
1 − 3B2

2 )

−2A1 B1 B2)o
(1)
3 sin σ t + (A1(A

2
1 − 3A2

2 − 3B2
1 + 3B2

2 )+ 6A2 B1 B2)o
(3)
3 cos 3σ t

+(A2(3A2
1 − A2

2 − 3B2
1 + 3B2

2 )− 6A1 B1 B2)o
(3)
3 sin 3σ t + o (ε) , (42)

p3(t)= (B1(3A2
1 + A2

2 − B2
1 − B2

2 )+ 2A1 A2 B2)o
(1)
3 cos σ t + (B2(A

2
1 + 3A2

2 − B2
1 − B2

2 )

+2A1 A2 B1)o
(1)
3 sin σ t + (B1(3A2

1 − 3A2
2 − B2

1 + 3B2
2 )− 6A1 A2 B2)o

(3)
3 cos 3σ t

+(B2(3A2
1 − 3A2

2 − 3B2
1 + B2

2 )+ 6A1 A2 B1)o
(3)
3 sin 3σ t + o (ε) , (43)

where coefficients ok
m are defined in appendix A.
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Substituting (38), (39)–(41) into the modal equations (32) and (31) and gathering the
lowest-order terms at the first harmonics lead to the system of algebraic equations

(m1(A2
1 + A2

2 + B2
1 )+ m2 B2

2 )A1 + m3 A2 B1 B2 + (σ̄ 2
1 − 1)A1 = H3,

(m1(A2
1 + A2

2 + B2
2 )+ m2 B2

1 )A2 + m3 A1 B1 B2 + (σ̄ 2
1 − 1)A2 = 0,

(m1(A2
1 + B2

1 + B2
2 )+ m2 A2

2)B1 + m3 A1 A2 B2 + (σ̄ 2
1 − 1)B1 = 0,

(m1(A2
2 + B2

1 + B2
2 )+ m2 A2

1)B2 + m3 A1 A2 B1 + (σ̄ 2
1 − 1)B2 = 0

(44)

with respect to the dominant amplitude parameters, where coefficients mi depend on
hydrodynamic coefficients of the modal equations; see formulae (B.1) in appendix A.

The algebraic system (44) is similar to those by Gavrilyuk et al (2005) where we showed
that its solvability condition consists of A2 = B1 = 0 and, therefore, there are only two non-
zero amplitude parameters which can be found from the system

m1 A3
1 + m2 A1 B2

2 +
(
σ̄ 2

1 − 1
)

A1 = H3, m1 B3
2 + m2 A2

1 B2 +
(
σ̄ 2

1 − 1
)

B2 = 0, (45)

whose solution obviously depends on mi and, in turn, on the non-dimensional ratio of the
bottom and free surface radii r1, σ̄1(r1) and θ0 (mi = mi (σ̄1, r1, θ0)).

As shown by Gavrilyuk et al (2005), one can distinguish two types of solutions of (45)
and the corresponding steady-state wave regimes. The first solution type, A1 6= 0, B2 = 0,
implies the so-called planar waves. The second solution type, A1 6= 0, B2 6= 0, leads to the
so-called swirling. The planar waves are described by the asymptotic solution

p1 = r2 = p3 = 0, r1 = A1 cos σ t + o(ε), p2 = A2
1o(0)2 + 1

2 A2
1o(2)2 cos 2σ t + o(ε2),

r3 = A3
1o(1)3 cos σ t + A3

1o(3)3 cos 3σ t + o(ε3), p0 = −A2
1o(0)0 −

1
2 A2

1o(2)0 cos 2σ t + o(ε2),

(46)

where the amplitude parameter A1 is the root of the cubic equation

m1 A3
1 + (σ̄ 2

1 − 1) A1 − H3= 0. (47)

Swirling implies

r1(t)= A1 cos σ t + o(ε), p1(t)= B2 sin σ t + o(ε),

r2(t)= −A1 B2o(2)2 sin 2σ t + o(ε2),

p0(t)= −
(

A2
1 + B2

2

)
o(0)0 −

1
2

(
A2

1 − B2
2

)
o(2)0 cos 2σ t + o(ε2),

p2(t)=
(

A2
1 − B2

2

)
o(0)2 + 1

2

(
A2

1 + B2
2

)
o(2)2 cos 2σ t + o(ε2),

r3(t)= A1(A2
1 − B2

2 )o
(1)
3 cos σ t + A1(A2

1 + 3B2
2 )o

(3)
3 cos 3σ t + o(ε3),

p3(t)= B2(A2
1 − B2

2 )o
(1)
3 sin σ t + B2(3A2

1 + B2
2 )o

(3)
3 sin 3σ t + o(ε3),

(48)

where the amplitude parameters A1 and B2 are computed from the equations

m6 A3
1 + m5(σ̄

2
1 − 1)A1 − H3= 0, B2

2 = (m1 A2
1 − (σ̄ 2

1 − 1))/m2 > 0, (49)

m5 = m3/m1 and m6 = m4m5. The latter inequality in (49) is the solvability condition.
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Figure 6. The graphs of r1 = r1(im,n) (r1 is the ratio of the bottom and free surface radii) for the
semi-apex angle θ0 = 30◦. The secondary resonance is expected at r1 = 0.8116, 0.5939, 0.8926,
0.835 and 0.651.

6. Secondary resonances

When constructing the time-periodic solution, we assumed that the forcing frequency σ is
close to the lowest natural sloshing frequency σ11, i.e.

σ ≈ σ11. (50)

The constructed solution is valid if and only if coefficients in front of the polynomial terms
by the amplitude parameters are of the order O(1). However, these coefficients become
large when 2σ is close to one from the natural sloshing frequencies σ2i and σ0i , i > 1, or,
alternatively, when 3σ tends to one from the natural sloshing frequencies σ3i , i > 1 and σ1i ,
i > 2. This closeness is associated with the so-called secondary resonances. The necessary
condition of the secondary resonance consists of satisfying the relations

2σ ≈ σ0n, 2σ ≈ σ2n, 3σ ≈ σ3n, 3σ ≈ σ1(n+1), n > 1 (51)

together with (50). The secondary resonance is not avoidable with the strong equalities in (51)
and (50).

To analyze the secondary resonances with strong equalities in (51) and (50), we plot in
figures 6–8 the graphs of im,n(θ0, r1) as functions of the non-dimensional parameter r1 (r1 is
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Figure 7. The graphs of r1 = r1(im,n) (r1 is the ratio of the bottom and free surface radii) for the
semi-apex angle θ0 = 45◦. The secondary resonance is expected at r1 = 0.6386, 0.7972 and 0.7.

the ratio of the bottom and free surface radii) with a fixed value of the semi-apex angle

i0,n(θ0, r1)=
σ0n

2σ11
=

1

2

√
κ0n

κ11
, i2,n(θ0, r1)=

σ2n

2σ11
=

1

2

√
κ2n

κ11
,

i3,n(θ0, r1)=
σ3n

3σ11
=

1

3

√
κ3n

κ11
, i1(n+1)(θ0, r1)=

σ1(n+1)

3σ11
=

1

3

√
κ1(n+1)

κ11
, n > 1.

(52)

The functions im,n = im,n(θ0, r1) do not depend on the forcing frequency σ and one can see
that the condition

im,n = 1 (53)

for certain indices m and n is equivalent to the strong equality in the corresponding m, n-
equation of (51) and (50), simultaneously. The case r1 = 0 corresponds to the V-shaped
conical tank but the limit r1 → 1 implies the shallow water condition.

The calculations were done for the three semi-apex angles θ0 = 30◦, 45◦ and 60◦. The
strong equality i0,1 = 1 happens for r1 = 0.8926 implying that the first axisymmetric mode
is subject of the secondary resonance for larger r1 and the double harmonics 2σ can then
be amplified. As for the triple harmonics 3σ , it can occur for the modes (1,3), (1,4), (3,2)
and (3,3). So, for r1 = 0.651, the modes (3,3) are subject to the secondary resonance but the
modes (3,2) is resonantly excited at r1 = 0.835. Finally, the modes (1,3) are exposed to the
secondary resonance at r1 = 0.8116 and the modes (1,4) at r1 = 0.5939. The strong secondary
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Figure 8. The graphs of r1 = r1(im,n) (r1 is the ratio of of the bottom and free surface radii) for
the semi-apex angle θ0 = 60◦. The secondary resonance is expected as r1 = 0.67 and 0.3196.

resonances for the semi-apex angle θ0 = 30◦ are not expected for the non-dimensional ratio
r1 . 0.5.

As follows from figure 7, the secondary resonances also exist for θ0 = 45◦ at r1 = 0.6386
(modes (1,3)), r1 = 0.7972 (mode (0,1)) and r1 = 0.7 (modes (3,2)). This implies that the
constructed Moiseev type modal equations can be applicable for the non-dimensional ratios
r1 . 0.6. Figure 8 demonstrates two critical values of r1 for θ0 = 60◦. These are r1 = 0.67
(the secondary resonance by the mode (0,1)) and r1 = 0.3196 (the secondary resonance for the
modes (3,2)). Moreover, i3,2 is close to 1 for r1 . 0.5 but i0,1 ≈ 1 for 0.55. r1. This means
that the derived modal equations may need revision accounting for secondary resonances for
this semi-apex angle.

7. Stability analysis

The hydrodynamic instability of the time-periodic solutions (46) and (48) can be studied by
employing the first Lyapunov method. This implies introducing small perturbations of these
solutions denoted by α, β, η, γ , δ, µ and ν, i.e. p0(t)= p̃0(t)+ η(t), p1(t)= p̃1(t)+β(t),
r1(t)= r̃1(t)+α(t), p2(t)= p̃2(t)+ δ(t), r2(t)= r̃2(t)+ γ (t), p3(t)= p̃3(t)+ ν(t), r3(t)=

r̃3(t)+µ(t), and constructing the following linear differential variational equations with
respect to α, β, η, γ , δ, µ, ν:

η̈ + σ 2
0 η + d10(r̈1α + p̈1β + α̈r1 + β̈ p1)+ 2d8(α̇ṙ1 + β̇ ṗ1)+ 2σ 2

0 g0(αr1 +βp1)= 0,
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α̈ + σ 2
1 α + d1(α( ṗ

2
1 + ṙ2

1 + p̈1 p1 + 2r̈1r1)+ r1(β̈ p1 + α̈r1 + p̈1β + 2β̇ ṗ1 + 2α̇ṙ1))

+d2(p1(α̈ p1 − β̈r1 + 2α̇ ṗ1)+β(2 ṗ1ṙ1 + 2p1r̈1 − r1 p̈1)−α( p̈1 p1 + 2 ṗ2
1)

+2β̇(ṙ1 p1 − 2 ṗ1r1))+ d3(β̈r2 − α̈ p2 + β̇ṙ2 − α̇ ṗ2 + γ̇ ṗ1 − δ̇ṙ1 + γ p̈1 − δr̈1)

+d4(βr̈2 −α p̈2 + γ̈ p1 − δ̈r1)+ d5(α̈ p0 + α̇ ṗ0 + η̇ṙ1 + ηr̈1)+ d6(α p̈0 + η̈r1)

+σ 2
1 (g1(αp0 + ηr1)+ g2(βr2 −αp2 + γ p1 − δr1)

+g3(2βp1r1 +α(p2
1 + 3r2

1 )))= 0,

β̈ + σ 2
1 β + d1(β( ṗ

2
1 + ṙ2

1 + 2 p̈1 p1 + r̈1r1)+ p1(β̈ p1 + 2β̇ ṗ1 + α̈r1 + 2α̇ṙ1 +αr̈1))

+d2(r1(β̈r1 + 2β̇ṙ1 − α̈ p1)+α(2 p̈1r1 + 2 ṗ1ṙ1 − r̈1 p1)−β(r̈1r1 + 2ṙ2
1 )

+2α̇( ṗ1r1 − 2ṙ1 p1))+ d3(β̈ p2 + β̇ ṗ2 + α̈r2 + α̇ṙ2 + δ̇ ṗ1 + δ p̈1 + γ̇ ṙ1 + γ r̈1)

+d4(δ̈ p1 + γ̈ r1 +αr̈2 +β p̈2)+ d5(β̈ p0 + β̇ ṗ0 + η̇ ṗ1 + η p̈1)+ d6(β p̈0 + η̈p1)

+σ 2
1 (g1(βp0 + ηp1)+ g2(αr2 +βp2 + γ r1 + δp1)

+g3(2αp1r1 +β(3p2
1 + r2

1 )))= 0,

γ̈ + σ 2
2 γ + d9( p̈1α + r̈1β + α̈ p1 + β̈r1)+ 2d7(α̇ ṗ1 + β̇ṙ1)+ 2σ 2

2 g4(αp1 +βr1)= 0,

δ̈ + σ 2
2 δ + d9(r̈1α− β̈ p1 − α̈r1 − p̈1β)+ 2d7(β̇ ṗ1 − α̇ṙ1)+ 2σ 2

2 g4(βp1 −αr1)= 0,

µ̈+ σ 2
3µ+ d11(α̈(p

2
1 − r2

1 )+ 2β̈ p1r1 + 2α( p̈1 p1 − r̈1r1)+ 2β( p̈1r1 + r̈1 p1))

+d12(2α̇(p1 ṗ1 − r1ṙ1)+α( ṗ2
1 − ṙ2

1 )+ 2β̇(p1ṙ1 + r1 ṗ1)+ 2β ṗ1ṙ1)

+d13(α̈ p2 + β̈r2 + δr̈1 + γ p̈1)+ d14(α p̈2 +βr̈2 + γ̈ p1 + δ̈r1)

+d15(α̇ ṗ2 + β̇ṙ2 + γ̇ ṗ1 + δ̇ṙ1)+ σ 2
3 (g5(αp2 +βr2 + δr1 + γ p1)

+3g6(α(p
2
1 − r2

1 )+ 2βp1r1))= 0,

ν̈ + σ 2
3 ν + d11(β̈(p

2
1 − r2

1 )− 2α̈ p1r1 + 2β(p1 p̈1 − r1r̈1)− 2α(r1 p̈1 + p1r̈1))

+d12(2β̇(p1 ṗ1 − r1ṙ1)− 2α̇(r1 ṗ1 + p1ṙ1)+β( ṗ2
1 − ṙ2

1 )− 2α ṗ1ṙ1)

+d13(β̈ p2 − α̈r2 + δ p̈1 − γ r̈1)+ d14(β p̈2 −αr̈2 + δ̈ p1 − γ̈ r1)

+d15(β̇ ṗ2 − α̇ṙ2 + δ̇ ṗ1 − γ̇ ṙ1)+ σ 2
3 (g5(βp2 −αr2 + δp1 − γ r1)

+3g6(β(p
2
1 − r2

1 )− 2αp1r1))= 0.

Here, di (i = 1, . . . , 15) and gj ( j = 0, . . . , 6) are the coefficients of derived nonlinear modal
system.

Equations above constitute a system of linear ordinary differential equations with periodic
coefficients. Its fundamental solution can be obtained by employing the Floquet theory
suggesting the solution

α(t)= eλtψ1(t), β(t)= eλtψ2(t), γ (t)= eλtψ3(t), δ(t)= eλtψ4(t),

η(t)= eλtψ5(t), µ(t)= eλtψ6(t), ν(t)= eλtψ7(t),
(54)

where λ is the characteristic exponent and ψi are the 2π/σ–periodic functions. The instability
of (46) and (48), as follows from the expressions (54), depends on the values λ. At least one
of the values should have the positive real part.
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Figure 9. The response curves for planar and swirling resonant steady-state sloshing drawn for the
semi-apex angle θ0 = 30◦, the non-dimensional ratio r1 = 0.5 and the non-dimensional excitation
amplitude H = 0.01. The amplitude parameters A1 and B2 imply longitudinal and transverse wave
components.

To get the characteristic exponent approximate values we pose the periodic functions
ψ1(t) and ψ2(t) in the Fourier series

ψ1(t)= a1 cos σ t + a2 sin σ t + · · · , ψ2(t)= b1 cos σ t + b2 sin σ t + · · · (55)

and substitute them, together with (54), into equations in variations. Using the
Bubnov–Galerkin method leads to the following system of linear homogeneous equations:

C11a1 +C12a2 +C13b1 +C14b2 = 0,

C21a1 +C22a2 +C23b1 +C24b2 = 0,

C31a1 +C32a2 +C33b1 +C34b2 = 0,

C41a1 +C42a2 +C43b1 +C44b2 = 0

(56)

with respect to ai and bi (i = 1, 2), where coefficients Ci j (i, j = 1, . . . , 4) are functions of
the hydrodynamic coefficients di and gj of the original nonlinear modal equations system as
well as of λ̄ (λ̄= λ/σ ) and the amplitude parameters A1 and B2 of the generalized coordinates
p1(t) and r1(t) whose expressions are given by formulae (B.3).

Requiring a non-trivial solution of (56) with respect to ai and bi (i = 1, 2) leads to the
zero-determinant condition

D(λ)=

∣∣∣∣∣∣∣∣∣∣
C11 C12 C13 C14

C21 C22 C13 C24

C31 C32 C33 C34

C41 C42 C43 C44

∣∣∣∣∣∣∣∣∣∣
= 0 (57)

whose roots are the required characteristic exponents λ̄.

8. The response curves

Figures 9 and 10 present the response curves (in terms of the amplitude parameters A1 and
B2) associated with the steady-state wave motions. Accounting for the secondary resonance
analysis in section 6 and the related limitations of the Moiseev-type modal equations, the focus
is on the semi-apex angles θ0 = 30◦ and 45◦ and the ratios r1 = 0.5 and 0.4, respectively.
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Figure 10. The same as in figure 9 but for θ0 = 45◦, r1 = 0.4 and H = 0.01.

Analyzing the response curves makes it possible to estimate the effective frequency ranges
for planar and/or swirling sloshing. The amplitude parameter A1 measures the longitudinal
wave component but B2 corresponds to the cross-wave component. The solid lines mark stable
steady-state wave regimes but dashed lines are used to denote their instability.

The figures demonstrate that the response curves are qualitatively similar to those known
for non-truncated conical tanks Gavrilyuk et al (2005). Firstly, the planar sloshing (branches
K 1 K 2 and M1 M2) is always unstable in a neighborhood of the linear resonance (σ/σ1 = 1);
the instability is expected for the forcing frequencies laying between the abscissas of K and
M . Here, K is the turning point but M is the Poincaré bifurcation point from which the
branch M M3 corresponding to unstable swirling emerges. Secondly, stable swirling exists at
σ/σ1 = 1. The ‘swirling’ branch, N 2 N 1, is divided by the Hopf bifurcation point N so that
subbranch N N 1 corresponds to stable steady-state wave motions (the abscissa of N is less
than 1) but the subbranch N N 2 implies unstable steady-state swirling. Thirdly, the interval
between the abscissas of N and M marks the frequency range where both planar and swirling
steady-state wave regimes are unstable. In this frequency range, irregular (chaotic) waves are
expected.

The literature on experimental studies devoted to nonlinear resonant sloshing in a
truncated conical tank is almost empty. Being interested in these experiments to validate our
theoretical results, we paid attention to Casciati et al (2003) where appropriate experiments
were mentioned in the context of the tuned liquid dampers equipped with a conical tank.
Thanks to Professor Fabio Casciati and Dr Emiliano Matta (Politecnico di Torino, Italy),
we have got a more detailed report on these experiments documented in the PhD Thesis by
Matta (2002). In the Thesis, the experimental tank with the semi-apex angle θ0 = 30◦ was used
for measuring the hydrodynamic force occurring due to a horizontal harmonic tank excitation.
The thesis reports a set of the hydrodynamic force recordings as well as trying to classify the
liquid motions based on both measurements and observations. Because the experimental series
were conducted on a relatively short time scale, the classification was only partly successful.
In some cases, it was possible to conclude on almost steady-state wave regime (planar or
swirling), but many of the Matta’s experimental series reported strong breaking waves and
irregular motions which may be explained as either continuing transients or hydrodynamic
instability. However, these irregular and almost steady-state liquid motions were found as they
follow from our analysis: irregular waves were established for σ/σ1 < 1, a few stable model
series demonstrated swirling for σ/σ1 > 1 and stable planar waves were detected far from
the linear resonance σ/σ1 = 1. This qualitatively supports our theory. As for a quantitative
validation, we think that it is difficult to do because the experimental series were relatively
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short in the time. Moreover, the experiments were done with relatively small (almost shallow)
liquid depths causing the ratio r1 = 0.852. Section 6 shows that, unfortunately, this ratio is
too close to r1 = 0.8926 (the secondary resonance by the mode (0,1)) and r1 = 0.835 (the
secondary resonance by the mode (3,2)). This means that the Moiseev type modal equations
are most likely inapplicable to this shallow water sloshing to get a quantitative agreement
due to these secondary resonances. The secondary resonances are implicitly confirmed in
observations of Matta (2002). Breaking waves and overturning are almost always detected for
the forcing frequencies in a neighborhood of σ/σ1 = 1 where our theory predicts irregular
waves or swirling. As was discussed in chapters 8 and 9 by Faltinsen and Timokha (2009),
these phenomena are a typical attribute of multiple secondary resonances, especially, for the
shallow water case.

9. Conclusions

Employing the non-conformal mapping technique by Lukovsky (1990) and the Moiseev-
type asymptotics, we derived approximate weakly nonlinear modal equations which describe
resonant liquid sloshing in the V -shaped truncated conical tank. The modal system couples
seven generalized coordinates of the considered infinite-dimensional mechanical system. The
generalized coordinates are associated with perturbations of the seven lowest natural sloshing
modes. The considered weakly nonlinear resonant sloshing is assumed to be due to a small-
magnitude excitation of the lowest natural sloshing frequency and there are no secondary
resonances amplifying higher generalized coordinates. Arguments in choosing the seven
generalized coordinates (see section 4.3) are based on physical circumstances and referring to
earlier successful nonlinear modal systems for an upright circular cylindrical tank.

Along with ideas and derivation details, the present paper presents the numerical non-
dimensional hydrodynamic coefficients which can be useful for practically oriented readers.
We studied the limit cases to ensure that there are no algebraic and arithmetic errors.

Using the nonlinear Moiseev-type modal equations, we studied the resonant steady-state
sloshing occurring due to harmonic tank excitations with the forcing frequency close to the
lowest natural sloshing frequency. Combining the Bubnov–Galerkin and asymptotic schemes,
we constructed a time-periodic solution of the nonlinear modal equations and, using the first
Lyapunov method, studied stability of this solution.

Physically, the time-periodic solution yields two types of steady-state wave motions,
planar and swirling. The planar sloshing implies liquid motions in the excitation plane
but swirling means a rotary wave. The response curves were drawn to show a similarity
between the steady-state sloshing in truncated conical tanks and upright circular cylindrical
tanks. Qualitative agreement was found with experimental observations on steady-state wave
motions by Matta (2002).
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Appendix A. Technical details of derivations

The employed natural sloshing modes are ϕ1 = ψ0, ϕ2 = sin x3ψ1, ϕ3 = cos x3ψ1, ϕ4 =

sin 2x3ψ2, ϕ5 = cos 2x3ψ2, ϕ6 = sin 3x3ψ2, ϕ7 = cos 3x3ψ2 that implies f (x2, x3)= β0 +
f0(x2)p0 + f1(x2)p1 cos x3 + f1(x2)r1 sin x3 + f2(x2)p2 cos 2x3 + f2(x2)r2 sin 2x3 + f3(x2)p3 ×
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cos 3x3 + f3(x2)r3 sin 3x3 in (26) where the time-dependent function β0(t) follows from the
volume conservation condition∫ 2π

0

∫ x20

0
x2

(
x2

10 f + x10 f 2 +
1

3
f 3

)
dx2 dx3 = 0

and takes (neglecting the higher-order terms) the form β0 = k1 p2
0 + k2(p2

1 + r2
1 )+ k3 p0(r2

1 +
p2

1)+ k4(2p1r1r2 − p2(r2
1 + p2

1))+ k5(p2
2 + r2

2 )+ k6(p2
3 + r2

3 )+ k7(p1r2r3 + p1 p2 p3 − r1r2 p3 +
r1 p2r3)+ · · · . The coefficients ki are computed by the formulae

k1 = −
2e00

ht x2
20

, k2 = −
e11

x2
20ht

, k3 = −
e011

h2
t x2

20

, k4 = −
e112

2h2
t x2

20

, k5 = −
e22

ht x2
20

,

k6 = −
e33

ht x2
20

, k7 = −
e123

h2
t x2

20

, k8 =
π

4

(
h4

t − h4
b

)
x2

20, k9 =
π

2
h2

t e11, k10 = πh2
t e00,

k11 =
π

2
h2

t e22, k12 =
π

2
h2

t e33, k13 = 2πht e011, k14 = πht e112, k15 = 2πht e123,

k16 =
3π

2

(
e1111

8
−

e2
11

x2
20

)
, k17 =

π

4
e1113,

where ht = h1 = r1 cot θ0, hb = h0 = r0 cot θ0 and ei jk =
∫ x20

0 x2 fi (x2) f j (x2) fk(x2)dx2.

The vector (l1, l2, l3) by (14) reads as

l1 = ρ

∫ 2π

0

∫ x20

0

∫ f +ht

hb

x3
1 x2 dx1 dx2 dx3, l2 = ρ

∫ 2π

0

∫ x20

0

∫ f +ht

hb

x3
1 x2

2 cos x3 dx1 dx2 dx3,

l3 = ρ

∫ 2π

0

∫ x20

0

∫ f +ht

hb

x3
1 x2

2 sin x3 dx1 dx2 dx3

and takes the form

l1 = λ10 + λ11
(

p2
1 + r2

1

)
+ · · · , (A.1)

l2 = λ21 p1 + λ22 p1
(

p2
1 + r2

1

)
+ λ23 p0 p1 + λ24 (p1 p2 + r1r2)+ · · · , (A.2)

l3 = λ31r1 + λ32r1
(

p2
1 + r2

1

)
+ λ33 p0r1 + λ34 (p1r2 − p2r1)+ · · · , (A.3)

where λ10 = k8, λ11 = k9, λ= λ21 = λ31 = λi1, λ22 = λ32 = λi2, λ23 = λ33 = λi3

and λ24 = λ34 = λi4, are computed by the formulae λi1 = πρh3
t s2

0100, λi2 =
3πρht

4x2
20

(
x2

20 s2
0300 − 4 s1

0200s2
0100

)
, λi3 = 3πρh2

t s2
1100, λi4 =

3
2πρh2

t s2
0110, s1

0200 = e11, and

quadratures s2
i jkl (i, j, k, l = 0, 1, 2, 3) are defined by

s2
i jkl =

∫ x20

0
x2

2( f0(x2))
i ( f1(x2))

j ( f2(x2))
k( f3(x2))

l dx2,

where the coefficients i, j, k, l mean the power of functions fm(x2). Coefficients
λi jk are given by the formulae λ211 = λ311 = λi1, λ2131 = λ3131 =

1
4 (3λi2 − (4 o(0)0 +

o(2)0 )λi3 − (4 o(0)2 + o(2)2 )λi4), λ2132 = λ3132 =
1
4 (λi2 − (4 o(0)0 − o(2)0 )λi3 + (4 o(0)2 − 3 o(2)2 )λi4),

λ233 = λ333 =
9
4 (λi2 − o(2)0 λi3 − o(2)2 λi4).

Explicit representation of (A.1) appearing in (13) takes the form l1 = k8 + k9(p2
1 + r2

1 )+
k10 p2

0 + k11(p2
2 + r2

2 )+ k12(p2
3 + r2

3 )+ k14(2p1r1r2 + p2(p2
1 − r2

1 ))+ k13 p0(r2
1 + p2

1)+ k16(2p2
1r2

1 +
p4

1 + r4
1 )+ k15(r1(p2r3 − p3r2)+ p1(r2r3 + p2 p3))+ k17(p1 p3(p2

1 − 3r2
1 )+ r1r3(3p2

1 − r2
1 )).
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Within the introduced seven generalized coordinates, the asymptotic expansion of (14)
leads to

A1 = b1 + b2 p0 + b3(p
2
1 + r2

1 )+ b4 p2
0 + b5(r

2
2 + p2

2)+ b6 p0(p
2
1 + r2

1 )

+b7(p
2
1 p2 + 2p1r1r2 − p2r2

1 ),

A2 = b8r1 + b9r1(p
2
1 + r2

1 )+ b11 p0r1 + b10(p1r2 − r1 p2)+ b12(p2r3 − r2 p3)

+b13(r3(p
2
1 − r2

1 )− 2p1r1 p3),

A3 = b8 p1 + b9 p1(p
2
1 + r2

1 )+ b11 p0 p1 + b10(p1 p2 + r1r2)+ b12(p2 p3 + r2r3)

+b13(p3(p
2
1 − r2

1 )+ 2p1r1r3),

A4 = b14r2 + 2b15 p1r1 + b16 p0r2 + 2b19 p0 p1r1 + b17r2(p
2
1 + r2

1 )+ b18(p1r3 − p3r1),

A5 = b14 p2 + b15(p
2
1 − r2

1 )+ b16 p0 p2 + b17 p2(p
2
1 + r2

1 )+ b18(p1 p3 + r1r3)+ b19 p0(p
2
1 − r2

1 ),

A6 = b20r3 + b21r1(3p2
1 − r2

1 )+ b24 p0r3 + b22(r1 p2 + p1r2)+ b23r3(p
2
1 + r2

1 ),

A7 = b20 p3 + b21 p1(p
2
1 − 3r2

1 )+ b24 p0 p3 + b22(p1 p2 − r1r2)+ b23 p3(p
2
1 + r2

1 ),

A11 = b25 + b26 p0 + b27(p
2
1 + r2

1 ),

A12 = b28r1 + b29 p0r1 + b30(p1r2 − r1 p2)+ b31r1(p
2
1 + r2

1 ),

A13 = b28 p1 + b29 p0 p1 + b30(p1 p2 + r1r2)+ b31 p1(p
2
1 + r2

1 ),

A14 = b32r2 + 2b33 p1r1 + b34(p1r3 − r1 p3),

A15 = b32 p2 + b33(p
2
1 − r2

1 )+ b34(p1 p3 + r1r3),

A16 = b35r3 + b36(p1r2 + r1 p2),

A17 = b35 p3 + b36(p1 p2 − r1r2),

A22 = b37 + b38 p0 + b39 p2 + b40 p2
1 + b41r2

1 + b42(p1 p3 + r1r3),

A23 = −b39r2 + b43 p1r1 + b42(r1 p3 − p1r3),

A24 = b44 p1 + b45 p3 + b46 p0 p1 + b47 p1 p2 + b48r1r2 + b49 p1(p
2
1 + r2

1 ),

A25 = −b44r1 − b45r3 − b46 p0r1 − b47 p1r2 + b48r1 p2 − b49r1(p
2
1 + r2

1 ),

A26 = b50 p2 + b51(p
2
1 − r2

1 )+ b52 p1 p3 + b53r1r3,

A27 = −b50r2 − 2b51 p1r1 − b52 p1r3 + b53r1 p3,

A33 = b37 + b38 p0 − b39 p2 + b40r2
1 + b41 p2

1 − b42(p1 p3 + r1r3),

A34 = b44r1 − b45r3 + b46 p0r1 − b47r1 p2 + b48 p1r2 + b49r1(p
2
1 + r2

1 ),

A35 = b44 p1 − b45 p3 + b46 p0 p1 + b47r1r2 + b48 p1 p2 + b49 p1(p
2
1 + r2

1 ),

A36 = b50r2 + 2b51 p1r1 − b52r1 p3 + b53 p1r3,

A37 = b50 p2 + b51(p
2
1 − r2

1 )+ b52r1r3 + b53 p1 p3,

A44 = b54 + b55 p0 + b56(p
2
1 + r2

1 )+ b57(p1 p3 − r1r3),

A45 = −b57(r1 p3 + p1r3), A67 = 0,

A46 = b58 p1 + b59 p0 p1 + b60(p1 p2 + r1r2)+ b61 p1(p
2
1 + r2

1 ),

A47 = −b58r1 − b59 p0r1 + b60(r1 p2 − p1r2)+ b61r1(r
2
1 − p2

1),

A55 = b54 + b55 p0 + b56(p
2
1 + r2

1 )+ b57(r1r3 − p1 p3),
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A56 = b58r1 + b59 p0r1 + b60(p1r2 − r1 p2)+ b61r1(p
2
1 + r2

1 ),

A57 = b58 p1 + b59 p0 p1 + b60(p1 p2 + r1r2)+ b61 p1(p
2
1 + r2

1 ),

A66 = b62 + b63 p0 + b64(p
2
1 + r2

1 ),

A77 = b62 + b63 p0 + b64(p
2
1 + r2

1 ).

Considering (12) as a system of linear equations with respect to the generalized velocities
gives the asymptotic solution

P0 = c1 ṗ0 + c2 p1 ṗ1 + c2r1ṙ1,

R1 = c3ṙ1 + c4r1 ṗ0 + c5 p0ṙ1 + c6 p1ṙ2 − c6r1 ṗ2 + c7r2 ṗ1 − c7 p2ṙ1 + c8 p1r1 ṗ1

+c9r2
1 ṙ1 + c10 p2

1 ṙ1,

P1 = c3 ṗ1 + c4 p1 ṗ0 + c5 p0 ṗ1 + c6 p1 ṗ2 + c6r1ṙ2 + c7 p2 ṗ1 + c7r2ṙ1 + c8 p1r1ṙ1

+c9 p2
1 ṗ1 + c10r2

1 ṗ1,

R2 = c11ṙ2 + c12r1 ṗ1 + c12 p1ṙ1, P2 = c11 ṗ2 + c12 p1 ṗ1 − c12r1ṙ1,

R3 = c13ṙ3 + c14 p1ṙ2 + c14r1 ṗ2 + c15 p2ṙ1 + c15r2 ṗ1 + c16 p2
1 ṙ1 + 2c16 p1r1 ṗ1 − c16r2

1 ṙ1,

P3 = c13 ṗ3 + c14 p1 ṗ2 − c14r1ṙ2 + c15 p2 ṗ1 − c15r2ṙ1 + c16 p2
1 ṗ1 − 2c16 p1r1ṙ1 − c16r2

1 ṗ1,

where

c1 =
b2

b25
, c2 =

1

b25

(
2b3 −

b8b28

b37

)
, c3 =

b8

b37
, c4 =

1

b37

(
b11 −

b2b28

b25

)
,

c5 =
1

b37

(
b11 −

b8b38

b37

)
, c6 =

1

b37

(
b10 −

b14b44

b54

)
, c7 =

1

b37

(
b10 −

b8b39

b37

)
,

c8 =
1

b37

(
2

(
b9 −

b3b28

b25

)
−

b8

b37

(
b43 −

b2
28

b25

))
,

c9 =
1

b37

(
3b9 −

2b28

b25

(
b3 −

b8b28

b37

)
−

b8

b37

(
b41 +

b2
28

b25

)
−

b44

b54

(
2b15 −

b8b44

b37

))
,

c10 =
1

b37

(
b9 −

2b15b44

b54
−

b8

b37

(
b40 −

b2
44

b54

))
, c15 =

1

b62

(
b22 −

b8b50

b37

)
,

c11 =
b14

b54
, c12 =

1

b54

(
2b15 −

b8b44

b37

)
, c13 =

b20

b62
, c14 =

1

b62

(
b22 −

b14b58

b54

)
,

c16 =
1

b62

(
3b21 −

b8

b37

(
b51 +

b44b58

b54

)
−

2b58

b54

(
b15 −

b8b44

b37

))
in which bi (i = 1, . . . , 64) are expressed by the following formulae b1 = 2g00, b3 = g0211 +
2k2g01, b2 = 2g010, b4 = 2g0200 + 2k1g01, b5 = g0222 + 2k5g01, b6 = 3g03011 + 4k2g020 + 2k3g01,
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b7 =
3
2 g03112 + 2 k4 g01, b8 = g111, b10 = g1212, b9 =

3
4 g13111 + 2k2g121, b11 = 2g1201,

b12 = g1223, b13 =
3
4 g13113, b14 = g212, b15 =

1
2 g2211, b16 = 2g2202, b17 =

3
2 g23112 + 2k2g222,

b18 = g2213, b19 =
3
2 g23011, b20 = g313, b21 =

1
4 g33111, b22 = g3212, b23 =

3
2 g33113 + 2k2g323,

b24 = 2g3203, b25 = 2q000, b26 = 2q0010, b28 = q0111, b27 = q00211 + 2k2q001, b29 = 2q01201,
b30 = q01212, b31 = 2k2q0121, b32 = q0212, b33 =

1
2 q02211, b34 = q02213, b35 = q0313, b36 =

q03212, b37 = q110, b38 = q1110, b39 =
1
2 q1112, b40 = k2q111 + 1

4 q112111, b41 = k2q111 + 1
4 q112112,

b42 =
1
2 q11213, b43 =

1
2 q11211, b44 = q1211, b45 = q1213, b46 = q12201, b47 = 2q122121,

b48 = q122122, b49 = k2q1221, b50 =
1
2 q1312, b51 =

1
4 q13211, b52 = 3q132131, b53 = q132132,

b54 = q220, b55 = q2210, b56 = k2 q221 + q22211, b57 = q22213, b58 = q2311, b59 = q23201,
b60 = q23212, b61 = k2 q2321, b62 = q330, b63 = q3310, b64 = k2 q331 + q33211 with quadratures

gik jln = π

∫ x20

0
x2 Bi

k(x2) f j (x2) fl(x2) fn(x2) dx2

and q000 = q f
000, q0111 = q f

0111, q110 = qb
110 + q f

110, q1110 = qb
1110 + q f

1110, q1112 = qb
1112 −

q f
1112, q111 = qb

111 + q f
111, q11213 = qb

11213 − q f
11213, q112111 = 3 qb

11211 + q f
11211, q112112 = qb

11211 +
3q f

11211, q1211 = qb
1211 + q f

1211/2, q1213 = qb
1213 − q f

1213/2, q1312 = 3 qb
1312 + q f

1312, q13211 =

3 qb
13211 + q f

13211, q220 = 4 qb
220 + q f

2204, q2311 = 3 qb
2311 + q f

2311/2, q330 = 9 qb
330 + q f

330 within

qb
i jkln = π

∫ x20

0

Bi j
k (x2)

x2
fl(x2) fn(x2) dx2, q f

i jkln = π

∫ x20

0
F i j

k (x2) fl(x2) fn(x2) dx2.

Here, the integrands F i j
k (x2), Bi j

k (x2) and Bi
k(x2) depend on b(m)k (x2) and b̄(m)k (x2):

Fnk
i (x2)= x2 Dnk

i − x2
2(E

nk
i − Ekn

i )+ x2(1 + x2
2)C

nk
i ,

Bm
i (x2)=

q1∑
k=0

s1
i bm

k +
q2∑

n=0

s2
i b̄m

n , i = 0, . . . , 3, Bnk
l = Xnk

l,0(b
n
i , bk

j ),

where

Xnk
l,lk(x, y)= kl

 q1∑
i=lk

q1∑
j=lk

s11
l xy +

q1∑
i=lk

q2∑
j=lk

s12
l x ȳ +

q2∑
i=lk

q1∑
j=lk

s21
l x̄ y +

q2∑
i=lk

q2∑
j=lk

s22
l x̄ ȳ

 ,

kl =

{
1, l = 0, 1,
1/2, l = 2,

lk = 0, 1

within

s11
0 =

h
1+νni +νk j
t − h

1+νni +νk j

b

1 + νni + νk j
, s12

0 =
h
νni −νk j
t − h

νni −νk j

b

νni − νk j
, s21

0 =
h
νk j −νni
t − h

νk j −νni

b

νk j − νni
,

s22
0 =

h
−1−νni −νk j
t − h

−1−νni −νk j

b

−1 − νni − νk j
, s11

1 = h
νni +νk j
t , s12

1 = h
−1+νni −νk j
t , s21

1 = h
−1−νni +νk j
t ,

s22
1 = h

−2−νni −νk j
t , s11

2 = h
−1+νni +νk j
t (νni + νk j ), s12

2 = h
−2+νni −νk j
t (νni − νk j − 1),
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s21
2 = h

−2−νni +νk j
t (νk j − νni − 1), s22

2 = h
−3−νni −νk j
t (νni + νk j + 2), s1

0 =
hνmk +3

t − hνmk +3
b

νmk + 3
,

s1
1 = hνmk +2

t , s2
0 =

h2−νmn
t − h2−νmn

b

2 − νmn
, s2

1 = h1−νmn
t , s1

2 =
1

2
hνmk +1

t (νmk + 2) ,

s2
2 =

1 − νmn

2hνmn
t

, s1
3 =

1

6
hνmk

t (νmk + 1) (νmk + 2) , s2
3 =

1

6
h−νmn−1

t (νmn − 1) νmn,

Cnk
l = Xnk

l,1(c
n
i , ck

j ), Dnk
l = Xnk

l,1(d
n
i , dk

j ), Enk
l = Xnk

l,1(d
n
i , ck

j ), Ekn
l = Xnk

l,1(c
n
i , dk

j )

provided by dn
i = νni bn

i , dk
j = νk j bk

j , d̄n
i = (−1 − νni )b̄n

i , d̄k
j = (−1 − νk j )b̄k

j and

cn
i =

∂bn
i

∂x2
, c̄n

i =
∂ b̄n

i

∂x2
, ck

j =
∂bk

j

∂x2
, c̄k

j =
∂ b̄k

j

∂x2
.

Functions b(m)k (x2)= a(m)1k v
(m)
νmk
(x2), b̄(m)k (x2)= ā(m)1k v̄

(m)
νmk
(x2), m = 0, 1, 2, 3 are taken

from expansion of the surface natural sloshing modes

fm(x2)= a(m)10 +
q1∑

k=1

b(m)k (x2)+ ā(m)10 +
q1∑

k=1

b̄(m)k (x2) (m = 0, 1, 2, 3)

provided by a(0)10 6= 0, ā(0)10 6= 0, v(0)ν00
= v̄(0)ν00

= 1, a(i)10 = ā(i)10 = 0, i = 1, 2, 3, where the natural
sloshing modes read as

ψmn(x1, x2)=

q1∑
k=0

x1
νmk b(m)νmk

(x2)+
q2∑

k=0

x1
−1−νmk b̄(m)νmk

(x2)

and a(m)nk = â(m)nk /Nmn, ā(m)nk = ˆ̄a
(m)
nk /Nmn, is the normalization based on Nmn =

ψmn(x10, x20)= 1. A detailed definition of the functions v(m)νmk
(x2) and v̄(m)νmk

(x2) was
given by Gavrilyuk et al (2005).

The non-dimensional hydrodynamic coefficients di and g j (m = 0, 1, 2, 3, i =

1, . . . , 15, j = 0, . . . , 6) follow after substituting the above expressions in the dynamic
equations and neglecting the higher-order terms than O(ε). This gives

d1 =
d1

µ1
, d2 =

d2

µ1
, d3 =

d3

µ1
, d4 =

d4

µ1
, d5 =

d5

µ1
, d6 =

d6

µ1
, d7 =

d7

µ2
,

d8 =
d8

µ0
, d9 =

d9

µ2
, d10 =

d10

µ0
, d11 =

d11

µ3
, d12 =

d12

µ3
, d13 =

d13

µ3
, d14 =

d14

µ3
,

d15 =
d15

µ3
, g0 =

k13

κ01µ0
, g1 =

2k13

κ11µ1
, g2 =

2k14

κ11µ1
, g3 =

4k16

κ11µ1
, g4 =

k14

κ21µ2
,

g5 =
k15

κ31µ3
, g6 =

k17

κ31µ3
,

where 3= λ/µ1 and

µ0 = b2c1, µ1 = b8c3, µ2 = b14c11, µ3 = b20c13,

d2 = b9c3 + b8c10 + 2b15c12, d1 = 2b3c2 + 3b9c3 + b8c9 + 2b15c12,

d2 = b9c3 + b8c10 + 2b15c12, d3 = b10c3 + b8c7, d4 = b8c6 + 2b15c11, d5 = b11c3 + b8c5,
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d6 = 2b3c1 + b8c4, d7 = b14c12 −
1
2 (b39c2

3), d8 = b2c2 + 1
2 (b38c2

3), d9 = b10c3 + b14c12,

d10 = b2c2 + b11c3, d12 = b18c12 −
1
2 (b42c2

3)− b45c3c12 + 2b20c16, d13 = b12c3 + b20c15,

d14 = b18c11 + b20c14, d15 = −b45c3c11 + b20c14 + b20c15, d11 = b13c3 + b18c12 + b20c16.

Appendix B. Important expressions

Coefficients of the algebraic system (44) take the form

m1 = −
d1

2
+ d3

(
o(0)2 −

1

4
o(2)2

)
+ d4o

(2)
2 + d5

(
o(0)0 −

1

4
o(2)0

)
+ d6o

(2)
0

+

[
3

4
g3− g1

(
o(0)0 +

1

4
o(2)0

)
− g2

(
o(0)2 +

1

4
o(2)2

)]
σ̄ 2

1 ,

m3 = m1 − m2,

m2 =
1

2
d1− 2d2− d3

(
o(0)2 +

3

4
o(2)2

)
+ 3d4o

(2)
2 + d5

(
o(0)0 +

1

4
o(2)0

)
− d6o

(2)
0

+

[
1

4
g3− g1

(
o(0)0 −

1

4
o(2)0

)
+ g2

(
o(0)2 −

3

4
o(2)2

)]
σ̄ 2

1 ,

m4 = m1 + m2. (B.1)

The values ok
m appearing in expressions for the periodic solution are

o(0)0 =
d8− d10 + g0 σ̄ 2

0

2 σ̄ 2
0

, o(2)0 =
d8 + d10− g0 σ̄ 2

0

4 − σ̄ 2
0

,

o(0)2 =
d7− d9 + g4 σ̄ 2

2

2 σ̄ 2
2

, o(2)2 =
d7 + d9− g4 σ̄ 2

2

4 − σ̄ 2
2

,

o(1)3 =
1

4(1 − σ̄ 2
3 )
(3 d11− d12− 4 d13o

(0)
2 − (d13 + 4 d14− 2 d15)o

(2)
2

−(3g6− g5(4 o(0)2 + o(2)2 )σ̄ 2
3 )), σ̄ 2

i =
σ 2

i

σ 2
, i = 0, 1, 2, 3,

o(3)3 =
1

4(9 − σ̄ 2
3 )
(d11 + d12− (d13 + 4 d14 + 2 d15)o

(2)
2 − (g6− g5 o(2)2 )σ̄ 2

3 ). (B.2)

Coefficients Ci j (i, j = 1, . . . , 4) of the linear algebraic system (56) are expressed in
terms of di and gj, λ̄ ( λ̄= λ/σ ) and the amplitude parameters A1 and B2

C11 = A2
1C7 + B2

2 C8 + C14, C12 = A2
1C1 + B2

2 C2 + C13, C13 = A1 B2C5,

C14 = A1 B2C9, C21 = A2
1C3 + B2

2 C4 − C13, C22 = A2
1C10 + B2

2 C11 + C14,

C23 = A1 B2C12, C24 = A1 B2C6, C31 = −A1 B2C6, C32 = A1 B2C12,

C33 = A2
1C11 + B2

2 C10 + C14, C34 = −A2
1C4 − B2

2 C3 + C13, C41 = A1 B2C9,

C42 = −A1 B2C5, C43 = −A2
1C2 − B2

2 C1 − C13, C44 = A2
1C8 + B2

2 C7 + C14.

(B.3)

Coefficients Ci of (B.3) are defined as follows:

C1 = γ
(1)
0 δ

(1)
1 −

1
2γ

(3)
0 δ

(2)
1 − γ

(1)
2 δ

(1)
2 −

1
2γ

(3)
2 δ

(2)
2 + λ̄(d1 − 2δ(3

+)
0 + 1

2d56γ
(4)
0 + 1

2d34γ
(4)
2 ),

C2 = λ̄(d2 − 2δ(3
−)

0 − d3γ
(2)
2 + 1

2d34γ
(4)
2 )− 1

2γ
(3)
2 δ

(2)
2 ,
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C3 =
1
2γ

(3)
0 δ

(2)
1 + 1

2γ
(3)
2 δ

(2)
2 + λ̄(−d1 + 2δ(3

+)
0 + d5γ

(2)
0 −

1
2d56γ

(4)
0 − d3γ

(2)
2 −

1
2d34γ

(4)
2 ),

C4 = −γ
(1)
2 δ

(1)
2 + 1

2γ
(3)
2 δ

(2)
2 + λ̄(−d2 + 2δ(3

−)
0 −

1
2d34γ

(4)
2 ),

C5 = −γ
(1)
0 δ

(1)
1 −

1
2γ

(3)
0 δ

(2)
1 − γ

(1)
2 δ

(1)
2 + γ (3)2 δ

(2)
2 + λ̄(d1 − 3d2 − d3γ

(2)
2 + 1

2d56γ
(4)
0 − d34γ

(4)
2 ),

C6 = −
1
2γ

(3)
0 δ

(2)
1 + γ (1)2 δ

(1)
2 + γ (3)2 δ

(2)
2 + λ̄(d1 − 3d2 + d5γ

(2)
0 + d3γ

(2)
2 + 1

2d56γ
(4)
0 − d34γ

(4)
2 ),

C7 =
3
4 (λ̄

2
− 2)d1 − (λ̄2

− 1)d5o(0)0 − (λ̄2
− 1)d3o(0)2 −

1
4 o(2)0 δ

(0)
1 − γ

(2)
0 δ

(1)
1 −

1
2γ

(4)
0 δ

(2)
1

−
1
4 o(2)2 δ

(0)
2 + γ (2)2 δ

(1)
2 −

1
2γ

(4)
2 δ

(2)
2 −

1
2 λ̄(d56γ

(3)
0 + d34γ

(3)
2 )

+ 1
4 σ̄

2
1 (9g3 − g1δ

(0+)
0 − g2δ

(2+)
0 ),

C8 =
1
2 d1 + 1

4 (λ̄
2
− 8)d2 + 1

4 o(2)0 δ
(0)
1 − (λ̄2

− 1)d5o(0)0 + (λ̄2
− 1)d3o(0)2 −

1
4 o(2)2 δ

(0)
2

−
1
2γ

(4)
2 δ

(2)
2 − λ̄(d3γ

(1)
2 + 1

2d34γ
(3)
2 )+ 1

4 σ̄
2
1 (g3 − g1δ

(0−)
0 + g2δ

(2−)
0 ),

C9 =
1
4 (λ̄

2 + 4)d1 −
1
4 (λ̄

2 + 16)d2 − γ
(2)
0 δ

(1)
1 + 1

2γ
(4)
0 δ

(2)
1 −

1
4 o(2)2 δ

(0)
2 − γ

(2)
2 δ

(1)
2 − γ

(4)
2 δ

(2)
2

+λ̄( 1
2d56γ

(3)
0 + d3γ

(1)
2 − d34γ

(3)
2 )+ 1

2 σ̄
2
1 (g3 − g2o(2)2 ),

C10 =
1
4 (λ̄

2
− 2)d1 − (λ̄2

− 1)d5o(0)0 − (λ̄2
− 1)d3o(0)2 + 1

4 o(2)0 δ
(0)
1 −

1
2γ

(4)
0 δ

(2)
1 + 1

4 o(2)2 δ
(0)
2

−
1
2γ

(4)
2 δ

(2)
2 −

1
2 λ̄(2d5γ

(1)
0 + d56γ

(3)
0 − 2d3γ

(1)
2 + d34γ

(3)
2 )

+ 1
4 σ̄

2
1 (3g3 − g1δ

(0−)
0 − g2δ

(2−)
0 ),

C11 = −
1
2 d1 + 3

4 λ̄
2d2 − (λ̄2

− 1)d5o(0)0 + (λ̄2
− 1)d3o(0)2 −

1
4 o(2)0 δ

(0)
1 + 1

4 o(2)2 δ
(0)
2 − γ

(2)
2 δ

(1)
2

−
1
2γ

(4)
2 δ

(2)
2 −

1
2 λ̄d34γ

(3)
2 + 1

4 σ̄
2
1 (3g3 − g1δ

(0+)
0 + g2δ

(2+)
0 ),

C12 =
1
4 (λ̄

2
− 4)d1 −

1
4 (λ̄

2
− 8)d2 − γ

(2)
2 δ

(1)
2 + γ (4)2 δ

(2)
2 −

1
2γ

(4)
0 δ

(2)
1 −

1
4 o(2)2 δ

(0)
2

+λ̄(d5γ
(1)
0 −

1
2d56γ

(3)
0 + d3γ

(1)
2 + d34γ

(3)
2 )+ 1

2 σ̄
2
1 (g3 − g2o(2)2 ),

C13 = 2λ̄, C14 = λ̄2 + σ̄ 2
1 − 1.

Here we introduce (use) the following notations:

δ
(0−)
0 = 4o(0)0 − o(2)0 , δ

(2−)
0 = 4o(0)2 − o(2)2 , δ

(3−)
0 = d5o(0)0 − d3o(0)2 , d34 = d3 − 4d4,

δ
(0+)
0 = 4o(0)0 + o(2)0 , δ

(2+)
0 = 4o(0)2 + o(2)2 , δ

(3+)
0 = d5o(0)0 + d3o(0)2 , d56 = d5 − 4d6,

δ
(0)
1 = λ̄2d5 + d56, δ

(1)
1 = λ̄2d6 + g1σ̄

2
1 − d5, δ

(2)
1 = λ̄2d6 + g1σ̄

2
1 + d56,

δ
(0)
2 = λ̄2d3 + d34, δ

(1)
2 = λ̄2d4 + g2σ̄

2
1 − d3, δ

(2)
2 = λ̄2d4 + g2σ̄

2
1 + d34.
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