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Abstract

Linear and nonlinear fluid sloshing problems in a circular conical tank are studied in a curvilinear coordinate
system. The linear sloshing modes are approximated by a series of the solid spheric harmonics. These modes are
used to derive a new nonlinear modal theory based on the Moiseyev asymptotics. The theory makes it possible
to both classify steady-state waves occurring due to horizontal resonant excitation and visualise nonlinear wave
patterns. Secondary (internal) resonances and shallow fluid sloshing (predicted for the semi-apex angles � > 60◦)
are extensively discussed.
© 2005 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

A fluid partly occupying a moving tank undergoes wave motions (sloshing). These motions gener-
ate severe hydrodynamic loads that can be dangerous for structural integrity and stability of rockets,
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satellites, ships, trucks and even stationary petroleum containers. If the tank interior is equipped with
slosh-suppressing devices, the fluid motions can be accurately modelled by linear theories. Mathematical
and numerical aspects of these theories have been documented in NASA Space Vehicle Design Criteria
(1968, 1969) and by Abramson (1966), Feschenko et al. (1969) and Rabinovich (1975). Environmental
concerns require a new design for tanks of ships, roads and storage systems (Minowa, 1994; Minowa et
al., 1994; Faltinsen and Rognebakke, 2000). This suggests double walls, bottom and roof and may as a
result increase the total structural weight. A way to avoid the weight penalty consists of removing the
slosh-suppressing structures. However, this invalidates linear theories.

Moan and Berge (1997), Cariou and Casella (1999) and Frandsen (2004) reported comparative surveys
of the computational fluid dynamics (CFD) methods, which are applicable to nonlinear sloshing problems.
By utilising among other programs the commercial FLOW3D-software developed by Flow Science, Inc.,
Solaas (1995) and Landrini et al. (1999) showed that, if sufficient care is not shown, many of these methods
can numerically lose or generate fluid mass and kinetic energy on a long-time scale. An exception is the
smoothed particle hydrodynamics (Landrini et al., 2003) method. However, this method is CPU-time
inefficient and runs into serious difficulties to identify steady-state fluid wave motions appearing after
transients. An alternative to the CFD-methods consists of analytically oriented, modal approaches. Their
fundamental aspects have been elaborated by Lukovsky (1990), Faltinsen et al. (2000, 2003), Faltinsen
and Timokha (2002b) and La Rocca et al. (1997, 2000). The modal approaches are based on the Fourier
representation of the free surface

x = f (y, z, t) =
∑

�i(t)Fi(y, z) (1)

in the Oxyz-coordinate system rigidly fixed with a moving tank, where {Fi(y, z)} coincides with the linear
surface modes. When substituting (1) into the original free boundary problem and using a variational
scheme (Lukovsky, 1976, 1990; Miles, 1976; La Rocca et al., 2000; Faltinsen et al., 2000; Shankar and
Kidambi, 2002), one can derive an infinite-dimensional system of ordinary differential equations in �i(t)

(modal system). Besides, assuming asymptotic relationships between �i(t) truncates this system to a
finite-dimensional form. Such an asymptotic truncation may utilise the so-called Moiseyev asymptotics
(Narimanov, 1957; Moiseyev, 1958; Ockendon and Ockendon, 1973; Faltinsen, 1974; Dodge et al., 1965;
Miles, 1984a,b; Lukovsky, 1990; Solaas and Faltinsen, 1997; Gavrilyuk et al., 2000; Ibrahim et al.,
2001; La Rocca et al., 1997; Faltinsen et al., 2000, 2003), for which applicability has been justified in
the case of finite fluid depths. Asymptotic relationships of ‘shallow sloshing’ were reported by Chester
(1968), Chester and Bones (1968), Ockendon and Ockendon (1973, 2001) and Faltinsen and Timokha
(2002a).

An analytical modal basis {Fi(y, z)} exists for a very limited set of tank shapes.Among these are tanks of
two- or three-dimensional rectangular and vertical circular cylindrical geometry. The modal representation
(1) admits the use of approximated {Fi(y, z)} (Feschenko et al., 1969; Lukovsky, 1990; Solaas and
Faltinsen, 1997), but only if the tank walls are vertical in vicinity of the mean (hydrostatic) free surface.
Otherwise, Fi(y, z), i�1, have time-dependent domains of definition. The present paper is devoted to
the case of strongly non-vertical (conical) walls. The study is based on a spatial transformation technique
proposed by Lukovsky (1975) and developed by Lukovsky and Timokha (2002). This assumes that the
original tank cavity can be transformed to an artificial cylindrical domain (in curvilinear coordinates
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(x1, x2, x3)), where the free surface allows for the normal parametrisation

�∗(x1, x2, x3, t) = x1 − f ∗(x2, x3, t) = 0 (2)

and

f ∗(x2, x3, t) = const + �0(t) +
∞∑
i=1

�i(t)F̃i(x2, x3). (3)

After the theoretical preliminaries in Section 2, we define admissible transformations of conical domains.
In Section 3, we consider the linear sloshing problem in a curvilinear coordinate system and an analytically
oriented variational method for approximating the linear sloshing modes (natural modes). The numerical
results are in good agreement with experimental data by Bauer (1982) and Mikishev and Dorozhkin (1961).
In Section 4, we derive a nonlinear modal system. This system is based on the Moiseyev asymptotics and
generalises analogous modal systems by Dodge et al. (1965), Lukovsky (1990), Gavrilyuk et al. (2000)
and Faltinsen et al. (2003) dealing with vertical cylindrical tanks. Shallow fluid flows (quantified for
the semi-apex angles � > 60◦) and secondary resonances (predicted at � ≈ 6◦ and 12◦), which lead to
failure of the Moiseyev asymptotics, are not evaluated, but rather discussed. Applicability of the nonlinear
modal system is justified in the range 25◦ < � < 60◦. Analysing periodic solutions of the system, which
are associated with resonant steady-state sloshing due to horizontal harmonic excitations with frequencies
close to the lowest natural frequency, reveals ‘planar’ and ‘swirling’ regimes as well as ‘chaotic waves’
(both ‘planar’ and ‘swirling’ are not stable). Response curves corresponding to ‘planar’ and ‘swirling’
are studied. While response curves of the ‘planar’ regime keep the ‘soft-spring’ behaviour for � < 60◦,
‘swirling’ demonstrates transition from the ‘hard-spring’ to ‘soft-spring’ behaviour as � passes through
≈ 41.1◦ (to the authors knowledge, this critical angle has never been estimated in the scientific literature).
These and other results on steady-state resonant motions are compared with analogous results established
for sloshing in a circular cylindrical tank (Abramson, 1966; Miles, 1984a,b; Lukovsky, 1990; Gavrilyuk
et al., 2000).

2. Theoretical preliminaries

2.1. Free boundary problem

We consider wave motions of an incompressible perfect fluid partly occupying a rigid mobile tank Q
(Fig. 1). The motions are described in a non-inertial Cartesian system Oxyz rigidly fixed with the tank.
Motions of the tank are described in an absolute Cartesian coordinate system O ′x′y′z′ by the pair of
time-dependent vectors vO(t) and �(t). These vectors denote translatory and angular velocities of the
Oxyz-frame, respectively. Since any absolute position vector r′(t) = (x′, y′, z′) can be decomposed into
the sum of r′O(t) = �O ′O and the relative position vector r = (x, y, z), the gravity potential U depends on
(t, x, y, z), i.e. U(x, y, z, t)=−g·r′, r′=r′O+r, where g is the gravity acceleration vector. Furthermore, we
assume irrotational potential fluid flows and introduce the velocity potential �(x, y, z, t). The following
free boundary problem (derived for instance by Narimanov et al., 1977; Lukovsky, 1990, 2004) couples
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Fig. 1. Sketch of a moving conical tank.

�(x, y, z, t) and the fluid shape Q(t) (defined by the equation �(x, y, z, t) = 0)

�� = 0 in Q(t), (4a)
��

��
= v0 · � + � · [r × �] on S(t), (4b)

��

��
= v0 · � + � · [r × �] − ��

�t
/|∇�| on �(t), (4c)

��

�t
+ 1

2
(∇�)2 − ∇� · (v0 + � × r) + U = 0 on �(t), (4d)∫

Q(t)

dQ = const, (4e)

where S(t) is the wetted walls and bottom, �(t) is the free surface and � is the outer normal.
The evolutional free boundary problem (4) should be completed by initial conditions. They define the

initial fluid shape and velocity as follows:

�(x, y, z, t0) = �0(x, y, z); ��

�t
(x, y, z, t0) = �1(x, y, z), (5)

where �0 and �1 are known.

2.2. Transformations

Let us consider an open artificial cylindrical domain Q∗ = (0, d) × D in the Ox1x2x3-coordinate
system and let Q be the interior of a rigid tank in the Oxyz-system. We define smooth transformations
that map Q to Q∗ and back as follows:

x1 = x, x2 = x2(x, y, z), x3 = x3(x, y, z);
x = x1, y = y(x1, x2, x3), z = z(x1, x2, x3). (6)
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Fig. 2. Sketch of an admissible transformation.

Here, the Oyz-plane has to be tangent to S = �Q and x > 0 for (x, y, z) ∈ Q and the Ox2x3-plane should
be superposed with the bottom of Q∗ (Fig. 2). Transformations (6) are also obligated to have the positive
Jacobian

J ∗(x1, x2, x3) = D(x, y, z)

D(x1, x2, x3)
, (J (x, y, z) = 1/J ∗) (7)

inside of Q∗ and, except a limited set of isolated points, on the boundary S∗ = �Q∗. Such a single point
with J ∗ = 0 invertible appears for conical, parabolic, etc. domains, because (6) maps the bottom of Q∗
to the origin O (the situation is schematically depicted in Fig. 2).

2.2.1. Linear natural modes
If v = � = 0, the free boundary problem (4) can be linearised relative to the trivial solution � = z +

const, � = const, which determines a hydrostatic fluid shape Q0 (Fig. 2). The linearisation implies the
smallness of ∇� and ∇f (�(t) : x = f (t, y, z)), and, apparently, becomes mathematically justified
only in a curvilinear coordinate system. The procedure includes transformation (6) (admitting (2)–(3)),
evaluates (4) in the (x1x2, x3)-coordinates, assumes |�∗| ∼ |f ∗ − h| ∼ |∇∗�| ∼ |∇∗f ∗| = O(ε)>1
and, finally, neglects the o(�)-term. After linearising (4), we set up �∗ = i

√
g��∗(x1, x2, x3)exp(i

√
g�t);

f ∗=exp(i
√

g�t)F (x1, x2) and obtain a spectral boundary problem in Q∗
0=(0, h)×D. In accordance with

theorems proved by Lukovsky and Timokha (2002), this spectral problem is isomorphically equivalent to

�� = 0 in Q0; ��

��
= 0 on S0; ��

�z
= �� on �0;

∫
�0

��

�z
dy dz = 0, (8)

which is considered in the (x, y, z)-coordinates (Feschenko et al., 1969).
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Fig. 3. Transformations of the meridional cross-section.

If Q0 is of an axial-symmetric shape, admissible transformations of Q0 to Q∗
0 can be combined with

separation of spatial variables. This leads to an infinite series of two-dimensional spectral problems in
a rectangular domain. Reduction to these two-dimensional problems includes two steps. The first step
implies the substitution

x = z1, y = z2 cos z3, z = z2 sin z3 (9)

together with expression for �:

�m(z1, z2, z3) = 	m(z1, z2)
cos
sin (mz3), m = 0, 1, 2, . . . . (10)

Inserting (9)–(10) into (8) leads to the following family of spectral problems in the meridional plane
Oz2z1:

�

�z2

(
z2

�	m

�z1

)
+ �

�z2

(
z2

�	m

�z2

)
− m2

z2
	m = 0 in G; �	m

�z2
= �	m on L0,

�	m

��
= 0 on L1; |	m(z1, 0)| < ∞, m = 0, 1, 2, . . . ,

∫
L0

	0z2 dz2 = 0, (11)

where L0 and L1 are the boundaries of G (see Fig. 3); � is the outer normal to L1 (theory of (11) is given
by Lukovsky et al., 1984).

The second step assumes

z1 = x1, z2 = 
(x1, x2), (z3 = x3), (12)

which maps G to G∗ as shown in Fig. 3 (L0 → L∗
0, L1 → L∗

1). In the Ox1x2x3-coordinate system, the
spectral problems (11) take the form

p
�2	m

�x2
1

+ 2q
�2	m

�x1�x2
+ s

�2	m

�x2
2

+
(

�p

�x1
+ �q

�x2

)
�	m

�x1

+
(

�s

�x2
+ �q

�x1

)
�	m

�x2
− cm2	m = 0 in G∗,
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p
�	m

�x1
+ q

�	m

�x2
= �p	m on L∗

0; s
�	m

�x2
+ q

�	m

�x1
= 0 on L∗

1,∫ x20

0
	0


�


�x2
dx2 = 0, m = 0, 1, 2, . . . , (13)

where

p(x1, x2) = 

�


�x2
; q(x1, x2) = pa; s(x1, x2) = p(a2 + b2),

a(x1, x2) = �x2

�

; b(x1, x2) = �x1

�

; c(x1, x2) = 1




�


�x2
. (14)

As shown by Lukovsky and Timokha (2002), problem (13) does not need any boundary conditions on the
artificial bottom L∗

2 and along x2=0. However, 	m should be bounded at x1=0 and x2=0, simultaneously.

2.2.2. Nonlinear modal system
We employ the Bateman–Luke variational formulation of (4):

�W(�, �) = �

∫ t2

t1

L dt = 0;

L =
∫

Q(t)

(p − p0) dQ = −�

∫
Q(t)

[
��

�t
+ 1

2
(∇�)2 − ∇� · (v0 + � × r) + U

]
dQ, (15a)

��|t1,t2 = 0; ��|t1,t2 = 0. (15b)

Here, the nonlinear functional (15a) is based on the pressure-integral Lagrangian. Lukovsky and Timokha
(2002) have mathematically established that the Lagrangian (15a) is invariant relative to transformations
(6), namely,

L ≡ L∗ = −�

∫
Q∗(t)

[
��∗

�t
+ 1

2
(∇∗�∗)2 − ∇∗�∗ · (v0 + � × r)∗ + U∗

]
J ∗ dQ∗, (16)

where Q∗(t) is the transformed domain,

U∗ = U(x(x1, x2, x3), y(x1, x2, x3), z(x1, x2, x3), t),
�∗ = �(x(x1, x2, x3), y(x1, x2, x3), z(x1, x2, x3), t),

∇� = ∇∗�∗ =
(

g1,j ��∗

�xj

, g2,j ��∗

�xj

, g3,j ��∗

�xj

)
,

and

gi,j = �r

�xi

�r

�xj

, i, j = 1, 2, 3,

is the metric tensor (stars in (v0 +�×r)∗ denote projections on the unit vectors of a curvilinear coordinate
system).
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By adopting derivations (based on (15)) of nonlinear modal systems by Lukovsky (1990) and Faltinsen
et al. (2000) and the modal solutions

f ∗ = x10 + �0(t) +
∞∑
i=1

�i(t)F̃i(x2, x3), (17a)

�∗ = v0 · r +
∞∑

n=1

Zn(t)�n(x1, x2, x3), (17b)

where x10 = h, {F̃i(x2, x3)}, {�n(x1, x2, x3)} are the basic systems of functions on �∗
0 and in Q∗

0, respec-
tively, and, for brevity, � = 0, we get the following infinite-dimensional nonlinear modal system:

d

dt
An −

∑
k

AnkZk = 0, n = 1, 2, . . . , (18a)

∑
n

Żn

�An

��i

+ 1

2

∑
nk

�Ank

��i

ZnZk + (v̇01 − g1)
�l1
��i

+ (v̇02 − g2)
�l2
��i

+ (v̇03 − g3)
�l3
��i

= 0, i = 1, 2, . . . . (18b)

This system couples the generalised coordinates Zn(t), �i(t) and An(�i), Ank(�i), lk(�i) defined by the
integrals

An = �

∫
D

(∫ f ∗

0
�nJ

∗ dx1

)
dx2 dx3; Ank = �

∫
D

(∫ f ∗

0
(∇∗�∗

n, ∇∗�∗
k)J

∗ dx1

)
dx2 dx3, (19)

�l1
��i

= �

∫
�∗

0

Fi[x1J
∗(x1, x2, x3)]x1=f ∗ dx2 dx3,

�l2
��i

= �

∫
�∗

0

Fi[y(x1, x2, x3)J
∗(x1, x2, x3)]x1=f ∗ dx2 dx3,

�l3
��i

= �

∫
�∗

0

Fi[z(x1, x2, x3)J
∗(x1, x2, x3)]x1=f ∗ dx2 dx3 (20)

(the upper limit f ∗ in integrals (19) depends on �i(t) due to (17a)).

3. Linear sloshing in a circular conical tank

Numerical solutions of the spectral problem (8) in a conical domain Q0 can be found by diverse
methods based on spatial discretisation (Solaas, 1995; Solaas and Faltinsen, 1997). However, because
these discrete solutions {�n} are not expandable over the mean free surface �0, their usage in (19)
is generally impossible. To the authors’ knowledge, the current scientific literature contains only two
numerical approaches to (8) which give satisfactory approximations of eigenfunctions {�n} to be used as
a basis in the variational scheme of Section 2.2.2. The first approach is based on the Treftz method with
the harmonic polynomials as a functional basis. Results by Feschenko et al. (1969) showed applicability
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Fig. 4. Sketch of a conical tank, its meridional cross-section G and the transformed domain G∗; x10 = h, x20 = tan �.

of this approach for computing both eigenvalues and eigenfunctions. The approximate eigenfunctions are
harmonic in space and, therefore, expandable over �0. However, because the approximate {�n} does not
satisfy zero-Neumann condition on conical walls over �0, inserting them into (19) can lead to a numerical
error for certain evolutions of Q(t). Physically, the error may be treated as inlet/outlet through the rigid
walls over �0.

Another appropriate analytically oriented approach to (8) in a conical domain was reported by Dokuchaev
(1964), Bauer (1982), Lukovsky and Bilyk (1985) and Bauer and Eidel (1988). It consists of replacing
the planar surface �0 by an artificial spheric segment. In that case, problem (8) has analytical solutions
which coincide with the solid spheric harmonics. Bauer (1982) has shown that an error caused by the
replacement is small for relatively small �, his numerical examples agreed well with model tests for
� < /12(rad) = 15◦.

Combining these two approaches, we will adopt the solid spheric harmonics appearing in the papers
by Bauer (1982) and Dokuchaev (1964) as a functional basis in the variational method by Feschenko
et al. (1969) (instead of the harmonic polynomials). The method will be elaborated in the (x1, x2, x3)-
coordinates, so that the linear natural modes (eigenfunctions) can be substituted into (17), (19) and (20).

3.1. Natural modes

In accordance with definitions in Fig. 4, we superpose the origin O with the apex of an inverted cone
and direct the Ox-axis upwards. In that case, the cone is determined by the equation x = cot �

√
y2 + z2

and the mean free surface �0(x = h) is a circle of radius r0 = h tan �, where h is the fluid depth. By
substituting x := x/r0, y := y/r0, z := z/r0, we get a non-dimensional formulation of the spectral
problem (8). Finally, the resulting transformation (9) + (12) is proposed,

x = x1; y = x1x2 cos x3; z = x1x2 sin x3, (21a)

x1 = x

r0
; x2 =

√
y2 + z2

x2 ; x3 = arctan
z

y
, (21b)
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so that (13) takes the following form:

x2
1x2

�2	m

�x2
1

− 2x1x
2
2

�2	m

�x1�x2
+ x2(1 + x2

2)
�2	m

�x2
2

+ (1 + 2x2
2)

�	m

�x2
− m2

x2
	m = 0 in G∗, (22a)

x2
1x2

�	m

�x1
− x1x

2
2

�	m

�x2
= �mx2

1x2	m on L∗
0, (22b)

x2(x
2
2 + 1)

�	m

�x2
− x1x

2
2

�	m

�x1
= 0 on L∗

1, m = 0, 1, 2, . . . , (22c)∫ x20

0
	0x2 dx2 = 0 as m = 0, (22d)

where G∗ = {(x1, x2) : 0�x1 �x01, 0�x2 �x20}, x20 = tan �, x10 = h/r0 = 1/x20 and

a = −x2

x1
; b = 1

x1
; p = x2

1x2; q = −x1x
2
2 ; s = x2(x

2
2 + 1); c = 1

x2
.

Each nth eigenvalue of (22), �mn, computes the natural circular frequency

�mn =
√

g�mn

r0
=
√

g�mn

h tan �
. (23)

The surface sloshing modes are defined by 	m as follows:

x1 = Fmn(x2, x3) = �mn(x10, x2, x3); 0�x2 �x20, 0�x3 �2, (24)

where

�mn(x1, x2, x3) = 	mn(x1, x2)
cos
sin mx3 (25)

is the nth eigenfunction of (22) corresponding to �mn.

3.2. Approximate natural modes

3.2.1. Separation of spatial variables
As proved by Eisenhart (1934), the Laplace equation allows for separation of spatial variables only in

17 inequivalent coordinate systems. The Ox1x2x3-coordinate system defined by (21a) belongs to the ad-
missible set. The separability of (22a) and (22c) leads to the following particular solutions 	m[�](x1, x2)=
w

(m)
� (x1, x2) = (x1/x10)

�v
(m)
� (x2), where

x2(1 + x2
2)v(m)

�
′′ + (1 + 2x2

2 − 2�x2
2)v(m)

�
′ +

[
�(� − 1)x2 − m2

x2

]
v(m)

� = 0,

|v(m)
� (0)| < ∞, (26a)

v(m)
�

′
(x20) = �

x20

1 + x2
20

v(m)
� (x20), m = 0, 1, . . . , ��m. (26b)
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Eqs. (26a), (26b) constitute the �-parametric boundary value problem, which has non-trivial solutions

only for certain values of �. If we input a test � in the differential (26a) and output v
(m)
�

′
(x20) and

v
(m)
� (x20), the boundary condition (26b) plays the role of a transcendental equation with respect to �. This

transcendental equation can be solved by means of an iterative algorithm.
In order to get an approximate 	mn(x1, x2), we should fix m and calculate q lower roots {�m1 < �m2 < · · ·

< �mq} of this transcendental equation. The nth (1�n�q) approximate solution of (22), which corre-
sponds to �mn, can then be posed as

	mn(x1, x2) =
q∑

k=0

ā
(m)
nk

(
x1

x10

)�mk

v(m)
�mk

(x2), (27)

where coefficients ā
(m)
nk have to satisfy the supplementary conditions

ā
(m)
n0 =

{
0, m = 0,

−∑q
k=1 ā

(m)
nk c�0k

, m = 0,
c�0k

= 2

x2
20

∫ x20

0
w(0)

�0k
(x10, x2)x2 dx2

(�m0 = 0, v
(m)
�m0 = 1) to agree with (22d).

One should note that comparing v
(0)
� with the Legendre function P 0

� deduces

v(0)
� (x2) =

(√
1 + x2

2

)�

P 0
�

(
1/

√
1 + x2

2

)
. (28)

In view of this point,

P 0
�

(
1

/√
1 + x2

2

)
=

∞∑
p=1

(� − p + 1)(� − p + 1) · · · (� + p)

(p!)2

⎛
⎜⎝ 1

2
√

1 + x2
2

− 1

2

⎞
⎟⎠

p

(29)

(Bateman and Erdelyi, 1953) and recurrence formulae for P m
� (Lukovsky et al., 1984) re-written to the

(x2, x3)-coordinates

(� + m + 1)v
(m)
�+1 = (2� + 1)v(m)

� − (� − m)(1 + x2
2)v

(m)
�−1,

(� + m + 1)x2v
(m+1)
� = 2(m + 1)[(1 + x2

2)v
(m)
�−1 − v(m)

� ],
dv

(m)
�

dx2
= 1

x2
[�v(m)

� − (� − m)v
(m)
�−1] (30)

facilitate computing v
(m)
�

′
(x2) and v

(m)
� (x2) for arbitrary x2, m and ��m.

3.2.2. The Treftz method based on (27)

Representation (27) and the Rayleigh–Kelvin minimax principle for the spectral problems (22) (see,
Feschenko et al., 1969) make it possible to compute approximate eigenvalues �mn. The numerical scheme
implies

�Jm

�ā(m)
ni

= 0, i = 1, 2, . . . , q; m = 0, 1, 2, . . . , (31a)
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Jm =
∫

G∗

[
p

(
�	m

�x1

)2

+ 2q
�	m

�x1

�	m

�x2
+ s

(
�	m

�x2

)2

+ m2

x2
	2

m

]
dx1 dx2 − �

∫
L∗

0

p	2
m dx2, m = 0, 1, . . . , (31b)

and, as a consequence, leads to the spectral matrix problem

det |{�(m)
ij } − �{b(m)

ij }| = 0, i, j = 1, . . . , q, (32)

where the symmetric positive matrices {�(m)
ij } and {b(m)

ij } are calculated by the following formulae:

b
(m)
ij = x2

10

∫ x20

0
x2w

(m)
�mi

w(m)
�mj

dx2, i, j = 1, . . . , q, (33)

�(m)
ij = x10

∫ x20

0
x2

{[
x10

�w(m)
�mi

�x1
− x2

�w�mi

�x2

]
w(m)

�mj

}
x1=x10

dx2, i, j = 1, . . . , q. (34)

The spectral problem (32) gives not only approximate eigenvalues, but also eigenvectors expressed in
terms of coefficients {ā(m)

nk , k = 1, . . . , q}, n = 1, . . . , q. Being substituted into (27), these eigenvectors
determine eigenfunctions 	mn(x1, x2), n = 1, . . . , q.

3.2.3. Convergence
Furthermore, positive eigenvalues {�mn, n = 1, . . . , q} of (32) are posed in ascending order. Fixing m

and evaluating some of the lower approximate �mn versus q (see Table 1 ), one displays convergence of
the Treftz method. Our numerical experiments with �m1, m�0, showed that 5–6 basis functions (q = 5
or 6) guarantee 5–6 significant figures, in general, and 10–12 significant figures for ��45◦, in particular.
Weaker convergence for smaller � can be treated in terms of the mean fluid depth x10 = h and geometric
proportions of Q0 versus �. If � → 0 then x10 → ∞ and Q0 becomes geometrically similar to a fairly
long circular cylinder. The linear sloshing modes (eigenfunctions of (8)) in a circular cylindrical tank are
characterised by exponential decaying from �0 to the bottom (Abramson, 1966; Lukovsky et al., 1984;
Gavrilyuk et al., 2000), but, in contrast, functions (27) have power asymptotics.

3.2.4. Natural frequencies versus �
Fig. 5 shows that �mn and, therefore, �mn, which are defined by (23), decrease monotonically with

increasing �. Besides, a general tendency consists of �mn → 0 as � → 90◦, but each eigenvalue �mn has
a proper decaying gradient. As a result, some of the natural frequencies may become equal at an isolated
�. We demonstrate this fact by points A and B in Fig. 5. The point A corresponds to � ≈ 19.2◦, where
�31 = �01, and B occurs at � ≈ 30◦, where �12 = �51.

In accordance with theorems by Feschenko et al. (1969), problem (8) has a denumerable set of real
positive eigenvalues and each �mn continuously depends on smooth deformations of Q0. Both appearance
and ‘split’ of multiple eigenvalues are consistent with these theorems. Moreover, the matrices {�(m)

ij } and

{b(m)
ij } are symmetric and positive and, therefore, the crossings in Fig. 5 do not yield a numerical difficulty

in solving (32) (Parlett, 1998). On the other hand, Bauer et al. (1975) and Bridges (1987) showed that
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Table 1
�mn versus q in (27)

� = /20(rad) = 9◦, x10 = 6.31375151

q �11 �21 �01 �31 �41 �12 �51

2 1.691615430 2.845734973 3.740941260 3.940773781 5.009527439 5.250674149 6.063005004
3 1.691607322 2.845702193 3.740763366 3.940706201 5.009419535 5.240481474 6.062853900
4 1.691606215 2.845697065 3.740735620 3.940694662 5.009399941 5.240034153 6.062825178
5 1.691605959 2.845695769 3.740728597 3.940691547 5.009394389 5.239957174 6.062816727
6 1.691605890 2.845695338 3.740726259 3.940690460 5.009392374 5.239936238 6.062813563

� = /18(rad) = 10◦, x10 = 5.67128182
q �11 �21 �01 �31 �41 �12 �51

2 1.674354687 2.821056165 3.729116268 3.909489499 4.972117607 5.241575140 6.019801612
3 1.674345993 2.821020466 3.728919662 3.909415640 4.971999653 5.229299109 6.019636623
4 1.674344847 2.821015056 3.728889858 3.909403387 4.971978802 5.228803377 6.019606045
5 1.674344590 2.821013721 3.728882478 3.909400152 4.971973012 5.228719954 6.019597217
6 1.674344512 2.821013285 3.728880067 3.909399042 4.971970945 5.228697680 6.019593962

� = /12(rad) = 15◦, x10 = 3.73205081
q �11 �21 �01 �31 �41 �12 �51

2 1.586196071 2.693060464 3.663679235 3.745778974 4.775069588 5.193122841 5.791041373
3 1.586186964 2.693019390 3.663437683 3.745692000 4.774930186 5.169025185 5.790847205
4 1.586185980 2.693014148 3.663406100 3.745679638 4.774908806 5.168412459 5.790815678
5 1.586185789 2.693013012 3.663399156 3.745676739 4.774903486 5.168319689 5.790807464
6 1.586185737 2.693012678 3.663397102 3.745675836 4.774901753 5.168297235 5.790804686

� = 17/180(rad) = 17◦, x10 = 3.27085262
q �11 �21 �01 �31 �41 �12 �51

2 1.550087538 2.639709459 3.634259999 3.676853374 4.691504076 5.171679765 5.693465368
3 1.550079203 2.639670041 3.634023055 3.676768848 4.691368175 5.142562611 5.693276206
4 1.550078378 2.639665377 3.633993934 3.676757617 4.691348570 5.141963350 5.693247175
5 1.550078228 2.639664422 3.633987857 3.676755117 4.691343923 5.141875977 5.693239947
6 1.550078190 2.639664155 3.633986138 3.676754372 4.691342468 5.141855716 5.693237594

� = /6(rad) = 30◦, x10 = 1.73205081
q �11 �21 �31 �01 �41 �12 �51

2 1.304396116 2.263161756 3.180280275 3.385675476 4.080590720 4.976943610 4.971895069
3 1.304394835 2.263150480 3.180251425 3.385606099 4.080541084 4.922898138 4.971824214
4 1.304394775 2.263149774 3.180249222 3.385600542 4.080536711 4.922767198 4.971817250
5 1.304394769 2.263149685 3.180248908 3.385599799 4.080536025 4.922747436 4.971816072
6 1.304394767 2.263149668 3.180248843 3.385599654 4.080535873 4.922744256 4.971815795

� = /4(rad) = 45◦, x10 = 1
q �11 �21 �31 �01 �41 �51 �12

2 1.0 1.767377038 2.504928826 2.926575049 3.231122793 3.951541126 4.525856442
3 1.0 1.767376998 2.504928286 2.926574456 3.231121140 3.951537972 4.483062683
4 1.0 1.767376997 2.504928271 2.926574454 3.231121082 3.951537833 4.483018593
5 1.0 1.767376997 2.504928270 2.926574454 3.231121078 3.951537822 4.483018578
6 1.0 1.767376997 2.504928270 2.926574454 3.231121078 3.951537821 4.483018578
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Table 1 (continued)

� = /20(rad) = 9◦, x10 = 6.31375151

q �11 �21 �01 �31 �41 �12 �51

� = /3(rad) = 60◦, x10 = 0.577350269
q �11 �21 �31 �01 �41 �51 �12
2 0.677682813 1.214432142 1.732050808 2.206458631 2.242653971 2.749809660 3.254991110
3 0.677679857 1.214431851 1.732050808 2.206457545 2.242653917 2.749809558 3.254990994
4 0.677679818 1.214431850 1.732050808 2.206457544 2.242653917 2.749809558 3.254990994
5 0.677679818 1.214431850 1.732050808 2.206457544 2.242653917 2.749809558 3.254990994
6 0.677679818 1.214431850 1.732050808 2.206457544 2.242653917 2.749809558 3.254990994

κ i
j

α/180

B
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Fig. 5. Eigenvalues �ij versus �.

‘split’ of a multiple eigenvalue into simple eigenvalues may lead to secondary bifurcations of nonlinear
sloshing regimes. In a forthcoming paper, we plan to conduct the corresponding nonlinear investigations.

3.2.5. Shapes of the natural surface modes
Fig. 6 shows surface modes defined by (24). Normalisation of these modes, which is usually accepted

in nonlinear analysis (to interpret each generalised coordinate in (17a) as a generalised amplitude of Fmn),
requires 	mn(x10, x20) = 1. It revises (27) to the form

	mn(x1, x2) =
q∑

k=0

a
(m)
nk

(
x1

x10

)�mk

v(m)
�mk

(x2), (35)

where

a
(m)
nk = ā

(m)
nk

Nmn

; Nmn = 	mn(x10, x20) =
q∑

k=0

ā
(m)
nk v(m)

�mk
(x20) (36)

and {ā(m)
nk } are eigenvectors of (32).
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Fig. 6. Natural surface modes for /4(rad) = 45◦. The asymmetric modes (indexes 11, 21, 31, 41, 12) have double multiplicity,
their shapes differ from each other by azimuthal rotation of 90◦. (a) Standing wave with �11. (b) Standing wave with �21. (c)
Standing wave with �01. (d) Standing wave with �31. (e) Standing wave with �41. (f) Standing wave with �12.
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Fig. 7. The lowest natural frequency �11 versus
√

g/h. Experimental measurements by Bauer (1982) are compared with our
theoretical prediction.

3.3. Experimental validation

Bauer (1982) has performed experimental measurements of the lowest natural frequency �11 for � =
/6(rad) (=30◦) and �= /12(rad) (=15◦) and distinct fluid fillings (depths h). In order to compare our
results with his experimental data, we note that �11 = √

�11x10
√

g/h and, therefore,
√

�11x10, which is
an invariant for a fixed �, determines a proportionality coefficient between �11 and

√
g/h. Fig. 7 (�11

versus
√

g/h) shows good agreement between our theoretical prediction and experimental results by
Bauer (1982). A statistical experimental estimate of

√
�11x10 = 1.63 for � = 10◦ was also published by

Mikishev and Dorozhkin (1961). This value is consistent with our numerical prediction 1.67.
Numerical results in Fig. 5 show that the natural frequencies �m1 are approximately in proportion

to � (rad) and to
√

g/r0, namely,
√

�m1x10/� is a constant. This deduces the following formula �m1 =
Cm�

√
g/r0 (our calculations give, for instance, C1 = 0.6158). Engineering of conical tanks may also be

based on formula (23) and numerical results in Table 2.
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Table 2
�01, �11 and �21 versus �

�◦ �01 �11 �21

1 3.8228 1.8251 3.0323
3 3.8042 1.7925 2.9874
5 3.7844 1.7594 2.9414
7 3.7633 1.7258 2.8941
9 3.7407 1.6916 2.8457

11 3.7166 1.6570 2.7960
13 3.6909 1.6218 2.7451
15 3.6634 1.5862 2.6930
17 3.6340 1.5501 2.6397
19 3.6025 1.5135 2.5851
21 3.5689 1.4765 2.5293
23 3.5328 1.4390 2.4723
25 3.4943 1.4011 2.4140
27 3.4530 1.3627 2.3546
29 3.4088 1.3239 2.2939
31 3.3616 1.2848 2.2321
33 3.3110 1.2452 2.1691
35 3.2569 1.2052 2.1049
37 3.1991 1.1649 2.0396
39 3.1374 1.1242 1.9732
41 3.0715 1.0831 1.9056
43 3.0013 1.0417 1.8370
45 2.9266 1.0000 1.7674
47 2.8471 0.9580 1.6967
49 2.7628 0.9156 1.6250
51 2.6734 0.8730 1.5524
53 2.5789 0.8300 1.4788

4. Nonlinear sloshing in a conical tank

The nonlinear modal method, which is presented in this section, generalises results by Narimanov
(1957), Lukovsky (1990) and Faltinsen et al. (2000, 2003). The method is based on the Moiseyev asymp-
totics and, therefore, it fails for shallow fluid flows characterised by progressive amplification of higher
modes (Ockendon and Ockendon, 2001; Faltinsen and Timokha, 2002a).

4.1. Nonlinear modal system

We normalise the original free boundary problem (4) and its modal analogy (18) by r0. This implies

g := g

r0
; v̇0 := v̇0

r0
; �i(t) := �i(t)

r0
; Ri(t) := Ri(t)

r2
0

, i�1. (37)
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Furthermore, we consider the horizontal harmonic excitations

g1 = −g, g2 = g3 = 0; v01(t) = v02(t) ≡ 0, v03 = −�� sin �t , (38)

where �>1 is the non-dimensional forcing amplitude and � → �11.
The Moiseyev asymptotics (Moiseyev, 1958; Gavrilyuk et al., 2000; Faltinsen et al., 2000) assumes

that the lowest natural modes F11(x2, x3) = 	11(x10, x2)
sin
cosx3 are of dominating character. By analysing

this asymptotics for tanks of revolution, Lukovsky (1990) proposed and justified the five-dimensional
approximate solutions

f ∗(x2, x3, t) = x10 + f (x2, x3, t) = x10 + �0(t) + p0(t)f0(x2) + [r1(t) sin x3

+ p1(t) cos x3]f1(x2) + [r2(t) sin 2x3 + p2(t) cos 2x3]f2(x2), (39)

�(x1, x2, x3) = P0(t)	01(x1, x2) + [R1(t) sin x3 + P1(t) cos x3]	11(x1, x2)

+ [R2(t) sin 2x3 + P2(t) cos 2x3]	21(x1, x2), (40)

where fi(x2) = 	i1(x10, x2), i = 0, 1, 2 (	i1 are normalised, see Section 3.2.5) and

r1 ∼ R1 ∼ p1 ∼ P1 ∼ �1/3; p0 ∼ P0 ∼ r2 ∼ R2 ∼ p2 ∼ P2 ∼ �2/3. (41)

When inserting (39) and (40) into the infinite-dimensional modal system (18) and accounting for (41),
we get (correctly to O(�)) the following nonlinear modal system coupling p1, r1, p0, r2 and p2 (see its
derivation in Appendix A):

r̈1 + �2
1r1 + D1(r

2
1 r̈1 + r1ṙ

2
1 + r1p1p̈1 + r1ṗ

2
1)

+ D2(p
2
1 r̈1 + 2p1ṙ1ṗ1 − r1p1p̈1 − 2r1ṗ

2
1) − D3(p2r̈1 − r2p̈1 + ṙ1ṗ2 − ṗ1ṙ2)

+ D4(r1p̈2 − p1r̈2) + D5(p0r̈1 + ṙ1ṗ0) + D6r1p̈0

+ �2
1[G1r1(r

2
1 + p2

1) + G2(p1r2 − r1p2) + G3r1p0] + �v̇03 = 0, (42a)

p̈1 + �2
1p1 + D1(p

2
1p̈1 + p1ṗ

2
1 + r1p1r̈1 + p1ṙ

2
1 )

+ D2(r
2
1 p̈1 + 2r1ṙ1ṗ1 − r1p1r̈1 − 2p1ṙ

2
1 ) + D3(p2p̈1 + r2r̈1 + ṙ1ṙ2 + ṗ1ṗ2)

− D4(p1p̈2 + r1r̈2) + D5(p0p̈1 + ṗ1ṗ0) + D6p1p̈0

+ �2
1[G1p1(r

2
1 + p2

1) + G2(r1r2 + p1p2) + G3p1p0] = 0, (42b)

r̈2 + �2
2r2 − D9(p1r̈1 + r1p̈1) − 2D7ṙ1ṗ1 + �2

2[2G4r1p1] = 0, (42c)

p̈2 + �2
2p2 + D9(r1r̈1 − p1p̈1) + D7(ṙ

2
1 − ṗ2

1) − �2
2[G4(r

2
1 − p2

1)] = 0, (42d)

p̈0 + �2
0p0 + D10(r1r̈1 + p1p̈1) + D8(ṙ

2
1 + ṗ2

1) + �2
0[G5(r

2
1 + p2

1)] = 0. (42e)

Here �1 =�11, �2 =�21 and �0 =�01 are defined by (23) and �,Di and Gi , which depend only on �, are
calculated by formulae (A.7). In order to help readers we give approximate values of these coefficients
in Table 3. The modal system (42) differs from systems by Gavrilyuk et al. (2000) (circular cylindrical)
and Faltinsen et al. (2003) (square-base) tanks by terms in the square brackets. These terms appear due
to non-vertical walls, the coefficients Gi vanish as � → 0.

Since, to the authors’ knowledge, the nonlinear fluid sloshing in a conical tank has never been studied
and, as matter of fact, the modal system (42) has no analogies in the scientific literature, we tried our best to
quantify its applicability. The quantification can be based on results by Ockendon et al. (1996), Ockendon
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Table 3
Coefficients of the nonlinear modal system (42) versus �

�◦ D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

25 −0.1165 −0.4152 1.6116 −0.5428 2.0291 0.6715 0.6055 −0.3634 −1.2498 0.7113
27 −0.1927 −0.4287 1.6707 −0.5790 2.0773 0.7271 0.5954 −0.3428 −1.3445 0.8001
29 −0.2744 −0.4447 1.7330 −0.6163 2.1288 0.7833 0.5860 −0.3217 −1.4432 0.8964
31 −0.3623 −0.4635 1.7990 −0.6550 2.1838 0.8402 0.5773 −0.2999 −1.5465 1.0009
33 −0.4575 −0.4853 1.8691 −0.6953 2.2427 0.8980 0.5694 −0.2772 −1.6548 1.1146
35 −0.5609 −0.5106 1.9438 −0.7375 2.3060 0.9571 0.5623 −0.2536 −1.7689 1.2387
37 −0.6740 −0.5397 2.0236 −0.7818 2.3742 1.0177 0.5560 −0.2287 −1.8893 1.3742
39 −0.7984 −0.5731 2.1093 −0.8285 2.4478 1.0802 0.5506 −0.2026 −2.0170 1.5225
41 −0.9360 −0.6115 2.2015 −0.8780 2.5276 1.1450 0.5461 −0.1748 −2.1527 1.6851
43 −1.0891 −0.6556 2.3011 −0.9308 2.6145 1.2126 0.5426 −0.1454 −2.2978 1.8636
45 −1.2608 −0.7064 2.4092 −0.9872 2.7093 1.2837 0.5402 −0.1139 −2.4532 2.0600
47 −1.4546 −0.7650 2.5270 −1.0480 2.8134 1.3588 0.5390 −0.0802 −2.6207 2.2763
49 −1.6750 −0.8330 2.6559 −1.1136 2.9281 1.4389 0.5392 −0.0440 −2.8019 2.5153
51 −1.9277 −0.9123 2.7976 −1.1851 3.0552 1.5248 0.5408 −0.0050 −2.9990 2.7797
53 −2.2200 −1.0052 2.9543 −1.2633 3.1967 1.6179 0.5442 0.0372 −3.2146 3.073

�◦ G1 G2 G3 G4 G5 � k1

25 −0.2541 0.6810 0.7638 0.4550 0.1446 1.3135 −0.1324
27 −0.2981 0.7388 0.8314 0.4965 0.1604 1.2872 −0.1425
29 −0.3469 0.7983 0.9007 0.5395 0.1774 1.2597 −0.1529
31 −0.4009 0.8597 0.9717 0.5841 0.1957 1.2311 −0.1634
33 −0.4607 0.9233 1.0448 0.6307 0.2155 1.2013 −0.1743
35 −0.5272 0.9896 1.1202 0.6795 0.2370 1.1704 −0.1855
37 −0.6012 1.0588 1.1984 0.7307 0.2603 1.1384 −0.1972
39 −0.6840 1.1316 1.2797 0.7848 0.2857 1.1054 −0.2094
41 −0.7768 1.2084 1.3647 0.8420 0.3136 1.0713 −0.2221
43 −0.8815 1.2899 1.4539 0.9028 0.3440 1.0361 −0.2356
45 −1.0000 1.3767 1.5482 0.9678 0.3774 1.0000 −0.2500
47 −1.1350 1.4697 1.6483 1.0376 0.4142 0.9629 −0.2653
49 −1.2897 1.5700 1.7552 1.1128 0.4548 0.9249 −0.2818
51 −1.4683 1.6787 1.8703 1.1944 0.4996 0.8859 −0.2997
53 −1.6760 1.7972 1.9951 1.2834 0.5493 0.8461 −0.3192

and Ockendon (2001) and Faltinsen and Timokha (2002a) that associate failure of the Moiseyev ordering
(41) with the secondary (internal) resonance. The secondary resonance has also been discussed by Bryant
(1989) (circular basin), it was examined for large amplitude forcing by Faltinsen and Timokha (2001)
(rectangular tank) and La Rocca et al. (1997, 2000) and Faltinsen et al. (2003, 2005a) (square base tank).
Quantification of critical semi-apex angles �, which yield the secondary resonance phenomena, can be
done by analysing the dispersion relationship and higher periodic harmonics of steady-state solutions
as � = �1. Because of dramatical growth of the damping for higher harmonics and modes (Cocciano
et al., 1991; Faltinsen and Timokha, 2002a; Faltinsen et al., 2005b), our analysis can be limited to the
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Fig. 8. R0i and R2i versus �.

second-order terms. In that case, influence of the secondary resonance is associated with the equalities

R0i = 1

2

√
�0i

�11
= 1, R2i = 1

2

√
�2i

�11
= 1, i�1. (43)

Fig. 8 shows the graphs of R1i and R0i versus �. Using the resonance conditions (43) we predict the
secondary resonance about � = 6◦ (by mode 02) and � = 12◦ (by mode 22). When assuming R0i, R2i

close, but not equal to 1, for instance, |R2i, R0i − 1| < 0.1, we deduce that the Moiseyev-based modal
system (42) is applicable for 25◦ < � < 60◦.

4.2. Steady-state wave motions

By using (41) and accounting for results by Gavrilyuk et al. (2000) and Faltinsen et al. (2003), we pose
the dominating modal functions of (39) as follows:

r1(t) = A cos �t + Ā sin �t + o(�1/3), p1(t) = B̄ cos �t + B sin �t + o(�1/3), (44)

where A, Ā, B and B̄ are unknown constants (dominating amplitudes) and � is the excitation frequency.
Representation (44) defines steady-state sloshing. By substituting (44) into (42c)–(42e) and gathering

primary harmonics, the Fredholm alternative deduces

p0(t) = c0 + c1 cos 2�t + c2 sin 2�t + o(�2/3),
p2(t) = s0 + s1 cos 2�t + s2 sin 2�t + o(�2/3),
r2(t) = e0 + e1 cos 2�t + e2 sin 2�t + o(�2/3), (45)
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where

c0 = l0(A
2 + Ā2 + B2 + B̄2); c1 = h0(A

2 − Ā2 − B2 + B̄2),
c2 = 2h0(AĀ + BB̄); s0 = l2(A

2 + Ā2 − B2 − B̄2),
s1 = h2(A

2 − Ā2 + B2 − B̄2); s2 = 2h2(AĀ − BB̄),
e0 = −2l2(AB̄ + BĀ); e1 = 2h2(ĀB − AB̄); e2 = −2h2(AB + ĀB̄), (46)

with

h0 = D10 + D8 − �̄2
0G5

2(�̄2
0 − 4)

, l0 = D10 − D8 − �̄2
0G5

2�̄2
0

,

h2 = D9 + D7 + �̄2
2G4

2(�̄2
2 − 4)

, l2 = D9 − D7 + �̄2
2G4

2�̄2
2

; �̄m = �m

�
, m = 0, 1, 2.

By inserting (44), (45) into (42a), (42b) and using the Fredholm alternative, we derive the following
system of nonlinear algebraic equations coupling A, Ā, B and B̄:

A[�̄2
1 − 1 − m1(A

2 + Ā2 + B̄2) − m2B
2] + m3ĀBB̄ = H�,

Ā[�̄2
1 − 1 − m1(A

2 + Ā2 + B2) − m2B̄
2] + m3ABB̄ = 0,

B[�̄2
1 − 1 − m1(B

2 + Ā2 + B̄2) − m2A
2] + m3B̄AĀ = 0,

B̄[�̄2
1 − 1 − m1(A

2 + B2 + B̄2) − m2Ā
2] + m3ĀAB = 0, (47)

where

m1 = − D5
(1

2 h0 − l0
)+ D3

(1
2 h2 − l2

)+ 2D6h0 + 2D4h2 + 1
2 D1

− �̄2
1

[3
4 G1 − G2

(
l2 + 1

2 h2
)+ G3

(
l0 + 1

2 h0
)]

,

m2 = D3
(
l2 + 3

2 h2
)+ D5

(
l0 + 1

2 h0
)− 2D6h0 + 6D4h2 − 1

2 D1 + 2D2

− �̄2
1

[1
4 G1 + G2(l2 − 3

2 h2) + G3(l0 − 1
2 h0)

]
, (48)

m3 = m2 − m1.

System (47) is similar to Eqs. (14) by Gavrilyuk et al. (2000) (sloshing in circular cylindrical tanks); its
resolvability condition is m3 = 0. Solutions of (47) depend on the actual values of mi which are functions
of � and � (mi = mi(�, �)). Taking into account that � ≈ �1, we can consider mi(�1, �) (see the graphs in
Fig. 9). These graphs establish that m3 > 0 for � < 60◦ and � → �1.

Using derivations by Gavrilyuk et al. (2000) and Faltinsen et al. (2003) system (47) can be re-written
to the equivalent form

A(�̄2
1 − 1 − m1A

2 − m2B
2) = H�, B(�̄2

1 − 1 − m1B
2 − m2A

2) = 0, Ā = B̄ = 0. (49)

Vanishing Ā and B̄ makes it possible to treat A and B as dominating longitudinal (along oscillations of the
tank) and transversal (perpendicular to the oscillations) amplitudes of steady-state waves, respectively.
System (49) has only two classes of solutions. The first class suggests B = 0 and describes the so-called
‘planar’ regime. Eqs. (49) then take the following form:

A(�̄2
1 − 1 − m1A

2) = �H ; B = 0. (50)
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Fig. 9. mi(�1, �) as functions of �.

The second class (B2 > 0) describes the so-called ‘swirling’ regime (wave patterns imitate a rotation
of the fluid volume around axis Ox). The algebraic system (49) then falls into the single equation with
respect to A,

A(�̄2
1 − 1 − m4A

2) = m5�H, m5 = −m1

m3
, m4 = m1 + m2, (51)

and the auxiliary formula for computing B

B2 = 1

m1
(�̄2

1 − 1 − m2A
2) = 1

m1

(
m5

�H

A
+ m1A

2
)

> 0. (52)

Lukovsky (1990), Gavrilyuk et al. (2000) and Faltinsen et al. (2003) showed that response curves of
‘planar’ and ‘swirling’ depend on m1 and m4, respectively. Zeros of m1 and m4 at isolated semi-apex
angles � imply a passage from the ‘hard-spring’ to ‘soft-spring’ behaviour. If � < 60◦, response curves of
the ‘planar’ regime are always characterised by the ‘soft-spring’ behaviour (similar to the case of circular
cylindrical tanks, Lukovsky, 1990). However, response curves of ‘swirling’ change their behaviour at
� ≈ 41.1◦ (x10 = h/r0 = 1.14 . . .). Figs. 10 and 11 show the typical branching for � = 30◦ and � = 45◦,
respectively. For the stability analysis the technique by Faltinsen et al. (2003) was used.

System (42) is linear in r̈i , p̈i . By inverting the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + D1r2
1 + D2p2

1 − D3p2 + D5p0 (D1 − D2)r1p1 + D3r2 −D4p1 D4r1 D6r1

(D1 − D2)r1p1 + D3r2 1 + D1p2
1 + D2r2

1 + D3p2 + D5p0 −D4r1 −D4p1 D6p1
−D9p1 −D9r1 1 0 0
D9r1 −D9p1 0 1 0
D10r1 D10p1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

it can be re-written to the normal form

d2p

dt2 = A−1U(t, p, ṗ), (53)



420 I.P. Gavrilyuk et al. / Fluid Dynamics Research 37 (2005) 399–429

σ /σ 

C
F

P

R

P P

P
D

|A
|

D D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8  0.9  1  1.1  1.2

2 3

 1
4

 1

D −
D+
P −
P+

 1 σ /σ  1

2 3

|B
|

C

1

F

D D2 D3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8  0.9  1  1.1  1.2

D+
D −

Fig. 10. Longitudinal (A) and transversal (B) amplitudes of steady-state resonant motions versus �/�1. The results are given
for � = 30◦ and H = 0.02. Branches P1P2 and P3P4 imply ‘planar’, D1D2 denotes ‘swirling’ waves. R is the turning point,
which divides the branch P+ into stable (P1R) and unstable RP 2 subbranches. C is the Poincaré-bifurcation point. Here P4C

denotes the stable ‘planar’ solutions and CP 3 presents unstable ones. ‘Swirling’ is associated with the branches D− and D+.
The Hopf-bifurcation point F divides D+ into D1F and FD2, where D1F implies unstable solutions, but FD2 denotes a stable
‘swirling’. There are no stable steady-state solutions for �/�1 between abscissas of R and F.
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where p = (r1, p1, r2, p2, p0)
T and

U1 = − �2
1(r1 + G1r1(r

2
1 + p2

1) + G2(p1r2 − r1p2) + G3r1p0) − D1r1(ṙ
2
1 + ṗ2

1)

− 2D2ṗ1(p1ṙ1 − r1ṗ1) + D3(ṙ1ṗ2 − ṗ1ṙ2) − D5ṙ1ṗ0 + �H�2 cos �t ;

U2 = − �2
1(p1 + G1p1(r

2
1 + p2

1) + G2(r1r2 + p1p2) + G3p1p0) − D1p1(ṗ
2
1 + ṙ2

1 )

− 2D2ṙ1(r1ṗ1 − p1ṙ1) − D3(ṙ1ṙ2 + ṗ1ṗ2) − D5ṗ1ṗ0;

U3 = − �2
2(r2 + 2G4r1p1) + 2D7ṙ1ṗ1;

U4 = − �2
2(p2 − G4(r

2
1 − p2

1)) − D7(ṙ
2
1 − ṗ2

1);

U5 = − �2
0(p0 + G5(r

2
1 + p2

1)) − D8(ṙ
2
1 + ṗ2

1).
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Fig. 12. Visualisation of ‘swirling’ for � = 30◦, H = 0.02, �/�1 = 0.9967, A = 0.35, B = 0.419 with
r1(0) = 0.35, p2(0) = 0.122, p0(0) = 0.469, ṗ1(0) = 0.1494, ṙ2(0) = 0.316.

The initial conditions should define

r1(0) = r0
1 ; p1(0) = p0

1; p0(0) = p0
0; p2(0) = p0

2; r2(0) = r0
2 ,

ṙ1(0) = ṙ0
1 ; ṗ1(0) = ṗ0

1; ṗ0(0) = ṗ0
0; ṗ2(0) = ṗ0

2; ṙ2(0) = ṙ0
2 . (54)

We solved the Cauchy problem (53), (54) by the fourth-order Runge–Kutta method. The simulations were
made by a Pentium-II 366 computer. The simulation time depended on parameters of excitation. It varied
between 1

10 to 1
300 of the real time-scale. Solutions (44), (45) made it possible to get initial conditions

(54) to simulate steady-state regimes. These initial conditions were

r1(0) = A; pk(0) = A2(lk + hk), k = 0, 2; p1(0) = r2(0) = 0,
ṙk(0) = ṗk(0) = 0; k = 1, 2; ṗ0 = 0 (55)

for ‘planar’, and

r1(0) = A; p1(0) = 0; p2(0) = A2(l2 + h2) + B2(h2 − l2),
p0(0) = A2(l0 + h0) + B2(l0 − h0),
ṙ1(0) = 0; ṗ1(0) = �B; ṙ2(0) = −4�h2AB; ṗ2(0) = 0; ṗ0(0) = 0 (56)

for ‘swirling’ regime, respectively.
Typical three-dimensional wave patterns are presented in Figs. 12–14. In particular, Figs. 13 and 14

illustrate the travelling wave phenomenon (see the movements of the crest C), which is explainable by
contributions of the second-order modal functions r2, p2 and p0.

5. Conclusions

Linear and nonlinear sloshing of an incompressible fluid in a conical tank was analysed within the
framework of inviscid potential theory. Using a domain transformation technique by Lukovsky (1975)



422 I.P. Gavrilyuk et al. / Fluid Dynamics Research 37 (2005) 399–429

Fig. 13. Visualisation of ‘planar’ regime for � = 30◦, H = 0.02, �/�1 = 0.936, A = 0.2 with r1(0) = 0.2, p2(0) = −0.0117,
p0(0) = 0.00314.

Fig. 14. Visualisation of ‘planar’ regime for � = 45◦, H = 0.02, �/�1 = 0.9463, A = 0.2 with r1(0) = 0.2, p2(0) = −0.011,
p0(0) = −0.1137.

and a functional basis, which satisfies both the Laplace equation and the Neumann boundary condition on
the tank walls, we found the approximate linear sloshing modes. The method guarantees 5–6 significant
figures of the linear natural frequencies with only 5–6 basis functions. The numerical results were validated
by experimental data.

By utilising the approximate linear natural modes and results by Lukovsky (1990) and Faltinsen et al.
(2000), we derived a nonlinear finite-dimensional asymptotic modal system. The derived modal system
is a novelty in the scientific literature. It couples five natural modes and makes it possible to analyse
resonant sloshing due to a horizontal harmonic excitation with the forcing frequency close to the lowest
natural frequency.Applicability of the modal system is limited by possible progressive activation of higher
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modes caused by secondary resonance. This was predicted for the semi-apex angles 6◦ and 12◦. Besides,
shallow fluid sloshing (Faltinsen and Timokha, 2002a; Ockendon and Ockendon, 2001) was quantified
for � > 60◦. Our nonlinear modal theory should be applicable in the range 25◦ < � < 60◦. Passage to
� > 60◦ needs significant revisions of the present modal technique based on the Boussinesq asymptotics,
in the manner of Faltinsen and Timokha (2002a).

The present paper is the first attempt to classify steady-state waves in conical tanks. The analysis finds
‘planar’ and ‘swirling’ steady-state regimes as well as a frequency domain, where ‘chaotic’ waves (there
are no stable steady-state regimes) are realised. Advantages and possibilities of the modal system in
engineering and for visualising realistic wave patterns were demonstrated. A further perspective can be
a detailed study of ‘chaotic’ waves. The papers by Funakoshi and Inoue (1990, 1991) are useful in this
context.

Appendix A. Derivation of the modal system

Solutions (39), (40) deal with {F̃i(x2, x3)}, {�n(x1, x2, x3)} and modal functions �i(t), Ri(t), i�1,
of (17) as follows:

�1 = 	01; �2 = 	11 sin x3; �3 = 	11 cos x3; �4 = 	21 sin 2x3; �5 = 	21 cos 2x3,
F1 = f0(x2) = 	01(x10, x2); F2 = f1(x2) sin x3 = 	11(x10, x2) sin x3,
F3 = f1(x2) cos x3 = 	11(x10, x2) cos x3; F4 = f2(x2) sin 2x3 = 	21(x10, x2) sin 2x3,
F5 = f2(x2) cos 2x3 = 	21(x10, x2) cos 2x3,
P0(t) = Z1(t); R1(t) = Z2(t); P1(t) = Z3(t); R2(t) = Z4(t); P2(t) = Z5(t),
�1(t) = p0(t); �2(t) = r1(t); �3(t) = p1(t); �4(t) = r2(t); �5(t) = p2(t),

where

fm(x2) = a
(m)
10 +

q∑
k=1

b
(m)
k (x2); b

(m)
k (x2) = a

(m)
1k v

(m)
�mk(x2), m = 0, 1, 2.

The time-dependent �0(t) = O(�2/3) is a function of p0, r1, p1, r2 and p2, i.e.

f ∗ = x10 + k1(r
2
1 (t) + p2

1(t)) + p0(t)f0(x2) + [r1(t) sin x3

+ p1(t) cos x3]f1(x2) + [r2(t) sin 2x3 + p2(t) cos 2x3]f2(x2), (A.1)

where the coefficient

k1 = − 1

x10x
2
20

∫ x20

0
x2f

2
1 (x2) dx2

is derived from the volume conservation condition

|Q(t)| − |Q0| =
∫ 2

0

∫ x20

0

(
x2

10f + x10f
2 + 1

3
f 3
)

x2 dx2 dx3 = 0

considered correctly to O(�2/3).
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The integrals An, Ank and �ln/��i are linearly incorporated in (18) and, moreover, these integrals are
linear in �. The density � can therefore be omitted. The integrals can be expanded in series by p0, r1, p1, r2

and p2 correctly to O(�).Accounting for dAn/dt=∑5
i=1 (�An/��i)�̇i and pursuing O(�) in (�An/��i) �̇i ,

(�An/��i) Zn and AnkZn, Zn(�Ank/��i)Zk we get

A1 = a4(r
2
1 + p2

1) + a17p0,

A2 = a5r1 + a6r1(r
2
1 + p2

1) + a18(p1r2 − r1p2) + a14r1p0,

A3 = a5p1 + a6p1(p
2
1 + r2

1 ) + a18(r1r2 + p1p2) + a14p1p0,

A4 = a13r2 − 2a7r1p1; A5 = a13p2 + a7(r
2
1 − p2

1) (A.2)

and

A11 = 2a1; A21 = A12 = a15r1; A31 = A13 = a15p1,
A22 = 2a10 + 2a11r

2
1 + 2a12p

2
1 + 2a9p0 − 2a16p2,

A32 = A23 = a8r1p1 + 2a16r2; A55 = A44 = 2a2,
A33 = 2a10 + 2a11p

2
1 + 2a12r

2
1 + 2a16p2 + 2a9p0,

A42 = A24 = a3p1; A52 = A25 = −a3r1; A43 = A34 = a3r1,
A53 = A35 = a3p1; A41 = A14 = A51 = A15 = A54 = A45 = 0, (A.3)

where coefficients a1, . . . , a18 are given by the following integrals:

a1 = 

∫ x20

0
F

(0,0)
0 (x2)x2 dx2; a2 = 

2

∫ x20

0
(F

(2,2)
0 (x2) + 4

x2
2

B
(2,2)
0 (x2))x2 dx2,

a3 = 

2

∫ x20

0
(F

(1,2)
1 (x2) + 2

x2
2

B
(1,2)
1 (x2))f1(x2)x2 dx2,

a4 = 

∫ x20

0
(B

(2)
0 (x2)f

2
1 (x2) + 2k1B

(1)
0 (x2))x2 dx2,

a5 = 

∫ x20

0
B

(1)
1 (x2)f1(x2)x2 dx2,

a6 = 

∫ x20

0

(
3
4 B

(3)
1 (x2)f

2
1 (x2) + 2k1B

(2)
1 (x2)

)
f1(x2)x2 dx2,

a7 = −

2

∫ x20

0
B

(2)
2 (x2)f

2
1 (x2)x2 dx2,

a8 = 

2

∫ x20

0

(
F

(1,1)
2 (x2) − 1

x2
2

B
(1,1)
2 (x2)

)
f 2

1 (x2)x2 dx2,

a9 = 

2

∫ x20

0

[
F

(1,1)
1 (x2) + 1

x2
2

B
(1,1)
1 (x2)

]
f0(x2)x2 dx2,

a10 = 

2

∫ x20

0

(
F

(1,1)
0 (x2) + 1

x2
2

B
(1,1)
0 (x2)

)
x2 dx2,
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a11 = 

2

∫ x20

0

(
k1

[
F

(1,1)
1 (x2) + 1

x2
2

B
(1,1)
1 (x2)

]

+ 3

4

[
F

(1,1)
2 (x2) + 1

3x2
2

B
(1,1)
2 (x2)

]
f 2

1 (x2)

)
x2 dx2,

a12 = 

2

∫ x20

0

(
k1

[
F

(1,1)
1 (x2) + 1

x2
2

B
(1,1)
1 (x2)

]

+ 3
4

[
1

3
F

(1,1)
2 (x2) + 1

x2
2

B
(1,1)
2 (x2)

]
f 2

1 (x2)

)
x2 dx2,

a13 = 

∫ x20

0
B

(1)
2 (x2)f2(x2)x2 dx2,

a14 = 2

∫ x20

0
B

(2)
1 (x2)f0(x2)f1(x2)x2 dx2; a15 = 

∫ x20

0
F

(0,1)
1 (x2)f1(x2)x2 dx2,

a16 = 

4

∫ x20

0

[
F

(1,1)
1 (x2) − 1

x2
2

B
(1,1)
1 (x2)

]
f2(x2)x2 dx2,

a17 = 2

∫ x20

0
B

(1)
0 (x2)f0(x2)x2 dx2; a18 = 

∫ x20

0
B

(2)
1 f1(x2)f2(x2)x2 dx2.

Here, we introduce the functions B
(1)
0 , B

(2)
0 , B

(1)
1 , B

(2)
1 , B

(3)
1 , B

(1)
2 , B

(2)
2 , B

(2,2)
0 , B

(1,2)
1 , B

(1,1)
0 , B

(1,1)
1 ,

B
(1,1)
2 and F

(0,0)
0 , F

(1,1)
0 , F

(2,2)
0 , F

(0,1)
1 , F

(1,2)
1 , F

(1,1)
1 , F

(1,1)
2 depending on b

(m)
k (x2) and

c
(m)
k (x2) = a

(m)
1k

dv
(m)
�mk

dx2
, m = 0, 1, 2; k = 0, 1, . . . , q.

These functions are expressed as follows:

B(1)
m (x2) = x2

10

q∑
k=0

b
(m)
k (x2); B(2)

m (x2) = x10

2

q∑
k=0

(�mk + 2)b
(m)
k (x2),

B(3)
m (x2) = 1

6

q∑
k=0

(�mk + 2)(�mk + 1)b
(m)
k (x2), m = 0, 1, 2;

B
(m,n)
0 (x2) = x10

q∑
i,j=1

b
(m)
i (x2)b

(n)
j (x2)

�mi + �nj + 1
; B

(m,n)
1 =

q∑
i,j=1

b
(m)
i (x2)b

(n)
j (x2);

B
(m,n)
2 = 1

2x10

q∑
i,j=1

(�mi + �nj )b
(m)
i b

(n)
j , m, n = 1, 2;

�(m,n)
ij (x2) = �mi�njb

(m)
i b

(n)
j − x2(�mib

(m)
i c

(n)
j + �nib

(n)
i c

(m)
j ) + (1 + x2

2)c
(m)
i c

(n)
j ,
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F
(m,n)
0 (x2) = x10

q∑
i,j=1

�(m,n)
ij (x2)

�mi + �nj + 1
; F

(m,n)
1 (x2) =

q∑
i,j=1

�(m,n)
ij (x2),

F
(m,n)
2 (x2) = 1

x10

q∑
i,j=1

(�mi + �nj )�
(m,n)
ij (x2), m, n = 0, 1, 2.

Relationship (41) and g1 = −g, g2 = g3 = 0 mean that the terms �l2/��i and �l3/��i of (18) should be
calculated correctly to O(1) as follows:

�l2
��i

=
{

0, �i /≡ p1,

�, �i ≡ p1,

�l3
��i

=
{

0, �i /≡ r1,

�, �i ≡ r1,
� = x3

10

∫ x20

0
x2

2f1(x2) dx2. (A.4)

The scalar function l1 reads as

l1 = l
(0)
1 + [l(1)

1 (r2
1 + p2

1) + l
(2)
1 p2

0 + l
(3)
1 (r2

2 + p2
2) + l

(4)
1 (r2

1 + p2
1)

2

+ l
(5)
1 (1

2p2
1p2 − 1

2r2
1p2 + r1p1r2) + l

(6)
1 p0(r

2
1 + p2

1)], (A.5)

where

l
(0)
1 = 

4
x4

10x
2
20; l

(1)
1 = 1

2 x2
10G11; l

(2)
1 = 1

2 x2
10G00; l

(3)
1 = 1

2 x2
10G22,

l
(4)
1 = 3

16 G1111 + 3
2 x10k1G11; l

(5)
1 = 2x10G211; l

(6)
1 = 2x10G011

and

G00 = 2

∫ x20

0
x2f

2
0 dx2; G11 = 

∫ x20

0
x2f

2
1 dx2; G22 = 

∫ x20

0
x2f

2
2 dx2,

G011 = 

∫ x20

0
f0f

2
1 x2 dx2; G211 = 

∫ x20

0
x2f2f

2
1 dx2; G1111 = 

∫ x20

0
x2f

4
1 dx2.

Consider (18a) as a system of linear algebraic equations in Zk(t). Accounting for (A.2) and (A.3) and
solving (18a) correctly to O(�) one obtains

R1(t) = Q1ṙ1 + C2r
2
1 ṙ1 + D3p

2
1 ṙ1 + C1r1p1ṗ1

+ D2(r2ṗ1 − p2ṙ1) + C3(p1ṙ2 − r1ṗ2) + B0p0ṙ1 + B3r1ṗ0,

P1(t) = Q1ṗ1 + C2p
2
1ṗ1 + D3r

2
1 ṗ1 + C1p1r1ṙ1

+ D2(r2ṙ1 + p2ṗ1) + C3(r1ṙ2 + p1ṗ2) + B0p0ṗ1 + B3p1ṗ0,

P0(t) = C0(r1ṙ1 + p1ṗ1) + D0ṗ0; R2(t) = Q2ṙ2 − D1(r1ṗ1 + p1ṙ1),
P2(t) = Q2ṗ2 + D1(r1ṙ1 − p1ṗ1), (A.6)

where

C0 = a4

a1
− a5a15

4a1a10
; D0 = a17

2a1
; C1 = 1

a10

(
a6 − a4a15

2a1
− a5a8

4a10
+ a5a

2
15

8a1a10

)
,
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Q2 = a13

2a2
; C3 = 1

2a10

(
a18 − a3a13

2a2

)
; B0 = 1

2a10

(
a14 − a5a9

a10

)
; Q1 = a5

2a10
,

B3 = 1

2a10

(
a14 − a15a17

2a1

)
; D1 = a7

a2
+ a3a5

4a2a10
; D2 = 1

2a10

(
a18 − a5a16

a10

)
,

D3 = a6

2a10
+ Q1

(
a2

3

4a2a10
− a12

a10
+ a3a7

a2a5

)
; C2 = D3 + C1.

Substituting (A.2)–(A.6) in (18b) and gathering the terms up to O(�) lead to the modal system
(42a)–(42d), where

D1 = d1

�1
; D2 = d2

�1
; D3 = d3

�1
; D4 = d4

�1
; D5 = d5

�1
; D6 = d6

�1
,

D7 = d7

�2
; D8 = d8

�0
; D9 = d4

�2
; D10 = d6

�0
; � = �

�1
,

G1 = dk
1

�1�11
; G2 = 2dk

2

�1�11
; G3 = 2dk

3

�1�11
; G4 = dk

2

�2�21
; G5 = dk

3

�0�01
, (A.7)

where

�0 = a17D0; �1 = a5Q1; �2 = a13Q2,
d1 = 2a4C0 + 2a7D1 + a5C2 + 3a6Q1; d2 = a5D3 + a6Q1 + 2a7D1,
d3 = a5D2 + a18Q1; d4 = 2a7Q2 − a5C3; d5 = a5B0 + a14Q1,

d6 = 2a4D0 + a5B3; d7 = d4 + 1
2 d3; d8 = d6 − 1

2 d5,

dk
1 = 4l

(4)
1 ; dk

2 = 1
2 l

(5)
1 ; dk

3 = l
(6)
1 .
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