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a b s t r a c t

Analytical approaches to nonlinear and linear sloshing problems need to knowapproximate natural slosh-
ing modes expressed by continuously-differentiable harmonic functions. A new method for constructing
those approximate modes as well as for a fast computing of the corresponding natural sloshing frequen-
cies is proposed in the two-dimensional case. The method facilities a parametric study of the natural
sloshing frequencies in a prismatic tank associated with LNG (Liquefied Natural Gas) containers. The re-
sults are extensively compared with other approximate analytical solutions.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Finding the natural sloshing frequencies and modes is an im-
portant task in marine and spacecraft applications. Analytical so-
lutions of the corresponding spectral boundary problem are a rare
exception [1, ch. 4]; [2, ch. 1] and Finite Element and/or Bound-
ary Element methods [1, ch. 10]; [3] are traditionally employed.
Analytical approaches to linear and nonlinear liquid sloshing prob-
lems yield specific requirements to approximate natural slosh-
ing modes. Even though the natural sloshing modes are formally
defined in the mean liquid domain, the nonlinear multimodal
method needs, for example, analytically-expressed continuously-
differentiable harmonic natural sloshing modes which are contin-
uously expandable above the mean liquid domain. The traditional
numerical methods are then not applicable. A review on analyti-
cal approximate methods producing the analytically approximate
natural sloshing modes is given by the authors in [1]. Interested
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readers can also find extensive discussions on these methods in
[4–6] (in the context of specific tank shapes).

The present paper constructs an approximate Trefftz solution
of the two-dimensional natural sloshing problem. The solution ap-
pears as a linear combination of the so-called harmonic polyno-
mials and their generalizations. The harmonic polynomials are a
well-known instrument of different numerical methods, e.g., the
Harmonic Polynomial Cell (HPC) method developed recently for
surface wave problems [7]. The polynomials constitute a complete
harmonic basis in the star-shaped domains [8–10]. The Trefftz so-
lution is adopted by three alternative projective schemes which
provide a fast computing of the corresponding natural sloshing fre-
quencies.

Numerical experiments in [11, Sections 18, 26, and 27] with di-
verse harmonic functional base in projective [variational] schemes
showed that a naive usage of these base in sloshing problems may
not be efficient and/or accurate when the basic functions are not
a priori constrained to a boundary condition and do not possess
the corner-point asymptotic behavior at the contact line corner.
We were familiar with this fact when working on [12] where ap-
proximate Trefftz-type natural sloshing modes were found for a
two-dimensional circular tank. In that paper, we have constructed
and employed two different harmonic functional sets, ‘regular’ and

http://dx.doi.org/10.1016/j.euromechflu.2014.01.005
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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Fig. 1. Themean liquid domain Q0 is bounded by themean free surface Σ0 and the
mean wetted tank surface S0 composed from Ns smooth curves S0i, i = 1, . . . ,Ns .
The Oy axis is superposed with the interval Σ0 : {z = 0, −y0 < y < y0}, so that
the origin O is at the interval middle. The inner angles 0 < θ± < π at the corner
points (±y0, 0) are formed by S0 and Σ0 .

‘singular’ at the contact corner points, so that they both a priori
satisfy the zero-Neumann boundary condition on the mean wet-
ted tank surface. The ‘singular’ functional set also possesses the
corner-point asymptotics. A straightforward generalization of [12]
can be based on the conformal mapping as proposed, e.g., in [13],
where the Christoffel–Schwarz transformation is employed to ap-
proximate the mean liquid domain by a polygon. However, using
the complex variables cannot provide, in general, an explicit har-
monic expression of real variables for approximate natural slosh-
ing modes. To get the needed analytically-expressed approximate
natural sloshing modes, we have to follow an alternative way. Fur-
thermore, we need in the future to generalize the method to the
three-dimensional case. The present approach, generally, allows
for that.

Section 2 formulates the problem. In Section 3, we construct
two κ-families of harmonic functions in which the positive real
number κ is associated with the spectral parameter proportional
to the square of the natural sloshing frequency. The harmonic func-
tions satisfy the spectral boundary [Robin] condition on the mean
free surface. The first family is the harmonic polynomials but the
second one possesses the asymptotic behavior of the eigenfunc-
tions at the intersection points of the mean free surface and the
wetted tank walls. A linear combination of the harmonic functions
with unknown weight coefficients constitutes an approximate Tr-
efftz solution of the original spectral boundary problem. To find κ
and theweight coefficients, we employ three alternative projective
schemes described in Sections 4.1–4.3, respectively. The schemes
are efficient for computing the lower natural sloshing frequencies
and modes. Their advantages and disadvantages are extensively
discussed. In Section 4.4, the projective schemes are verified by
comparison with analytical and numerical solutions.

The approximate Trefftz solution is employed in Section 5 for
a parametric study of the lowest natural sloshing frequencies for
a two-dimensional prismatic tank associated with LNG (Liquefied
Natural Gas) containers. The Trefftz approximations of the
nondimensional spectral parameter κ play the role of reference
values which are compared with approximate κ following from
other, simplified analytically approximate solutions and estimates.
The latter includes the shallowwater approximation, Faltinsen and
Timokha formula [1, ch. 4], and novel approximate formulas firstly
derived in the present paper. Based on the parametric study, we
formulate a guidance for practically-oriented readers who want
to estimate the lowest natural sloshing frequencies for a two-
dimensional prismatic tank without involving a numerical solver
of the original spectral boundary problem.

2. Statement of the problem

The task consists of constructing analytically approximate
natural sloshing modes ϕ (defined within to a multiplier) and
frequencies σ =

√
g κ̄ (g is the gravity acceleration) which are the

eigensolution of the spectral boundary problem

∇
2ϕ = 0 in Q0;

∂ϕ

∂n
= 0 on S0;

∂ϕ

∂n
= κ̄ϕ on Σ0;


Σ0

ϕdS = 0.
(1)

Here, Q0 is the mean liquid domain, S0 is the mean wetted tank
surface, and Σ0 is the mean liquid surface (see, Fig. 1). Henceforth,
we assume that Q0 is the star-shaped domain relative to the origin
O (the star-shaped domain means that for any point q in Q0, the
line segment joining O and q lies entirely within Q0). The origin
O is superposed with the middle of Σ0 : {z = 0, −y0 < y < y0}.
Furthermore, themeanwetted tank surface S0 is constituted by the
smooth finite length curves S0i, i = 1, . . . ,Ns. The inner angles
0 < θ± < π at the corner points (±y0, 0) are due to intersection
of S0 and Σ0. Interior corner points are possible.

The spectral boundary problem (1) will be considered in
the nondimensional statement for which the characteristic spatial
dimension is associated with the half of the maximum horizontal
tankwidth, a =

1
2 l (see, Fig. 1). Thismeans that the nondimensional

spectral parameter κ computes the circular natural sloshing
frequencies by the formula

σ =

gκ/a. (2)

We will construct the κ-families of harmonic functions which
satisfy the Robin [spectral] condition on Σ0 within a real positive
number κ . The families are the harmonic polynomials and their
‘singular’-type generalization possessing the corner-point asymp-
totics at (±y0, 0). A finite sumby these functions (within unknown
weight coefficients) gives an approximate Trefftz solution of (1)
providing the Laplace equation and the Robin condition on Σ0 are
a priori satisfied. To approximate the zero-Neumann condition on
S0 and, thereby, find the spectral parameter κ and the unknown
weight coefficients in the Trefftz solution, we will adopt three al-
ternative projective schemes.

3. Harmonic functional base and the approximate Trefftz
solution

3.1. Harmonic polynomials as a ‘regular’ functional basis

The so-called harmonic polynomials are polynomials by spatial
coordinates which satisfy the Laplace equation. They constitute a
complete harmonic functional basis in the star-shaped domains
(relative to the origin). The completeness theorems can be
found in [8,9] (see, also references in [10]). The two-dimensional
harmonic polynomials are

w(1)
n = ρn cos(nθ) and w(2)

n = ρn sin(nθ), n = 0, 1, . . . , (3)
rewritten frompolar (ρ, θ) to the Cartesian coordinate systemOyz.
The polynomials w

(1)
n (y, z) and w

(2)
n (y, z) can be derived via the

recursive relations

w
(1)
0 = 1; w

(2)
0 = 0; w(1)

n = yw(1)
n−1 − zw(2)

n−1;

w(2)
n = yw(2)

n−1 + zw(1)
n−1, n ≥ 1.

(4)

The first-order spatial derivatives of w(1)
n and w

(2)
n read as

∂w
(1)
n

∂y
= nw(1)

n−1;
∂w

(2)
n

∂y
= nw(2)

n−1,

∂w
(1)
n

∂z
= −nw(2)

n−1;
∂w

(2)
n

∂z
= nw(1)

n−1, n ≥ 1.

(5)
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Numerical experiments with diverse harmonic functional base
in [11] found out that the base should desirably satisfy the zero-
Neumann boundary condition on S0. Otherwise, the Trefftz-type
projective schemes may not be numerically stable but rather
leading to ill-posedmatrix problems. The authors donot knowhow
to get those base for a generally-shaped two-dimensional domain
Q0. However, there exists an alternative—we can recombine the
harmonic polynomials

Wi(y, z; κ) = w
(1)
i (y, z) +

κ

i + 1
w

(2)
i+1(y, z), i ≥ 0 (6)

to satisfy ∂ϕ/∂z = κϕ on the horizontal axis z = 0 to which the
mean free surface Σ0 belongs.

Because the harmonic polynomials constitute a complete har-
monic functional set in the star-shaped domains, the eigensolution
of (1) can be posed as

ϕ(y, z) =

∞
i=0

ai Wi(y, z; κ), (7)

where κ is the [unknown] spectral parameter and ai are the
unknown weight coefficients. The coefficients and κ should be
found from the zero-Neumann condition on S0.

3.2. ‘Singular’ harmonic functions possessing the corner-point asymp-
totics at the contact line

The finite sumexpression in (7) defines an infinite-differentiable
(in the entire (y, z)-plane) approximate Trefftz solution. This so-
lution may slowly converge at the corner points of Q0 when ϕ
possesses a ‘singular’ asymptotic behavior implying infinite
higher-order derivatives. Because sloshing is mainly affected by
what happens near the free surface, accounting for this asymp-
totic behavior is especially important for the two corner points at
the mean free surface; other internal corner points can be close to
the mean free surface, but, anyway, their effect will be weaker of
those at the Σ0 ends. As described in [14–17] for two-dimensional
and axisymmetric sloshing problems, the latter behavior depends
on the inner corner angles 0 < θ± < π (see, Fig. 1). The case
of the ice-fishing problem (θ± = π ) is not considered. In the
two-dimensional case (see, [11, Section 12] and [12]), the eigen-
functions behave as real and imaginary parts of Zα±k and Zp lnq Z
with respect to the complex variable Z = (y ∓ y0) + i z where
α± = π/θ± and k, p, and q are nonnegative integer. When α± is an
irrational number, there are only the Zα±k

·F(Z) singular quantities
in the local asymptotic solution. When α± = m is an integer num-
ber, the Zα±k-components become the polynomials, but there ap-
pear the log-type quantities Zm(k+i) ln1+i Z ·F(Z), i = 0, 1, . . . ; k =

1, 2, . . . . Finally, when α± = m/n is the rational number (m/n
is the irreducible fraction), both Zα±k

· F(Z) and Zm(k+i) ln1+i Z ·

F(Z), i = 0, 1, . . . ; k = 1, 2, . . . asymptotic quantities are pos-
sible. Here, F(Z) is an analytical function at Z = 0. Faltinsen and
Timokha [12] showed that the log-type components follow from
recombining the power-type asymptotics with the harmonic poly-
nomials when approximating the given rational numbers α± by ir-
rotational numbers. The primary focus should be on the case k = 1
which implies the most dangerous ‘singular’ asymptotics.

Following [12], we are going to derive a set of harmonic func-
tions which possess the required asymptotics at the Σ0-ends. The
derived functions will satisfy the Robin condition on Σ0. Handling
the ‘singular’ asymptotics at the left corner point, we introduce the
local polar coordinate system (r, ϑ) at (−y0, 0). These harmonic
functions are associatedwith real and imaginary parts of Zα−k

·F(Z)
where the analytical function F(Z) can be defined as a Taylor series
at Z = 0. Each Taylor series component yields the Zβ-quantitywith

β = β− + n = kα− + n, k ≥ 1, n = 0, 1, . . . . (8)

The real and imaginary parts are

w
(1−)
β = rβ cos(βϑ), w

(2−)
β = rβ sin(βϑ), n = 0, 1, . . . (9)

where

r =


(y + y0)2 + z2; ϑ = sgn(z) arccos


y + y0

r


.

This leads to the following harmonic functions

w
(1−)
β =


(y + y0)2 + z2

 β
2

× cos


β sgn(z) arccos

y + y0
(y + y0)2 + z2


, (10a)

w
(2−)
β =


(y + y0)2 + z2

 β
2

× sin


β sgn(z) arccos

y + y0
(y + y0)2 + z2


(10b)

in the original Cartesian coordinate system.
Bearing in mind (8), we have arrived at the (k, n)-family of har-

monic functionswhich can be considered as a generalization of the
harmonic polynomials. A reason for thinking of the generalization
is that the n-subfamily of (10) is governed by the similar recursive
relations

w
(1−)
β−+n = (y + y0)w

(1−)
β−+n−1 − zw(2−)

β−+n−1,

w
(2−)
β−+n = (y + y0)w

(2−)
β−+n−1 + zw(1−)

β−+n−1, n ≥ 1,
(11)

and expressions (5) generalize to

∂w
(1−)
β−+n

∂y
= (β− + n)w(1−)

β−+n−1;

∂w
(2−)
β−+n

∂y
= (β− + n)w(2−)

β−+n−1,

∂w
(1−)
β−+n

∂z
= −(β− + n)w(2−)

β−+n−1;

∂w
(2−)
β−+n

∂z
= (β− + n)w(1−)

β−+n−1, n ≥ 0.

(12)

The required harmonic functional set at the right corner point
(y0, 0) can be introduced as

w
(1+)
β (y, z) = w

(1−)
β (−y, z); w

(2+)
β (y, z) = w

(2−)
β (−y, z), (13)

where
β = β+ + n = kα+ + n, k ≥ 1, n = 0, 1, . . . .
The first-order derivatives of (13) are computed by the formulas

∂w
(1+)
β++n

∂y
= −(β+ + n)w(1+)

β++n−1;

∂w
(2+)
β++n

∂y
= −(β+ + n)w(2+)

β++n−1,

∂w
(1+)
β++n

∂z
= −(β+ + n)w(2+)

β++n−1;

∂w
(2+)
β++n

∂z
= (β+ + n)w(1+)

β++n−1, n ≥ 0.

(14)

Formulas for the z-derivative in (12) and (14) help to deduce
the harmonic functions

W (±)
k,i (y, z; κ) = w

(1±)
kα±+i +

κ

kα± + i + 1
w

(2±)
kα±+i+1, i ≥ 0 (15)

which analytically satisfy the spectral boundary condition onΣ0 =

{z = 0, −y0 < y < y0}.
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3.3. The Trefftz approximation

Employing the harmonic functional sets (6) and (15) and
assuming that α± = π/θ± are irrational numbers (if not, these can
be approximated by appropriate irrational numbers), the Trefftz
approximation of the original spectral problem can be posed as

ϕ(y, z; κ) =

Q0
i=0

aiWi(y, z; κ) +

K
k=1


Q−(k)
i=0

a(−)
i W (−)

k,i (y, z; κ)

+

Q+(k)
i=0

a(+)
i W (+)

k,i (y, z; κ)


=

Q
i=1

biWi(y, z; κ),

Q = (Q̄0 + 1) +

K
k=1

(Q−(k) + Q+(k) + 2). (16)

Here, the unknown weight coefficients bi and the unknown spec-
tral parameter κ can be found by using the zero-Neumann condi-
tion on S0.

An important remark on (16) is that the harmonic polynomials
constitute a complete harmonic basis, namely, the natural slosh-
ing modes in star-shaped domains can always be expressed by
(7) without the W (±)

i -quantities. Adding these quantities makes
the extended functional set {Wi;W

(±)
i } over-complete in appropri-

ate functional spaces. We face the dilemmawhich was extensively
discussed by Faltinsen and Timokha [12]: The Trefftz approxima-
tion (16) without the W (±)

i -functions can slowly converge to the
eigensolution, but putting a sufficient number of ‘singular’ basic
functions leads to ill-posedmatrix problemswith increasing global
dimension Q . A practical choice consists of taking a few ‘singu-
lar’ basic functions responsible for the asymptotic behavior in the
second-to-fourth order derivatives.

For symmetric tanks with respect to the Oz-axis, the natural
sloshingmodes are either antisymmetric or symmetric. The Trefftz
approximation of the antisymmetric modes is

ϕ(y, z; κ) =

Q
i=1

biWi(y, z; κ) =

q1
i=1

biW2i−1(y, z; κ)

+

K−1
k=1

qk+1
i=1

b
i+

k
j=1

qj


W (−)

k,i−1(y, z; κ) − W (+)
k,i−1(y, z; κ)


(17)

but the symmetric modes are approximated by

ϕ(y, z; κ) =

Q
i=1

biWi(y, z; κ) =

q1
i=1

biW2i−2(y, z; κ)

+

K−1
k=1

qk+1
i=1

b
i+

k
j=1

qj


W (−)

k,i−1(y, z; κ) + W (+)
k,i−1(y, z; κ)


(18)

with nonnegative integer qi ≥ 0, i = 1, . . . , K and Q =
K

j=1 qj
and α = α− = α+.

4. Projective schemes

Wewill use the Trefftz approximation from previous section in
projective schemes to satisfy the zero-Neumann condition on S0
and, thereby, computing the natural sloshing frequencies. Three
different projective schemes are proposed but other numerical
methods, e.g., based on the Hadamard equation (see, ch. IV, Section
2 in [18]) are also possible.

We assume that the smooth curves S0j, j = 1, . . . ,Ns (see,
Fig. 1) are defined as

S0j = {(y, z) : y = y(s), z = z(s), −1 < s < 1} (19)

so that increasing s corresponds to the counterclockwise direction
along S0j with respect to O. Accounting for (19), the integrals over
S0 should read as

S0
· dS =

Ns
j=1

 1

−1
·


(y′)2 + (z ′)2ds. (20)

4.1. Projective scheme based on the Rayleigh quotient formulation

The Rayleigh quotient

KQ0,Σ0(ϕ) =


Q0

(∇ϕ)2dQ
Σ0

ϕ2dS
(21)

variational formulation [1, Section 4.6.1.2] can be employed to find
bi and κ . For this purpose, we substitute (16) into (21) and use the
necessary local extrema condition ∂KQ0,Σ0/∂bj = 0, which leads to
the homogeneous linear equations

Q
i=1

bi


S0

∂Wi

∂n
WjdS +


Σ0

∂Wi

∂n
WjdS − κ


Σ0

WiWjdS


=

Q
i=1

bi


S0

∂Wi(y, z; κ)

∂n
Wj(y, z; κ)jdS = 0,

j = 1, . . . ,Q . (22)

According to definitions of Wk in (6) and (15), Eq. (22) are, in
fact, the quadratic eigenvalue problem

(κ2B2 + κB1 + B0)b = 0, b = {bi} (23)

with respect to the spectral parameter κ and the eigenvector b
(coefficients {bi}). Details on computing the matrices B0, B1, and
B2 for symmetric tanks are given in the Appendix. A review on
the quadratic eigenvalue problem and its numerical solvers can be
found in [19].

An interesting point is that solving (23) gives approximate so-
lutions of both the original spectral problem (1) and the spec-
tral boundary problem in which the zero-Neumann condition
∂ϕ/∂n = 0 is replaced by the zero-Dirichlet condition ϕ = 0 on S0.
A reason for getting amix of the two eigensolutions is that approx-
imating the Dirichlet-type spectral boundary problem leads, after
substituting the κ-dependent Trefftz approximation into (21), to
the quadratic eigenvalue problem (κ2BT

2 +κBT
1 +BT

0)b = 0which is
the same as (23) since thematrices B2, B1, and B0 are symmetric. In
other words, both Neumann’ and Dirichlet’ zero-boundary condi-
tions are natural for the Rayleigh quotient when the trial functions
satisfy the spectral [Robin] condition on Σ0. A posteriori numerical
procedure is needed to detect which of the two spectral problem is
approximated after getting the numerical values of κ and the cor-
responding coefficients {bi}.

4.2. Galerkin’s scheme

Requiring the zero-Neumann condition on S0 and remembering
(20) imply 1

−1

∂ϕ

∂n

 y=yj(s)
z=zj(s)

Tk(s)

y′2

j (s) + z ′2
j (s)ds = 0,

j = 1, . . . ,Ns; k = 1, . . . , (24)

where Tk(s) is a complete functional basis on (−1, 1).
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Employing (16) in (24) leads to the homogeneous linear
algebraic system

Q
i=1

Cli(κ) bi =

Q
i=1

c(j)
ki (κ) bi = 0,

C[(j−1)Ns+k]i(κ) = c(j)
ki (κ) =

 1

−1


∂Wi

∂y
z ′

j −
∂Wi

∂z
y′

j


y=yj(s)
z=zj(s)

Tk(s)ds,

l = 1, . . . ,Q ; j = 1, . . . ,Ns, k = 1, . . . ,NT ,

with Q = Ns · NT (25)

whose non-trivial solution is only possible when

det |C(κ)| = 0, C(κ) = {Cli(κ)}. (26)

The roots of (26) imply the approximate spectral parameters κ .
Substituting these κ-values into (25) makes it possible to find the
corresponding non-trivial coefficients {bi}.

The Galerkin projective scheme does not yield the Dirichlet-
type solutions as this has been in Section 4.1. However, themethod
has disadvantages. The most important of them is that the matrix
dimension in (25) and (26) is proportional to Ns (number of the
smooth pieces S0j, j = 1, . . . ,Ns). This may seriously increase the
global dimension, e.g., for prismatic tanks. Another disadvantage
is that the scheme implicitly assumes that curves S0j have similar
lengths. Our numerical experiments detected a computational
instability when one of S0j is much longer [shorter] than others.
This is typical situation when one of the S0j length is less then 1%
of all others.

4.3. The mean square method

Requiring the zero-Neumann condition ∂ϕ/∂n = 0 to be satis-
fied on S0 in themean squaremetrics implies that the eigensolution
can be found from minimizing the mean square functional

J(κ; {bi}) =


S0


Q
l=1

blWl

2

dS. (27)

Thenecessary extrema condition ∂ J/∂bn = 0 leads to the quadratic
spectral problem

Cb = 0,

C =


cmn =


S0

∂Wm

∂n
∂Wn

∂n
dS


= A2κ
2
+ A1κ + A0;

(28)

computational details on matrices Ai are given in the Appendix.
Formally, approximate spectral parameters κ are associated

with roots of det(C(κ)) = 0. However, this equation does not have
real roots unless the finite-sum Trefftz approximation implies an
exact solution as in examples by Troesch [20]. Normally, function
F(κ) = det(C(κ)) det(C(0)) > 0 for real positive numbers κ and
approximate spectral parameters κ correspond to local minima of
F(κ). The local minimal values of F tend to zero with increasing
dimension Q , i.e., when the Trefftz solution converges.

4.4. Verification

Extensive numerical experiments were conducted with the
three projective schemes in Sections 4.1–4.3. The emphasis was
on lower (normally, κi, i = 1, 2, 3, 4) natural sloshing frequencies
and modes but higher frequencies and modes were also computed
for some isolated cases. The results were compared with analytical
eigensolutions existing for rectangular tank and triangular tank of
semi-apex angle π/4. Triangular tank of semi-apex angle π/3 also
was the case. In addition, the analytically approximate solution

from [12] was used to test the schemes applicability for a circular
tank.

For the rectangular tank, the Trefftz approximations (17) and
(18) demonstrated a fast convergence to the analytical eigenso-
lution. Because the eigensolution is analytical in the entire plane,
the ‘singular’-type harmonic functions were not involved (qi =

0, i ≥ 2). Six–seven significant figures of κi, i = 1, 2, 3, 4 and
three–four significant figures of the zero-Neumann condition on
S0 (in the mean square metrics, the eigenfunctions were scaled by
the condition


Σ0

ϕ2dS = 1) were provided with a relatively small
number of the harmonic polynomials. Convergence and precision
depended on the depth-to-breadth ratios h/l. The required dimen-
sion q1 in the Trefftz approximation increased with increasing h/l.
For h/l < 0.7, the aforementioned accuracy was achieved with
q1 ≥ 6, 0.7 ≤ h/l < 0.9 required q1 ≥ 8, 0.9 ≤ h/l < 1.1 needed
q1 ≥ 11, and so on. There were difficulties to reach this accuracy
when 3 . h/l. A reason is that the eigenfunctions exponentially
decay from the mean free surface to the tank bottom, but the har-
monic polynomials do not possess this asymptotic behavior.

For the triangular tank of semi-apex angle π/4, the first natural
sloshing mode is W1(y, z; 1) by (6). The Trefftz approximation
immediately gives this exact solution. The other lower spectral
parameters κi, i = 2, . . . , 6 are approximated within to six-to-
seven significant figures for q1 ≥ 10. When the semi-apex angle of
triangular tank equals to π/3, analytical symmetric modes exist
[1, ch. 4]. Our Trefftz approximation provides six-to-seven
significant figures of κi, i = 2, 4, 6 as q1 ≥ 10.

There are no analytical antisymmetric eigenfunctions for the
triangular tank of the semi-apex angle π/3. However, there are
numerical results by Haberman [21] for κi, i = 1, 3, 5, 7. These
results are comparedwith our calculations in Table 1. The table also
illustrates the schemes convergence to these four nondimensional
spectral parameters. These numerical results are obtained by using
the harmonic polynomials (qi = 0, i ≥ 2). Two alternative
projective schemes from Sections 4.3 and 4.2 demonstrate similar
convergence and provide stabilization of four significant figures.
Adding ‘singular’-type harmonic functions does not improve the
convergence. A reason is that the corner angles at the contact
points are less than π/2 so that the eigenfunctions do not have
infinite second- and third-order derivatives.

Our numerical results were also validated by comparison with
those in [12] for circular tank. In [12], two functional base, ‘regular’
and ‘singular’ (satisfying the zero-Neumann condition on S0), were
employed and the variational scheme was based on the Rayleigh
quotient. The ‘singular’ basic functions were needed for h/R0 ≥

1 (R0 is the tank radius). The convergence results of our new
projective schemes were, generally, similar to those reported
in [12]. The schemes also required ‘singular’ harmonic functions for
h/R0 ≥ 1. A difference is that we were not able to reach a stable
computation for h/R0 ≥ 1.92 while [12] accurately handled the
lower spectral parameters up to h/R0 = 1.99. A reason is that [12]
adopted the Schmidt orthogonalization and some other auxiliary
numerical procedures making the computations more stable, but
the present algorithms were not optimized.

5. Prismatic tanks

Typical prismatic tank shapes are illustrated in Fig. 2. These
tanks can be considered as a cut off of an Oz-symmetric
parallelogram. In the nondimensional statement, there are at most
five independent input geometric parameters which characterize
the mean liquid domain shape Q0. These are shown in Fig. 3 as
0 < αt < π/2 (angles at lower chamfers), 0 < αb < π/2 (angles
at upper chamfers), hb, hc , and ht . For realistic tanks, the angles αt
and αb are often about π/4.
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Table 1
Convergence to nondimensional spectral parameters κi (the nondimensional length ofΣ0 is equal to 2) corresponding to the four lower antisymmetricmodes. The triangular
tank of semi-apex angle π/3. Two different projective schemes from Sections 4.2 and 4.3 with the harmonic polynomials (qi = 0, i ≥ 2) are used. The numerical results are
compared with those by Haberman [21].

q1 κ1 κ3 κ5 κ7 κ1 κ3 κ5 κ7
Scheme from Section 4.3 Scheme from Section 4.2

8 0.71146 3.1954 6.2857 9.2752 0.71115 3.1950 6.2856 9.4377
10 0.71133 3.1952 6.2857 9.4248 0.71116 3.1950 6.2856 9.4248
12 0.71127 3.1951 6.2856 9.4248 0.71116 3.1950 6.2856 9.4248
14 0.71123 3.1951 6.2856 9.4248 0.71116 3.1950 6.2856 9.4248
16 0.71121 3.1951 6.2856 9.4248 0.71116 3.1950 6.2856 9.4248
18 0.71120 3.1951 6.2856 9.4248 0.71116 3.1950 6.2856 9.4248

Numerical result by Haberman [21]

0.710 3.190 6.278 9.507 0.710 3.190 6.278 9.507

Fig. 2. Conventional (a) and pyramidal (b) proportions of prismatic LNG containers
considered in [22–24].

Fig. 3. The mean liquid domains Q0 which correspond to different fillings of a
prismatic tank.

We use the Trefftz method for a parametric study of the
lowest natural sloshing frequencies and modes. The computed
frequencies are considered as reference values for simplified
approximate formulas estimating these frequencies. The analysis
will consequently focus on the mean liquid shapes Q0 from (a) to
(d) in Fig. 3.

Fig. 4. Two-dimensional triangular tank. Two nondimensional spectral parameters
κ1 and κ2 corresponding to the lowest antisymmetric and symmetric natural
sloshing modes, respectively. The spectral parameters are computed by employing
our Trefftz approximation and plotted by the solid lines as functions of the semi-
angle αb . The shallow-water prediction of κ1 and κ2 (Section 5.1.1) is depicted
by the dashed lines. The dotted lines illustrate κ1 and κ2 computed by using the
Faltinsen–Timokha formula [1, Eq. (4.92)] (see, also, Section 5.1.2). Finally, the dash-
and-dotted lines are due to new approximate formulas from Section 5.1.3.

5.1. Triangular tank

In the nondimensional statement providing that themean free-
surface length equals to 2, the natural sloshing frequencies and
modes for a triangle-shaped mean liquid domain in Fig. 3(a) are
functions of the single geometric input parameter, the semi-apex
angle αb. This means that

κi = fi(αb), 0 < αb < π/2. (29)

Our task consists of describing fi, i = 1, 2.
First of all, we note that there is an analytical solution of the

spectral sloshing problem for αb = π/4 (for both antisymmetric
and symmetric modes) as well as an analytical eigensolution for
symmetric modes as αb = π/3. These solutions were used for val-
idating our projective schemes in Section 4.4. In addition, there are
the two limits, limαb→0+ fi(αb) = iπ/2 (the tank shape becomes
geometrically close a rectangular tankwith an infinite liquid depth
[1, Section 4.3.1.1]) and limαb→π/2− fi(αb) = 0 (the liquid domain
vanishes). Furthermore, the nondimensional triangular liquid do-
main area decreaseswith increasingαb and, therefore, according to
the comparison theorems [1, Section 4.6.2], functions fi(αb)mono-
tonically decrease on interval 0 < αb < π/2.

Using the approximate Trefftz solution, we computed and plot-
ted in Fig. 4 the two lowest nondimensional spectral parameters
κ1 and κ2 corresponding to the first antisymmetric and symmet-
ric modes, respectively. The spectral parameters on these graphs
were computed within to four–five significant figures and, there-
fore, they can be considered as reference values for other approxi-
mate analytical solutions derived in Sections 5.1.1–5.1.4.
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5.1.1. Shallow water approximation
The shallow water approximation of the natural sloshing fre-

quencies and modes in a triangular basin was given by Lamb [25]
(see, details on this solution in [1, Section 4.4.2]). Rewriting this
solution in the nondimensional form implies the nondimensional
shallow-water natural sloshing modes

ϕi = J0

2


κi tan(αb)(y + 1)


, −1 < y < 0. (30)

Here, J0(·) is the Bessel function of the first kind and κi =

ξ 2
i /(4 tan(αb)) are the nondimensional spectral parameters where

ξi are the real positive roots of J0(ξ2i−1) = 0, for antisymmet-
ric modes, and J ′0(ξ2i) = 0, for symmetric modes, respectively.
These numerical values are computed as ξ1 = 2.4048256 . . . and
ξ2 = 3.8317059 . . . .

The shallow-water approximation of the nondimensional
spectral parameters κ1 and κ2 is plotted by the dashed lines in
Fig. 4. Comparing themwith the solid lines shows that the shallow
water approximation overpredicts κ1 and κ2. It can be adopted for
1.25 . αb < π/2 with the accuracy better than 0.5%.

5.1.2. Faltinsen–Timokha formula [1, Eq. (4.92)]
Focusing on a chamfered rectangular tank, we gave in

[1, Eq. (4.92)], a simple formula for estimating an upper bond of the
natural sloshing frequencies when the contained liquid does not
touch the upper chamfers as in Fig. 3(b, c). Adopting this formula
implicitly assumes that the natural sloshing modes remain close
to those for the framing rectangular tank of the same mean liquid
breadth and height. The formula can be applied to the triangular
mean liquid domain in Fig. 3(a) assuming that the lower chamfers
are as wide as to completely extract the flat bottom component.
According to this formula,

κn =
πn
2

tanh

1
2
πn cotαb



×


1 − 2

tanαb sinh2  1
2πn cotαb


− cotαb sin2  1

2πn


πn sinh(πn cotαb)


. (31)

The dotted lines in Fig. 4 illustrate the (31)-values. In contrast
to the shallow water approximation, the formula accurately han-
dles the lowest spectral parameters for lower αb. The limit αb → 0
implies that the mean liquid domain becomes geometrically close
to a half-band and corresponds to a rectangular tank with an infi-
nite liquid depth. The formula reflects the theoretical fact that κn =

fn(αb) monotonically decrease with increasing αb from 0 to π/2.

5.1.3. Using the Rayleigh quotient
A special analytical procedure was proposed in [1, Section

4.8.2.1], to get an analytical prediction of the lowest natural
sloshing frequency for a circular tank. Itwas based on the two facts:
(i) according to model tests by Barkowiak et al. [26], the associated
liquid flow is geometrically close to that caused by a horizontal
dipole and (ii) the lowest spectral parameter is theminimumof the
Rayleigh quotient on admissible trial functions. After substituting
a dipole-type harmonic function into the Rayleigh quotient and
varying the vertical position of the dipole, we computed the
quotient minimumwhich, as we demonstrated, gave a satisfactory
prediction of the lowest spectral parameter; even though the
dipole-type harmonic function did not satisfy, generally speaking,
the zero-Neumann condition on S0.

Have we an analogy of the dipole-type functions for the con-
sidered triangular shape? Numerous test with the Trefftz solution
showed that W1 by (6) gives the maximum contribution into the
first approximate natural sloshing mode for π/6 . αb < π/2.
Moreover,W1(y, z; 1) is the analytical eigenfunction forαb = π/4.

Substituting W1(y, z; κ1) with an unknown κ1 into the Rayleigh
quotient and remembering that W1 already satisfies the spectral
boundary condition with κ1 deduces the equality

κ1 =

 1
0


(y−1) cotαb

(∇y,zW1(y, z; κ1))
2dzdy 1

0 (W1(y, 0; κ1))2dy
> 0. (32)

Simple algebra shows that (32) is equivalent to the quadratic equa-
tion with respect to κ1

1
12

d(1 + d2)κ2
1 −

1
3
(1 + d2)κ1 +

1
2
d2 = 0, d = cotαb, (33)

where the lowest spectral parameter κ1 is the lower real root, if
exists, i.e.

κ1 = 2
(1 + d2) −


(1 + d2)(1 −

1
2d

2)

d(1 + d2)
. (34)

The determinant (1 + d2)(1 −
1
2d

2) is positive for cot2 αb ≤ 2,
namely, for α∗

b ≤ αb < π/2, where α∗

b = 0.61547971 . . . . For
αb = π/4, (34) gives the well-known analytical solution κ1 = 1.

The numerical results by (34) are plotted by the dash-and-
dotted line in Fig. 4. We see a satisfactory prediction of κ1 in the
range 0.65 . αb < π/2.

We can proceed in similar way for the first symmetric mode
corresponding to κ2. Our numerical experiments established that
the maximum contribution to this mode is given by

W0(y, z; κ2) − 3W2(y, z; κ2)

= [1 − 3(y2 − z2)] + κ2z[1 − 3y2 + z2]. (35)

This linear combination ofW0 andW2 satisfies the volume conser-
vation condition


Σ0

(W0 − 3W2)dS = 0 and, therefore, (35) can
be substituted into the Rayleigh quotient and equaled to κ2. The
equality leads to the quadratic equation

a2κ2
2 + a1κ2 + a0 = 0,

a0 = 3d(1 + d2); a1 = −
1
5
(9d4 + 13d2 + 4);

a2 =
3
10

d(d4 + d2 + 1)

(36)

whose real roots exist for 0.8860772 . . . < αb < π/2.
The lower root of (36) is plotted by the dash-and-dotted line

in Fig. 4 as function of αb. This approximation is satisfactory for
1 . αb < π/2.

5.1.4. Approximating κ1

Based on the approximate formulas in Sections 5.1.1–5.1.3,
one can get a satisfactory prediction of the first natural sloshing
frequency (the first nondimensional spectral parameter κ1). For
0 < αb . 0.4, this can be associated with the Faltinsen–Timokha
formula (31), but formula (34) well approximates f1(αb) for 0.65 .
αb < π/2.

A global alternative to (31) and (34) which also covers 0.4 .
αb . 0.6, is the quadratic interpolation

κ1 = f1(αb) ≈ A


αb +
1
A

π

2
− αb


, A =

4(4 − π)

π2
. (37)

It gives about 0.5% of difference from our numerical reference
values providing that the curve by (37) is invisible in Fig. 4.
Derivation of (37) is based on the fact that f1(0) = π/2, f1(π/4) =

1, and f1(π/2) = 0.
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Fig. 5. Trapezoidal mean liquid domain in Fig. 3(b). The lowest nondimensional
spectral parameter κ1 = g1(αb, h̄b) (corresponding to the first antisymmetric
mode) as a function 0 < h̄b = hb tan(αb) < 1 for several fixed angles αb ∈ (0, π).
The spectral parameter monotonically increases with h̄b and becomes equal to
f1(αb) at h̄b = 1. The solid lines are resulted from our Trefftz approximation. The
dashed lines denote the shallow water approximation derived in Section 5.2.1. The
dash-and-dotted lines are due to the Faltinsen–Timokha formula (43) but the dotted
lines imply the Rayleigh quotient approximation obtained in Section 5.2.3.

5.2. Trapezoidal mean liquid domain

Trapezoidal Q0 in Fig. 3(b) is characterized by the two indepen-
dent nondimensional input parameters, the semi-apex angle αb
and the nondimensional liquid height hb. We consider the spectral
parameters

κi = gi(αb, h̄b), 0 < αb < π/2, 0 < h̄b = hb tan(αb) < 1. (38)

The end values are gi(αb, 0) = 0 and gi(αb, 1) = fi(αb), where
fi are defined in (29). Finding gi implicitly assumes that we know
fi(αb), namely, we know the nondimensional spectral parameters
for the triangular tank. Due to comparison theorems [1, Section
4.6.2], functions gi(αb, h̄b) monotonically increase with increasing
h̄b and monotonically decrease with increasing αb.

Our Trefftz solution effectively computes gi(αb, h̄b). The focus
is on the lowest spectral parameter corresponding to the lowest
antisymmetric mode. The plotted κ1 = g1(αb, h̄b) is shown in
Fig. 5 by the solid lines as a function of h̄b for several fixed
anglesαb.We also present alternative analytical approximations of
the lowest spectral parameter associated with the shallow water
solution (dashed lines), Faltinsen–Timokha formula (dash-and-
dotted lines), and the Rayleigh quotient approximation (dotted
lines) derived in Section 5.1.3.

5.2.1. Shallow water approximation
Using the domain decomposition, one can construct the shallow

water natural sloshingmodes for a trapezoidal tank in notations of
Fig. 3(b). For r < |y| < 1, Lamb’s expression (30) is adoptable, but
the shallow water equation (see, Eq. (4.45) in [1]) has on the in-
terval |y| < r the solution sin(

√
κ/hb y), for antisymmetric modes,

and cos(
√

κ/hb y), for symmetricmodes, respectively. In summary,
the shallow-water approximation is for −1 < y < 0 as follows

ϕ(y) =


J0(2


κ tanαb(y + 1)), −1 < y < −r;

Ca sin(


κ/hb y), −r < y < 0,
(39)

for antisymmetric modes and

ϕ(y) =


J0(2


κ tanαb(y + 1)), −1 < y < −r;

Cs cos(


κ/hb y), −r < y < 0,
(40)

for symmetric modes. Here, κ , Ca, and Cs follow from the transmis-
sion conditions at y = −r implying the continuity of the natural
sloshing modes (39) and (40) and their spatial derivative.

Using the transmission conditions leads to the equations

tan


κ2i−1

hb
r


=
J0

2
√

κ2i−1(1 − r) tanαb


J1

2
√

κ2i−1(1 − r) tanαb
 , (41)

and

cot


κ2i

hb
r


= −
J0

2
√

κ2i(1 − r) tanαb


J1

2
√

κ2i(1 − r) tanαb
 (42)

whose real positive roots define the nondimensional spectral
parameters for antisymmetric and symmetric modes, respectively.
The coefficients Ca and Cs are computed by the formulas

Ca = −
J0

2
√

κ2i−1(1 − r) tanαb


sin

r
√

κ2i−1/hb


and

Cs =
J0

2
√

κ2i(1 − r) tanαb


cos

r
√

κ2i/hb
 .

The lowest computed root of (41) is plotted in Fig. 5 by the
dashed lines as a function of h̄b for several angles αb. We see that
the shallow water approximation is more precise for αb tending
to π/2, but, for lower αb (the mean liquid domain becomes close
to the rectangular domain of the height hb), the shallow-water
approximation of κ1 is close to the reference values only in the limit
h̄b → 0.

5.2.2. Faltinsen–Timokha formula [1, Eq. (4.92)]
Applying the Faltinsen–Timokha formula to the trapezoidal

mean liquid domain gives the expression

κn =
1
2
πn tanh


1
2
π h̄b cotαb


− πn tanh


1
2
π h̄b cotαb


×

tanαb sinh2  1
2πnh̄b cotαb


− cot(αb) sin2  1

2πnh̄b


πn sinh(πnh̄b cotαb)
, (43)

appearing as an approximation of gi(αb, h̄b).
Fig. 5 compares predictions by (43) with the reference values

of κ1 obtained by our Trefftz-type projective schemes. The results
by (43) are denoted by the dash-and-dotted lines. In general,
the formula gives a better prediction of the lowest spectral
parameter than the shallowwater solution from Section 5.2.1. This
is especially true for lower angles αb.

5.2.3. Using the Rayleigh quotient
The results from Section 5.1.3 can be generalized to the

trapezoidal mean liquid domain. Assuming that W1(y, z; κ1) gives
the maximum contribution into the lowest natural sloshing mode
(supported by our numerical tests forαb close toπ/2), substituting
W1(y, z; κ1) into the Rayleigh quotient and conducting derivations
similar to those in Section 5.1.3 derives the quadratic equation
a2κ2

1 + a1κ1 + a0 = 0 whose lower real root is

κ1 =

−a1 −


a21 − 4a0a2

2a2

a0 = 3dh̄b


1 −

1
2
h̄b


; a1 = d2h̄2

b(2h̄b − 3) − 1,

a2 = dh̄b


1 −

1
4
h̄b(6 − 4h̄b(1 + d2) + h̄2

b(1 + 3d2))


,

d = cotαb.

(44)

Using (44), we draw an analytical prediction of the lowest
spectral parameter by the dotted lines in Fig. 5. The prediction
looks sometimesmore accurate than those from Sections 5.2.1 and
5.2.2, especially, for αb close to π/4. However, it is less applicable
for smaller αb.
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Fig. 6. Themean liquid domain in Fig. 3(c). The lowest spectral parameter, κ1 = p1(αb, h̄b, h̄c), as a function of the nondimensional input parameter 0 < h̄c = tanh( 1
2πhc) <

1 for several fixed values of αb and h̄b = hb tanαb . The solid lines are drawn based on our Trefftz approximation; these lines are marked by the h̄b-values. The limits cases
are: (48) (numerical values on the vertical axis coincide with g1(αb, h̄b)), (49) – κ1 = π/2 for h̄c = 1, and (51) – the graph is the straight line as h̄b = 0. The dotted lines
are drawn by using the formula (52) which assumes that the dominant flow is similar to that occurring in the framing rectangular tank with the (hc + hb) liquid depth. The
dashed lines (these coincide with the solid lines in the major cases and, therefore, are invisible) are due to a refined version of (52) in which C is replaced by (53).

5.2.4. A strategy for an analytical estimate of κ1
Having known f1(αb) and using the approximate formulas

from Sections 5.2.1–5.2.3 make it possible to find an analytical
approximation of g1(αb, h̄b) without solving the original spectral
boundary problem. We employ the fact that analytical formulas
from these sections give an upper bond of g1(αb, h̄b) and, in
addition, g1(αb, h̄b) ≤ f1(αb). This means that the best analytical
prediction of κ1 is

g1(αb, h̄b) ≈ min (f1(αb), estimates from Sections 5.2.1–5.2.3) .

(45)

Using (45) normally provides difference from the reference values
which is less than 2% for the cases in Fig. 5.

5.3. Rectangular tank with lower chamfers

The natural sloshing frequencies and modes in Fig. 3(c)’s case
are functions of the three independent nondimensional geometric
parameters αb, hb, and hc . Remembering that the nondimensional
spectral parameters are κn =

1
2πn tanh( 1

2πnhc) for hb = 0 (there
are no lower chamfers) and focusing on the lowest spectral param-
eter (n = 1), we introduce the following three nondimensional in-
put parameters

0 < αb < π/2; 0 < h̄b = hb tanαb < 1 and

0 < h̄c = tanh

1
2
πhc


< 1. (46)

The nondimensional spectral parameters can then be considered as

κi = pi(αb, h̄b, h̄c). (47)

Important limit cases are

lim
h̄c→0

pn(αb, h̄b, h̄c) = gn(αb, h̄b) (48)

(passage to the trapezoidal mean liquid domain in Fig. 3(b)),

lim
h̄c→1

pn(αb, h̄b, h̄c) =
1
2
πn (49)

(passage to a rectangular tank with an infinite liquid depth), and
functions pn monotonically increase with increasing h̄c . Further-
more,

lim
αb→0

pn(αb, h̄b, h̄c) =
1
2
πn tanh


1
2
πn(hc + hb)


(50)

(passage to a rectangular tank filled with the nondimensional
mean liquid depth hc + hb) and

lim
αb→π/2

pn(αb, h̄b, h̄c) = lim
h̄b→0

pn(αb, h̄b, h̄c)

=
1
2
πn tanh


1
2
πnhc


(51)

(passage to a rectangular tank filled with the nondimensional liq-
uid depth hc). The function pn(αb, h̄b, h̄c) monotonically increases
with increasing h̄b andmonotonically decreases with increasing αb.

The solid lines in Fig. 6 illustrate how the lowest spectral pa-
rameter κ1 = p1(αb, h̄b, h̄c) behaves as a function of h̄c for several
fixed αb and h̄b. The projective schemeswith the harmonic polyno-
mials as the Trefftz basis provide five-to-seven significant figures of
κ1 and the ‘singular’ harmonic functional set does not improve the
convergence. The limit cases (48) and (49) are numerically fitted.

Our goal consists of deriving simplified approximate analytical
formulas for p1. In contrast to the mean liquid domains in
Sections 5.1 and 5.2, we cannot, unfortunately, impose the shallow
water condition. Furthermore, our numerical experiments do not
establish a clear leading contribution of W1(y, z; κ) except for



Author's personal copy

O.M. Faltinsen, A.N. Timokha / European Journal of Mechanics B/Fluids 47 (2014) 176–187 185

Fig. 7. The spectral boundary problem (1) within the extra condition |∇ϕ| → 0 as
z → −∞ can be formulated in the infinite mean liquid domain Q0 . This problem
yields the nondimensional spectral parameters κ̄n which appear in the limit (57).

h̄c → 0. Hence, our focus will be on the Faltinsen–Timokha
formula. The formula estimates κ1 as

p1(αb, h̄b, h̄c) ≈
π(D + h̄c)

2(1 + Dh̄c)


1 −

C(1 − D2)(1 − h̄2
c )

(D + h̄c)(1 + Dh̄c)


, (52)

where

D(αb, h̄b) = tanh

1
2
π h̄b cotαb


,

C(αb, h̄b) = π−1

tanαb sinh2


1
2
π h̄b cotαb


− cotαb sin2


1
2
π h̄b


.

The numerical values of κ1 by (52) are drawn by the dotted lines
in Fig. 6. The formula detects the limits (49) and (51) and provides a
rather accurate prediction of p1(αb, h̄b, h̄c) for lower h̄b (differences
are not visible in the figure). However, the formula is less accurate
and cannot handle the limit (48) with increasing h̄b.

Our numerical experiments show that (52) always may
accurately fit the solid lines in Fig. 6 with suitable constants D and
C . Refining procedure can employ the limit (48) which fails for (52)
with increasing h̄b. We fix D but correct C by imposing the limit in
(52). This derives the new C-value

C(αb, h̄b) =
D(αb, h̄b)

1 − D2(αb, h̄b)


1 −

2g1(αb, h̄b)

πD(αb, h̄b)


. (53)

Using (52) with C re-defined by (53) improves our analytical
prediction. The result is illustrated by the dashed lines in Fig. 6.

5.4. The contained liquid touches the upper chamfers

The mean liquid domain in Fig. 3(d) implies a relatively high
liquid filling of a prismatic tank so that the mean free surface
intersects the upper chamfers. The spectral parameters depend
then on the five independent input geometrical parameters, αb,
αt , hb, hc , and ht . We will consider the nondimensional spectral
parameters as the functions

κn = qn(αb, h̄b, h̄c, h̄t , αt), (54)

where

0 < αb < π/2; 0 < h̄b = hb tanαb < 1;

0 < h̄c = tanh

1
2
πhc


< 1,

0 < αt < π/2 and 0 < h̄t = ht tanαt < 1.

(55)

There are the following limits on qn with respect to the two
nondimensional parameters h̄t and αt

lim
h̄t→0

qn(αb, h̄b, h̄c, h̄t , αt) = pn(αb, h̄b, h̄c) (56)

(the contact area with the upper chamfers tends to zero),

qn(αb, h̄b, h̄c, h̄t , αt) ∼
κ̄n(αt)

(1 − h̄t) tanαt
as h̄t → 1, (57)

where κ̄n(αt) are the nondimensional spectral parameter com-
puted from the original spectral problem in the infinite pyramidal
domain Q0 in Fig. 7, and

lim
αt→0

qn(αb, h̄b, h̄c, h̄t , αt)

= pn


αb, h̄b, tanh


arctanhh̄c +

1
2
π h̄t cotαt


. (58)

The functions qn monotonically increase with increasing h̄t .
We face the following two difficulties: (i) alternative analytical

strategies from previous sections are not applicable to derive an
analytical prediction of qn without solving the original spectral
boundary problem and (ii) the developed Trefftz schemes are not
applicable for computing κ̄n appearing in the limit (57) (the natural
sloshing modes must asymptotically decay, |∇ϕ| → 0 as z →

−∞, but the harmonic base do not fit this asymptotics). Thus, our
focus will be on the Trefftz approximation of the lowest spectral
parameter κ1 considered on the interval 0 < h̄t . 0.85 with
different αt , and some other [realistic] input parameters h̄b, h̄c . The
angle αb = π/4 is typical for LNG prismatic tanks. The results are
plotted in Fig. 8. In these calculations, we adopted h̄b = 0.25 and
0.15 and allowed h̄c to vary from 0.3 to 0.7, and, finally, to 0.9.

The graphs in Fig. 8 are close to each other for a fixed αt value
(do not depend on h̄c and hb) on interval 0.75 . h̄t . 0.85. This
is supported by the theoretical limit (56). We were not able to
accurately compute κ1 by our Trefftz method for 0.85 . h̄t . The
projective schemes demonstrated a numerical instability which
can be explained by the asymptotic decay from the mean free
surface to the deep bottom. This asymptotic decay is not fitted by
the harmonic functional base. Estimating the spectral parameters
for 0.85 . h̄t (associated with the pyramidal tank proportions in
Fig. 2(b)) requires a new analytically approximate solution of the
original spectral problem in the infinite domains from Fig. 7.

As for prismatic tanks of conventional shape in Fig. 2(a) which
are characterized by 0 < h̄t . 0.4, we conclude from our numeri-
cal experiments that the graphs of κ1, except for 2π/5 . αt < π/2,
are, roughly, the straight lineswith the starting value pn(αb, h̄b, h̄c)
at h̄t = 0 and ≈2.95 at h̄t ≈ 0.4. Thus, involving pn(αb, h̄b, h̄c)
from Section 5.3 makes it possible to roughly estimate κ1 on the
interval 0 < h̄t . 0.4 as κ1 ≈ p1(αb, h̄b, h̄c) + 2.5 (2.95 −

p1(αb, h̄b, h̄c))h̄t .

6. Conclusions

The two-dimensional problem on the natural sloshing modes
and frequencies is considered. Pursuing analytically approximate
natural sloshing modes, we constructed special harmonic func-
tional sets which satisfy the spectral [Robin] boundary condition
on the mean free surface. Linear combination of these harmonic
functions with weight coefficients effectively approximates the
natural sloshing modes and handles the singular behavior at the
corner points of the mean free surface. Three alternative projec-
tive schemes were proposed to find the weight coefficients of the
harmonic functions and compute the natural sloshing frequen-
cies (nondimensional spectral parameters). The Trefftz method
was extensively validated. It has a promising perspective for arbi-
trary star-shaped two-dimensional tanks except for the deep liq-
uidwhen the natural sloshingmodes exponentially decay from the
mean free surface to the tank bottom. The constructed functional
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Fig. 8. The lowest spectral parameter, κ1 = q1(αb, h̄b, h̄c , h̄t , αt ) plotted as a function of h̄t for several fixed values of αt , h̄b, h̄c , and αb = π/4. The curves are labeled by the
αt -values: (a) — h̄c = 0.3, h̄b = 0.25, (b) — h̄c = 0.3, h̄b = 0.15, (c) — h̄c = 0.7, h̄b = 0.25, (d) — h̄c = 0.7, h̄b = 0.15, (e) — h̄c = 0.9, h̄b = 0.25, (f) — h̄c = 0.9, h̄b = 0.15.

sets do not fit this exponential asymptotics and, therefore, another
set of functions should be added as it is explained in [11]. The
proposed approximate method can be generalized to the three-
dimensional case so that the corner line singularity is exactly or
approximately fitted following ideas in [27]. These are also appli-
cable for the three-dimensional sloshing problemswhere the angle
between the free surface and the solid wall is not constant.

Section 5 presents a parametric study of the lowest natural
sloshing frequencies in a two-dimensional prismatic tank. Along
with computations by the developed Trefftz method, our attention
is paid to alternative simplified formulas which make it possible
to evaluate the natural sloshing frequencies without solving the
original spectral boundary problem. The formulas are associated
with the shallow water approximation, the Faltinsen–Timokha
formula [1, Eq. (4.92)], and some new analytical expressions. The
computational Trefftz results are used as the reference values
for evaluating the simplified formulas applicability. A practical
strategy for computing the lowest natural sloshing frequency by
employing the aforementioned simplified formulas is proposed.
Alternatively, since the typical LNG tanks are characterized by the
angles αb = αt = π/4 (see, Fig. 2), one can simply follow the
graphs in the presented figures to get the required values of the
lowest natural sloshing frequency.

Appendix. Integrals in the proposed projective schemes

In the projective schemes of Sections 4.1 and 4.3, we deal with
integrals of the Neumann and Dirichlet traces on S0. Remembering
thatWk are associated with functions (6) and (15), these traces can
be written as

∂Wm

∂n


S0j

= F (j)
m + κG(j)

m , Wm|S0j = H (j)
m + κI(j)

m , (A.1)

B0 = {B0mn} =

Ns
j=1


S0j

H (j)
m H (j)

n dS;

A0 = {A0mn} =

Ns
j=1


S0j

F (j)
m F (j)

n dS,

B1 = {B1mn} =

Ns
j=1


S0j


F (j)

m I(j)
n + G(j)

m H (j)
n


dS,

A1 = {A1mn} =

Ns
j=1


S0j


H (j)

m I(j)
n + I(j)

m H (j)
n


dS,
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B2 = {B2mn} =

Ns
j=1


S0j

G(j)
m I(j)

n dS;

A2 = {A2mn} =

Ns
j=1


S0j

I(j)
m I(j)

n dS.

Explicit expressions for F
(j)
m , G

(j)
m , H

(j)
m , and I

(j)
m can be given for

antisymmetric and symmetric cases in (17) and (18), accounting
for the parametrization (19) as functions of s ∈ (−1, 1). For the
‘regular’ basic functions,

F (j)
m (t) =

m1


w

(1)
m1−1(yj(t), zj(t))z

′(t) + w
(2)
m1−1(yj(t), zj(t))y

′(t)



y′2(t) + z ′2(t)

,

G(j)
m (t) =

w
(2)
m1 (yj(t), zj(t))z

′(t) − w
(1)
m1 (yj(t), zj(t))y

′(t)
y′2(t) + z ′2(t)

,

H (j)
m (t) = w(1)

m1
(yj(t), zj(t)); I(j)

m (t) =
w

(2)
m1 (yj(t), zj(t))

m1 + 1
,

wherem1 = 2m− 1 (for antisymmetric modes) andm1 = 2m− 2
(for symmetricmodes),m = 1, . . . , q1. The functionsw

(1)
i andw

(2)
i

are the harmonic polynomials defined in Section 3.1.
The ‘singular’ basic functions yield

F (j)
m (t) = m1


w

(1−)
m1−1(yj(t), zj(t)) ± w

(1+)
m1−1(yj(t), zj(t))


z ′(t)

+

w

(2−)
m1−1(yj(t), zj(t)) ∓ w

(2+)
m1−1(yj(t), zj(t))


y′(t)


/


y′2(t) + z ′2(t),

G(j)
m (t) =


w(2−)

m1
(yj(t), zj(t)) ± w(2+)

m1
(yj(t), zj(t))


z ′(t)

−

w(1−)

m1
(yj(t), zj(t)) ∓ w(1+)

m1
(yj(t), zj(t))


y′(t)


/


y′2(t) + z ′2(t),

H (j)
m (t) = w(1−)

m1
(yj(t), zj(t)) ∓ w(1+)

m1
(yj(t), zj(t)),

H (j)
m (t) =

w
(2−)
m1+1(yj(t), zj(t)) ∓ w

(2+)
m1+1(yj(t), zj(t))

m1 + 1
,

where ‘−’ corresponds to antisymmetricmodes and ‘+’ implies the
symmetric modes, but

m = i +
k−1
l=1

ql with cycles k = 1, . . . , K (i = 1, . . . , qk+1).
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