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Abstract

Purpose – The purpose of this paper is to derive linear modal equations describing the forced liquid
sloshing in a rigid truncated (tapered) conical tank, as well as to show how to couple these modal
equations with “global” dynamic equations of a complex mechanical system carrying this tank.

Design/methodology/approach – Derivation of the modal equations can be based on the Trefftz
variational method developed by the authors in a previous paper. Describing the coupled dynamics
utilizes Lukovsky’ formulas for the resulting hydrodynamic force and moment due to liquid sloshing.

Findings – The so-called Stokes-Joukowski potentials can be found by using the Trefftz method from
the authors’ previous paper with the same polynomial-type functional basis. Coupling the modal
equations with the global dynamic equations becomes a relatively simple task facilitated by
Lukovsky’s formulas. Using the linear multimodal method can be an efficient alternative to traditional
numerical and analytical tools employed for studying the coupled vibrations of a tower with a conical
rigid tank on the tower top.

Practical implications – The derived modal equations are equipped by tables with the computed
non-dimensional hydrodynamic coefficients. Interested readers (engineers) can incorporate the modal
equations into the global dynamic equations of a whole mechanical system without new computations
of these coefficients.

Originality/value – The multimodal method can be an alternative to traditional numerical tools.
Using the derived modal equations simplifies analytical studies and provides efficient calculations of
the coupled dynamics of a mechanical system carrying a rigid tapered conical tank with a liquid.
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1. Introduction
Water towers and offshore platforms are examples of engineering constructions dealing
with the coupled “global” dynamics of mechanical systems containing a tapered conical
tank partly filled with a liquid. Describing this dynamics (see, fundamentals in the books by
Morand and Ohayon (1995) and Faltinsen and Timokha (2009)) is typically carried out by
using either the computational fluid dynamics (CFD) or the so-called equivalent mechanical
system. The latter implies that hydrodynamic loads due to sloshing are related to inertial
forces and moments generated by a fictitious mass-spring (or pendulum) system “installed”
in the tank instead of the contained liquid. The equivalent mechanical systems require
experimental (Dokuchaev, 1964; Mikishev and Dorozhkin, 1961; Bauer, 1982; El
Damatty et al., 2000; Casciati et al., 2003) and theoretical data on the natural sloshing
frequencies and modes. Examples of those systems can be found in the papers by El
Damatty and Sweedan (2006), Dutta et al. (2004) and Sweedan (2009). An alternative could be
multimodal methods which reduce the original free-boundary problem to a system of
ordinary differential equations (ODEs), the so-called modal equations, coupling the
generalized coordinates responsible for instant displacements of the natural sloshing modes.
Fundamentals of the multimodal methods are outlined by Lukovsky (1990) and Faltinsen
and Timokha (2009) and, in some detail for conical tanks, by Gavrilyuk et al. (2005).

Describing the coupled dynamics of a complex mechanical system carrying a tank with
a liquid requires an accurate prediction of hydrodynamic loads which (see, discussion on
Faltinsen and Timokha (2009, pp. 9-10)) can be classified as either “impact” (impulsive) or
“dynamic” (non-impulsive). “Dynamic” loads are characterized by dominant time
variations on the time scale of the highest sloshing period which is typically of the order 1 s,
but “impact” loads last from about 1023 to 1022 s. The “impact” loads may cause
hydroelastic slamming (Chapter 11 by Faltinsen and Timokha (2009)). Coupling global
dynamics and sloshing requires the resulting hydrodynamic (sloshing) force and moment
which are, in fact, integrals of the hydrodynamic pressure over the wetted tank surface.
The resulting hydrodynamic force and moment are basically determined by “dynamic”
sloshing loads. Hydroelastic tank vibrations caused by sloshing matter when structural
reaction in terms of deflections and stresses cannot be decoupled with “dynamic” loads.
Within the framework of linear analysis, this decoupling is possible when the elastic tank
vibrations have the eigenfrequencies that are much higher than the lowest natural
sloshing frequencies. The present study assumes this decoupling and, therefore, focuses
on the rigid tank. Interested readers can find details on eigen- and forced elastic vibrations
of conical tanks in the papers by El Damatty et al. (2005), El Damatty and Sweedan (2006)
and Sweedan (2009). A particular task of these and similar papers is description of
hydrodynamic pressure loads. Even though the resulting hydrodynamic force and
moment are integrals of the pressure loads over the wetted tank surface, we can avoid
calculation of the pressure field by employing the Lukovsky formulas (Lukovsky, 1990;
Lukovsky and Timokha, 1995; Faltinsen and Timokha, 2009, Chapters 5 and 7).

The multimodal methods are well elaborated for linear sloshing in rigid tanks
(see, a modern description of the linear multimodal methods in Chapter 5 by Faltinsen and
Timokha (2009)). Deriving the corresponding linear modal equations requires the natural
sloshing modes and the so-called Stokes-Joukowski potentials whose exact analytical
expressions exist for upright cylindrical tanks of rectangular, circular or sectoral base.
The tapered (truncated) conical tank belongs to geometric shapes for which the literature
does not give the analytical natural sloshing modes and the Stokes-Joukowski potentials.
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Approximate natural sloshing modes for a truncated conical tank were constructed
by Gavrilyuk et al. (2008) by using the Trefftz method. In the present paper, we employ
the same Trefftz variational method to get an approximation of the Stokes-Joukowski
potentials and, using these potentials and the approximate natural sloshing modes,
derive the required linear modal equations. The linear modal equations provide a
semi-analytical description of liquid sloshing in tapered conical tanks. Solutions of these
equations make it possible to compute the resulting hydrodynamic force and moment.
The latter force and moment are needed for coupling the modal equations and the
dynamic equations of tank-carrying structures.

The introductory Section 2 presents necessary elements of the linear multimodal
method for an axisymmetric tank. Interested readers can find more details in
Chapter 5 by Faltinsen and Timokha (2009). The method reduces description of the
linear liquid sloshing to a set of the ODEs responsible for small-magnitude
displacements of the natural sloshing modes. The displacements are associated with
nonzero generalized coordinates. In Section 3, we extend the Trefftz variational method
by Gavrilyuk et al. (2008) for computing the natural sloshing modes and the
Stokes-Joukowski potentials. Using the constructed Trefftz solutions makes it possible
to get numerical values of the hydrodynamic coefficients appearing in the modal
equations as well as in expressions for the resulting hydrodynamic force and moment.
The hydrodynamic coefficients are tabled to facilitate implementation of the derived
linear modal equations by practically oriented readers. Two examples on how to use the
modal equations for the coupled dynamics are presented in Section 4.

2. Multimodal method
1. Boundary value problem on linear liquid sloshing
We consider a rigid tank of conical shape (frustum of cone) partially filled by an ideal
incompressible liquid with irrotational flow. The cone has the semiapex angle u0. When
the tank does not move, the symmetry axis is parallel to the gravity acceleration vector.
Figure 1 shows geometric notations where, as we see, S1 is the wetted tank wall, S2 is the
tank bottom, andS0 is the unperturbed (mean) free surface. Liquid motions are considered
in the Oxyz-coordinate system rigidly fixed with the tank so that the origin is superposed
with the geometric center ofS0, andOx is directed upwards along the symmetry axis. It is
implicitly assumed that the tank can be a component of a complex mechanical system
which, in addition, consists of solid and elastic elements. The system performs coupled
small-amplitude motions so that sloshing can be described within the framework of the
linear sloshing theory. The resulting hydrodynamic force and moment due to sloshing
appear as a hydrodynamic response to these small-amplitude tank motions.

The oscillatory tank motions are considered with respect to an inertial coordinate
system rigidly fixed with the Earth. They are characterized by six degrees of freedom
and can be described by the translational velocity vector v0ðtÞ ¼ ð _h1; _h2; _h3Þ, and the
instantaneous angular velocity vector vðtÞ ¼ ð _h4; _h5; _h6Þ. In the tank-fixed coordinate
system Oxyz, the linearized projections of the gravity acceleration vector take the form
g ¼ ðg1; g2; g3Þ ¼ ð2g; gh6;2gh5Þ.

We introduce the absolute velocity potential F(x, y, z, t) and function j ( y, z, t)
determining the small vertical free-surface elevations. The functions F and j can be
found from the following boundary value problem (Lukovsky et al., 1984; Faltinsen and
Timokha, 2009):
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72F ¼ 0 in Q0; ð1Þ

›F

›n
¼ v0 ·nþ v · ðr £ nÞ on S0; ð2Þ

›F

›n
¼ v0 ·nþ v · ðr £ nÞ2

›j

›t
on S0; ð3Þ

›F

›t
2 g · r ¼ 0 on S0; ð4ÞZ

S0
jdS ¼ 0; ð5Þ

where S0 ¼ S1 < S2 is the mean wetted tank surface, n is the outer normal vector, and
r ¼ (x, y, z).

The boundary value problem (1) needs the following initial conditions that define
the initial free-surface shape and normal velocities:

j ð y; z; t0Þ ¼ j0ð y; zÞ;
›F

›n

����
Sðt0Þ

¼ F0ðx; y; zÞ: ð6Þ

When we look for a steady-state regime occurring due to the T-periodic tank motion,
the periodicity conditions:

j ð y; z; t þ TÞ ¼ jð y; z; tÞ; 7Fðx; y; z; t þ TÞ ¼ 7Fðx; y; z; tÞ ð7Þ

should be adopted instead of the initial conditions (6).

Figure 1.
A tapered rigid conical

tank partially filled
with a liquid

O

g

x

x′

z

y′

z′

y

S1

S2

Σ (t)
Σ0

q0

O′

Q0

h5

h2

h1

h4
h6

h3

Notes: Three-dimensional view of the tank
performing small-amplitude oscillatory motions
associated with six degrees of freedom,
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2. Modal equations for axisymmetric tanks
For axisymmetric containers, one can use the cylindrical coordinate system,
x ¼ x; y ¼ r cos u; z ¼ r sin u, and separate the angular variable u in the original
boundary value problem (1). The geometric notations are shown in Figure 2 by the
meridional cross-section and the plan view of the mean liquid domain. Furthermore, the
linear multimodal method assumes the following modal solution (Faltinsen and
Timokha, 2009, Chapter 5):

j ðr; u; tÞ ¼
X1
m¼0

X1
i¼1

bc
m;iðtÞcosðmuÞ þ bs

m;iðtÞsinðmuÞ
� �

jiðrÞ ð8Þ

ðjiðrÞ ¼ f
ðmÞ
i ð0; rÞÞ, and:

Fðx; r; u; tÞ ¼v0ðtÞ · rþ vðtÞ ·V0ðx; r; uÞ

þ
X1
m¼0

X1
i¼1

Rc
m;iðtÞcosðmuÞ þ Rs

m;iðtÞsinðmuÞ
� �

f
ðmÞ
i ðx; rÞ:

ð9Þ

Here, bc
m;i;b

s
m;i;R

c
m;i and Rs

m;i are the generalized coordinates, r ¼ (x, y, z), and:

fm;i;1 ¼ f
ðmÞ
i ðx; rÞcosðmuÞ; fm;i;2 ¼ f

ðmÞ
i ðx; rÞsinðmuÞ ð10Þ

are the natural sloshing modes which are eigenfunctions of the spectral boundary
problem:

72f ¼ 0; r [ Q0;
›f

›n
¼ 0; r [ S0;

›f

›n
¼ kf; r [ S0;

Z
S0

fdS ¼ 0: ð11Þ

Specifically for the axisymmetric tanks and m $ 1, there are two conjugate
eigenfunctions fm,i,1 and fm,i,2 corresponding to the same eigenvalue k ¼ km;i . These
eigenvalues determine the natural sloshing frequencies by the formula (Morand and
Ohayon, 1995; Faltinsen and Timokha, 2009):

sm;i ¼
ffiffiffiffiffiffiffiffiffiffi
gkm;i

p
:

Figure 2.
The meridional
cross-section (a) and
the plan view (b) of the
mean liquid domain
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The three components of the harmonic vector-function V0ðx; y; zÞ ¼ ðV01;V02;V03Þ are
the so-called Stokes-Joukowski potentials V0i,i ¼ 1,2,3 ( Joukowski, 1885) which are
determined by the following Neumann boundary value problem:

72V0 ¼ 0; r [ Q0;
›V0

›n
¼ r £ n; r [ S0 þ S0: ð12Þ

The problem (12) admits separation of the angular variable u so that:

V01 ¼ 0; V02 ¼ x ðx; rÞsin u; V03 ¼ 2x ðx; rÞcos u; ð13Þ

where x(x, r) is solution of the corresponding boundary value problem in the meridional
cross-section G (Figure 1). For a tapered conical tank, function x satisfies the following
boundary value problem:

r 2 ›
2x

›x 2
þ r

›x

›r
þ r 2 ›

2x

›r 2
2 x ¼ 0 in G; ð14Þ

›x

›x
¼ r on L0ðx ¼ 0Þ; ð15Þ

›x

›n
¼ 2x cos u0 2 r sin u0 on L1ðr ¼ x tan u0 þ r0Þ; ð16Þ

›x

›x
¼ 2r on L2ðx ¼ 2hÞ; ð17Þ

where h is the liquid depth, and r1 is the tank bottom radius (see notations in Figure 2).
The modal solutions (8) and (9) automatically satisfy the Laplace equation and the

body-boundary condition of the boundary value problem (1). Substituting equations (8)
and (9) into the kinematic boundary condition (3), and accounting for the orthogonality
of the natural sloshing modes on S0 gives:

_b
c

m;i ¼ km;i R
c
m;i and _b

s

m;i ¼ km;iR
s
m; i:

In addition, using the dynamic boundary condition (4) leads to the modal equations
appearing as linear ODEs with respect to the generalized coordinates bc

m;i and bs
m;i . For

axisymmetric containers, there are only the following two independent sets of linear
modal equations with a nonzero right-hand side:

mið €b
c

i þ s2
i b

c
i Þ ¼ 2lið €h2 2 gh6Þ2 l0i €h6; ð18Þ

mið _b
s

i þ s2
i b

s
i Þ ¼ 2lið €h3 þ gh5Þ þ l0i €h5; ð19Þ

which are responsible for sloshing in planes Oxy and Oxz, respectively, where:

bc
i ¼ bc

1;i; bs
i ¼ bs

1;i:

The introduced hydrodynamic coefficients in equations (18) and (19) are:

ki ¼ k1;i; s 2
i ¼ gki ¼ s 2

1;i; ð20Þ
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mi ¼
rp

k1;i

Z
L0

r f
ð1Þ
i

� �2
dr; li ¼ rp

Z
L0

r 2f
ð1Þ
i dr; l0i ¼ rp

Z
L0

r 2xf
ð1Þ
i dr; ð21Þ

where L0 is intersection of the mean free-surface S0 and the meridional plane. For
remaining generalized coordinates, one gets the homogeneous linear modal equations:

€b
c

m;i þ s 2
m;ib

c
m;i ¼

€b
s

m;i þ s 2
m;ib

s
m;i ¼ 0; m – 1: ð22Þ

Having known the natural sloshing modes, and the Stokes-Joukowski potentials, one
can immediately compute the hydrodynamic coefficients (19). Furthermore, the vertical
free-surface elevation and velocity potential (multimodal solutions (8) and (9)) are
determined by the generalized coordinates bc

m;i and bs
m;i to be found from the modal

equations (17) and (22) by means of a time-step integration with the initial conditions:

bc
m;ið0Þ ¼ bc

m;i

� �
0
;bs

m;ið0Þ ¼ bs
m;i

� �
0
; _b

c

m;ið0Þ ¼ bc
m;i

� �
1
; _b

s

m;ið0Þ ¼ bs
m;i

� �
1

associated with equation (6), or, alternatively, with the periodicity conditions following
from equation (7).

For non-prescribed tank motions (hk(t), k ¼ 1, . . . , 6 are unknown), the linear modal
equations (17) should be incorporated into the global dynamic equations of the
tank-carrying structure in which the resulting hydrodynamic force and moment due to
sloshing determine the hydrodynamic response. Because the modal solution (9) makes it
possible to compute the hydrodynamic pressure by using the Bernoulli equation, we can
find the resulting hydrodynamic force and moment as integrals of the hydrodynamic
pressure over the wetted tank surface. However, we can avoid this integration by using
the Lukovsky formulas which express the force and moment as functions of the
generalized coordinates bc

i ;b
s
i and hk (k ¼ 1 . . . , 6) (Lukovsky, 1990; Lukovsky and

Timokha, 1995; Faltinsen and Timokha, 2009).
The linear hydrodynamic force by Lukovsky needs to know the mean liquid mass

center in the Oxyz-system:

r lC0
¼ ðxlC0

; ylC0
; zlC0

Þ ¼ r

Z
Q0

rdQ=Ml ; ð23Þ

where Ml is the liquid mass and r in the liquid density. Accounting for the fact that
ylC0

¼ zlC0
¼ 0 in the considered axisymmetric case, the resulting hydrodynamic force

by the Lukovsky formula has the following projections on the Oxyz-axes:

F1ðtÞ ¼ FxðtÞ ¼ Mlð2g 2 €h1Þ; ð24Þ

F2ðtÞ ¼ FyðtÞ ¼ Mlð2 €h6xlC0
þ ½gh6�2 €h2Þ2

X1
k¼1

€b
c

klk; ð25Þ

F3ðtÞ ¼ FzðtÞ ¼ Mlð €h5xlC0
2 ½gh5�2 €h3Þ2

X1
k¼1

€b
s

klk: ð26Þ

The linear components [gh6] and [gh5] vanish when we consider projections on the
Earth-fixed coordinates.
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The linearized Lukovsky formula for the hydrodynamic moment (with respect to O)
involves the liquid inertia tensor J1

0:

J 1
0ij ¼ r

Z
S0þS0

V0i
›V0j

›n
dS

which has, for the case of axisymmetric tanks, the two nonzero elements:

J 1
022 ¼ J 1

033 ¼ J 0 ¼ rp

Z
L

x
›x

›n
ds: ð27Þ

Here, L ¼ L0 þ L1 þ L2, so that L0, L1 and L2 are intersections of the meridional plane
with the mean free-surface S0, the tank walls S1 and the tank bottom S2, respectively,
(Figure 1).

Using the linearized Lukovsky formulas, we obtain F4 ¼ MOx ¼ 0, and:

F5ðtÞ ¼ MOyðtÞ ¼ MlxlC0
ð gh5 þ €h3Þ2 J 0 €h5 2

X1
j¼1

2l0j
€b
s

j þ gljb
s
j

� �
; ð28Þ

F6ðtÞ ¼ MOzðtÞ ¼ MlxlC0
ð gh6 2 €h2Þ2 J 0 €h6 2

X1
j¼1

l0j
€b
c

j 2 gljb
c
j

� �
: ð29Þ

The hydrodynamic moment relative to another point A can be computed as:

MA ¼ rAO £ FþMO; ð30Þ

where F ¼ (F1, F2, F3), MO ¼ (F4, F5, F6), and rAO is the radius vector of the origin O
with respect to A.

3. Nondimensional hydrodynamic coefficients
The introduced hydrodynamic coefficients are functions of the characteristic tank
dimension which is, henceforth, associated with the unperturbed free-surface
radius, r0. The nondimensional hydrodynamic coefficients (denoted by overbars) take
then the following form:

�ki ¼ r0ki; �mi ¼
mi

rr3
0

; �li ¼
li

rr3
0

; �l0i ¼
l0i

rr4
0

; �J0 ¼
J 0

rr5
0

: ð31Þ

3. Modal equations for a tapered (truncated) conical tank
1. Natural sloshing modes and related hydrodynamic coefficients
Gavrilyuk et al. (2008) proposed two different sets of coordinate functions to get
approximate natural sloshing modes,fðmÞ

i , and frequencies by means of the global Trefftz
method. Henceforth, we adopt the polynomial-type basis {wðmÞ

k ðx; rÞ} from the paper by
Gavrilyuk et al. (2008) and present the approximate natural sloshing modes as follows:

f
ðmÞ
i ðx; rÞ ¼

Xq
k¼1

aðm;i Þ
k wðmÞ

k ðx; rÞ; m ¼ 0; 1; . . .; i ¼ 1; 2; . . . ; ð32Þ
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where q in the number of the polynomial-type coordinate functions and aðm;i Þ
k are the

unknown coefficients. The Trefftz solution (32) satisfies the governing equation in the
meridional cross-sectionGproviding the fact thatfðmÞ

i ðx; rÞcosðmuÞ andfðmÞ
i ðx; rÞsinðmuÞ

are the harmonic functions.
Based on the Trefftz solution (32) (Gavrilyuk et al., 2008), the approximate eigenvalues

km;i and coefficients aðm;i Þ
k should be found from the spectral matrix problem:

Xq
k; l¼1

aðm;i Þ
l a

ðm;i Þ
kl 2 km;ig

ðm;i Þ
kl

� �
¼ 0; ð33Þ

where the matrix elements are defined by the formulas:

a
ðmÞ
kl ¼

Z
L0þL1þL2

r
›wðmÞ

k

›n
wðmÞ
l ds; g

ðmÞ
kl ¼

Z
L0

rwðmÞ
k wðmÞ

l dr ð34Þ

(see geometric notations in Figure 1).
The spectral matrix problem (33) determines the eigenvectors:

aðm;i Þ
1 ; aðm;i Þ

2 ; . . . ; aðm;i Þ
q

� �
so that insertion of this vector into the Trefftz solution (32) gives the approximate
natural modes f

ðmÞ
i ðx; rÞ associated with km;i . Because the natural sloshing modes are

defined within to an arbitrary multiplier, one should impose a normalization. In the
present paper, the normalization is provided by the condition:

f
ðmÞ
i ð0; r0Þ ¼ 1; ð35Þ

where r0 is the radius of S0. Using equation (35) is natural for the multimodal methods.
Under this normalization, the generalized coordinates bc

i ðtÞ and bs
i ðtÞ play the role of

the vertical wave elevation at the tank wall.
In terms of the Trefftz solution (32), the introduced normalization (35) implies that:

aðm;i Þ
1 ; aðm;i Þ

2 ; . . . ; aðm;i Þ
q

� �
should be scaled (divided) by:

Nm;i ¼
Xq
k¼1

aðm;i Þ
k wðmÞ

k ð0; r0Þ; ð36Þ

namely:

�aðm;i Þ
k :¼

aðm;i Þ
k

Nm;i
; k ¼ 1; . . . ; q; f

ðmÞ
i ðx; rÞ ¼

Xq
k¼1

�aðm;i Þ
k wðmÞ

k ðx; rÞ:

When postulating that the geometric dimensions are scaled by r0 and using the
aforementioned normalization, a simple algebra shows that the nondimensional
hydrodynamic coefficients �mi and �li from Section 3 canbe calculated by the formulas:
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�mi ¼
p �k1;i

r3
0

Xq
k¼1

Xq
l¼1

�að1;i Þk
�að1;i Þl gkl ; �li ¼

p �k1;i

r3
0

Xq
k¼1

g1k �a
ð1;i Þ
k : ð37Þ

Our numerical experiments showed a fast stabilization of the significant figures for �mi

and �li with increasing q in equation (32). Usually, q ¼ 20 in the Trefftz solution (32)
stabilizes five to six significant figures of the eigenvalues �ki (see, also, convergence
analysis by Gavrilyuk et al. (2008)), �mi and �li .

2. Stokes-Joukowski potentials
A novelty with respect to the paper by Gavrilyuk et al. (2008) is that one must find the
Stokes-Joukowski potentials, and, thereby, compute �J0 and �l0i . This can be done by
using the same harmonic basis of polynomial type employed in the Trefftz solution (32).
For this purpose, we present an approximate solution of the problem (13) in the form:

x ðx; rÞ ¼
Xq
k¼1

bkw
ð1Þ
k ðx; rÞ ð38Þ

(q is the number of coordinate functions) and note that the Neumann problem (13) is
equivalent to minimizing the quadratic functional:

J ðxÞ ¼

Z
G

r
›x

›x

� �2

þr
›x

›x

� �2

þ
1

r
x2

 !
dS 2 2

Z
L

rxgdS; ð39Þ

where L ¼ L0 þ L1 þ L2, and:

g ¼

r onL0;

2x cos u0 2 r sin u0 onL1;

2r onL2:

8>><
>>: ð40Þ

By substituting equation (38) into functional (39) and using the necessary extrema
condition:

›J ðxÞ

›bk
¼ 0; ðk ¼ 1; 2; . . . ; qÞ; ð41Þ

we get the linear algebraic equations with respect to bk :

Xq
i; j¼1

a
ð1Þ
ij bj ¼ z

ð1Þ
i ; ð42Þ

where að1Þ
ij are defined by equation (34) and:

z
ð1Þ
i ¼

Z r0

0

r 2wð1Þ
i

� �
x¼0

dr 2

Z r1

0

r 2wð1Þ
i

� �
x¼2h

dr

2

Z 0

2h

rðxþ r tan u0Þw
ð1Þ
i

� �
r¼x tan u0þr0

dx:
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Introducing the scaling by r0 and employing equations (38) and (42), we can find the
remaining nondimensional hydrodynamic coefficients:

�J0 ¼
p

r5
0

Xq
k¼1

bkz
ð1Þ
k ; �l0i ¼

p �k1;i

r4
0

Xq
k¼1

Xq
l¼1

gkl �a
ð1;i Þ
k bl : ð43Þ

The Trefftz method demonstrates a faster convergence to �J0 and �l0i with increasing q in
equation (38) than it has been in previous section for �mi and �li . The same number q
stabilizes, as a rule, one-two additional significant figures in �J0 and �l0i .

3. Tables of nondimensional hydrodynamic coefficients
Dedicated calculations were done to table the nondimensional hydrodynamic
coefficients versus the semiapex angle and �r1 ¼ r1=r0. Formulas (37) and (43) were
used to get numerical values of the inertia tensor �J0 as well as the hydrodynamic
coefficients �mi , �li , and �l0i . The Trefftz method demonstrates different accuracy for
different input parameters. This explains why Tables I-IV give the values with different
accuracy, i.e. only stabilized significant figures (with q ¼ 20) are included in the tables.

4. Validation
Convergence of the Trefftz method to eigenvalues �ki was extensively investigated in the
previous authors’ paper (Gavrilyuk et al., 2008). Two different sets of coordinate
functions were used for a quality control. Numerical results by these two sets were
compared to establish which of them provides a minimum error versus r1/r0, h/r0, and u0.

Our numerical values of �ki coincide with those by Gavrilyuk et al. (2005) who studied
the limit case �r1 ¼ 0 (nontruncated conical tank). The numerical results by
Gavrilyuk et al. (2005) were validated by experimental natural sloshing frequency
s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �k1=r0

p
from the papers by Mikishev and Dorozhkin (1961) and Bauer (1982) and,

�r1
�J0 �k1 �k2 �k3 �k4 �k5 �k6 �k7

u0 ¼ 30+

0.0 0.517382 1.304395 4.922743 8.136674 11.30987 15.98363 20.0581 28.3418
0.2 0.487763 1.304377 4.922736 8.136621 11.30966 14.50351 18.4672 26.7118
0.4 0.380655 1.301685 4.921797 8.136589 11.30940 14.46874 17.5772 21.4216
0.6 0.276329 1.253965 4.906108 8.135757 11.30925 14.46827 17.6078 20.7919
0.8 0.184284 0.933815 4.739593 8.080329 11.29705 14.46603 17.6178 20.6563

u0 ¼ 45+

0.0 0.175536 1.000000 4.483019 7.731563 10.91109 14.07253 17.2317 20.5515
0.2 0.171198 0.999553 4.482460 7.731550 10.91109 14.07253 17.2295 20.4839
0.4 0.159874 0.985702 4.465880 7.731183 10.91108 14.07252 17.2290 20.4407
0.6 0.145044 0.892940 4.371729 7.714013 10.90932 14.07228 17.2276 20.4253
0.8 0.105545 0.584313 3.855765 7.270504 10.68761 13.99165 17.2000 20.2425

u0 ¼ 60+

0.0 0.090171 0.677680 3.621716 6.916305 10.11356 13.28055 16.4371 19.6142
0.2 0.089803 0.676232 3.617095 6.913924 10.11334 13.28054 16.4368 19.6025
0.4 0.088835 0.655289 3.557480 6.887986 10.10879 13.27960 16.4359 19.5647
0.6 0.083248 0.566042 3.366544 6.712571 10.01808 13.24914 16.4285 19.4858
0.8 0.060932 0.347496 2.669468 5.580759 8.931096 12.47492 15.9299 19.3281

Table I.
Nondimensional �J0 and
eigenvalues
�kiði ¼ 1; . . . ; 7Þ
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therefore, one can say that values �k1with �r1 ¼ 0 in Table III are validated by comparison
with experiments.

An additional validation of �ki can be done by using experimental natural frequencies
by El Damatty et al. (2000). In contrast to Mikishev and Dorozhkin (1961) and Bauer
(1982), the model tests by El Damatty et al. (2000) were conducted for a truncated conical
tank. The two lowest experimental natural frequencies by El Damatty et al. (2000) were
n
exp
1 ¼ 1:31 Hz and n

exp
2 ¼ 2:8 Hz for a model tank with u0 ¼ p=4, r1 ¼ 0.05 m,

�r1 �m1 �m2 �m3 �m4 �m5 �m6 �m7

u0 ¼ 30+

0.0 1.12237 4.9890 8.4272 11.9656 14.388 19.437 25.28
0.2 1.12236 4.9889 8.4190 11.7194 14.305 18.964 24.32
0.4 1.12113 4.9825 8.4113 11.7637 15.035 18.763 23.81
0.6 1.09833 4.8734 8.4074 11.7622 15.095 18.622 22.06
0.8 0.90121 4.4679 7.9889 11.6656 15.061 18.551 21.55

u0 ¼ 45+

0.0 0.78540 3.2745 5.9642 8.4984 11.003 13.463 16.43
0.2 0.78523 3.2733 5.9640 8.4987 10.997 13.441 16.42
0.4 0.78098 3.2383 5.9591 8.4985 10.989 13.435 16.39
0.6 0.74680 3.0435 5.9148 8.4824 10.983 13.424 16.26
0.8 0.56645 2.9589 4.8744 7.8552 10.774 13.214 16.02

u0 ¼ 60+

0.0 0.49801 1.79753 3.5197 5.2374 6.913 8.568 10.45
0.2 0.49771 1.79581 3.5146 5.2362 6.913 8.595 10.36
0.4 0.49301 1.76770 3.4560 5.2233 6.907 8.642 10.22
0.6 0.46482 1.66715 3.3546 4.9984 6.832 8.571 9.82
0.8 0.33850 1.84128 2.6135 4.2488 6.068 7.696 9.19

Table II.
Nondimensional

hydrodynamic
coefficients

�m1iði ¼ 1; . . . ; 7Þ

�r1
�l1

�l2
�l3

�l4
�l5

�l6
�l7

u0 ¼ 30+

0.0 1.07172 0.13840 0.06427 0.03673 0.0270 0.0077 0.0066
0.2 1.07170 0.13841 0.06431 0.03899 0.0271 0.0194 0.0068
0.4 1.06998 0.14024 0.06457 0.03924 0.0272 0.0206 0.0071
0.6 1.03912 0.17076 0.07025 0.04207 0.0289 0.0212 0.0168
0.8 0.81051 0.30826 0.12846 0.06711 0.0429 0.0307 0.0234

u0 ¼ 45+

0.0 0.78540 0 0 0 0 0 0
0.2 0.78516 0.00049 20.00007 0.00001 0.0000 0.0000 0.0000
0.4 0.77761 0.01514 20.00180 0.00005 0.0000 0.0000 20.0000
0.6 0.72338 0.09687 20.00088 20.00211 20.0002 0.0001 0.0001
0.8 0.50812 0.24294 0.08866 0.02223 0.0019 20.0020 20.0015

u0 ¼ 60+

0.0 0.51467 20.05960 20.00037 20.00061 20.0002 20.0001 20.0001
0.2 0.51397 20.05755 20.00179 20.00021 20.0003 20.0001 20.0001
0.4 0.50367 20.02982 20.01748 0.00187 0.0000 20.0003 20.0003
0.6 0.45432 0.05937 20.03537 20.01414 0.0004 0.0016 0.0002
0.8 0.30280 0.16554 0.05833 20.00124 20.0195 20.0169 20.0087

Table III.
Nondimensional

hydrodynamic
coefficients

�liði ¼ 1; . . . ; 7Þ
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and liquid depth h ¼ 0.1 m. According to our Trefftz method, these frequencies are
n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �k1=r0

p
=ð2pÞ ¼ 1:28 Hz and n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �k2=r0

p
=ð2pÞ ¼ 2:72 Hz, respectively. The

difference is less than 3 percent that is, we believe, due to the surface tension which is,
generally, not negligible for the relatively-small model tank by El Damatty et al. (2000)
(see, Section 4.2 by Faltinsen and Timokha (2009)).

To validate numerical results on the Stokes-Joukowski potentials, we can compare
our values of �J0 with earlier calculations by Lukovsky et al. (1984) and Shvets (1988).
The latter calculations were done for nontruncated conical tanks (�r1 ¼ 0) with
u0 ¼ p=6;p=4, and p/3. The three values of �J0 in the first column of Table III
(corresponding to �r1 ¼ 0) have the same four significant figures as those in the papers
by Lukovsky et al. (1984) and Shvets (1988).

Finally, we can validate �li and �mi by using model tests by Casciati et al. (2003).
Casciati et al. (2003)’s experimental setup consists of a rigid load cell containing a rigid
tapered conical tank with u0 ¼ p=6 and r1 ¼ 0.1 m; the tank is partially filled with a
liquid with different liquid depths. The setup is installed on a shaking table performing
the horizontal harmonic motions h2ðtÞ ¼ h2acosðstÞ where s is the forcing frequency
and h2a is the forcing amplitude. Casciati et al. (2003) focus on the steady-state force
caused by the setup harmonic motions. This force is the sum of the inertia force due to
the rigid tank and load cell and the steady-state hydrodynamic force due to sloshing.
The experimental results are presented in a nondimensional form appearing as the
transfer function F2a=ðMlh2as

2Þ for the force amplitude F2a. Using our linear modal
equations (18) and formula (25) with h2ðtÞ ¼ h2acosðstÞ, we can find the steady-state
hydrodynamic force and estimate this transfer function as:

F2a

Mlh2as 2
¼ 1 þ

Mcell

M l

þ
r3

0

Vl

Xq1

k¼1

�lks
2

�mk s 2
k 2 s

� � ; ð44Þ

�r1
�l01

�l02
�l03

�l04
�l05

�l06
�l07

u0 ¼ 30+

0.0 0.60859 20.15537 20.08771 20.05762 20.0424 20.0124 20.0113
0.2 0.60841 20.15525 20.08757 20.05714 20.0408 20.0303 20.0163
0.4 0.59852 20.14831 20.08641 20.05361 20.0405 20.0323 20.0107
0.6 0.51675 20.08966 20.07462 20.05061 20.0369 20.0266 20.0227
0.8 0.25285 0.04294 20.01615 20.02484 20.0221 20.0181 20.0158

u0 ¼ 45+

0.0 0.31416 20.14873 20.04966 20.02531 20.01535 20.0103 20.0075
0.2 0.31329 20.14765 20.04983 20.02530 20.01535 20.0102 20.0077
0.4 0.29689 20.12663 20.05254 20.02523 20.01533 20.0102 20.0079
0.6 0.22919 20.04966 20.05190 20.02747 20.01554 20.0102 20.0075
0.8 0.09420 0.02802 20.00607 20.01610 20.01509 20.0115 20.0082

u0 ¼ 60+

0.0 0.13197 20.08677 20.00059 20.00100 20.0003 20.0002 20.0001
0.2 0.13086 20.08481 20.00209 20.00057 20.0004 20.0002 20.0002
0.4 0.11963 20.06472 20.01476 0.00118 20.0002 20.0003 20.0002
0.6 0.08646 20.01878 20.02641 20.00773 0.0002 0.0007 0.0001
0.8 0.03277 0.01268 20.00168 20.00790 20.0077 20.0051 20.0024

Table IV.
Nondimensional
hydrodynamic
coefficients
�l0iði ¼ 1; . . . ; 7Þ
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where Vl is the liquid volume, Ml ¼ rVl is the liquid mass, q1 is the number of the used
modal equations, and Mcell is the total mass of the load cell and the rigid tank
(Ml ¼ 10.5 kg in the model tests by Casciati et al. (2003)).

Comparison of experimental values by Casciati et al. (2003) and those by formula (44) is
shown in Figure 3. In formula (44), seven significant figures of the transfer function stabilize
with q1 ¼ 5 for input parameters associated with (Casciati et al., 2003). The theoretical
results are marked by the solid lines. Because we have constructed a linear theory, these

Figure 3.
The transfer function
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force amplitude

(F2a=ðh2aMls
2Þ)

associated with model tests
by Casciati et al. (2003)
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theoretical results do not depend on the nondimensional forcing amplitude 1 ¼ h2a=r0.
However, experimental force amplitudes can change with1 in a neighborhood ofs=s1 ¼ 1
when sloshing becomes of resonant nature and, therefore, strongly nonlinear. The
free-surface nonlinearity is more important for larger 1 and smaller liquid depth h/(2r0).
These facts are clearly seen in Figure 3.

Figure 3(a) deals with the largest experimental liquid depth h/(2r0) ¼ 0.228. Here,
the experimental transfer function displays the free-surface nonlinearity in the
frequency range 0:95 , s=s1 , 1:05 (see, the shadow zone). Formula (44) gives a good
prediction of the experimental values outside of this range. Moreover, theoretical
results agree with experimental values for the lowest forcing amplitude 1 ¼ h2a=r0 ¼
0:00928 except for one measurement point at s=s1 ¼ 1 where our linear theory leads to
infinite force amplitude but the experiments do not support that.

The experimental points in Figure 3(b) are for the lower liquid depth h/(2r0) ¼ 0.1786
which, generally, belongs to the so-called intermediate liquid depths whose range was
roughly estimated by Faltinsen and Timokha (2002) as 0.1 & h/(2r0) & 0.2. The linear
sloshing theory is weakly applicable for the intermediate liquid depths. Figure 3(b)
shows that the free-surface nonlinearity becomes important in the resonance frequency
range 0:9 , s=s1 , 1:1 (see, shadow zone). Away from this range, our linear modal
theory is supported by the model tests. Moreover, the theory gives also satisfactory
agreement in the range 0:9 , s=s1 , 1:1 for the lowest experimental forcing amplitude
h2a=r0 ¼ 0:009922 when the free-surface nonlinearity is less important than for the
larger experimental forcing amplitudes h2a=r0 ¼ 0:019844; 0:039689, and 0.079377.

4. Coupled “tank-external structure” dynamics
Using the derived linear modal equations in simulating the liquid sloshing for
prescribed motions of the rigid tapered conical tank looks now a rather simple task.
The simulations reduce to the Runge-Kutta integration of the ODEs (17).

Describing the coupled dynamics of the rigid tank and an external structure
assumes that we can incorporate modal equations (17) into global dynamic equations
taking into account that we know expressions for the resulting sloshing force and
moment in terms of the generalized coordinates bc

i and bs
i . The corresponding

procedure will furthermore be exemplified for two mechanical systems.

1. Sretenski’s problem (dynamic damper)
Let us consider Sretenski’s (1951) mechanical system in Figure 4. It consists of a rigid
platform of the mass Mp, a rigid tank partly filled with the tank, and a spring (linked to
a rigid wall) with the Hooke coefficient k. The platform can move horizontally without
friction. The rigid conical tank of the mass Mt is installed on the platform. The
Sretenski problem consists of describing the small oscillatory motions of the platform
(relative to its static equilibrium position), that is, the sloshing-structure system,
exposed to an external forcing F(t).

1. The global dynamics and modal equations. Because the platform moves with a
single degree of freedom (here, the translatory motions along the Oz-axis) and
h1 ¼ h2 ¼ h4 ¼ h5 ¼ h6 ¼ 0, the platform displacements can be associated with the
generalized coordinate h3ðtÞ. Assuming that h3ðtÞ is known, we can describe the linear
forced sloshing by using the modal system (19) with the right-hand side proportional
to €h3:
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mið €b
s

i þ s 2
i b

s
i Þ ¼ 2li €h3; i ¼ 1; 2; . . . ð45Þ

The horizontal hydrodynamic force along the Oz-axis is, according to formula (26):

F3ðtÞ ¼ 2Ml €h3 2
X1
k¼1

€b
s

klk: ð46Þ

Equations (45) and (46) show that the resulting hydrodynamic force is a function of h3

and bs
i . This force gives rise in the global dynamic equation (Newton’ law) of the

platform which takes the form:

ðMt þMpÞ €h3 ¼ 2kh3 þ F3 þ F: ð47Þ

The global dynamic equation (47) accounts for the resulting horizontal forces acting on
the rigid body of the total mass Mt þ Mp including the external forcing F(t), the spring
resistance force 2kh3, and the hydrodynamic force F3(t). Inserting the hydrodynamic
force equation (46) into equation (47) leads to:

M 0ð €h3 þ s 2
0h3Þ þ

X1
k¼1

€b
s

klk ¼ F; ð48Þ

where M 0 ¼ Mt þMp þMl is the total mass and s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k=M 0

p
is the natural

frequency of the spring-mass platform oscillations with a “frozen” liquid inside.
In summary, to describe the platform-sloshing interaction with a known external

forcing F(t), we should solve the system of ODEs (48) and (45). Equation (48) is responsible
for the platform displacements, and modal equations (45) describe sloshing. The
appropriate nondimensional hydrodynamic coefficients can be taken from Tables I-IV.

2. Steady-state motions and dynamic liquid damper. We consider the harmonic
external force F¼ haM 0s

2cosðstÞ where ha is the acceleration amplitude, and s is
the forcing frequency. Our task consists of describing the steady-state motions of the
Sretenski system. In terms of the dynamic equations (48) and (45), the steady-state
motions are associated with the harmonic solution:

bi ¼ AicosðstÞ; h3 ¼ B cosðs tÞ; ð49Þ

where B is the steady-state amplitude of the platform motions, and Ai are amplitudes of
the sloshing-related generalized coordinates. Substituting equation (49) into
equations (48) and (45) gives:

Figure 4.
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�B ¼
B

ha
¼ �s 2

0 2 1
� �

2
rr3

0

M 0
2
X1
i¼1

�l
2
i

�mi �s2
i 2 1

� �
 !21

; ð50Þ

where �s0 ¼ s0=s and �si ¼ si=s.
Analyzing expression (50), we can study dependence of the nondimensional

steady-state platform amplitude on various input parameters. A particular interest is
dependence of the nondimensional amplitude on the forcing frequency for the case
s0 ¼ s1, namely, when the eigenfrequency of the whole mechanical system with
“frozen” liquid coincides with the lowest natural sloshing frequency. By detuning s1 to
be equal to s0, the wave tank can play the role of the so-called dynamic liquid damper.

Results of numerical experiments are shown in Figure 5. Seven modal equations of
(45) are used providing, as our numerical tests showed, stabilization of three-four
significant figures of the �B-value for the semiapex angles u0 ¼ 30+, 45+ and 60+, r1 ¼ 0:4,
and rr3

0=M 0 ¼ 0:5. The graphs in Figure 5 demonstrate that, when s ¼ s0 ¼ s1, the
platform remains immobile in steady-state conditions. Thus, sloshing really “works” as
a dynamic damper, i.e. the resulting hydrodynamic force due to sloshing counteracts the
external force F(t) preventing any platform displacements. However, we see a resonance
point for s=s0 , 1 as well as there are higher resonance frequencies associated with
higher natural sloshing frequencies.

2. Water tower with an elevated conical tank
The next example is the mechanical system consisting of a tower with a conical elevated
tank on the top. Schematically, this mechanical system is shown in Figure 6. In the
forthcoming analysis, we assume, that the tank massMt is negligible with respect to the
liquid mass Ml, i.e. Mt ! Ml. Besides, we assume that the tower performs transverse

Figure 5.
The nondimensional
steady-state
platform amplitude as a
function of �s ¼ s=s0
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vibrational motions, and neglect vertical compression of the tower due to the liquid
weight. For brevity, the tower motions are considered in the Oxz-plane. These are
modeled by Euler’s beam. The tower height (Euler’s beam length) is denoted by H, the
outer tower radius coincides with the tank bottom radius, Re ¼ r1, and the inner tower
radius (shaft radius) is equal to Ri ¼ kir1, where nondimensional factors ki (0 , ki , 1)
are introduced to match specific properties of the tower. The water tower motions are
described in the coordinate system �O�x�y�z whose origin coincides with the tank bottom
center in its static position.

1. The beam equation and boundary conditions at the earth-fixed beam end.
The beam oscillations are modeled by the Euler-Bernoulli equation:

mb
€Wþ ðEIW 00Þ00 ¼ 0; ð51Þ

where function W(x,t) describes the beam deviation in the �Oxz-plane, E is Young’s

modulus, I is the second moment of inertia (being equal to I ¼ ð1=4ÞpðR4
e 2 R4

i Þ),
mb ¼ prcðR

2
e 2 R2

i Þ is the linear beam mass (mass per unit length), and rc is the
material density. The prime denotes the spatial differentiation by x.

The clamped-end boundary conditions at the Earth-fixed end are expressed as:

W ð2H ; tÞ ¼ 0; W 0ð2H ; tÞ ¼ 0: ð52Þ

2. Boundary conditions on the beam top. These conditions should express equivalence
between the bending moment and force of the beam and the hydrodynamic moment

Figure 6.
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and force due to sloshing (as we said, we neglect the tank mass), respectively, i.e.:

EIW 00ð0; tÞ ¼ 2F
�O
5 ; ðEIW 00Þ0ð0; tÞ ¼ 2F

�O
3 ; ð53Þ

where F
�O
3 ðtÞ is the horizontal hydrodynamic force along the �O�x�y�z-axis, and F

�O
5 ðtÞ is the

hydrodynamic moment around the �O�y-axis.
The hydrodynamic force F

�O
3 ðtÞ and moment F

�O
5 ðtÞ are perturbed by the beam top

oscillations associated with the horizontal displacement u(t) along the �Oz-axis, and
inclination u1ðtÞ around the �O

0

y-axis which are, by definition:

u ¼ W ð0; tÞ; u1 ¼ 2W 0ð0; tÞ: ð54Þ

The hydrodynamic force and moment can be expressed in terms of the generalized
coordinates appearing in the modal equations. We should take into account that the
origin

0

O
0

x
0

y
0

z does not belong to the mean liquid surface (as it has been accepted in
Sections 2 and 3). According to definitions in Section 2, we should link u, u1 andh3,h5 by
the following relations:

h5 ¼ u1; h3 ¼ u2 hu1;

and substituteh3 andh5 into original boundary value problem (1), modal equations (19),
and formulas for the hydrodynamic force and moment, (26) and (28), respectively.

Following the formulas (26) (in projections on the coordinate system �O�x�y�z),
equations (28) and (30) (related to the point A ¼ �O), the corresponding hydrodynamic
force and moment in equation (53) can be derived in the form:

F
�O
3 ¼ Mlðu1XlC0

2 €uÞ2
X1
k¼1

€b
s

klk; ð55Þ

F
�O
5 ¼ MlXlC0

ðgu1 þ €uÞ2 J 0u1 2
X1
j¼1

2l0j
€b
s

j þ gljb
s
j

� �
; ð56Þ

where XlC0
is the vertical coordinate of the liquid mass center in the �O�x�y�z-system,

J 0 ¼ Mlhð2XlC0
2 hÞ þ J 0, lO0i ¼ l0i þ hli , and the generalized coordinates bs

j are the
solution of the ODEs (19). The latter can be rewritten as follows:

mi
€b
s

i þ s 2
i b

s
i

� �
¼ 2lið€uþ gu1Þ þ l0iu1: ð57Þ

3. Coupled eigenoscillations. We consider eigenoscillations of the whole mechanical
system, i.e.:

W ðx; tÞ ¼ WðxÞcoss t; bs
i ðtÞ ¼ Bicoss t; ð58Þ

where s is the eigenfrequency; variables Bi and function WðxÞ determine the
steady-state modal sloshing amplitudes and the beam eigenmode for the coupled
eigenmotions. Substituting equation (58) into modal equations (57) gives:

Bi ¼
s 2

miðs
2
i 2 s 2Þ

liWð0Þ þ
lig

s 2
þ l0i

� �
W0ð0Þ

	 

; ð59Þ
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and, thereby, we can derive the modified boundary conditions at the beam top in terms of
the eigenmode WðxÞ. The sloshing-modified eigenoscillations of the tower are therefore
described by nontrivial solutions of the following homogeneous problem:

2s 2mbWþ ðEIW00Þ00 ¼ 0; x [ ½2H ; 0�; ð60Þ

Wð2H Þ ¼ W0ð2H Þ ¼ 0; ð61Þ

EIW00ð0Þ ¼ s 2½A1Wð0Þ þ A3W
0ð0Þ�; ð62Þ

ðEIW00Þ0ð0Þ ¼ 2s 2½A2Wð0Þ þ A1W
0ð0Þ�; ð63Þ

with respect to function WðxÞ and spectral parameter s 2. The coefficients A1ðs
2Þ,

A2ðs
2Þ, and A3ðs

2Þ depend on s 2 and take the form:

A1 ¼ MlXlC0
þ
X1
j¼1

ljðloj þ ljg=s
2Þ

mjð �s
2
j 2 1Þ

;

A2 ¼ Ml þ
X1
j¼1

l2
j

mið �s
2
j 2 1Þ

; A3 ¼
MlXlC0

g

s 2
þ J 0 þ

X1
j¼1

ðl0j þ ljg=s
2Þ2

mjðs�
2
j 2 1Þ

:

ð64Þ

The nonlinear spectral problem (59) admits variational formulation associating the
eigenmodes with local extrema of the quadratic functional:

FðWÞ ¼

Z 0

2H

s 2mbW2 ðEIW00Þ2
� �

dxþ s 2½A2W
2 þ A3ðW

0Þ2 þ 2A1WW0�x¼0

ð65Þ

restricted to kinematic conditions (61). This fact makes it possible to use variational
methods.

Galerkin’s variational method expresses WðxÞ in the form:

W ¼
Xq
k¼1

akck; ð66Þ

where each function ckðxÞ satisfies boundary conditions (61). Using the necessary
extrema condition of functional (65), we associate the eigenfrequencies with zeros of the
determinant:

DðsÞ ¼ detj{eij} 2 s 2{f ij}j ¼ 0; ð67Þ

where the matrix elements are given by the formulas:

eij ¼
R 0

2H
EIc00

i c
00
j dx;

f ij ¼
R 0
2Hmbcicjdxþ A2ðs

2Þcicj þ A3ðs
2Þc 0

ic
0
j þ A1ðs

2Þðcic
0
j þ c 0

icjÞ
h i

x¼0

:
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A simplest set of coordinate functions in representation (66) can be the polynomials:

ck ¼
ĉk

Nk

; ĉkðxÞ ¼ ðxþ H Þðkþ1Þ; Nk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0

2H

ĉ
2

kðxÞdx

s
:

4. Numerical experiments. In our numerical experiments, an emphasis is placed on the
case when the lowest natural sloshing frequency, s1, coincides with the first structural
eigenfrequency, s01. The latter frequency is associated with eigenoscillations of the
mechanical system in which the liquid free surface does not move, namely, it is covered
by an artificial rigid roof. This eigenfrequency can be found by our variational method
where the liquid sloshing amplitudes are zero, i.e. Bi ¼ 0 in equation (59).

Choosing, for example, �r1 ¼ �Rb ¼ 0:4 and u0 ¼ p=4, one can vary Rb=Hb, kb, ki
(0 , ki , 1, kb . 1), Hb ¼ H ¼ kbr1;Ri ¼ kir1; to find suitable values of physical and
geometrical values which provide equivalence of s1 and s01. The equality s1 ¼ s01 is,
for instance, fulfilled with ki ¼ 0.7 and kb ¼ 28.15 which correspond to the geometrical
structural parameters: the free-surface diameter is equal to 2.5 m, the liquid depth is
equal to 1.5 m, the beam diameter is equal to 1 m, and the beam length is equal to 28.15 m.
The liquid is a fresh water with rl ¼ 1:0 · 103 kg/m3, and the tower body is the reinforced
concrete, rc ¼ 2:4 · 103 kg/m3 whose Young’s modulus is E ¼ 6· 106 N/m2. Figure 7
shows the graph of DðsÞ (equation (67)) computed with these input parameters. The
s1 ¼ s01-value is denoted as “sloshing”. The graph shows that this partial
eigenfrequency splits into the two different eigenfrequencies, “coupled 1” and
“coupled 2” demonstrated in Figure 7.

5. Concluding remarks
The linear multimodal method was developed for the case of a tapered conical tank. We
assume decoupling of the hydrodynamic loads and elastic tank vibrations which is, for
instance, possible when the elastic tank vibrations have eigenfrequencies that are much
higher than the lowest natural sloshing frequency. The rigid tank can perform
small-magnitude oscillatory motions and be a part of a complex mechanical system,
e.g. storage (elevated) tank. Approximate natural sloshing modes and
Stokes-Joukowski’s potentials were constructed. The approximate natural sloshing
modes were obtained by using the Trefftz variational method proposed by
Gavrilyuk et al. (2008). It was found that the same method can be implemented for

Figure 7.
Determinant D(s) as a
function of s

3.0

s

3.5

D
(s

)

2.52.0 4.0
“sloshing”“coupled 1” “coupled 2”
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finding the Stokes-Joukowski potentials. Based on the approximate Trefftz solutions, we
computed the hydrodynamic coefficients of the linear modal equations that couple
generalized coordinates responsible for displacements of the natural sloshing modes. In
the right-hand side, the latter equations contain six generalized coordinates responsible
for translatory and angular motions of the rigid tank.

Using the linear modal equations simplifies description of the coupled dynamics of
complex mechanical systems containing a tapered conical tank partially filled with
a liquid. The coupling involves expressions for the resulting hydrodynamic (sloshing)
force and moment. The force and moment are basically determined by “dynamic”
sloshing loads. In the present paper, we show how to use the Lukovsky formulas to get
“modal” expressions for these force and moment. The modal expressions give the force
and moment as a linear function of the generalized coordinates and their
time-derivatives. These expressions use the same hydrodynamic coefficients as in the
derived linear modal equations. The coefficients (in nondimensional form) are computed
and tabled. Employing these tables helps practically oriented readers who want to use
the linear modal equations. The corresponding models can be considered as an
alternative to the CFD and equivalent mechanical systems. The numerical
hydrodynamic coefficients were validated by comparing with earlier computations
and experimental data.

Abilities of these “modal” models are exemplified for two test problems. The first
problem is on the dynamic damper containing the tapered conical tank (Sretenski’s
problem). It has been demonstrated that the multimodal method requires only several
relatively simple linear ODEs for description of the carrying platform motions. The
second problem is on the coupled eigenoscillations of a water tower with an elevated
conical tank.
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