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Abstract

Purpose – The main purpose of this paper is to develop two efficient and accurate numerical
analytical methods for engineering computation of natural sloshing frequencies and modes i the case
of truncated circular conical tanks.

Design/methodology/approach – The numerical-analytical methods are based on a Ritz Treftz
variational scheme with two distinct analytical harmonic functional bases.

Findings – Comparative numerical analysis detects the limit of applicability of variational methods
in terms of the semi-apex angle and the ratio between radii of the mean free surface and the circular
bottom. The limits are caused by different analytical properties of the employed functional bases.
However, parallel use of two or more bases makes it possible to give an accurate approximation of the
lower natural frequencies for relevant tanks. For V-shaped tanks, dependencies of the lowest natural
frequency versus the semi-apex angle and the liquid depth are described.

Practical implications – The methods provide the natural sloshing frequencies for V-shaped tanks
that are valuable for designing elevated containers in seismic areas. Approximate natural modes can
be used in derivations of nonlinear modal systems, which describe a resonant coupling with structural
vibrations.

Originality/value – Although variational methods have been widely used for computing the natural
sloshing frequencies, this paper presents their application for truncated conical tanks for the first time.
An original point is the use of two distinct functional bases.
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Paper type Research paper

1. Introduction
The number of constructions carrying a large liquid mass is enormous. Coupling the
structure and liquid requires a precise and efficient computation of the natural sloshing
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(eigen-) frequencies and modes. Being subject of spacecraft applications, the natural
sloshing frequencies and modes for conical tanks were studied in 1950-1960’s years
of the past century. Special attention was paid to an estimate of the resulting
hydrodynamic force and moment.

The international standards concerning the megaliter elevated tanks (Eurocode 8,
1998) have stated a typical design for concrete tanks of conical and conicalbottom
shapes, typical examples are demonstrated by Damatty and Sweedan (2006). Owing to
seismic events, liquid motions in a water tank on the supporting tower cause severe
hydrodynamical loads. In the modelling of these loads, equivalent mechanical systems
(Damatty and Sweedan, 2006; Dutta et al., 2004; Shrimali and Jangid, 2003) can be used.
These systems relate liquid dynamics to oscillations of a pendulum or a spring-mass
system. The eigenfrequencies of the equivalent systems should coincide with the lower
natural sloshing frequencies and, therefore, an accurate prediction of the sloshing
frequencies and modes is needed (Damatty et al., 2000; Dutta and Laha, 2000; Tang,
1999). This can be done by various Computational Fluid Dynamics (CFD) methods or
by using semi-empirical approximate formulae (Damatty et al., 2000; Gavrilyuk et al.,
2005). Although the CFD-methods demand lots of CPU’s power, they are primary
employed in engineering practise to guarantee a substantial precision. When
concentrating on linear and nonlinear sloshing in V-shaped pure conical tanks,
Gavrilyuk et al. (2005) showed that an alternative might consist in a semianalytical
solution method. The method keeps the accuracy of the CFD-methods, but remains
CPU-efficient and simple in use. The constructed numerical-analytical solutions may
facilitate development of nonlinear sloshing theories (Lukovsky and Bilyk, 1985;
Lukovsky, 1990, 2004; Bauer and Eidel, 1988; Faltinsen et al., 2000, 2003; Gavrilyuk
et al., 2005, 2006). These theories are of importance for studying a resonant coupled
vibration of a tower and the contained liquid.

In order to find the natural sloshing frequencies and modes, a spectral boundary
value problem (Lukovsky et al., 1984; Ibrahim, 2005) has to be solved. When the tank is
V- and L- shaped, the boundary value problem has no analytical solutions. Isolated
analytical solutions exist only for pure (non-truncated) conical V-tanks. Such an
example has been specified by Levin (1963) for the two lowest natural modes and the
semiapex angle u0 ¼ 458. These modes are characterised by the wave number m ¼ 1 in
angular direction. Dokuchaev and Lukovsky (1968) generalised this result. They
showed that analogous analytical solutions exist as u0 ¼ arctan ð

ffiffiffiffi
m

p
Þ. Mikishev and

Rabinovich (1968) and Feschenko et al. (1969) used these solutions for evaluation of
their numerical algorithms. Furthermore, simple approximate analytical solutions for
pure conical V-tanks can be obtained by replacing the planar waterplane by a spheric
segment. In that case, the spectral boundary value problem admits separation of
variables in the spherical coordinate system. This has been realised by Dokuchaev
(1964) and Bauer (1982). A satisfactory agreement with experimental data by Mikishev
and Dorozhkin (1961) and Bauer (1982) was reported as u0 ¼ 158.

The spectral boundary value problem for the linear sloshing modes admits a
variational formulation (Feschenko et al., 1969). This variational formulation facilitates
the Ritz-Treftz numerical scheme, whose practical realisation requires special sets of
analytical harmonic functional bases. Two of these harmonic bases are used in the
present paper for engineering computations of the natural frequencies and modes of
liquid sloshing in truncated conical tanks. The first basis is of polynomial type
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(harmonic polynomial solutions, HPS). The second one employs the Legendre functions
of first kind; it may be adopted by the mentioned nonlinear multimodal sloshing
theories. Extensive numerical experiments have been done to identify all the
geometrical parameters (semi-apex angle, position of secant plane and liquid depth), for
which the proposed functional bases guarantee a sufficient number of significant
figures for the lower natural frequencies.

In Section 3, the main focus is on the HPS. For the V-shaped tanks, we show that
11-17 HPS provide 4-6 significant digits of the lower natural frequencies for the
semi-apex angles, which are smaller than 758 and larger than 108. For the V- and
L-shaped tanks which are characterised by semi-apex angles larger than 758, the same
number of the HPS guarantees 3-4 significant digits. For the L-shaped tanks with
semi-apex angles smaller than 758, convergence to the natural frequencies depends on
the ratio between the radii of the mean liquid plane and the circular bottom. The
method is not very efficient (only about 2-3 significant digits can be obtained with
17-20 basic polynomials) when the semi-apex angle is smaller than 608 and the ratio
between the specified radii is smaller than 1/2. The slow convergence for the L-shaped
tanks can partially be attributed to a singular asymptotic behaviour of the natural
modes at the contact line formed by the waterplane and conical walls.

Lukovsky (1990) has proposed a non-conformal mapping technique to develop the
multimodal method for the nonlinear sloshing problem in a non-cylindrical tank.
Lukovsky and Timokha (2002) and Gavrilyuk et al. (2005) have realised this technique
for a non-truncated V-tank. The natural sloshing modes were then approximated by a
special functional basis (SFB). In Section 4, we use the curvilinear coordinate system
proposed by Gavrilyuk et al. (2005) and generalise their results on natural sloshing
frequencies to the case of truncated V- and L-shaped conical tanks. For typical
geometrical configurations of elevated water tanks (a V-shaped cone with the
semi-apex angle between 308 and 608), the method shows faster convergence behaviour
than in the case of Section 3. Six significant digits of the lowest sloshing frequency can
be computed by using only 6-10 basis functions.

A comparative analysis of the two methods is presented in Section 5. In Section 6,
we discuss the dependence of the lowest natural sloshing frequency on the geometrical
shape of truncated conical tanks. Bearing in mind that the relevant water tanks are of a
V-shape, we present the lowest spectral parameter (with a accuracy of five significant
digits) versus the semi-apex angle and the ratio between the radii of the mean water
plane and the bottom.

2. Statement of the problem
2.1 Differential and variational formulations
As it is typically assumed in sloshing theory (Ibrahim, 2005), we consider an ideal
incompressible liquid with irrotational flow that partly occupies an earth-fixed rigid
conical tank with the semi apex angle u0. The mean (hydrostatic) liquid shape coincides
with the domain Q0 as it is shown in Figure 1. The gravity acceleration is directed
downwards along the symmetry axis Ox. The wetted conical walls are denoted by S1.
The circle S2 is the tank bottom, S ¼ S1 < S2 and

P
0 is the non-perturbed

(hydrostatic) waterplane. The origin is superposed with artificial apex of the conical
surface. Henceforth, the problem is considered in a sizeless statement assuming that r0

(the bottom radius for L-shaped and the water plane radius for V-shaped tanks)
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is chosen as a characteristic geometrical dimension. Scaling by r0 implies h U h/r0 ! 0
(h is the liquid depth) and r1 U r1=r0. The non-dimensional radius r1 and the angle u0

completely determine the geometric proportions of Q0. The limit r1 ! 1 implies that
h ! 0, ie. the water becomes shallow. At a fixed r1, the scaled liquid depth h tends to
zero as u0 ! p/2.

Linear sloshing in a motionless tank is governed by the following boundary value
problem (Lukovsky et al., 1984; Ibrahim, 2005):

Df ¼ 0 inQ0;
›f

›x
¼

›f

›t
;

›f

›t
þ gf ¼ 0 on

X
0
;

›f

›n
¼ 0 on S;

Z
P

0

›f

›x
dS ¼ 0;

ð1Þ

where f(x,y,z,t) is the velocity potential, x ¼ f( y,z,t) describes the free surface, n is the
outer normal to S and g is the gravity acceleration scaled by r0ðg U g=r0Þ. The initial
conditions:

f ð y; z; t0Þ ¼ F0ð y; zÞ;
›f

›t
ð y; z; t0Þ ¼ F1ð y; zÞ ð2Þ

at an instant time t ¼ t0, determine a unique solution of equation (1). The functions F0

and F1 define initial displacements of the free surface and its velocity, respectively.

2.2 Natural sloshing modes
The solution of equation (1) is associated with the free-standing waves:

fðx; y; z; tÞ ¼ cðx; y; zÞexpðistÞ; i 2 ¼ 21 ð3Þ

where a is the natural sloshing frequency and c(x,y,z) is the so-called natural mode.
Inserting equation (3) into equation (1) leads to the spectral problem:

Dc ¼ 0 inQ0;
›c

›x
¼ kc on

X
0
;

›c

›n
¼ 0 on S;

Z
P

0

›c

›x
dS ¼ 0 ð4Þ

Figure 1.
Hydrostatic liquid
domains in L- and

V-haped tanks
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where the eigenvalue k is defined by:

k ¼
s2

g
: ð5Þ

The spectral problem (4) has a real positive point wise spectrum (Morand and Ohayon,
1995):

0 , k1 # k2 # . . . # kn # . . .

with a unique limit point at infinity, i.e. kn !1; n!1. Together with the constant
function, projections of the eigenfunctions, f nð y; zÞ ¼ cnj

P
0 constitute an orthogonal

basis in the mean-squares metrics. Because the velocity potential f satisfies the
volume conservation condition (see, the last integral equality in equation (1)), getting
known {kn} and {cn}, one can represent the solution of equation (1) and equation (2) as
a Fourier series by fn ¼ cnðx; y; zÞexpðisntÞ, namely, as a superposition of the
free-standing waves.

2.3 On the Ritz-Treftz schem for the spectral problem (4)
Problem (4) admits a minimax variational formulation (Feschenko et al., 1969; Morand
and Ohayon, 1995), which is based on the positive functional:

KðcÞ ¼

R
Q0
ð7cÞ2dQRP

0

c2dS
ð6Þ

under the supplementary condition
RP

0

c dS ¼ 0. In that case, the absolute minimum
of the functional equation (6) coincides with the lowest eigenvalue of the spectral
problem (4). Furthermore, the necessary condition for an extrema of equation (6) leads
to the variational equation:Z

Q0

ð7c;7hÞdQ2 k

Z
P

0

chdS ¼ 0 ð7Þ

with respect to a non-constant function c, where h is a smooth test-function.
Variational problem (7) may be solved by the Ritz-Treftz variational scheme.

Approximate solutions are then posed as the following linear combination of smooth
harmonic functions:

cðx; y; zÞ ¼
Xq
k¼1

akBkðx; y; zÞ: ð8Þ

Substituting equation (8) into equation (7) and using Bi(i ¼ 1, . . . ,q) as test-functions,
one obtains the spectral matrix problem:

Xq
k¼1

ð{aik} 2 k{bik}Þak ¼ 0; i ¼ 1; . . . ; q ð9Þ

Here, the elements of the non-negative matrices A ¼ {aik}; B ¼ {bik} are computed
by the formulae:
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aik ¼

Z
Q0

ð7Bi;7BkÞdQ ¼

Z
P

0
þS

›Bi

›n
Bj dS; bik ¼

Z
P

0

BiBkdS; ð10Þ

and the approximate eigenvalues are roots of the equation:

detðA2 kBÞ ¼ 0; ð11Þ

which appears as the necessary solvability condition of system (9). By increasing the
dimension q the non-zero roots of equation (11) converge (from above) to the lower
eigenvalues of equation (4). Approximate eigenfunctions (8) are formed by the
eigenvectors of equation equation (9), {ak,k ¼ 1, . . . ,q}.

A key difficulty of the Ritz-Treftz scheme consists of establishing a suitable
analytical functional basis {Bk}. The completeness of functional sets significantly
depends on the actual shape of Q0. To the author’s knowledge, there are two types of
analytical functional sets, which may be adapted to the studied case. The first set is
proposed in the book by Lukovsky et al. (1984). It follows from a separation of
variables in the Laplace equation done in the spherical coordinate system. These
harmonic solutions are of polynomial structure (harmonic polynomial solutions, HPS)
in the Cartesian coordinate system. Their completeness is proved for all star-shaped
domains with respect to the origin. Being rewritten in a cylindrical coordinate system,
the HPS admit the separation of the angular coordinate and keep polynomial structure
with regard to the remaining coordinates, i.e. in projections on a meridional
cross-section. A specific functional basis (SFB) is presented by Gavrilyuk et al. (2005).
It is derived in the cylindrical coordinate system combined with a non-conformal
mapping of the meridional cross-section. The functional set is harmonic and satisfies
the zero-Neumann condition on the conical walls. Furthermore, we utilise these two
functional sets in the Ritz-Treftz scheme to solve the spectral problem (4). The
tree-dimensional problem and its variational formulation (7) are thereby reduced to two
dimensions by separating the angular-type variable.

3. Ritz-Treftz method based on the HPS
We use the cylindrical coordinate system (X,j,h) linked with the original Cartesian
coordinates by:

x ¼ X þ X0; y ¼ j cosh; z ¼ j sinh: ð12Þ

Here, the lag X0 along the vertical axis is introduced to superpose the origin of the
cylindrical coordinate system with the waterplane. The solution of equation (4) is
represented in the following form:

cðX ; j;hÞ ¼ wmðX ; jÞ
sinmh

cosmh

 !
; m ¼ 0; 1; 2. . . ð13Þ

This makes it possible to separate the angular coordinate h and to reduce the
three-dimensional boundary value problem (4) to the following m-parametric family
(m is a non-negative integer) of two-dimensional spectral problems:
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›

›X
j
›wm

›X

� �
þ

›

›j
j
›wm

›j

� �
2

m 2

j
wm ¼ 0 inG;

›wm

›X
¼ kmwm on L0;

›wm

›n
¼ 0 on L; jwmðX ; 0Þj , 1;

Z
L0

j
›w0

›X
dj ¼ 0:

ð14Þ

Problem (14) is defined in a meridional plane of Q0and L ¼ L1 þ L2 (Figure 2). This
means that the eigenvalues of the original three-dimensional problem constitute a
two-parametric set k ¼ kmiðm ¼ 0; 1; . . .; i ¼ 1; 2; . . .Þ, where i $ 1 enumerates the
eigenvalues of equation (14) in ascending order. The corresponding eigenfunctions of
equation (4) take the form equation (13) with wm ¼ wmiðX ; jÞ.

According to Lukovsky et al. (1984), the HPS admit the following form in the
meridional plane (after separation of the h-coordinate):

wðmÞ
k ðX ; jÞ ¼

2ðk2mÞ!

ðkþmÞ!
RkP ðmÞ

k

X

R

� �
; k $ m; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ j 2

p
; ð15Þ

Where P ðmÞ
k are Legendre’s functions of first kind. The functions {wðmÞ

k }are the solutions
of the first equation of (14). It can be shown that wðmÞ

k has indeed a polynomial structure
in terms of X and j. The first functions of the set equation (15) take the form:

wð0Þ
0 ¼ 1; wð0Þ

1 ¼ X ; wð0Þ
2 ¼ X 2 2

j 2

2
; ::: ðm ¼ 0Þ;

wð1Þ
1 ¼ j; wð1Þ

2 ¼ Xj; wð1Þ
3 ¼ X 2j2

j 3

4
; ::: ðm ¼ 1Þ;

wð2Þ
2 ¼ j 2; wð2Þ

3 ¼ Xj 2; wð2Þ
4 ¼ X 2; j 2 2

j 4

6
; ::: ðm ¼ 2Þ;

wð3Þ
3 ¼ j 3; wð3Þ

4 ¼ Xj 3; wð3Þ
5 ¼ X 2; j 3 2

j 5

8
; ::: ðm ¼ 3Þ:

The computation of {wðmÞ
k } can be realised by the following recurrence relations:

Figure 2.
Meridional planes of
L- and V-shaped tanks
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›wðmÞ
k

›X
¼ ðk2mÞwðmÞ

k21; j
›wðmÞ

k

›j
¼ kwðmÞ

k 2 ðk2mÞXwðmÞ
k21;

ðk2mþ 1ÞwðmÞ
kþ1 þ ð2kþ 1ÞXwðmÞ

k 2 ðk2mÞðX 2 þ j 2ÞwðmÞ
k21;

ðk2mþ 1Þjwðmþ1Þ
k ¼ 2ðmþ 1Þ ðX 2 þ j 2ÞwðmÞ

k21 2 XwðmÞ
k

� �
:

By separating the h-coordinate in the variational formulation (7) and in the
representation equation (8), we arrive at the following m-parametric families (m is
non-negative integer) of approximate solutions:

wmðX ; jÞ ¼
Xq
k¼1

aðmÞ
k wðmÞ

kþm21ðX ; jÞ; ð16Þ

and spectral matrix problems:

Xq
k¼1

a
ðmÞ
ik

� �
2 km b

ðmÞ
ik

� �� �
ak ¼ 0 ði ¼ 1; . . . ; qÞ;

det a
ðmÞ
ik

� �
2 km b

ðmÞ
ik

� �� �
¼ 0;

ð17Þ

following from (9). The elements a
ðmÞ
ik

� �
and b

ðmÞ
ik

� �
are computed for the L-cones by

the formulae:

a
ðmÞ
ij ¼

Z r1

0

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
X¼0

djþ

Z 0

2h

j
›wðmÞ

iþm21

›j
wðmÞ
jþm21

 !
j¼tanu0X2r1

dX

2tanu0

Z 0

2h

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
j¼tanu0X2r1

dX2

Z 1

0

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
X¼2h

dj;

b
ðmÞ
ij ¼

Z r1

0

jwðmÞ
iþm21w

ðmÞ
jþm21

� 	
X¼0

dj;

and for the V cones by the formulae:

a
ðmÞ
ij ¼

Z 1

0

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
X¼0

djþ

Z 0

2h

j
›wðmÞ

iþm21

›j
wðmÞ
jþm21

 !
j¼tanu0Xþ1

dX

2tanu0

Z 0

2h

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
j¼tanu0Xþ1

dX2

Z r1

0

j
›wðmÞ

iþm21

›X
wðmÞ
jþm21

 !
X¼2h

dj;

b
ðmÞ
ij ¼

Z 1

0

jwðmÞ
iþm21w

ðmÞ
jþm21

� 	
X¼0

dj:
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For each fixed m, the second equation of (17) has q positive roots (n ¼ 1,2, . . . ,q). The
multiplicity should be accounted for. Since the Ritz-Treftz method implies the
minimisation of a functional, the approximate values kmn converge from above. This
makes it possible to check the convergence by the number of significant digits, which
do not change as increases. The method gives the best approximation for the lowest
eigenvalue km1.

Convergence. Our numerical experiments were primary dedicated to eigenvalues
km1, m ¼ 0,1,2,3. These eigenvalues are responsible for the lowest natural modes,
which give a decisive contribution to hydrodynamic loads (Ibrahim, 2005; Gavrilyuk
et al., 2005). In the case of V-tanks, the method shows a fast convergence to km1 and
provides satisfactory accuracy for km2 and km3, too. It shows a slower convergence
for the L-tanks. Furthermore, the convergence depends not only on the tank type
(V or L-shaped), but also on the semi-apex angle u0and the dimensionless parameter
0 , r1 , 1. The results in Table I (A) exhibit a typical convergence behaviour for the
V-tanks with 108 # u0 # 758 and 0.2 # r1 # 0.9. The table shows stabilisation of 5-6
significant digits as q $ 14. The best accuracy is established for the lowest spectral
parameter k11. The accuracy grows with q for m – 0. However, computations of the
value k01, which is responsible for the axial-symmetric natural mode, may become
unstable for q . 17. This explains why we do not present numerical results on this
eigenvalue for q ¼ 20 While m – 1 and 0.2 # r1 # 0.9, increasing u0 . 758 leads to a
slower convergence. In this case, q ¼ 17,. . . ,20 guarantees only 3-4 significant digits
(necessary engineering accuracy). The same number of basic functions keeps this
number of significant digits for the tanks with r1 , 0.2 and 108 # u0 # 758. When r1

tends to zero (truncated tank is close to a non-truncated one), the approximations km1

were validated by numerical results reported by Gavrilyuk et al. (2005) as well as by
experimental data given in Bauer (1982).

In Table I (B), typical convergence behaviour for the L-shaped tanks with
108 # u0 # 758 is presented. A comparative analysis of parts (A) and (B) illustrates
that the method is in the latter case less efficient. In particular, computations of k01 are
not so precise. Moreover, 18-20 basic functions lead to 4-5 significant digits of km1 only
for r1 $ 0.4. This is not the case for lower values of r1. Furthermore, when
r1 # 0.2,q ¼ 17, . . . ,20 can only guarantee 2-3 significant digits for k11. The slower
convergence for the L-shaped tanks can in part be clarified by the occurrence of
singular first derivatives of the eigenfunctions cm at an inner vertex between L0and L1

(see the mathematical results by Lukovsky et al., 1984). The HPS are smooth in the
(j, X)-plane, and, therefore, do not capture this singular behaviour. The singularity
disappears when the corner angle is less than 908. This occurs only for the L-shaped
tanks. The V-shaped tanks are characterised by a similar singularity at the vertex
formed by L1and L2. However, because the natural modes (eigenfunctions cm) should
“decay” exponentially downward, the method may be sensitive with respect to that
singularity only for shallow water. Our numerical experiments confirm this fact
asr1 , 0.1.

3.1 Ritz-Treftz method based on the SFB
The nonlinear resonant sloshing is effectively studied by multimodal methods. As it is
shown by Lukovsky (1975), Lukovsky and Timokha (2002), these methods require
analytical expressions for the natural modes, which:
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Convergence to

km1,m ¼ 0,1,2,3 for
different r1 versus the

number of basic functions
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. are analytically expandable over the waterplane;

. satisfy a zero-Neumann condition at the tank walls and, if the tank is
non-cylindrical; and

. can be transformed to a curvilinear coordinate system (x1,x2,x3), in which the free
surface is governed by the normal form representation x1 ¼ ~fðx2; x3; tÞ.

An example of suitable approximate natural modes for non-truncated V-tanks is given
by Lukovsky (1990) and Gavrilyuk et al. (2005). The present section generalises these
results.

Curvilinear coordinate system. The non-Cartesian parametrisation proposed by
Gavrilyuk et al (2005) links the x,y,z coordinates with x1,x2,x3 as follows:

x ¼ x1; y ¼ x1x2 cos x3; z ¼ x1x2 sin x3: ð18Þ

Thus, the variable x3 ¼ h is the polar angle in the Oyz-plane and corresponds to h in
equation (12). Figure 3 demonstrates that the hydrostatic liquid domain Q0 takes in the
(x1,x2,x3)-system the form of an upright rectangular base cylinder ðx0 # x1 # x10; 0
# x2 # x20; 0 # x3 # 2pÞ. The domain G* represents a rectangle with the
sides h ¼ x10 2 x0and x20 ¼ tan u0 in theOx2x1-plane. Here, the radius of the
undisturbed water plane is rt ¼ 1 for the V-tanks andrt ¼ r1 for the L-tanks. Having
presented:

wðx1; x2; x3Þ ¼ cmðx1; x2Þ
sinmx3

cosmx3

 !
; m ¼ 0; 1; 2; . . . ð19Þ

and following Gavrilyuk et al. (2005), one obtains that the original three-dimensional
problem (4) admits separation of the spatial variable x3. Furthermore, the
transformation (18) generates the following m-parametric family of spectral
problems with respect to:

p
›2cm

›x2
1

þ 2q
›2cm

›x1›x2
þ s

›2cm

›x2
2

þ d
›cm

›x2
2m 2ccm ¼ 0 in G*; ð20Þ

p
›cm

›x1
þ q

›cm

›x2
¼ kmpcm on L*

0 ; ð21Þ

Figure 3.
Meridional cross-sections
of the original and
transformed domains
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s
›cm

›x2
þ q

›cm

›x1
¼ 0 on L*

1 ; ð22Þ

p
›cm

›x1
þ q

›cm

›x2
¼ 0 on L*

2 ; ð23Þ

jcmðx1; 0Þj , 1; m ¼ 0; 1; 2; . . . ; ð24Þ

Z x20

0

c0x2dx2 ¼ 0; ð25Þ

where G* ¼ {ðx1; x2Þ : x0 # x1 # x10; 0 # x2 # x20}, �W
ð0Þ
k , d ¼ 1 þ 2x2

2; c ¼ 1=x2 and
the boundary of G* consists of the portions L*

0 ;L
*
1 and L*

2 .
Particular solutions of equation (20) and equation(22). Gavrilyuk et al. (2005) studied

a spectral problem, which is similar to equations (20)-(25). Following results by
Eisenhart, they proved that equation (20) and equation (22) allow together for the
separation of the spatial variables x1 and x2. For our problem, this separation leads to
the following particular solutions:

xn1T
ðmÞ
n ðx2Þ and

T
ðmÞ

n ðx2Þ

x1þn
1

; n $ 0: ð26Þ

In order to determine T ðmÞ
n , we have to consider the following homogeneous boundary

value problem, which depends on the real parameter n :

x2
2ð1 þ x2

2ÞT
00ðmÞ
n þ x2ð1 þ 2x2

2 2 2nx2
2ÞT

00ðmÞ
n þ ½nðn2 1Þx2

2 2m 2�T ðmÞ
n ¼ 0; ð27Þ

T
00ðmÞ
n ðx20Þ ¼ n

x20

1 þ x2
20

TðmÞ
n ðx20Þ; jT ðmÞ

n ð0Þj , 1: ð28Þ

It can be shown that the problem (27) and (28) has only nontrivial solutions for a
countable set of values n ¼ nmn . 0ðm ¼ 0; 1; . . .; n ¼ 1; 2; . . .Þ:

The second class of functions, T
ðmÞ

n , appears only in the case of x0 – 0, i.e. when the
conical tank is truncated. Computation of T

ðmÞ

n leads to the following n-parametric
problem:

x2
2ð1 þ x2

2ÞT
00ðmÞ

þ x2ð1 þ 4x2
2 2 2nx2

2ÞT
0
n þ ½ðnþ 1Þðnþ 2Þx2

2 2m 2�T
ðmÞ

¼ 0; ð29Þ

T 0ðmÞðx20Þ þ ðnþ 1Þ
x20

1 þ x2
20

T
ðmÞ

ðx20Þ ¼ 0: ð30Þ

Obviously, nontrivial solutions of equation (29) and equation (30) exist only for a
countable set of nonnegative values n.

Let us now show that the solution of equations (27) and (29) can be expressed in
terms of the spheroidal harmonics and the set {nmn} is the same for the problems (27)
and (28) and the problems (29) and (30). For this purpose, we change the variables in
equations (27) and (29) by m ¼ ð1 þ x2

2Þ
2ð1=2Þ and substitute yðmÞ ¼ mnTðmÞ and
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yðmÞ ¼ m212nTðmÞ into equation (27) and equation (29), respectively. This reduces the
two equations to the same well-known differential equation:

ð1 2 m 2Þy00ðmÞ2 2my0ðmÞ þ nðnþ 1Þ2
m 2

1 2 m 2


 �
yðmÞ ¼ 0;

whose solutions coincide with the Legendre function of first kind, i.e. yðmÞ ¼ P ðmÞ
n ðmÞ.

Furthermore, treating the boundary conditions (28) and (30) in the same way and
using the substitution m ¼ cos u, the following common equation is obtained:

›P ðmÞ
n ðcos uÞ

›u

����
u¼u0

¼ 0: ð31Þ

This equation can be considered as a transcendental equation for the computation of
the values {nmn}- Appendix (Figure A1) presents the first 12 values of {nmn}
(m ¼ 0,1,2,3) versus u0.

In conclusion, with the technique described above, we get the following nontrivial
particular solutions

TðmÞ
nmk

ðx2Þ ¼ ð1 þ x2
2Þ

nmk
2 P ðmÞ

nmk

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

2

q
0
B@

1
CA; ð32Þ

T
ðmÞ

nmk
ðx2Þ ¼ ð1 þ x2

2Þ
212nmk

2 P ðmÞ
nmk

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

2

q
0
B@

1
CA: ð33Þ

Particular solutions as a functional basis. Let the particular solutions (26), (32) and (33)
be rewritten in the form:

W ðmÞ
k ðx1; x2Þ ¼ N ðmÞ

k xnmk

1 T ðmÞ
nmk

ðx2Þ; �W
ðmÞ

k ðx1; x2Þ ¼ �N
ðmÞ

k x212nmk

1 T
ðmÞ

nmk
ðx2Þ: ð34Þ

Here, N ðmÞ
k and �N

ðmÞ

k are multipliers which are chosen to satisfy the following condition:

1 ¼ kW ðmÞ
k jj

2
L*

2
þL*

0

¼ k �W
ðmÞ

k jj
2
L*

2
þL*

0

¼

Z x20

0

x2½ðW
ðmÞ
k jx1¼x10

Þ2 þ ðW ðmÞ
k jx1¼x0

Þ2�dx2

¼

Z x20

0

x2½ð �W
ðmÞ

k jx1 ¼ x10Þ
2 þ ð �W

ðmÞ

k jx1¼x0
Þ2�dx2:

ð35Þ

equation (35) says that W ðmÞ
k and �W

ðmÞ

k . have the unit norm (in the mean-squares

metrics) on the boundary L*
2 þL*

0 , where equations (21) and (23) should be
approximately satisfied. Explicit formulae for these normalising multipliers have
the form:
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N ðmÞ
k ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2nmk

10 þ x2nmk

0

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR x20

0 ð1 þ x2
2Þ

nmk P ðmÞ
nmk

� 	2

dx2

r ;

�N
ðmÞ

k ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2222nmk

10 þ x2222nmk

0

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR x20

0 ð1 þ x2
2Þ

212nmk P ðmÞ
nmk

� 	2

dx2

r :

The case m ¼ 0 requires, in addition, the volume conservation condition (25).
This implies a re-definition of the functions W ð0Þ

k and �W
ð0Þ
k by: W ð0Þ

k U W ð0Þ
k 2 cð0Þk ,

�W
ð0Þ
k U �W

ð0Þ
k 2 �cð0Þk ;where:

cð0Þk ¼
2

x2
20

Z x20

0

x2W
ð0Þ
k ðx10; x2Þdx2; �cð0Þk ¼

2

x2
20

Z x20

0

x2
�W
ð0Þ
k ðx10; x2Þdx2:

Variational method. In accordance with the Ritz-Treftz scheme, we represent
approximate solutions of equations (20)-(25) in the form:

cmðx1; x2Þ ¼
Xq1

k¼1

aðmÞ
k W ðmÞ

k þ
Xq2

l¼1

�a ðmÞ
l

�W
ðmÞ

l : ð36Þ

By separating the x3 coordinate in variational formulation (7) (after substitution of
equation (19)), representation (36) leads to the m-parametric family of spectral
problems:

XQ
k¼1

a
ðmÞ
ik

� �
2 km b

ðmÞ
ik

� �� �
ak ¼ 0 ði ¼ 1; . . . ;QÞ;

det ~a
ðmÞ
ij

n o
2 km ~b

ðmÞ

ik

n o� 	
¼ 0:

ð37Þ

The spectral problem (37) has Q ¼ q1 þ q2 eigenvalues. Because the representation
(36) contains two types of functions, namely W ðmÞ

k and, �W
ðmÞ

l there exist four

sub-matrices of ~a
ðmÞ
ij

n o
and ~b

ðmÞ

ij

n o
such that:

~a
ðmÞ
ij ¼

a
ðmÞ
ij1 a

ðmÞ
ij2

a
ðmÞ
ij3 a

ðmÞ
ij4

0
@

1
A; ~b

ðmÞ

ij ¼

b
ðmÞ
ij1 b

ðmÞ
ij2

b
ðmÞ
ij3 b

ðmÞ
ij4

0
@

1
A:

The elements a
ðmÞ
ijs

n o
and b

ðmÞ
ijs

n o
, s ¼ 1, . . . ,4, are computed by the formulae:

a
ðmÞ
ij1 ¼

Z x20

0

x2
1x2

›W ðmÞ
i

›x1
2 x1x

2
2

›W ðmÞ
i

›x2

 !
x1¼ht

W ðmÞ
j dx2

2

Z x20

0

x2
1x2

›W ðmÞ
i

›x1
2 x1x

2
2

›W ðmÞ
i

›x2

 !
x1¼hb

W ðmÞ
j dx2;
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a
ðmÞ
ij2 ¼

Z x20

0

x2
1x2

›W ðmÞ
i

›x1
2 x1x

2
2

›W ðmÞ
i

›x2

 !
x1¼ht

�W
ðmÞ

j dx2

2

Z x20

0

x2
1x2

›W ðmÞ
i

›x1
2 x1x

2
2

›W ðmÞ
i

›x2

 !
x1¼hb

�W
ðmÞ

j dx2;

a
ðmÞ
ij3 ¼

Z x20

0

x2
1x2

› �W
ðmÞ

i

›x1
2 x1x

2
2

› �W
ðmÞ

i

›x2

 !
x1¼ht

W ðmÞ
j dx2

2

Z x20

0

x2
1x2

› �W
ðmÞ

i

›x1
2 x1x

2
2

› �W
ðmÞ

i

›x2

 !
x1¼hb

W ðmÞ
j dx2;

a
ðmÞ
ij4 ¼

Z x20

0

x2
1x2

› �W
ðmÞ

i

›x1
2 x1x

2
2

› �W
ðmÞ

i

›x2

 !
x1¼ht

�W
ðmÞ

j dx2

2

Z x20

0

x2
1x2

› �W
ðmÞ

i

›x1
2 x1x

2
2

› �W
ðmÞ

i

›x2

 !
x1¼hb

�W
ðmÞ

j dx2;

b
ðmÞ
ij1 ¼ h2

t

Z x20

0

x2 W ðmÞ
i W ðmÞ

j

� 	
x1¼ht

dx2; b
ðmÞ
ij2 ¼ h2

t

Z x20

0

x2 W ðmÞ
i

�W
ðmÞ

j

� 	
x1¼ht

dx2;

b
ðmÞ
ij3 ¼ h2

t

Z x20

0

x2
�W
ðmÞ

i W ðmÞ
j

� 	
x1¼ht

dx2; b
ðmÞ
ij4 ¼ h2

t

Z x20

0

x2
�W
ðmÞ

i
�W
ðmÞ

j

� 	
x1¼ht

dx2:

In the case ofL- and V-tanks, we have ht ¼ r1= tan u0, hb ¼ 1= tan u0 and ht ¼ 1= tan u0,

hb ¼ r1= tan u0, respectively.
Convergence. Column A in Table II shows a typical convergence behaviour in the

case of V-tanks with 108 # u0 # 758 and 0.2 # r1 # 0.9. When 0.2 # r1 # 0.55, the
method generates 4-5 significant digits of km1 for q ¼ q1 ¼ q2 ¼ 7, . . . ,10 (14, . . . ,20
basic functions). This is consistent with the convergence results in Section 3. However,
the SFB keeps also a fast convergence to km1 for r1 , 0.2. This includes the case of k01,
which has not been satisfactory handled by the HPS. Moreover, when 0 , r1 # 0.4,
the number of significant digits is larger (for the same number of basic functions) for
158 # u0 , 308, but it is only marginally smaller for 158 # u0. Gavrilyuk et al. (2005)
related such a slower convergence of an analogous method for smaller semi-apex
angles to the asymptotic behaviour of the exact solution along the vertical axis. Their
conclusion is that the eigenfunctions cm should exponentially decay downward Ox
for a circular cylindrical tank, to which the conical domain tends as u0 decreases.
However, W ðmÞ

k and �W
ðmÞ

k do not capture this decaying. Furthermore, decreasing
the dimensionless liquid depth h(r1 ! 1 or u0 ! 908) may cause a lower accuracy
(3-4 significant digits for 18-24 basic functions).
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A B
Q r1 ¼ 0.2 r1 ¼ 0.4 r1 ¼ 0.6 r1 ¼ 0.8 r1 ¼ 0.9 r1 ¼ 0.2 r1 ¼ 0.4 r1 ¼ 0.6 r1 ¼ 0.8 r1 ¼ 0.9

2 3.385676 3.385666 3.382064 3.148405 2.224870 20.82985 10.41489 6.934470 4.781070 2.868894
3 3.385606 3.385596 3.381920 3.143923 2.211744 20.29240 10.14616 6.754682 4.629653 2.748954
4 3.385601 3.385591 3.381878 3.141937 2.206179 20.15184 10.07588 6.707583 4.588863 2.715911
5 3.385600 3.385590 3.381859 3.140888 2.203283 20.09711 10.04852 6.689248 4.572788 2.702514
6 3.385600 3.385590 3.381847 3.140267 2.201583 20.07070 10.03531 6.680396 4.264916 2.695817
7 3.385600 3.385590 3.381840 3.139870 2.200501 20.05610 10.02801 6.675501 4.560515 2.692006
8 3.385600 3.385590 3.381835 3.139601 2.199769 20.04724 10.02358 6.672529 4.557819 2.689637
9 3.385600 3.385590 3.381832 3.139410 2.199252 20.04147 10.02070 6.670596 4.556053 2.688066

10 3.385600 3.385590 3.381829 3.139270 2.198872 20.03753 10.01872 6.669272 4.554837 2.686973
11 3.385600 3.385590 3.381827 3.139164 2.198585 20.03471 10.01732 6.668327 4.553964 2.686181
12 3.385600 3.385590 3.381826 3.139082 2.198364 20.03263 10.01628 6.667629 4.553317 2.685590

k01

2 1.304378 1.301707 1.254338 0.935957 0.544861 11.33533 5.647088 3.528677 1.672867 0.732410
3 1.304377 1.301695 1.254148 0.934864 0.543483 11.31577 5.637221 3.521265 1.666870 0.729246
4 1.304377 1.301691 1.254073 0.934437 0.542976 11.30879 5.633703 3.518590 1.664611 0.728093
5 1.304377 1.301689 1.254036 0.934226 0.542729 11.30558 5.632078 3.517343 1.663527 0.727536
6 1.304377 1.301688 1.254016 0.934106 0.542589 11.30384 5.631202 3.516665 1.662926 0.727224
7 1.304377 1.301687 1.254003 0.934032 0.542502 11.30281 5.630678 3.516258 1.662559 0.727032
8 1.304377 1.301687 1.253994 0.933983 0.542445 11.30214 5.630340 3.515995 1.662319 0.726906
9 1.304377 1.301687 1.253988 0.933949 0.542405 11.30168 5.630110 3.51515 1.662153 0.726818

10 1.304377 1.301686 1.253984 0.933924 0.542376 11.30136 5.629947 3.515687 1.662034 0.726754
11 1.304377 1.301686 1.253981 0.933906 0.542354 11.30112 5.629826 3.515592 1.661945 0.726707
12 1.304377 1.301686 1.253978 0.933892 0.542337 11.30094 5.629735 3.515520 1.661878 0.726671

k21

2 2.263162 2.263100 2.255147 2.019323 1.371212 18.03918 9.019177 5.977616 3.761864 1.952759
3 2.263151 2.263088 2.255060 2.017249 1.366295 17.98215 8.990657 5.958186 3.742630 1.938182
4 2.263150 2.263087 2.255026 2.016335 1.364234 17.96014 8.979646 5.950674 3.734876 1.932215
5 2.263150 2.263087 2.255007 2.015850 1.363151 17.94951 8.974330 5.947040 3.731012 1.929167
6 2.263150 2.263086 2.254996 2.015563 1.362510 17.94361 8.971384 5.945023 3.728818 1.927400
7 2.263150 2.263086 2.254989 2.015378 1.362099 17.94003 8.969588 5.943793 3.727457 1.926285
8 2.263150 2.263086 2.254985 2.015252 1.361819 17.93768 8.968417 5.942990 3.726556 1.925537
9 2.263150 2.263086 2.254981 2.015163 1.361620 17.93607 8.967612 5.942438 3.725930 1.925011

10 2.263150 2.263086 2.254979 2.015097 1.361473 17.93492 8.967036 5.942042 3.725477 1.924627
11 2.263150 2.263086 2.254977 2.015047 1.361362 17.93407 8.966610 5.941750 3.725140 1.924338
12 2.263150 2.263086 2.254976 2.015008 1.361276 17.93342 8.966287 5.941527 3.724882 1.924115

k31

2 3.180280 3.180279 3.179147 3.051144 2.346969 24.36124 12.18061 8.115651 5.700453 3.473876
3 3.180251 3.180250 3.179101 3.049247 2.338329 24.25430 12.12714 8.079896 5.667935 3.441587
4 3.180249 3.180248 3.179090 3.048337 2.334334 24.21030 12.10514 8.065186 5.654291 3.427352
5 3.180249 3.180249 3.179085 3.047828 2.332117 24.18824 12.09411 8.057806 5.647308 3.419803
6 3.180249 3.180247 3.179082 3.047514 2.330753 24.17570 12.08787 8.053610 5.643277 3.415319
7 3.180249 3.180247 3.179080 3.047306 2.329853 24.16792 12.08395 8.051009 5.640748 3.412440
8 3.180249 3.180247 3.179078 3.047161 2.329228 24.16278 12.08138 8.049290 5.639061 3.410481
9 3.180249 3.180247 3.179077 3.047056 2.328776 24.15922 12.07960 8.048098 5.637882 3.409090

10 3.180249 3.180247 3.179077 3.046978 2.328438 24.15666 12.07832 8.047239 5.637026 3.408066
11 3.180249 3.180247 3.179076 3.046918 2.328179 24.15475 12.07736 8.046600 5.636386 3.407290
12 3.180249 3.180247 3.179076 3.046871 2.327976 24.15329 12.07664 8.046112 5.635894 3.406689

Notes: Column (A) is for a V-shaped tank; (B) corresponds to a L-shaped tank, u0 ¼ 308

Table II.
Convergence to km1,

m ¼ 0,1,2,3, for different
r1 versus the number of

basic functions
q ¼ q1 ¼ q2 in (36)
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Column B in Table II shows convergence for a L-tank. The same r1 and u0 as in the
column A are chosen. It can be seen that the numerical results may be less precise than
those in Section 3. For instance, the same number of basic functions gives only 2-3
significant digits when 0.2 # r1 # 0.9. However, in contrast to the HPS, the SFB
provides reliable computations for the case of an axial symmetric mode k01. In
addition, whereas 0.05 # r1 # 0.4, the lowest eigenvalue k11 is calculated with a better
accuracy. For the same r1, increasing the semi-apex angle may lead to a slower
convergence. If q1 ¼ q2 ¼ 12, the number of significant digits also decreases as r1 ! 1.
This “shallow water” case is handled with 2-3 significant digits as q1 ¼ q2 ¼ 12, . . . ,14.

The presence of the two types of basic functions in the representation (36) makes it
possible to vary q1 and q2 to obtain a better approximation with the same total number
of basic functions Q ¼ q1 þ q2 Variations of q1 and q2 with a fixed Q $ 16 showed that
a better accuracy of km1 can be expected for q2 . q1. In particular, this is true for
smaller liquid depths. For example, when the V-shaped tank is characterised by
u0 ¼ 308 and r1 ¼ 0.9, the approximate k11 ¼ 54233738 can be obtained with either
q1 ¼ q2 ¼ 12(Q ¼ 24) or q1 ¼ 7,q2 ¼ 12(Q ¼ 19).

4. Comparative analysis of the two method
A comparison of numerical experiments performed with the two different functional
bases shows, that the method based on the HPS is more accurate for smaller liquid
depths (0.6 # r1). However, larger liquid depths (r1 # 0.4) are better treated with the
second method. This can clearly be seen for the L-shaped tanks: the calculations with
the method by the SFB keep robustness as the number of basic functions is increased,
while the first method fails for larger dimensions. Generally speaking, the accuracy of
both methods is similar only for V-tanks with 0:2 # r1 # 0:55; u0 . 100.

Even though the number of basic functions is small, the two proposed methods give
an accurate approximation of the lowest eigenvalue k11. The lowest eigenvalue
determines the lowest natural frequency by s11 ¼

ffiffiffiffiffiffiffiffiffi
gk11

p
. This frequency is of primary

interest for modelling tower vibrations with a V-shaped tank. Therefore, we placed
special emphasis on a comparison of the numerical results obtained by the two methods
fork11. The results are illustrated in Figure 4(a) and (b). Here, domains in the (r1,u0)-plane
are identified, for which each of the methods gives the same number of significant digits
with twenty basic functions. One can see that the accuracy of the first method (HPS) may
become low only for small u0 and r1, e.g. for large liquid depths. In the other cases, the
method guarantees a fast convergence and high accuracy. On the other hand, small u0

Figure 4.
The number of significant
figures of k11 obtained for
V-tanks with 20 basic
functions by the methods
based on the HPS (Case a)
and the SF(Case b)
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and r1 are satisfactory handled by the second method (SFB). However, this method
converges slowly as r1 ! 1 andu0 . 458, e.g. for small liquid depths.

5. The lowest natural sloshing frequency
The natural sloshing frequencies sm1 are functions of the liquid depth h, the semi-apex
angle u0 and the radii r1 and r0. For the V-tanks, an increasing of u0decreases the
non-dimensional eigenvalues km1 (the non-dimensional natural sloshing frequencies
s2
m1r0=g ¼ km1). For the L-tanks, an increasing of u0increases km1.

Dependence of km1 on the ratio r1/r0 is illustrated in Figure 5(a) and (b). These
demonstrate that the non-dimensional frequencies decrease as the ratio r1=r0 ¼
ð1 þ tanðu0Þh=r1Þ decreases. In term of the fixed dimensional values of r1 and u0, this
means that the non-dimensional sloshing frequencies decrease with decreasing the
liquid depth h.

One interesting fact is that k01 < k21 for the studied geometric parameters in
the case of L-tanks. This is the same as for an upright circular cylindrical tank.

Figure 5.
Eigenvalues km1 versus r1

for L-shaped (Case a) and
V-shaped tanks (Case b)
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Further, the natural sloshing frequencies are very close to those for the non-truncated
conical V-shape tank as 0 # r1 , 0.6. Truncation matters for r1 ! 1, i.e. for
shallow-water sloshing.

The natural sloshing frequency an s11 of practical importance for the design of
water towers (Damatty and Sweedan, 2006). Having in mind this fact, we present in
Table III the values of k11 versus u0and r1. The corresponding computations have been
done to guarantee up to five significant digits. The dimensional natural sloshing
frequency s11 is computed from k11 by the formula:

s11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk11ðu0; r1=r0Þ

r0

s
; ð38Þ

where g and r1 are not scaled by r0. The numerical data from Table III can therefore be
used in both the structural design and the validation of other numerical methods.

6. Concluding remarks
We have proposed two efficient numerical-analytical methods for the computation
of the natural sloshing frequencies and modes in truncated conical tanks. These
methods are based on the Ritz-Treftz variational scheme. Extensive numerical
experiments showed that these methods have different domains of applicability in
terms of the semi-apex angle, the liquid depth and the tank type (V- or L-shaped).

The methods may have slow convergence behaviour and even diverge for some
L-shaped tanks. This fact can be explained by the singular behaviour of the
natural modes at the contact line formed by the waterplane and the conical walls.
From a mathematical point of view, if the smooth bases would be augmented by a
harmonic function, which has the specified singular behaviour, the convergence
can be considerably improved. Lukovsky et al. (1984) gave examples of such an
augmented function for two-dimensional spectral sloshing problems. Dedicated
mathematical studies are needed to specify a suitable singular function for our
case.

Bauer (1982) and Dokuchaev (1964) compared the numerical data presented in
this paper with simplified analytical approximation, which were obtained for pure
conical tanks with small semi-apex angles. Satisfactory agreement was observed
only for a small angle (u0 , 158). This agreement is consistent with the
assumptions used by Bauer (1982) who replaced the planar mean liquid surface by
spheric segment.

In future work, an emphasis should be placed on the shallow water sloshing. This
case requires a dedicated study, which has to be based on a nonlinear dissipative
sloshing model. Further, a special analysis is needed for approximate natural modes,
which enable handling singular behaviour at contact line formed by the mean free
surface and the rigid walls. Accounting for this singularity should improve
convergence.

Nonlinear phenomena are also of importance for resonant sloshing. Results of
the present paper may be utilised to improve the multimodal technique (Lukovsky,
1990; Faltinsen et al., 2000; Gavrilyuk et al., 2005) and to study the nonlinear
sloshing in a truncated conical tank. This will be the main purpose of our
forthcoming studies.
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Figure A1.
Values of nmn versus u0
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