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Abstract

Purpose — The main purpose of this paper is to develop two efficient and accurate numerical
analytical methods for engineering computation of natural sloshing frequencies and modes 1 the case
of truncated circular conical tanks.

Design/methodology/approach — The numerical-analytical methods are based on a Ritz Treftz
variational scheme with two distinct analytical harmonic functional bases.

Findings — Comparative numerical analysis detects the limit of applicability of variational methods
in terms of the semi-apex angle and the ratio between radii of the mean free surface and the circular
bottom. The limits are caused by different analytical properties of the employed functional bases.
However, parallel use of two or more bases makes it possible to give an accurate approximation of the
lower natural frequencies for relevant tanks. For V-shaped tanks, dependencies of the lowest natural
frequency versus the semi-apex angle and the liquid depth are described.

Practical implications — The methods provide the natural sloshing frequencies for V-shaped tanks
that are valuable for designing elevated containers in seismic areas. Approximate natural modes can
be used in derivations of nonlinear modal systems, which describe a resonant coupling with structural
vibrations.

Originality/value — Although variational methods have been widely used for computing the natural
sloshing frequencies, this paper presents their application for truncated conical tanks for the first time.
An original point is the use of two distinct functional bases.

Keywords Numerical analysis, Frequencies, Liquid flow containers
Paper type Research paper
1. Introduction

The number of constructions carrying a large liquid mass is enormous. Coupling the
structure and liquid requires a precise and efficient computation of the natural sloshing
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(eigen-) frequencies and modes. Being subject of spacecraft applications, the natural Natural sloshing

sloshing frequencies and modes for conical tanks were studied in 1950-1960’s years
of the past century. Special attention was paid to an estimate of the resulting
hydrodynamic force and moment.

The international standards concerning the megaliter elevated tanks (Eurocode 8,
1998) have stated a typical design for concrete tanks of conical and conicalbottom
shapes, typical examples are demonstrated by Damatty and Sweedan (2006). Owing to
seismic events, liquid motions in a water tank on the supporting tower cause severe
hydrodynamical loads. In the modelling of these loads, equivalent mechanical systems
(Damatty and Sweedan, 2006; Dutta ef al., 2004; Shrimali and Jangid, 2003) can be used.
These systems relate liquid dynamics to oscillations of a pendulum or a spring-mass
system. The eigenfrequencies of the equivalent systems should coincide with the lower
natural sloshing frequencies and, therefore, an accurate prediction of the sloshing
frequencies and modes is needed (Damatty et @, 2000; Dutta and Laha, 2000; Tang,
1999). This can be done by various Computational Fluid Dynamics (CFD) methods or
by using semi-empirical approximate formulae (Damatty et al., 2000; Gavrilyuk et al,
2005). Although the CFD-methods demand lots of CPU’s power, they are primary
employed in engineering practise to guarantee a substantial precision. When
concentrating on linear and nonlinear sloshing in V-shaped pure conical tanks,
Gavrilyuk et al. (2005) showed that an alternative might consist in a semianalytical
solution method. The method keeps the accuracy of the CFD-methods, but remains
CPU-efficient and simple in use. The constructed numerical-analytical solutions may
facilitate development of nonlinear sloshing theories (Lukovsky and Bilyk, 1985;
Lukovsky, 1990, 2004; Bauer and Eidel, 1988; Faltinsen et al, 2000, 2003; Gavrilyuk
et al., 2005, 2006). These theories are of importance for studying a resonant coupled
vibration of a tower and the contained liquid.

In order to find the natural sloshing frequencies and modes, a spectral boundary
value problem (Lukovsky ef al.,, 1984; Ibrahim, 2005) has to be solved. When the tank is
V- and A- shaped, the boundary value problem has no analytical solutions. Isolated
analytical solutions exist only for pure (non-truncated) conical V-tanks. Such an
example has been specified by Levin (1963) for the two lowest natural modes and the
semiapex angle 6, = 45°. These modes are characterised by the wave number 7 = 1 1in
angular direction. Dokuchaev and Lukovsky (1968) generalised this result. They
showed that analogous analytical solutions exist as 6y = arctan (/m). Mikishev and
Rabinovich (1968) and Feschenko et al. (1969) used these solutions for evaluation of
their numerical algorithms. Furthermore, simple approximate analytical solutions for
pure conical V-tanks can be obtained by replacing the planar waterplane by a spheric
segment. In that case, the spectral boundary value problem admits separation of
variables in the spherical coordinate system. This has been realised by Dokuchaev
(1964) and Bauer (1982). A satisfactory agreement with experimental data by Mikishev
and Dorozhkin (1961) and Bauer (1982) was reported as 6, = 15°.

The spectral boundary value problem for the linear sloshing modes admits a
variational formulation (Feschenko et al., 1969). This variational formulation facilitates
the Ritz-Treftz numerical scheme, whose practical realisation requires special sets of
analytical harmonic functional bases. Two of these harmonic bases are used in the
present paper for engineering computations of the natural frequencies and modes of
liquid sloshing in truncated conical tanks. The first basis is of polynomial type
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(harmonic polynomial solutions, HPS). The second one employs the Legendre functions
of first kind; it may be adopted by the mentioned nonlinear multimodal sloshing
theories. Extensive numerical experiments have been done to identify all the
geometrical parameters (semi-apex angle, position of secant plane and liquid depth), for
which the proposed functional bases guarantee a sufficient number of significant
figures for the lower natural frequencies.

In Section 3, the main focus is on the HPS. For the V-shaped tanks, we show that
11-17HPS provide 4-6 significant digits of the lower natural frequencies for the
semi-apex angles, which are smaller than 75° and larger than 10°. For the V- and
A-shaped tanks which are characterised by semi-apex angles larger than 75°, the same
number of the HPS guarantees 3-4 significant digits. For the A-shaped tanks with
semi-apex angles smaller than 75°, convergence to the natural frequencies depends on
the ratio between the radii of the mean liquid plane and the circular bottom. The
method is not very efficient (only about 2-3 significant digits can be obtained with
17-20 basic polynomials) when the semi-apex angle is smaller than 60° and the ratio
between the specified radii is smaller than 1/2. The slow convergence for the A-shaped
tanks can partially be attributed to a singular asymptotic behaviour of the natural
modes at the contact line formed by the waterplane and conical walls.

Lukovsky (1990) has proposed a non-conformal mapping technique to develop the
multimodal method for the nonlinear sloshing problem in a non-cylindrical tank.
Lukovsky and Timokha (2002) and Gavrilyuk ef al. (2005) have realised this technique
for a non-truncated V-tank. The natural sloshing modes were then approximated by a
special functional basis (SFB). In Section 4, we use the curvilinear coordinate system
proposed by Gavrilyuk ef al (2005) and generalise their results on natural sloshing
frequencies to the case of truncated V- and A-shaped conical tanks. For typical
geometrical configurations of elevated water tanks (a V-shaped cone with the
semi-apex angle between 30° and 60°), the method shows faster convergence behaviour
than in the case of Section 3. Six significant digits of the lowest sloshing frequency can
be computed by using only 6-10 basis functions.

A comparative analysis of the two methods is presented in Section 5. In Section 6,
we discuss the dependence of the lowest natural sloshing frequency on the geometrical
shape of truncated conical tanks. Bearing in mind that the relevant water tanks are of a
V-shape, we present the lowest spectral parameter (with a accuracy of five significant
digits) versus the semi-apex angle and the ratio between the radii of the mean water
plane and the bottom.

2. Statement of the problem

2.1 Differential and variational formulations

As it is typically assumed in sloshing theory (Ibrahim, 2005), we consider an ideal
incompressible liquid with irrotational flow that partly occupies an earth-fixed rigid
conical tank with the semi apex angle 6,. The mean (hydrostatic) liquid shape coincides
with the domain @ as it is shown in Figure 1. The gravity acceleration is directed
downwards along the symmetry axis Ox. The wetted conical walls are denoted by S;.
The circle S, is the tank bottom, S= 57U Sy and > is the non-perturbed
(hydrostatic) waterplane. The origin is superposed with artificial apex of the conical
surface. Henceforth, the problem is considered in a sizeless statement assuming that 7,
(the bottom radius for A-shaped and the water plane radius for V-shaped tanks)



is chosen as a characteristic geometrical dimension. Scaling by 7 implies % := h/ry — 0
(h is the liquid depth) and 7, == 71 /7. The non-dimensional radius 7; and the angle 6,
completely determine the geometric proportions of €. The limit 7; — 1 implies that
h — 0, ie. the water becomes shallow. At a fixed 71, the scaled liquid depth / tends to
zero as Oy — /2.

Linear sloshing in a motionless tank is governed by the following boundary value
problem (Lukovsky et al, 1984; Ibrahim, 2005):

. J J J J
Ad = 0in Qy: a—fza—];, a‘f+gf OnZO, — 0onS: / d’ds_o

@

where ¢(x,y,2,1) is the velocity potential, x = f{y,z,t) describes the free surface, # is the
outer normal to S and g is the gravity acceleration scaled by 7((g := g/70). The initial
conditions:

9
f(y,z,t) = Fo(y,2); ai;(y,z, to) = F1(¥,2) 2)

at an instant time ¢ = £, determine a unique solution of equation (1). The functions F
and F; define initial displacements of the free surface and its velocity, respectively.

2.2 Natural sloshing modes
The solution of equation (1) is associated with the free-standing waves:

¢(x7yaza t) = l,[f(x,y,Z)eXp(l.O'lL), iz =-1 (3)

where a is the natural sloshing frequency and yd(x,y,2) is the so-called natural mode.
Inserting equation (3) into equation (1) leads to the spectral problem:

A= 0in Qp; a——ml/onzo, 3 =0onS; / ad]dS 0 4)
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where the eigenvalue « is defined by:

k=", ®)
g
The spectral problem (4) has a real positive point wise spectrum (Morand and Ohayon,
1995):

0<kKi=K=..=Zk,=...

with a unique limit point at infinity, i.e. k,, — 00,72 — oo. Together with the constant
function, projections of the eigenfunctions, f,,(y,2) = ¥,|>_, constitute an orthogonal
basis in the mean-squares metrics. Because the velocity potential ¢ satisfies the
volume conservation condition (see, the last integral equality in equation (1)), getting
known {k,} and {,}, one can represent the solution of equation (1) and equation (2) as
a Fourier series by ¢, = ,(x,y,2)exp(io,t), namely, as a superposition of the
free-standing waves.

2.3 On the Ritz-Treftz schem for the spectral problem (4)
Problem (4) admits a minimax variational formulation (Feschenko et al., 1969; Morand
and Ohayon, 1995), which is based on the positive functional:

Jo,(V*dQ
J5= wdS

under the supplementary condition [§~ dS = 0. In that case, the absolute minimum
of the functional equation (6 comc&,‘é with the lowest eigenvalue of the spectral
problem (4). Furthermore, the necessary condition for an extrema of equation (6) leads
to the variational equation:

K@) = (©)

/ (V. Vm)dQ — « / ymdS = 0 @
Qo Zo

with respect to a non-constant function ¢, where n is a smooth test-function.

Variational problem (7) may be solved by the Ritz-Treftz variational scheme.
Approximate solutions are then posed as the following linear combination of smooth
harmonic functions:

q
Wx,9,2) = Y arBy(x,,2). ®
k=1

Substituting equation (8) into equation (7) and using B, = 1, ... ,q) as test-functions,
one obtains the spectral matrix problem:

q
> et —kiBaHa =0, i=1,....q )
k=1

Here, the elements of the non-negative matrices A = {a;;}, B = {Bj} are computed
by the formulae:



+an

ap = / (VB,, VBydQ = / Bipas, = /Z BBdS,  (10)

and the approximate eigenvalues are roots of the equation:
det(A — kB) = 0, (€30)

which appears as the necessary solvability condition of system (9). By increasing the
dimension ¢ the non-zero roots of equation (11) converge (from above) to the lower
eigenvalues of equation (4). Approximate eigenfunctions (8) are formed by the
eigenvectors of equation equation (9), {ap,k=1,...,9}.

A key difficulty of the Ritz-Treftz scheme consists of establishing a suitable
analytical functional basis {By}. The completeness of functional sets significantly
depends on the actual shape of €. To the author’s knowledge, there are two types of
analytical functional sets, which may be adapted to the studied case. The first set is
proposed in the book by Lukovsky ef al (1984). It follows from a separation of
variables in the Laplace equation done in the spherical coordinate system. These
harmonic solutions are of polynomial structure (harmonic polynomial solutions, HPS)
in the Cartesian coordinate system. Their completeness is proved for all star-shaped
domains with respect to the origin. Being rewritten in a cylindrical coordinate system,
the HPS admit the separation of the angular coordinate and keep polynomial structure
with regard to the remaining coordinates, ie. in projections on a meridional
cross-section. A specific functional basis (SFB) is presented by Gavrilyuk et al. (2005).
It is derived in the cylindrical coordinate system combined with a non-conformal
mapping of the meridional cross-section. The functional set is harmonic and satisfies
the zero-Neumann condition on the conical walls. Furthermore, we utilise these two
functional sets in the Ritz-Treftz scheme to solve the spectral problem (4). The
tree-dimensional problem and its variational formulation (7) are thereby reduced to two
dimensions by separating the angular-type variable.

3. Ritz-Treftz method based on the HPS
We use the cylindrical coordinate system (X,&m) linked with the original Cartesian
coordinates by:

x=X+Xy, y=~E&cosm, z=E&sin. 12)

Here, the lag X, along the vertical axis is introduced to superpose the origin of the
cylindrical coordinate system with the waterplane. The solution of equation (4) is
represented in the following form:

sinmn
¢(Xa§7n)=¢m(X>§)< > m=0,1,2... (13)

cos mm

This makes it possible to separate the angular coordinate m and to reduce the
three-dimensional boundary value problem (4) to the following m-parametric family
(m 1s a non-negative integer) of two-dimensional spectral problems:
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d@m dou _m* L e, :
(f > § <§ 0E > 3 on = 0inG; X Ky @m 0N Lo;
(14)

9o

9n _gonL; lem(X,0)] < oo; | g de=o

on

Problem (14) is defined in a meridional plane of Qpand L = L, + L, (Figure 2). This
means that the eigenvalues of the original three-dimensional problem constitute a
two-parametric set k = k,,;(m =0,1,...;=1,2,...), where i = 1 enumerates the
eigenvalues of equation (14) in ascending order. The corresponding eigenfunctions of
equation (4) take the form equation (13) with ¢, = @,;(X, &).

According to Lukovsky et al (1984), the HPS admit the following form in the
meridional plane (after separation of the n-coordinate):

2(k — m)!
(m) _ k p(m) = 2 1 22
w, (X, &) Grml R*P; ( ) k=m, R=+\X2+&, (15)

Where P( Jare Legendre’s functions of first kind. The functions {w(”” }are the solutions
of the ﬁrst equation of (14). It can be shown that w ) has indeed a polynomlal structure
in terms of X and & The first functions of the Set equation (15) take the form:

w =1, w’=X, w)=Xx*"-% (m = 0),

wl =¢ wh) =X& w =X"¢- (m=1),

4
@ _ 3 3 £
w3 = g ) w4 = Xg ) o

wd =X, 6 -3 (m=3).

The computation of {wfem)} can be realised by the following recurrence relations:

Figure 2.
Meridional planes of
A- and V-shaped tanks 11—
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aw
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" )
=Fk- m)wz_)l; Y

(k — m+ D) + 2k + DX — (k — m)(X? + i),

= kwi’") —(k— m)Xwgf)l,

k— m + 1)&4}27%-&-1) =2m+1) ((XZ + §2)w(m) Xwém))

By separating the m-coordinate in the variational formulation (7) and in the
representation equation (8), we arrive at the following m-parametric families (7 is
non-negative integer) of approximate solutions:

(X, = Za“’” wy'h, (X, 8, (16)
and spectral matrix problems:

q
S ({af} = kn{BP Y )ar =0 G=1,....9),
k=1 (17)

det ({a} = kn{BI"}) =

following from (9). The elements {a{” }and {B(’")}are computed for the A-cones by
the formulae:

" 0/ g™
(m) __ +m 1, .(m) +m—1, (m)
;= fl—wj 1 dé+ fl—wj 1 dX
0 0X — a&
X=0 g E=tan X —7

auw™ a w™
1 1
—tan 00/ (678’}’(" w](f':;i ) dX — / ’+m ]%4 ) dé,
—h E=tan 6 X —r, X==h

(1) _ (m) (Wl)
'Bij _/0 (gwlﬂn 1 ]+m I)X:()dg’

and for the V cones by the formulae:

auw™ 0/ g™
(m) z+m 1, .(m) i+m—1_, (m)
— dé+ — 2w dx
l] /0 (g 0X ]+m—1>X0 g [lz (f af J+m—1 -
= &=tanpX+1

O (o m Wil D)
_ 1+m— m Z+ﬂ’l m
tan@o/ fij+m71 dX — / ]+m 1 df,
—h
&=tanfX+1 X=-h

(m) _ (m) (m)
'Bij / (ébwz-&-m 1 ]+m 1>X Odf
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For each fixed m, the second equation of (17) has ¢ positive roots (z = 1,2, ... ,q). The
multiplicity should be accounted for. Since the Ritz-Treftz method implies the
minimisation of a functional, the approximate values k,,,, converge from above. This
makes it possible to check the convergence by the number of significant digits, which
do not change as increases. The method gives the best approximation for the lowest
eigenvalue k1.

Convergence. Our numerical experiments were primary dedicated to eigenvalues
K, m = 0,1,2,3. These eigenvalues are responsible for the lowest natural modes,
which give a decisive contribution to hydrodynamic loads (Ibrahim, 2005; Gavrilyuk
et al., 2005). In the case of V-tanks, the method shows a fast convergence to «,,; and
provides satisfactory accuracy for «,,» and k,,s, too. It shows a slower convergence
for the A-tanks. Furthermore, the convergence depends not only on the tank type
(V or A-shaped), but also on the semi-apex angle 6pand the dimensionless parameter
0 < 7 < 1. The results in Table I (A) exhibit a typical convergence behaviour for the
V-tanks with 10° = 6, = 75° and 0.2 = »; = 0.9. The table shows stabilisation of 5-6
significant digits as ¢ = 14. The best accuracy is established for the lowest spectral
parameter kq;. The accuracy grows with ¢ for m # 0. However, computations of the
value kg1, which is responsible for the axial-symmetric natural mode, may become
unstable for ¢ > 17. This explains why we do not present numerical results on this
eigenvalue for ¢ = 20 While m # 1 and 0.2 = »; = 0.9, increasing 6, > 75° leads to a
slower convergence. In this case, ¢ = 17,...,20 guarantees only 3-4 significant digits
(necessary engineering accuracy). The same number of basic functions keeps this
number of significant digits for the tanks with 7; < 0.2 and 10° =< 6, < 75°. When r;
tends to zero (truncated tank is close to a non-truncated one), the approximations
were validated by numerical results reported by Gavrilyuk ef al (2005) as well as by
experimental data given in Bauer (1982).

In Table I (B), typical convergence behaviour for the A-shaped tanks with
10° = 6, = 75° is presented. A comparative analysis of parts (A) and (B) illustrates
that the method is in the latter case less efficient. In particular, computations of kq; are
not so precise. Moreover, 18-20 basic functions lead to 4-5 significant digits of «,,,; only
for 71 =04. This is not the case for lower values of 7. Furthermore, when
r1 =02g=17,...,20 can only guarantee 2-3 significant digits for ;. The slower
convergence for the A-shaped tanks can in part be clarified by the occurrence of
singular first derivatives of the eigenfunctions ¢, at an inner vertex between Loand L;
(see the mathematical results by Lukovsky et al, 1984). The HPS are smooth in the
(& X)-plane, and, therefore, do not capture this singular behaviour. The singularity
disappears when the corner angle is less than 90°. This occurs only for the A-shaped
tanks. The V-shaped tanks are characterised by a similar singularity at the vertex
formed by L;and L,. However, because the natural modes (eigenfunctions ,,) should
“decay” exponentially downward, the method may be sensitive with respect to that
singularity only for shallow water. Our numerical experiments confirm this fact
asr; < 0.1.

3.1 Ritz-Treftz method based on the SFB

The nonlinear resonant sloshing is effectively studied by multimodal methods. As it is
shown by Lukovsky (1975), Lukovsky and Timokha (2002), these methods require
analytical expressions for the natural modes, which:
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Figure 3.

Meridional cross-sections
of the original and
transformed domains

« are analytically expandable over the waterplane;

+ satisfy a zero-Neumann condition at the tank walls and, if the tank is
non-cylindrical; and

* can be transformed to a curvilinear coordinate system (xy,%2,%3), in which the free
surface is governed by the normal form representation x7 = f(«x2, 23, t).

An example of suitable approximate natural modes for non-truncated V-tanks is given
by Lukovsky (1990) and Gavrilyuk et al. (2005). The present section generalises these
results.

Curvilinear coordinate system. The non-Cartesian parametrisation proposed by
Gavrilyuk et al (2005) links the x,y,z coordinates with x7,x9,43 as follows:

X=X1, Y=X1X2C0SX3, Z= X1X2SINX3. (18)

Thus, the variable x5 = 7 is the polar angle in the Oyz-plane and corresponds to 1 in
equation (12). Figure 3 demonstrates that the hydrostatic liquid domain ), takes in the
(x01,%9,x3)-system the form of an upright rectangular base cylinder (xp =< x1 = x70,0
= X9 = x99,0 =< x3 = 27m). The domain G* represents a rectangle with the
sides = x190 — xpand x99 = tan @y in theOxoxi-plane. Here, the radius of the
undisturbed water plane is 7, = 1 for the V-tanks andr; = 7, for the A-tanks. Having
presented:

sinm x3
Qo(x17x27x3) = lyllm(xth) COS M X3 ) m = 07 17 27 e (19)
and following Gavrilyuk et al. (2005), one obtains that the original three-dimensional
problem (4) admits separation of the spatial variable x3. Furthermore, the
transformation (18) generates the following m-parametric family of spectral
problems with respect to:

Y P | P | -
+ 2 +s +d——mcy, =0 mm G 20
b dx% 0X10X2 ax% 0X2 Yim ’ @0)
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90\\ Lo Lo ! Ly n
Xo r L2
ry 1 Xg f
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a¢m+q%:0 on &, (22)
0X2 0X1
pa‘!””+q Un_0 on 75, (23)
X1 0Xo
|d/m(x1a0)| < oo, Wl:071,2, ceey (24)
JCQO
/ Poxodrs = 0, (25)

where G* = {(xl,xg) X0 = X1 = x10,0 = x5 = xgo} i , d =1 +2x2,c =1/x, and
the boundary of G consists of the portions 30 , &7 and 3

Particular solutions of equation (20) and equat10n(22) Gavrllyuk et al. (2005) studied
a spectral problem, which is similar to equations (20)-(25). Following results by
Eisenhart, they proved that equation (20) and equation (22) allow together for the
separation of the spatial variables x; and x,. For our problem, this separation leads to
the following particular solutions:

)

T
AT0) and = ) (26)
1

In order to determine T(V’”), we have to consider the following homogeneous boundary
value problem, which depends on the real parameter v:

A+ DT + xo(1 + 202 — 202) T + [(w — Dz — mA T =0,  (27)
T () = v TP (xyg),  |T(0)] < oo, (28)
1+ x5,

It can be shown that the problem (27) and (28) has only nontrivial solutions for a
countable set of values v = v, > 00m =0,1,..;m=1,2,..)).

The second class of functions, T , appears, gnly in the case of xy # 0, 1.e. when the
conical tank is truncated. Computatlon of T, leads to the following »-parametric
problem:

ZA+DT " + 151 + 4 — 20T, + [(v+ D(w+ 2% — mIT" =0, (29)

0

T ) + (v + 1) T () = (30)

20

Obviously, nontrivial solutions of equation (29) and equation (30) exist only for a
countable set of nonnegative values .

Let us now show that the solution of equations (27) and (29) can be expressed in
terms of the spheroidal harmonics and the set {v,,,} is the same for the problems (27)
and (28) and the problems (29) and (30). For thls purpose, we change the variables in
equations (27) and (29) by w= (1+x3) /2 and substitute y(u) = u*T(n) and
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EC y(w) = u~17"T(w) into equation (27) and equation (29), respectively. This reduces the

256 two equations to the same well-known differential equation:
2
(A= p?W' () — 2w () + [v(v +1) - }y(u)
530 whose solutions coincide with the Legendre function of first kind, i.e. y(u) = P(V’")(,u).

Furthermore, treating the boundary conditions (28) and (30) in the same way and
using the substitution u = cos 6, the following common equation is obtained:

aP(V’”)(cos 0)

50 =0. (31)

0=06,

This equation can be considered as a transcendental equation for the computation of
the values {v,,,}- Appendix (Figure Al) presents the first 12 values of {v,,,}
(m = 0,1,2,3) versus 6.

In conclusion, with the technique described above, we get the following nontrivial
particular solutions

y 1
T () = 1+ 1) E P | —— |, (32)
'mk 'mk m
—=(m) _ mk (Wl) 1
T, () =1+ xg) PY (33)

v

Particular solutions as a functional basis. Let the particular solutions (26), (32) and (33)
be rewritten in the form:

WD, 29) = Yy T, W e, x) = N, T ). (34)

Vi

Here, N 2’") and Nﬁe " are multipliers which are chosen to satisfy the following condition:

(m) m)
= W1 e = W1 o
X20
= / Bl W " iymp)? 4 (W =) 1 (35)
0

= / xz[(W;m)Ml = x10)° + (%m)|x1:xo)2]dx2-

0

equation (35) says that W(m) and W( have the unit norm (in the mean-squares

metrics) on the boundary 32 + 30, where equations (21) and (23) should be
approximately satisfied. Explicit formulae for these normalising multipliers have
the form:
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2, , 2 frequencies
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m 1 1
N .
\/xl 22tk g2 2o \/ (1 4 521 (P(:,fz) a6 531

The case m = 0 requires, in addition, the volurne conservatlon condition (25;
Th1os 1mp11eos a re-definition of the functions W and Wk by: W() W(O) ck ,
Wk = Wk cko),where

o2 [T o 0 _ 2 [ o
G =z xo W, (%10, x2)dxa, T, =z xo W), (%10, x2)duxs.

2
20 /0 20 J0

Variational method. In accordance with the Ritz-Treftz scheme, we represent
approximate solutions of equations (20)-(25) in the form:

91 q2
U, ) = > aP W+ > "W, (36)
k=1 =1

By separating the x3 coordinate in variational formulation (7) (after substitution of
equation (19)), representation (36) leads to the m-parametric family of spectral
problems:

Q
S ({a’} — kB ) =0 G=1,....Q),
=1 (37)

o ({a) - efi}) =0

The spectral problem (37) has @ = ¢, + ¢- elgenvalues Because the representation
(36) contains two types of functlons namely W’" and, Wz there exist four

sub-matrices of { ~(j’”)} and { Bl] } such that:

(m) (m) (11) (m)

- - S S

d(m) _ 7yl 72 sm) Bz]l BZ]Z
/2N N (m) | yo (17) (m)
113 aij4 :8,']'3 Bl'j4

The elements { (’")} and {Bl(]”:)} s=1,...,4, are computed by the formulae:

oW oW
Ol(--m) = x%xg L — xlxg ! W(’”)dxz
0 ax X , J
X1=n

aWw aWw
- / (x%xg L — s — W dxy,
0 n EY) !
0=
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X20 d V_V( m) ad V_V( &
a(m) = / <X%XQ L - xlxg L W(.m)dXQ
0 X1 2
x1=n

x: 3 7(m) = (m)
[ X% Wi _ 142 oW, W dxy
0 1 0X1 2 0X2 1 ’
X :hb

X20 20
2 770m)
B = / (WP W™) dv, By =h / w(WOW™)  d,
1=/

X :11[

X20 _ _ _
By =i [ n(WOW) | dn B =a [ (BOWT)
v 0 I =iy Y J xn=h

In the case of A-and V-tanks, we have iy = 71/ tan 6y, i, = 1/ tan 6y and iy = 1/ tan 6,
hy = 71/ tan 6, respectively.

Convergence. Column A in Table II shows a typical convergence behaviour in the
case of V-tanks with 10° = 6, = 75° and 0.2 = 1 = 0.9. When 02 =7, = 0.55, the
method generates 4-5 significant digits of ,,; for ¢ =q; = g2 = .,10 (14, ...,20
basic functions). This is consistent with the convergence results in Sectlon 3. However,
the SFB keeps also a fast convergence to «,,,; for 7; < 0.2. This includes the case of k1,
which has not been satisfactory handled by the HPS. Moreover, when 0 < »; < 0.4,
the number of significant digits is larger (for the same number of basic functions) for
15° = 6, < 30°, but it is only marginally smaller for 15° = 6,. Gavrilyuk et al. (2005)
related such a slower convergence of an analogous method for smaller semi-apex
angles to the asymptotic behaviour of the exact solution along the vertical axis. Their
conclusion is that the eigenfunctions s, should exponentially decay downward Ox
for a circular cyhndrlcal tank to which the conical domain tends as 6, decreases.
However, W(m) and W " do not capture this decaying. Furthermore, decreasing
the dlmenswnless 11qu1d depth Z(r; — 1or 6y — 90°) may cause a lower accuracy
(3-4 significant digits for 18-24 basic functions).
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9
10
11
12

3.385676
3.385606
3.385601
3.385600
3.385600
3.385600
3.385600
3.385600
3.385600
3.385600
3.385600

1.304378
1.304377
1.304377
1.304377
1.304377
1.304377
1.304377
1.304377
1.304377
1.304377
1.304377

2.263162
2.263151
2.263150
2.263150
2.263150
2.263150
2.263150
2.263150
2.263150
2.263150
2.263150

3.180280
3.180251
3.180249
3.180249
3.180249
3.180249
3.180249
3.180249
3.180249
3.180249
3.180249

3.385666
3.385596
3.385591
3.385590
3.385590
3.385590
3.385590
3.385590
3.385590
3.385590
3.385590

1.301707
1.301695
1.301691
1.301689
1.301688
1.301687
1.301687
1.301687
1.301686
1.301686
1.301686

2.263100
2.263088
2.263087
2.263087
2.263086
2.263086
2.263086
2.263086
2.263086
2.263086
2.263086

3.180279
3.180250
3.180248
3.180249
3.180247
3.180247
3.180247
3.180247
3.180247
3.180247
3.180247

3.382064
3.381920
3.381878
3.381859
3.381847
3.381840
3.381835
3.381832
3.381829
3.381827
3.381826

1.254338
1.254148
1.254073
1.254036
1.254016
1.254003
1.253994
1.253988
1.253984
1.253981
1.253978

2.255147
2.255060
2.255026
2.255007
2.254996
2.254989
2.254985
2.254981
2.254979
2.254977
2.254976

3.179147
3.179101
3.179090
3.179085
3.179082
3.179080
3.179078
3.179077
3.179077
3.179076
3.179076

3.148405
3.143923
3.141937
3.140888
3.140267
3.139870
3.139601
3.139410
3.139270
3.139164
3.139082

0.935957
0.934864
0.934437
0.934226
0.934106
0.934032
0.933983
0.933949
0.933924
0.933906
0.933892

2.019323
2.017249
2.016335
2.015850
2.015563
2.015378
2.015252
2.015163
2.015097
2.015047
2.015008

3.051144
3.049247
3.048337
3.047828
3.047514
3.047306
3.047161
3.047056
3.046978
3.046918
3.046871

2.224870
2211744
2.206179
2.203283
2.201583
2.200501
2.199769
2.199252
2.198872
2.198585
2.198364
Kol
0.544861
0.543483
0.542976
0.542729
0.542589
0.542502
0.542445
0.542405
0.542376
0.542354
0.542337
K21
1.371212
1.366295
1.364234
1.363151
1.362510
1.362099
1.361819
1.361620
1.361473
1.361362
1.361276

K31
2.346969
2.338329
2.334334
2.332117
2.330753
2.329853
2.329228
2.328776
2.328438
2.328179
2.327976

20.82985
20.29240
20.15184
20.09711
20.07070
20.05610
20.04724
20.04147
20.03753
20.03471
20.03263

11.33533
11.31577
11.30879
11.30558
11.30384
11.30281
11.30214
11.30168
11.30136
11.30112
11.30094

18.03918
17.98215
17.96014
17.94951
17.94361
17.94003
17.93768
17.93607
17.93492
17.93407
17.93342

24.36124
24.25430
24.21030
24.18824
24.17570
24.16792
24.16278
24.15922
24.15666
24.15475
24.15329

10.41489
10.14616
10.07588
10.04852
10.03531
10.02801
10.02358
10.02070
10.01872
10.01732
10.01628

5.647088
5.637221
5.633703
5.632078
5.631202
5.630678
5.630340
5.630110
5.629947
5.629826
5.629735

9.019177
8.990657
8.979646
8.974330
8.971384
8.969588
8.968417
8.967612
8.967036
8.966610
8.966287

12.18061
12.12714
12.10514
12.09411
12.08787
12.08395
12.08138
12.07960
12.07832
12.07736
12.07664

6.934470
6.754682
6.707583
6.689248
6.680396
6.675501
6.672529
6.670596
6.669272
6.668327
6.667629

3.528677
3.521265
3518590
3.517343
3.516665
3.516258
3.515995
3.51515

3.515687
3.515592
3.515520

5.977616
5.958186
5.950674
5.947040
5.945023
5.943793
5.942990
5.942438
5.942042
5.941750
5.941527

8.115651
8.079896
8.065186
8.057806
8.053610
8.051009
8.049290
8.048098
8.047239
8.046600
8.046112

4.781070
4.629653
4.588863
4.572788
4.264916
4.560515
4.557819
4.556053
4.554837
4.553964
4.553317

1.672867
1.666870
1.664611
1.663527
1.662926
1.662559
1.662319
1.662153
1.662034
1.661945
1.661878

3.761864
3.742630
3734876
3.731012
3.728818
3.727457
3.726556
3.725930
3.725477
3.725140
3.724882

5.700453
5.667935
5.654291
5.647308
5.643277
5.640748
5.639061
5.637882
5.637026
5.636386
5.635894

Notes: Column (A) is for a V-shaped tank; (B) corresponds to a A-shaped tank, 6, = 30°

2.868894

2.748954

2715911

2702514 533
2.695817
2.692006
2.689637
2.688066
2.686973
2.686181
2.685590

0.732410
0.729246
0.728093
0.727536
0.727224
0.727032
0.726906
0.726818
0.726754
0.726707
0.726671

1.952759
1.938182
1.932215
1.929167
1.927400
1.926285
1.925537
1.925011
1.924627
1.924338
1.924115

3.473876

3.441587

3.427352

3.419803

3.415319

3.412440

3.410481

3.409090 Table II.

3.408066 Convergence to K,

3407290 m = 01,23, for different

3406689 71 versus the number of
basic functions

q=q1=qzin (36)
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Figure 4.

The number of significant
figures of ;7 obtained for
V-tanks with 20 basic
functions by the methods
based on the HPS (Case a)
and the SF(Case b)

Column B in Table II shows convergence for a A-tank. The same 7; and 6, as in the
column A are chosen. It can be seen that the numerical results may be less precise than
those in Section 3. For instance, the same number of basic functions gives only 2-3
significant digits when 0.2 < »; = 0.9. However, in contrast to the HPS, the SFB
provides reliable computations for the case of an axial symmetric mode k¢. In
addition, whereas 0.05 = 7; = 0.4, the lowest eigenvalue k1 is calculated with a better
accuracy. For the same 7, increasing the semi-apex angle may lead to a slower
convergence. If g; = g = 12, the number of significant digits also decreases as 7; — 1.
This “shallow water” case is handled with 2-3 significant digits as g1 = ¢» = 12,...,14.

The presence of the two types of basic functions in the representation (36) makes it
possible to vary ¢; and ¢ to obtain a better approximation with the same total number
of basic functions @ = ¢; + ¢» Variations of ¢; and g, with a fixed @ = 16 showed that
a better accuracy of «,,; can be expected for g, > ¢;. In particular, this is true for
smaller liquid depths. For example, when the V-shaped tank is characterised by
0y = 30° and 7, = 0.9, the approximate «;; = 54233738 can be obtained with either
1= q2=12(Q = 24) or q; = 7,2 = 12(Q = 19).

4. Comparative analysis of the two method

A comparison of numerical experiments performed with the two different functional
bases shows, that the method based on the HPS is more accurate for smaller liquid
depths (0.6 = 7;). However, larger liquid depths (; = 0.4) are better treated with the
second method. This can clearly be seen for the A-shaped tanks: the calculations with
the method by the SFB keep robustness as the number of basic functions is increased,
while the first method fails for larger dimensions. Generally speaking, the accuracy of
both methods is similar only for V-tanks with 0.2 =< r; = 0.55, 6, > 10°.

Even though the number of basic functions is small, the two proposed methods give
an accurate approximation of the lowest eigenvalue ;. The lowest eigenvalue
determines the lowest natural frequency by o7 = /gk11. This frequency is of primary
interest for modelling tower vibrations with a V-shaped tank. Therefore, we placed
special emphasis on a comparison of the numerical results obtained by the two methods
for k1. Theresults are illustrated in Figure 4(a) and (b). Here, domains in the (71, 0,)-plane
are identified, for which each of the methods gives the same number of significant digits
with twenty basic functions. One can see that the accuracy of the first method (HPS) may
become low only for small 6, and 7y, e.g. for large liquid depths. In the other cases, the
method guarantees a fast convergence and high accuracy. On the other hand, small 6,
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and 7, are satisfactory handled by the second method (SFB). However, this method
converges slowly as 7, — 1 and6, > 45°, e.g. for small liquid depths.

5. The lowest natural sloshing frequency

The natural sloshing frequencies oy,; are functions of the liquid depth /4, the semi-apex
angle 6, and the radii 7; and 7, For the V-tanks, an increasing of 6ydecreases the
non-dimensional eigenvalues k1 (the non-dimensional natural sloshing frequencies
oﬁﬂro /g = k). For the A-tanks, an increasing of increases k.

Dependence of k,,; on the ratio 71/ry is illustrated in Figure 5@) and (b). These
demonstrate that the non-dimensional frequencies decrease as the ratio 71 /ry =
(1 4 tan(6p)h/71) decreases. In term of the fixed dimensional values of 71 and 6, this
means that the non-dimensional sloshing frequencies decrease with decreasing the
liquid depth %.

One interesting fact is that kg = ko for the studied geometric parameters in
the case of A-tanks. This is the same as for an upright circular cylindrical tank.
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Figure 5.

Eigenvalues k,,; versus 7;
for A-shaped (Case a) and
V-shaped tanks (Case b)
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Further, the natural sloshing frequencies are very close to those for the non-truncated
conical V-shape tank as 0 = < 0.6. Truncation matters for »; — 1, ie. for
shallow-water sloshing.

The natural sloshing frequency an oq; of practical importance for the design of
water towers (Damatty and Sweedan, 2006). Having in mind this fact, we present in
Table III the values of k17 versus 6yand 7;. The corresponding computations have been
done to guarantee up to five significant digits. The dimensional natural sloshing
frequency o7 1s computed from kq; by the formula:

6o, 71/7
o lgKi1( ;(io 1/ o), 39)

where g and 7 are not scaled by 7. The numerical data from Table III can therefore be
used in both the structural design and the validation of other numerical methods.

6. Concluding remarks

We have proposed two efficient numerical-analytical methods for the computation
of the natural sloshing frequencies and modes in truncated conical tanks. These
methods are based on the Ritz-Treftz variational scheme. Extensive numerical
experiments showed that these methods have different domains of applicability in
terms of the semi-apex angle, the liquid depth and the tank type (V- or A-shaped).

The methods may have slow convergence behaviour and even diverge for some
A-shaped tanks. This fact can be explained by the singular behaviour of the
natural modes at the contact line formed by the waterplane and the conical walls.
From a mathematical point of view, if the smooth bases would be augmented by a
harmonic function, which has the specified singular behaviour, the convergence
can be considerably improved. Lukovsky ef al (1984) gave examples of such an
augmented function for two-dimensional spectral sloshing problems. Dedicated
mathematical studies are needed to specify a suitable singular function for our
case.

Bauer (1982) and Dokuchaev (1964) compared the numerical data presented in
this paper with simplified analytical approximation, which were obtained for pure
conical tanks with small semi-apex angles. Satisfactory agreement was observed
only for a small angle (6y<15°. This agreement is consistent with the
assumptions used by Bauer (1982) who replaced the planar mean liquid surface by
spheric segment.

In future work, an emphasis should be placed on the shallow water sloshing. This
case requires a dedicated study, which has to be based on a nonlinear dissipative
sloshing model. Further, a special analysis is needed for approximate natural modes,
which enable handling singular behaviour at contact line formed by the mean free
surface and the rigid walls. Accounting for this singularity should improve
convergence.

Nonlinear phenomena are also of importance for resonant sloshing. Results of
the present paper may be utilised to improve the multimodal technique (Lukovsky,
1990; Faltinsen ef al, 2000; Gavrilyuk et al, 2005) and to study the nonlinear
sloshing in a truncated conical tank. This will be the main purpose of our
forthcoming studies.
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Appendix
(The Appendix Figure follows overleaf.)
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Values of v,,, versus 6,
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