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MODELING OF THE EIGENFIELD OF A PRESTRESSED

HYPERELASTIC MEMBRANE ENCAPSULATING A LIQUID

I. P.GAVRILYUK1, M.HERMANN2, A.TIMOKHA3, AND V.TROTSENKO4

Abstract — A spectral boundary problem on the eigenfield of an inflated/deflated
stretched circular membrane, which is clamped to a circular cylindrical cavity filled with
a liquid, is examined. The paper presents an operator formulation of the problem and
proposes a new semi-analytical approximate method. The method captures singular
behavior of the solution in the pole and at the fastening contour of the membrane.
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1. Introduction

The variety of real-world applications dealing with hyperelastic materials to encapsulate a
liquid in a cavity is enormous. For example, in the aerospace industry, rubber membranes
can cover a propellant in tanks of fuel systems to prevent its fragmentation. In biomechanics,
soft vascular tissues may be considered as an isotropic thin-walled vessel (e.g., rubber-like
tube), if the blood pressure domain is far below the physiological range (Holzapfel et al.
[10]). The list may be continued.

If a hyperelastic membrane is clamped to the edge/walls of a rigid tank filled with a liquid
(as considered in the present paper) and ensures the liquid inside, its static shape is very
sensitive to fluctuations of the hydrostatic pressure and to the change in the liquid volume.
Of course, the simplest case suggests an unstressed membrane with a planar profile. For this
case, free oscillations of the “liquid-membrane” system were studied by Siekmann & Chang
[15], Dokuchaev [3], Bauer & Eidel [1] and Trotsenko [16]. Later, Jiang [12] demonstrated
extensions of these results to the case of an equibiaxially-stretched, but yet flat membrane.
Increasing/decreasing the mean liquid volume (pressure) due to a slow inlet/outlet through
a tank hole can stretch the membrane. In order to describe the stretched membrane di-
aphragms, a singularly-perturbed boundary value problem should be solved. Its numerical
solutions are well known in the literature (see, for instance, Jiang & Haddow [11] and Trot-
senko [17]). The aim of the present paper consists of mathematical and numerical modelling
of free oscillations of the “liquid-membrane” system relative to these diaphragm stretched
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states. To the authors’ knowledge, the literature contains neither mathematical, nor nu-
merical results for this problem, though, as shown in the famous experimental studies by
Zalesov & Daev [18], it is relevant, because, being inflated/deflated, the stretched membranes
considerably change the eigenfield.

The present paper considers a circular membrane clamped to the edge of a rigid up-
right circular cylindrical tank filled with an incompressible perfect liquid. The membrane is
stretched due to the increase/decrease the liquid volume. It forms an axisymmetric cupola
encapsulating the liquid. Bearing in mind the analytical approximations of these stretched
diaphragms given by Trotsenko [17], the cupola is assumed to be known a priory. The pa-
per derives a linear evolutional problem that describes small relative coupled oscillations of
the “liquid-membrane” system relative the hydrostatic shape. The evolutional problem is
re-formulated to an operator differential equation completed with initial conditions, which
imply initial perturbations and velocities of the preliminary stretched membrane. Consid-
ering the time-harmonic solutions, the Cauchy problem is reduced to a spectral boundary
problem on linear natural modes (eigenfunctions). Variational formulation of this spectral
problem facilitates the Ritz scheme, whose uniform convergence to the eigenfield needs a spe-
cial functional basis, which captures asymptotic properties of the eigenfunctions. A series of
numerical examples is presented.

2. Statement of the problem

2.1. Statically deformed membrane. Let us consider a thin homogeneous hyperelastic
membrane of radius R0 and thickness h0 (h0 � R0). The membrane is clamped to the
end-side of a rigid circular cylindrical tank. The tank is completely filled with a perfect
incompressible liquid. No gas bubbles, concrements, and contamination are assumed in the
liquid bulk.

The unstressed (flat) natural reference configuration of the membrane is shown in Fig.
2.1,a. Furthermore, we introduce the geometric set of midpoints (equidistant of the inner

F i g. 2.1. Sketch of the circular membrane and adopted nomenclature. Figure (a)
depicts the flat, unperturbed state of the membrane. Figure (b) illustrates an inflated
membrane, the cupola. Figure (c) gives some necessary notations in the meridional

plane facilitating the problem on small relative oscillations
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and outer sides of the membrane), the surface Σ0, and superpose it with the Oxy-plane. The
gravitation along the Oz-axis, or the increase/decrease in the liquid volume stretches the
membrane. The inflated/deflated membrane forms the Oz-symmetric diaphragm exemplified
in Fig. 2.1,b. In the last case, the thickness becomes non-constant, but a function of P ∈ Σ0,
i.e., h = h(P ), where Σ0 is yet the midpoints of the deformed membrane. Describing Σ0

in the cylindrical coordinate system Ozηr makes it possible to consider the meridional line
MC yielded by the intersection of Σ0 and the meridional section. Furthermore, the curve
MC is parametrised as {

r = r(s),

z = z(s),
(2.1)

where s is the length of (MP ). Each point P ∈ Σ0 is a function of s and η, i.e., P = P (s, η);
the thickness depends on s, i.e., h = h(s). If s0 defines the end-point C and the pole M
corresponds to s = 0, the following boundary conditions should be fulfilled:

r(s0) = R0; z(s0) = r(0) = z′(0) = 0. (2.2)

The principal stretches, λ1 and λ2, tangential to the meridian and the circle of the latitude
of Σ0, given by

λ1 =

√(
dr(s)

ds

)2

+

(
dz(s)

ds

)2

, λ2 =
r(s)

s
and λ3 =

1

λ1λ2

=
h(s)

h0

(2.3)

are the scaled thickness. Further, it is assumed that the inflation/deflation of Σ0 is imposed
to the hydrostatic pressure

Q(z) = C − Dz, (2.4)

where the D-term implies the gravitation and C is associated with the injection/ejection of
the liquid mass through the tank bottom.

In accordance with the geometric elasticity theory (see, Green & Adkins [9]), the principal
components of the Biot stress tensor, T1 and T2, are defined by

Ti = 2h0λ3(λ
2
i − λ2

3)

(
∂W

∂I1
+ λ2

3−i

∂W

∂I2

)
, i = 1, 2,

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ−2

1 + λ−2
2 + λ−2

3 , (2.5)

where, to express the constitutive relationships for an isotropic hyperelastic solid, the ex-
istence of a strain energy function, W , should be postulated. In this study, we adopt the
four-term strain energy function

W (I1, I2) = C1(I1 − 3) + C2(I2 − 3) + C3(I1 − 3)2 + C4(I1 − 3)3 (2.6)

first proposed by Biderman [2] for modeling rubber-like materials. Here, I1 and I2 are the
first and second deviatoric strain invariants defined in (2.5) and Ci (i = 1, 2, 3, 4) are the
experimental constants. In particular cases, where C2 = C3 = C4 = 0, (2.6) reduces to
the Trealoar law and when C3 = C4 = 0, to the two-terms Mooney-Rivlin constitutive law,
respectively.
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Based on the Biderman strain energy function (2.6), Trotsenko [17] derived the system
of ordinary differential equations coupling z(s) and r(s). Schematically, these equations can
be expressed in terms of the principal components, T1 and T2 from (2.5) as follows:

dT1

ds
+

1

r

dr

ds
(T1 − T2) = 0, k1T1 + k2T2 = Q. (2.7)

Here, k1 and k2 are the principal curvatures of Σ0 defined as

k1 =

(
d2r

ds2

dz

ds
− dr

ds

d2z

ds2

)
λ−3

1 , k2 = −(rλ1)
−1 dz

ds
.

System (2.7) contains two fourth-order nonlinear ordinary differential equations with
respect to z(s) and r(s). The boundary value problem for system (2.7) should be completed
by the boundary conditions (2.2) and the boundedness condition

|z(s)| + |r(s)| < ∞ as s → 0. (2.8)

2.2. Small relative oscillations. Let us assume that a stretched membrane oscillates
with a small amplitude relative to the statically stretched Σ0 and, thereby, generates internal
waves inside of the encapsulated liquid. The instantaneous midpoints of the oscillating
membrane Σ(t) can be given as

Σ(t) : R∗ = R + ue1 + ve2 + we3

(see Fig. 2.1,c, where the radius-vector R determines the static equilibrium Σ0, e1 and e2

are tangential unit vectors to the lines of the principal curvature of Σ0, e3 is the normal unit
vector). The functions u(t, s, η), v(t, s, η) and w(t, s, η) are the unknowns implying small-
amplitude relative oscillations. Being relatively small, these functions yield linear variations
of the Biot stress tensors δT1, δT2 (along the meridians and the parallels) and perturbations
of the shear stress δS.

If α1 =const and α2 =const define the lines of the principal curvatures, the perturbed
equilibrium equation for Σ0 takes the following form:

∂

∂α1

[
B∗(T ∗

1 e ∗
1 + δSe ∗

2 )

]
+

∂

∂α2

[
A∗(δSe ∗

1 + T ∗
2 e ∗

2 )

]
+ Q∗A∗B∗ = 0, (2.9)

where A∗, B∗ are the Lame constants and e ∗
1 , e ∗

2 , e ∗
3 are the perturbed unit vectors e1, e2

and e3, respectively. Analogously, T ∗
1 = T1 + δT1, T ∗

2 = T2 + δT2.
The dynamic forces acting on the membrane due to the perturbations relative to Σ0 take

the following form:

Q∗ = δQ1e
∗
1 + δQ2e

∗
2 + (Q + δQ

(1)
3 + δQ

(2)
3 + δQ

(3)
3 )e ∗

3 ,

δQ1 = −ρ0h
∂2u

∂t2
, δQ2 = −ρ0h

∂2v

∂t2
, δQ

(1)
3 = −ρ0h

∂2w

∂t2
,

where δQ1, δQ2, δQ
(1)
3 are associated with the inertial features of the membrane (ρ0 is its

density). Besides, δQ
(2)
3 and δQ

(3)
3 express the linear perturbations of the hydrodynamic and

hydrostatic components of the pressure, respectively.
Inserting the shear stress and the Lame constants into (2.9) (expressed in terms of (2.1),

see Novozhilov [14]) and taking into account the derivatives of e1, e2, e3 and the initial
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conditions (2.7), the standard procedure of linearization relative to Σ0 gives the following
scalar equations:

− 1

λ1

∂δT1

∂s
− (δT1 − δT2)

cos α

r
− 1

r

∂δS

∂η
− T10

λ1

∂ε2

∂s
− T20

[
θ1k2 − 1

r

∂γ2

∂η
+

cos α

r
(ε2 − ε1)

]
= δQ1,

−1

r

∂δT2

∂η
− 1

λ1

∂δS

∂s
− 2δS

cos α

r
− T10

(
1

λ1

∂γ1

∂s
+ θ2k1

)
− T20

(
cos α

r
γ +

1

r

∂ε1

∂η

)
= δQ2,

k1δT1 + k2δT2 + T10

(
1

λ1

∂θ1

∂s
− k1ε1

)
+ T20

(
cos α

r
θ1 +

1

r

∂θ2

∂η
− k2ε2

)
−

D(u sinα − w cos α) = δQ
(1)
3 + δQ

(2)
3 , (2.10)

where α denotes the angle between the outward normal unit vector to Σ0 and its symmetry
axis and

ε1 =
1

λ1

∂u

∂s
+ k1w, ε2 =

1

r

∂v

∂η
+

cos α

r
u + k2w, γ = γ1 + γ2; γ1 =

1

λ1

∂v

∂s
,

γ2 =
1

r

∂u

∂η
− cos α

r
v, θ1 = − 1

λ1

∂w

∂s
+ k1u, θ2 = −1

r

∂w

∂η
+ k2v. (2.11)

The dynamic equations (2.10) and (2.11) include the linearized components of the Biot
stress tensor and the shear stress

δT1 = c11ε1 + c12ε2, δT2 = c21ε1 + c22ε2, δS = c33γ, (2.12)

where

c11 = f1(λ1, λ2), c12 = f2(λ1, λ2), c21 = f2(λ2, λ1), c22 = f1(λ2, λ1),

c33 = 2h0

[
λ3

3

∂W

∂I1
+ (λ2

1λ
3
3 + λ2

2λ
3
3 − λ1λ2)

∂W

∂I2

]
,

f1(λ1, λ2) = 2h0

[
(λ2

1λ3+3λ3
3)

∂W

∂I1

+(λ1λ2+3λ2
2λ

3
3)

∂W

∂I2

+2λ3(λ
2
1−λ2

3)
2(A11+2A12λ

2
2+A22λ

4
2)

]
,

f2(λ1, λ2) = 2h0

[
(3λ3

3 − λ2
1λ3)

∂W

∂I1
+ (λ1λ2 + λ2

2λ
3
3)

∂W

∂I2
+

2λ3(λ
2
1 − λ2

3)(λ
2
2 − λ2

3)(A11 + A12(λ
2
1 + λ2

2) + A22λ
2
1λ

2
2)

]
, Aik =

∂2W

∂Ii∂Ik
, i, k = 1, 2.

Using the Bernoulli integral and some straightforward geometric relationships leads to

δQ
(2)
3 = −ρ

∂2ϕ

∂t2
, δQ

(3)
3 = D(u sinα − w cos α), (2.13)

where ρ is the liquid density and the “displacement” potential ϕ is the solution of the
Neumann boundary value problem

∆ϕ = 0 (z, η, r) ∈ Ω,
∂ϕ

∂n

∣∣∣∣
Σ0

= w,
∂ϕ

∂n

∣∣∣∣
S

= 0,

∫
Σ0

w dΣ = 0 (2.14)
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(S is the wetted surface of the tank, Ω is the liquid volume, n is the outer normal to Σ0∪S).
System (2.10) includes the unknowns of both geometric and hydrodynamic nature. When

using (2.12) and the expressions for (2.11), equations (2.10) can be re-formulated in terms
of the displacements u, v and w. This generates the following system of linear differential
equations:

L11(u) + L12(v) + L13(w) = δQ1,

L21(u) + L22(v) + L23(w) = δQ2,

L31(u) + L32(v) + L33(w) = (δQ
(1)
3 + δQ

(2)
3 ), (2.15)

where

L11(u) =
1

rλ1

[
− ∂

∂s

(
α1

∂u

∂s

)
+ α2u − α3

∂2u

∂η2

]
, L12(v) =

1

rλ1

[
α4

∂2v

∂s∂η
+ α5

∂v

∂η

]
,

L13(w) =
1

rλ1

[
α6

∂w

∂s
+ α7w

]
, L21(u) =

1

rλ1

[
β4

∂2u

∂s∂η
+ β5

∂u

∂η

]
,

L22(v) =
1

rλ1

[
− ∂

∂s

(
β1

∂v

∂s

)
+ β2v − β3

∂2v

∂η2

]
, L23(w) =

β6

rλ1

∂w

∂η
,

L31(u)=
1

rλ1

[
γ5

∂u

∂s
+γ6u

]
, L32(v)=

γ4

rλ1

∂v

∂η
, L33(w)=

1

rλ1

[
− ∂

∂s

(
γ1

∂w

∂s

)
+γ2w−γ3

∂2w

∂η2

]
,

α1 =
rc11

λ1
, α2 = α

(1)
2 +

dα
(2)
2

ds
, α

(1)
2 =

c22

rλ1

(
dr

ds

)2

−rλ1k1k2T20, α
(2)
2 = −

(
c12 + T10

λ1

)
dr

ds
,

α3 = (c33 + T20)
λ1

r
, α4 = −(c33 + c12 + T10),

α5 = α
(1)
5 +

dα
(2)
5

ds
, α

(1)
5 = (c33+c22+T20)

1

r

dr

ds
, α

(2)
5 = −(c12+T10), α6 =−r(c11k1+c21k2),

α7 = α
(1)
7 +

dα
(2)
7

ds
, α

(1)
7 = [(c21 + T20)k1 + c22k2]

dr

ds
, α

(2)
7 = −r[c11k1 + (c12 + T10)k2],

β1 =
r

λ1
(c33 +T10), β2 = β

(1)
2 +

dβ
(2)
2

ds
, β

(2)
2 =

c33

λ1

dr

ds
, β

(1)
2 =

c33 + T20

rλ1

(
dr

ds

)2

− rλ1k1k2T10,

β3 =
c22λ1

r
, β4 = −(c33 + c21 + T20),

β5 = β
(1)
5 +

dβ
(2)
5

ds
, β

(1)
5 = −(c33 + c22 + T20)

1

r

dr

ds
, β

(2)
5 = −c33, β6 = −λ1(c12k1 − c22k2),

γ1 =
r

λ1

T10, γ2 = rλ1[(c11 −T10)k
2
1 + (c22 −T20)k

2
2 + (c12 + c21)k1k2] + Dr

dr

ds
, γ3 =

λ1

r
T20,

γ4 = −β6, γ5 = r(c11k1 + c21k2),

γ6 = γ
(1)
6 +

dγ
(2)
6

ds
, γ

(1)
6 = [c12k1 + (c22 − T20)k2]

dr

ds
+ Dr

dz

ds
, γ

(2)
6 = rk1T10.

In system (2.15), the functions u, v and w should be bounded at the pole of Σ0 and, in
addition, these must satisfy the clamping conditions on ∂Σ0 = l:

u|l = v|l = w|l = 0. (2.16)

Finally, adding the initial conditions for u, v and w leads to an initial-boundary value
problem for (2.14) – (2.16).
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3. Operator formulation

The evolutional problem (2.14) – (2.16) is scaled by the radius R0 so that

{u, v, w} = {ū, v̄, w̄}R0, Ti0 = T̄i0 · 2C1h0, i = 1, 2,

a =
ρR0

ρ0h0

, ϕ = ϕ̄R2, t = t̄
√

δ, δ =
R2

0ρ0

2C1

, (3.1)

where the bar over the symbols denotes the dimensionless characteristics (furthermore, the
bar will be omitted).

Let us consider the Steklov operator B

ϕ = Bf, (3.2)

which maps f defined on Σ0 to ϕ found from the Neumann problem (2.14) with w = f .
In some cases the operator B can be expressed explicitly in terms of the Green function
representation, but one should prefer numerical methods to compute its approximation (see,
e.g., [6, 7] and references therein).

We assume that for any t the vector-function u = {u, v, w} belongs to an admissible
subset of functions H from L0(Σ0) that satisfy (2.16) and the volume conservation condition,
and equip this set with the scalar product

(�u1, �u2) =

∫
Σ0

(u1u2 + v1v2 + w1w2) dS.

Taking into account the above notations, one can transform the boundary problem
(2.14) – (2.16) to the operator differential equation

Lu + M
∂2u

∂t2
= 0, (3.3)

where M = diag {λ3, λ3, λ3 + aB}, and L is the matrix-operator

L =

∥∥∥∥∥∥
L11 L12 L13

L21 L22 L23

L31 L32 L33

∥∥∥∥∥∥
defined on H.

The differential equation (3.3) is completed by the initial conditions

u|t=0 = u0(s, η),
∂u

∂t

∣∣∣∣
t=0

= u0
′(s, η), (3.4)

where u0(s, η) and u0
′(s, η) are two known vector-functions.

3.1. Properties of M . Let us consider u1, u2 ∈ H and

(Mu1, u2) =

∫
Σ0

[λ3u1u2 + λ3v1v2 + λ3w1w2 + a(Bw1)w2] dS.
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1◦. Utilizing the Green formula gives∫
Σ0

(Bw1)w2dS =

∫
Σ0

ϕ1
∂ϕ2

∂n
dS =

∫
Q

∇ϕ1∇ϕ2dQ

and, because

(Mu1, u2) =

∫
Σ0

[λ3(u1u2 + v1v2 + w1w2)]dS + a

∫
Q

∇ϕ1∇ϕ2dQ = (Mu2, u1),

M is symmetric and positive.
2◦. There exists an inverse M−1 on a set of admissible functions. Following the technique

of Kopachevsky & Krein [13], one can show that the operator M is compact.

3.2. Properties of L. Long and tedious derivations make it possible to establish the
following features of L.

1◦. The line

(Lu1, u2) =

∫
Σ0

{c11ε
(1)
1 ε

(2)
1 + c22ε

(1)
2 ε

(2)
2 + c12(ε

(1)
1 ε

(2)
2 + ε

(2)
1 ε

(1)
2 ) + c33γ

(1)γ(2)+

T10(ε
(1)
1 ε

(2)
2 + ε

(2)
1 ε

(1)
2 + γ

(1)
1 γ

(2)
1 + θ

(1)
1 θ

(2)
1 ) + T20(θ

(1)
2 θ

(2)
2 + γ

(1)
2 γ

(2)
2 )} dS−

∫
Σ0

{
Q

[
k1u

(1)u(2) + k2v
(1)v(2) + (k1 + k2)w

(1)w(2) − 1

λ1

(
u(2) ∂w(1)

∂s
+ u(1) ∂w(2)

∂s

)
+

1

r

(
w(2) ∂v(1)

∂η
+ w(1) ∂v(2)

∂η

)]
− D

λ1

dr

ds
w(1)w(2)

}
dS = (Lu2, u1) (3.5)

proves that L is symmetric.
Here, ε

(1)
i , γ

(1)
i , θ

(1)
i and ε

(2)
i , γ

(2)
i , θ

(2)
i (i = 1, 2) are defined by (2.11), where {u, v, w} =

{u(1), v(1), w(1)} and {u, v, w} = {u(2), v(2), w(2)}, respectively. Besides, the derivation of (3.5)
uses the fact that perturbations occur relative to a static equilibrium, e.g., c21 = c12+T10−T20

and utilises the formula for integrations by parts∫
Σ0

f

λ1

∂g

∂s
dS = −

∫
Σ0

g

rλ1

∂

∂s
(rf) dS,

∫
Σ0

f

r

∂g

∂η
dS = −

∫
Σ0

g

r

∂f

∂η
dS,

where f(s, η) and g(s, η) are 2π-periodic by the second variable and equal to zero on the
contour l (s = s0).

2◦. Assuming u(1) = u(2) = u in (3.5), we arrive at

(Lu, u) =

∫
Σ0

{
c11ε

2
1 + c22ε

2
2 + 2c12ε1ε2 + c33γ

2 + T10(γ
2
1 + θ2

1 + 2ε1ε2) + T20(θ
2
2 + ω2

2)

}
dS−

∫
Σ0

{
Q

[
k1u

2 + k2v
2 + (k1 + k2)w

2 − 2u

λ1

∂w

∂s
+

2w

r

∂v

∂η

]
− D

λ1

dr

ds
w2

}
dS = 2W, (3.6)

where W is the potential energy.
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As long as the statically stretched membrane Σ0 is stable and, therefore, Σ0 corresponds
to the non-negative minimum of W , equality (3.6) implies that the operator L is positively
defined. Besides, there exists a symmetric and pre-compact L−1 on H (see, e.g., [13] ).

3.3 Abstract Cauchy problem. By introducing v = L1/2u, the operator equation
(3.3) can be rewritten in the form

d2v

dt2
+ Av = 0, A = L1/2M−1L1/2. (3.7)

Here, the operator A−1 = L−1/2ML1/2 is self-adjoint, positively defined and compact and,
therefore, the Cauchy problem for (3.7) is uniquely solvable for any admissible initial func-
tions v0 and v0

′. Solution methods for differential equations with operator coefficients of
the type of (3.7) (in time) can be found in [5, 8, 13]

3.4 Natural modes. Another approach very interesting for applications is the investiga-
tion of (3.7) in the frequency zone. The problem on natural modes implies the time-harmonic

solutions u = exp(iωt)u(s, η) (v = L
1
2 u). This leads to the spectral problems

Lu − κ2Mu = 0 (3.8)

and

Av − κ2v = 0, κ2 =
ω2R2

0ρ0

2C1
, (3.9)

which have only real positive eigenvalues with the limiting point at infinity. The eigenfunc-
tions (natural modes) of (3.8) and (3.9) constitute the basis in an appropriate space so that,
for instance, the orthogonality condition

(Lui, uj) = (Mui, uj) = 0, i 	= j,

should be satisfied. Physically, this means that the coupled “membrane-fluid” oscillations
around a stable stretched shape can be decomposed into the sum of standing natural waves.

One can show that (3.8) follows from the necessary extremum condition of the functional

F(u) = (Lu, u)/(Mu, u) � 0. (3.10)

4. Approximate solutions

Since Σ0 is axisymmetric, the spectral boundary problem (3.8) can be transformed to a
family of integro-differential equations by the substitution

u = un cos nη, v = vn sin nη, w = wn cos nη, ϕ = ϕn cos nη, (4.1)

where n = 0, 1, 2 . . . is the wave number in the angular direction. For the vector-function
un = (un(s), vn(s), wn(s)), we get

Lnun − κ2Mnun = 0, Mn = diag {λ3, λ3, λ3 + aH(n)}. (4.2)

Here, Ln is obtained from L by separating the η-variable, and the functions ϕn = H(n)wn

are solutions of the two-dimensional boundary value problem

∂

∂r

(
r
∂ϕn

∂r

)
+

∂

∂z

(
r
∂ϕn

∂z

)
− n2

r
ϕn = 0, (z, r) ∈ G,
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∂ϕn

∂n

∣∣∣∣
Γ1

= wn,
∂ϕn

∂n

∣∣∣∣
Γ2

= 0,

1∫
0

rλ1wn ds = 0, (4.3)

where G is the meridional cross-section of Q, Γ1 and Γ2 are the lines formed in the meridional
plane by Σ0 and S, respectively.

Using the variational formulation (3.10) reduces (4.2) to

κ2 =

1∫
0

Lnun · unrλ1ds

/ 1∫
0

Mnun · unrλ1 ds, (4.4)

so that κ corresponds to the stationary points of F.

4.1. Asymptotic behavior of the eigenmodes as s → 0. The Ritzt method deals
with an appropriate functional basis {u(n)

i }, {v(n)
i } and {w(n)

i } assumed to be known a priori.
The convergence to the solutions should improve if the analytic properties of the functional
basis coincide with those for the original eigenfunctions. These properties are studied in the
present section.

Let us assume a = 0 in (4.2) and transform the problem to a more convenient form by
defining new functions

y1 = un, y2 = vn, y3 = wn, y4 = s
dun

ds
, y5 = s

dvn

ds
, y6 = s

dwn

ds
.

System (4.2) (three second-order differential equations) can be reduced to six equations of
the first order

s
dy

ds
= Fy. (4.5)

Here, y is the vector-function with components yi (i = 1, 6) and the matrix F reads as

F =

∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

f41 f42 f43 f44 f45 f46

f51 f52 f53 f54 f55 0
f61 f62 f63 f64 0 f66

∥∥∥∥∥∥∥∥∥∥∥∥
,

where

f41 =
s2

α1
(α2 + n2α3 − κ2s), f42 =

ns2

α1
α5 f43 =

s2

α1
α7,

f44 = − s2

α1

d

ds

(
α1

s

)
, f45 =

ns

α1

α4, f46 =
s

α1

α6,

f51 = −ns2

β1
β5, f52 =

s2

β1
(β2 + n2β3 − κ2s), f53 = −ns2

β1
β6,

f54 = −ns

β1
β4, f55 = − s2

β1

d

ds

(
β1

s

)
,

f61 =
s2

γ1

γ6, f62 = −ns2

γ1

β6, f63 =
s2

γ1

(γ2+n2γ3−κ2s), f64 =
s

γ1

γ5, f66 = −s2

γ1

d

ds

(
γ1

s

)
.
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Earlier, Trotsenko [17] showed that z(s) and r(s) could be expanded in the Taylor series
at s = 0. The Taylor expansions of λi(s), Ti0(s) and Ri(s) (i = 1, 2) include only even powers.
One obtains that the functions fi,j are regular at s = 0, not equal to zero simultaneously
and, therefore, s = 0 is a regular point for system (4.5). Let us pose the matrix F as

F = F0 + F1s + F2s
2 + . . . ,

where Fi have the following form

F0 =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

f
(0)
41 f

(0)
42 0 0 f

(0)
45 0

f
(0)
51 f

(0)
52 0 f

(0)
54 0 0

0 0 f
(0)
63 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
, F2i−1 =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 f
(2i−1)
43 0 0 f

(2i−1)
46

0 0 f
(2i−1)
53 0 0 0

f
(2i−1)
61 f

(2i−1)
62 0 f

(0)
64 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
,

F2i =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

f
(2i)
41 f

(2i)
42 0 f

(2i)
44 f

(2i)
45 0

f
(2i)
51 f

(2i)
52 0 f

(2i)
54 f

(2i)
55 0

0 0 f
(2i)
63 0 0 f

(2i)
66

∥∥∥∥∥∥∥∥∥∥∥∥∥
,

with

f
(0)
41 =

1

c
(0)
11

[
c
(0)
22 + n2

(
c
(0)
33 + T

)]
, f

(0)
42 =

n

c
(0)
11

[
c
(0)
33 + c

(0)
22 + T

]
,

f
(0)
45 = − n

c
(0)
11

(
c
(0)
33 + c

(0)
12 + T

)
, f

(0)
51 =

n(
c
(0)
33 + T

)(
c
(0)
33 + c

(0)
22 + T

)
,

f
(0)
52 =

1(
c
(0)
33 + T

)(
c
(0)
33 + n2c

(0)
22 + T

)
, f

(0)
63 = n2, f

(0)
54 =

n(
c
(0)
33 + T

)(
c
(0)
33 + c

(0)
21 + T

)
,

f
(1)
43 = 0, f

(1)
46 = −c

(0)
11 + c

(0)
21

Rc0
11

, f
(1)
53 =

nλ
(
c
(0)
12 + c

(0)
22

)
R

(
c
(0)
33 + T

) ,

f
(0)
61 =

λ

TR

(
c
(0)
12 + c

(0)
22

)
, f

(1)
62 = nf

(1)
61 , f

(1)
64 = f

(1)
61 .

The Taylor expansions of Ti0, λi and 1/Ri (i = 1, 2) need expressions of the second
derivatives. These can be found by using equilibrium equations for the statically stretched
membrane and take the form

d2T20

ds2
= 3

d2T10

ds2
,

d2

ds2

(
1

R1

)
= 3

d2

ds2

(
1

R2

)
,

d2

ds2

(
1

R2

)
= − 1

TR

d2T10

ds2
,

d2λ1

ds2
= − λ3(2λ6 − 3 − Γλ8)

4R2(λ6 + 3)(1 + λ2Γ)
,

d2λ2

ds2
=

λ3(2λ6 + 3 + (λ6 + 4)Γ)

4R2(λ6 + 3)(1 + Γλ2)
,

d2T10

ds2
=

λ2[3 + (λ6 + 2 + 3λ−6)λ2Γ + (λ6 + 2)Γ2λ−2]

2(λ6 + 3)(1 + Γλ2)R2



378 I. Gavrilyuk, M.Hermann, A.Timokha, and V.Trotsenko

(derivations utilize C3 = C4 = 0 and Γ = C2/C1 in (2.6); analogous expressions for higher
even derivatives can be obtained recursively).

Let us first assume that n 	= 0. Because in this case the point s = 0 remains regular, the
local solutions are as follows:

yi = sµ

∞∑
k=0

gi,ks
k, i = 1, . . . , 6, (4.6)

and, using the Cauchy formula, one derives

fiνyν =

∞∑
k=0

∞∑
j=0

gν,jf
(k−j)
iν sk+µ. (4.7)

Substituting (4.6) and (4.7) into (4.5) and comparing the coefficients at sµ+k leads to the
relations

[F0 − (µ + k)E]gk = dk, k = 0, 1, 2, . . . , (4.8)

where E is the identity matrix and gk = {gi,k}. The vector d0 has only zero-components,
but

d
(i)
k = −

6∑
ν=1

k−1∑
j=0

gν,jf
(k−j)
iν , k = 1, 2, . . . , i = 1, . . . , 6. (4.9)

Because g0 is calculated from the homogeneous system of algebraic equations, nontrivial
solutions of (4.8) exist if and only if

det |F0 − µE| = 0 (4.10)

for a number µ. Other vectors gk are determined from a recursion arising after inserting the
nontrivial solutions into (4.8). Thus, (4.10) yields the secular equation

[µ4 − µ2
(
f

(0)
41 + f

(0)
52 + f

(0)
45 f

(0)
54

)− µ
(
f

(0)
42 f

(0)
54 + f

(0)
45 f

(0)
51

)
+

(
f

(0)
41 f

(0)
52 − f

(0)
42 f

(0)
51

)
](µ2 − f

(0)
63 ) = 0.

(4.11)

Further, account of f
(0)
ij and 2(c

(0)
33 + T ) − c

(0)
22 + c

(0)
12 = 0 at s = 0 reduces (4.11) to the form

[µ4 − 2(n2 + 1)µ2 + (n2 − 1)](µ2 − n2) = 0,

whose roots are

µ1 = n+1, µ2 = n, µ3 = n− 1, ; µ4 = −(n− 1), µ5 = −n, µ6 = −(n+1). (4.12)

Because µi, i = 4, 5, 6, imply unbounded solutions, we get three admissible solutions of the
secular equation.

4.1.1. The case of µ = µ1. Substituting µ1 into (4.8) and solving these recurrence
algebraic problems gives the first family of solutions of (4.5)

y
(1)
1 = sn+1

∞∑
k=0

g
(1)
1,2ks

2k, y
(1)
2 = sn+1

∞∑
k=0

g
(1)
2,2ks

2k, y
(1)
3 = sn+1

∞∑
k=0

g
(1)
3,2k+1s

2k+1

(further superscript at yi and gi,k indicates the family number).
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4.1.2. The case of µ = µ2. In contrast to the previous case, µ2 + 1 is also the root of the
secular equation for y1 and y2. The corresponding homogeneous linear problem allows for a
nontrivial solution. Generally, we get solutions

y
(2)
1 = sn

∞∑
k=0

g
(2)
1,2k+1s

2k+1, y
(2)
2 = sn

∞∑
k=0

g
(2)
2,2k+1s

2k+1, y
(2)
3 = sn

∞∑
k=0

g
(2)
3,2ks

2k.

4.1.3. The case of µ = µ3. Let us find solutions of the homogeneous algebraic system
(4.8) for k = 0. Simple analysis for n = 1 (antisymmetric oscillations of the membrane)
gives

g
(3)
1,0 = −g

(3)
2,0. (4.13)

When k = 1, the right-hand side of (4.8) becomes zero, but, because µ3 + 1 is the root
of (4.10), problem (4.8) remains resolvable. When k = 2, we arrive at an inhomogeneous
algebraic system with linearly dependent equations, which has a solution leading to the third
particular solution of the differential equations (3.10)

y
(3)
1 = sn−1

∞∑
k=0

g
(3)
1,2ks

2k, y
(3)
2 = sn−1

∞∑
k=0

g
(3)
2,2ks

2k, y
(3)
3 = sn−1

∞∑
k=0

g
(3)
3,2k+1s

2k+1.

Hence, in general, we have got three linearly independent formal solutions for un(s), vn(s)
and wn(s), which have the form

un(s) = sn−1ϕn,1(s), vn(s) = sn−1ϕn,2(s), wn(s) = snϕn,3(s). (4.14)

Here ϕn,1, ϕn,2 and ϕn,3 are smooth functions which can be expanded into a Taylor series
containing only even powers. In the case that n = 1, the first three coefficients in the power
expansions for ϕn,1 and ϕn,2 have equal but countersigned absolute values.

In a similar way for n = 0 one shows that the solutions u0(s) and w0(s) are formally
presented as

u0 = s
∞∑

k=0

aks
2k, w0 =

∞∑
k=0

bks
2k. (4.15)

4.2. Approximate solutions. Let us construct approximate analytical solutions of the
boundary value problem (4.2) by using the functional F. In order to do that, un(s), vn(s)
and wn(s) are posed as the truncated series

un(s) =

p∑
k=1

xku
(n)
k (s), vn(s) =

p∑
k=1

xk+pv
(n)
k (s), wn(s) =

p∑
k=1

xk+2pw
(n)
k (s), (4.16)

where {u(n)
k (s)}, {v(n)

k (s)} and {w(n)
k (s)} are the corresponding basis functions.

We will construct a polynomial functional basis that satisfies the boundary conditions at
s = s0 and has asymptotic behavior as s → 0 (given by (4.14) and (4.15)). In addition, in

studying axisymmetric oscillations, the system {w(0)
k } should be restricted to the additional

equation
1∫

0

rλ1w
(0)
k (s) ds = 0

following from the volume conservation condition.
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For n � 1, the functions u
(n)
k (s), v

(n)
k (s) and w

(n)
k (s) take the following form:

u
(n)
k (s) = (s2 − 1)sn+2k−3, w

(n)
k (s) = (s2 − 1)sn+2k−2, v

(n)
k (s) = u

(n)
k (s), k = 1, . . . , p.

(4.17)
Besides, in the case that n = 1, x1+p = −x1 in expansions (4.16) x1+p = −x1. In the case
that n > 1, starting from (4.4) gives the 3p-component vector x = {x1, x2, . . . , x3p} to be
found from the homogeneous algebraic system

(An − κ2Bn)x = 0. (4.18)

a
(n)
i,j =

1∫
0

[
α1

du
(n)
j

ds

du
(n)
i

ds
+ (α

(1)
2 + n2α3)u

(n)
i u

(n)
j − α

(2)
2

d

ds
(u

(n)
i u

(n)
j )

]
ds,

a
(n)
i,j+p =

1∫
0

n

[
α4

dv
(n)
j

ds
u

(n)
i + α

(1)
5 u

(n)
j u

(n)
i − α

(2)
5

d

ds
(v

(n)
j u

(n)
i )

]
ds,

a
(n)
i,j+2p =

1∫
0

[(
α6

dw
(n)
j

ds
+ α

(1)
7 w

(n)
j

)
u

(n)
i − α

(2)
7

d

ds
(w

(n)
j u

(n)
j )

]
ds,

a
(n)
i+p,j+p =

1∫
0

[
β1

dv
(n)
j

ds

dv
(n)
i

ds
+ (β

(1)
2 + n2β3)v

(n)
i v

(n)
j − β

(2)
2

d

ds
(v

(n)
i v

(n)
j )

]
ds,

a
(n)
i+p,j+2p = −n

1∫
0

β6v
(n)
i w

(n)
j ds,

a
(n)
i+2p,j+2p =

1∫
0

[
γ1

dw
(n)
i

ds

dw
(n)
j

ds
+ γ2w

(n)
i w

(n)
j + n2γ3w

(n)
i w

(n)
j

]
ds, i, j = 1, . . . , p. (4.19)

The matrix Bn has a block-diagonal structure with the following non-zero elements:

b
(n)
ij =

1∫
0

su
(n)
i u

(n)
j ds, b

(n)
i+p,j+p =

1∫
0

sv
(n)
i v

(n)
j ds, b

(n)
i+2p,j+2p =

1∫
0

(s + arλ1H
(n))w

(n)
i w

(n)
j ds.

(4.20)
In the case that n = 1 (asymmetric wave profiles), the dimension of the algebraic system

(4.18) decreases by 1. The matrices are obtained from the matrices An and Bn by crossing-out
the (p + 1)-row and the (p + 1)-column with simultaneous replacement of the corresponding
elements by the values

a
(1)
1,1 =

1∫
0

[
(α1 + β1)

(
du

(1)
1

ds

)2

+ (α
(1)
2 + β

(1)
2 + α3 + β3 − 2α

(1)
5 )(u

(1)
1 )2+

2u
(1)
1

du
(2)
1

ds
(2α

(2)
5 − α4 − α

(2)
2 − β

(2)
2 )

]
ds,
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a
(1)
1,j =

1∫
0

[
α1

du
(1)
1

ds

du
(1)
j

ds
+(α

(1)
2 −α

(1)
5 +α3)+u

(1)
1 u

(1)
j −α

(1)
4

du
(1)
1

ds
u

(1)
j +(α

(2)
5 −α

(2)
2 )

d

ds
(u

(1)
1 u

(1)
j )

]
ds,

a
(1)
1,j+p−1=

1∫
0

[
−β1

du
(1)
1

ds

du
(1)
j

ds
+(α

(1)
5 −β

(1)
2 −β3)u

(1)
1 u

(1)
j +α4u

(1)
1

du
(1)
j

ds
+(β

(2)
2 −α

(2)
5 )

d

ds
(u

(1)
1 u

(1)
j )

]
ds,

a
(1)
1,j+2p−1 =

1∫
0

[
(α6 − α

(2)
7 )

dw
(1)
j

ds
u

(1)
1 + (α

(1)
7 + β6)w

(1)
j u

(1)
1 − α

(2)
7 w

(1)
j

du
(1)
1

ds

]
ds,

b
(1)
1,1 = 2

1∫
0

s(u
(1)
1 )2 ds, b

(1)
1,j+p−1 = −

1∫
0

su
(1)
1 u

(1)
j ds, j = 2, . . . , p.

In considering axisymmetric oscillations (n = 0), the elements of the matrices A0 and
B0 are computed by formulae (4.19), (4.20), and the p-central row should be crossed out. It
should be noted that applying the formula of integration by parts to An makes it possible
to avoid higher derivatives in the coefficients α2, α5, α7, β2, β5, β6. In order to compute Bn,
the function ϕ

(i)
n = H(n)w

(n)
i should be known on the contour Γ1. This suggests solutions of

the Neumann boundary problems

∂

∂r

(
r
∂ϕ

(i)
n

∂r

)
+

∂

∂z

(
r
∂ϕ

(i)
n

∂z

)
− n2

r
ϕ(i)

n = 0, (z, r) ∈ G,

∂ϕ
(i)
n

∂n

∣∣∣∣
Γ1

= w
(n)
i ,

∂ϕ
(i)
n

∂n

∣∣∣∣
Γ2

= 0, i = 1, . . . , p. (4.21)

In contrast to (3.9), the boundary condition on the contour Γ1 contains the already known
functions.

The variational formulation of (4.21) reduces the problem to the minimization of the
functional

I =

∫
G

{
r

[(
∂ϕ

(i)
n

∂z

)2

+

(
∂ϕ

(i)
n

∂r

)2]
− n2

r
(ϕ(i)

n )2

}
dz dr − 2

∫
Γ1

rw
(n)
i ϕ(i)

n ds. (4.22)

The variational problem can be solved by the Ritzt method. The solutions ϕ
(i)
n (z, r) are

given as follows:

ϕ(i)
n (z, r) =

m∑
k=1

a
(i)
k V

(n)
k (z, r), (4.23)

where a
(i)
k are the unknowns, V

(n)
k (z, r) is the system of linearly independent solutions of

(4.21). The necessary extremum condition of (4.22) (by a
(i)
k ) leads to the system of linear

inhomogeneous algebraic equations in a(i) = {a(i)
1 , a

(i)
2 , . . . , a

(i)
m }

Da(i) = γi, i = 1, . . . , p. (4.24)
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Using the Green formula establishes the following expressions for the matrix D = {dkl}
and vectors γi:

dkl =

∫
Γ

r
∂V

(n)
k

∂n
V

(n)
l dS, γ

(i)
k =

∫
Γ1

rV
(n)
k w

(n)
i dS, k, l = 1, . . . , m, Γ = Γ1 ∪ Γ2.

The functional basis {V (n)
k (z, r)} coincides with the linearly independent solutions of

equation (4.21) given in the polar coordinate system R and θ by Feschenko et al. [4].
If the domain is occupied by a liquid, it is confined to the rigid walls and the statically

inflated membrane, the coordinate functions V
(n)
k (z, r) can be chosen as

V
(n)
k (z, r) = W

(n)
k (z, r) =

2nn!(k − n)!

(k + n)!
RkP

(n)
k (cos θ), R =

√
z2 + r2, k � n, (4.25)

where P
(n)
k (cos θ) are the Legendre functions of the first kind.

When the membrane Σ0 is deflated, the origin does not belong to G and the set W
(n)
k (z, r)

should be completed by the functions

W̄
(n)
k (z, r) =

2nn!(k − n)!

(k + n)!
R−(k+1)P

(n)
k (cos θ) = W

(n)
k (z, r)/R2k+1,

which have a power singularity in the origin. It should be noted that the computations of
W

(n)
k (z, r), W̄

(n)
k (z, r) and of their derivatives are facilitated by using the recurrence formu-

lated by Feschenko et al. [4].

Thus, the computation of ϕ
(i)
n (z, r), i = 1, . . . , p, reduces to the calculation of D and

the p-vectors γ(i) by the sequence of linear inhomogeneous algebraic equations (4.24). The
elements of the matrices Bk in (42) that take into account the influence of the liquid, can
be found by a supplementary routine splitting of the solution into partial derivatives for the
potential and the system of ordinary differential equations on the interval associated with
the membrane.

4.3. Numerical examples. Let us consider a vertical circular cylindrical tank of radius
R0 filled with a liquid to the depth H/R0 = 0.5 so that the free surface is covered by a
membrane. The dimensional geometrical and physical characteristics are chosen as follows:

R0 = 1 m, h0 = 2 · 10−3 m, C1 = 93.195 · 10−4 N/m2, C2 = 17.168 · 10−4 N/m2,

C3 = 0, C4 = 0.

The corresponding dimensionless values are D = 2, 631579, Γ = C2/C1 = 0.184211. The
parameter C depends on the variation of the liquid volume ∆V as follows

∆V = π

1∫
0

r2dz

ds
ds.

Furthermore, we will change C and restore ∆V . Suppose that the liquid volume increases.
Define the value of C to be equal to 0.2; 0.6; 1.4. This makes ∆V/π equal to 0.055641;
0.124403; 0.219157.
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If the parameter C is relatively small, the major part of the static membrane Σ0 is close
to its homogeneous strained state. The surface is nearly flat except for the small domain
localized at the fastening contour. In this case, the nonlinear static problem on Σ0 belongs
to the so-called singularly perturbed problems (Trotsenko [17]). Increasing C increases the
strains and makes this area of the membrane larger (see, Fig. 4.1). Let us present some
results on free oscillations of a statically deformed membrane coupled with the liquid.

F i g. 4.1. Profiles (dashed lines) and strains of the deformed
membrane for the given parameters of hydrostatic loads

Table 4.1 shows the convergence of the first three spectral parameters κ2
i for the case

that n = 1 versus the number of approximations p in (4.16) with a fixed number of functions
in (4.23) (m = 10). Here, we supposed C = 1.4; ρ/ρ0 = 1; R0/h0 = 500 and inertia of the
membrane in the tangential direction was neglected. The influence of m in (4.23) (for the
potential components) on the accuracy of κ2

i is shown in Table 4.2. The number of terms in
(4.16) for the deviation components was assumed to be five. The results on the change in
the eigenfrequencies ω (normalized) versus ∆V are presented in Fig. 4.2.

Thus, the numerical data obtained demonstrate the efficiency of the proposed approxi-
mate method. The fast convergence to the solution is facilitated by a functional basis of a
specific singular structure.

T a b l e 4.1.

p κ2
1 · 10 κ2

2 κ2
3

1 0.38495 — —
2 0.36532 0.27951 —
3 0.35860 0.23283 1.09715
4 0.35844 0.23097 0.74836
5 0.35843 0.23096 0.72226
6 0.35843 0.23096 0.72189

T a b l e 4.2.

m κ2
1 · 10 κ2

2 κ2
3

4 0.36024 0.42981 —
6 0.35851 0.23944 —
8 0.35847 0.23097 0.81385
10 0.35843 0.23096 0.72226
12 0.35843 0.23096 0.72207
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F i g. 4.2. Graphic dependence of the first two values of dimen-
sionless ω

√
R/g versus ∆V/π with δ = R0/h0 equal to 200 and

500. The dashed line corresponds to the first four dimensionless
natural sloshing frequencies of the liquid in a circular cylindri-
cal tank. When ∆V → 0, the eigenfrequencies of the “liquid-
membrane” system tend to the natural sloshing frequencies. As
would be expected, growth of ∆V leads not only to deforma-
tions of the membrane, but also to larger natural frequencies of

coupled oscillations
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