
Proceedings
of the Third International Conference

SYMMETRY
in Nonlinear

Mathematical Physics



Editor-in-Chief
A.M. Samoilenko

Institute of Mathematics
National Academy of Sciences of Ukraine
Kyiv, Ukraine

Proceedings of Institute of Mathematics
of the National Academy of Sciences of Ukraine

Volume
30

Mathematics and its applications



S E R I E S Mathematical Physics

Proceedings
of the Third International Conference

SYMMETRY
in Nonlinear

Mathematical Physics

Part 1

Institute of Mathematics of NAS of Ukraine
Kyiv   •   2000

Kyiv, Ukraine 12–18 July 1999



УДК 517.95:517.958:512.81(06)

Симетрія у нелінійній математичній фізиці // Праці Інституту математики НАН Украї-
ни. — Т. 30. — Ч. 1. — Київ: Інститут математики НАН України, 2000 / Ред.: А.Г. Нікітін,
В.М. Бойко.  — 264 с.

Цей том “Праць Інституту математики НАН України” є збірником статей учасників
Третьої міжнародної конференції “Симетрія у нелінійній математичній фізиці”. Збірник
складається з двох частин, кожна з яких видана окремою книгою.
Дане видання є першою частиною і включає оригінальні праці, присвячені подальшому

розвитку та застосуванню теоретико-групових методів у сучасній математичній фізиці та
теорії диференціальних рівнянь. Поряд з аналізом симетрії та побудовою точних розв’яз-
ків складних багатовимірних нелінійних рівнянь, ці методи дозволяють будувати адекват-
ні математичні моделі у фізиці, механіці, математичній біології та інших природничих
науках.
Розраховано на наукових працівників, аспірантів, які цікавляться симетрійними метода-

ми аналізу і побудови точних розв’язків нелінійних рівнянь.

Symmetry in Nonlinear Mathematical Physics // Proceedings of Institute of Mathematics of NAS
of Ukraine. — V. 30. — Part 1. — Kyiv: Institute of Mathematics of NAS of Ukraine, 2000 /
Eds.: A.G. Nikitin, V.M.Boyko.  — 264 p.

This volume of the Proceedings of Institute of Mathematics of NAS of Ukraine includes pa-
pers of participants of the Third International Conference “Symmetry in Nonlinear Mathema-
tical Physics”. The collection consists of two parts which are published as separate issues.

This issue is the first part which is devoted to further development and applications of group-
theoretical methods in modern mathematical physics and theory of differential equations. In
addition to the analysis of symmetries and construction of exact solutions of complicated multi-
dimensional nonlinear equations, these methods allow to formulate adequate mathematical
models in physics, mechanics, biology, and other natural sciences.

The book may be useful for researchers and post graduate students who are interested in
symmetry analysis and construction of exact solutions of nonlinear equations.

ISBN 966–02–1401–4 (Part 1)

© Design by R.O. Popovych
and H.V. Popovych, 2000

© Institute of Mathematics
of NAS of Ukraine, 2000

Затверджено до друку вченою радою Інституту математики НАН України

Редактори: А.Г. Нікітін, В.М. Бойко
Editors: A.G. Nikitin, V.M. Boyko

Рецензенти: В.А. Даниленко, І.О. Луковський
Referees: V.A. Danylenko, I.O. Lukovsky

ISBN 966–02–1444–8



Preface

The Third International Conference “Symmetry in Nonlinear Mathe-
matical Physics” continued the series of the scientific meetings started in
1995 due to efforts of Professor Wilhelm Fushchych. And we believe that
these series will be continued and consider such continuation as our duty
with respect to the memory of our teacher. The conference was organized
by the Institute of Mathematics of the National Academy of Sciences of
Ukraine and M. Dragomanov National Pedagogical University. It was held
in Kyiv, July 12–18, 1999.
The papers included into the Proceedings can be divided in two parts.

The first part includes ones devoted to the topics which are traditional for
our conferences, i.e., analysis of symmetries of nonlinear equations, sym-
metry reduction and construction of exact solutions of partial differential
equations. In this part the classical Lie methods as well as the modern
trends in symmetry analysis such as non-local, conditional, higher, super-
and parasupersymmetries, are represented in more than 30 papers which
are collected in the first volume.
The second volume includes papers devoted to the representation the-

ory and applications of classical and deformed Lie algebras, super- and
parasuperalgebras to some fundamental and applied problems of modern
mathematical physics. It should be emphasized that such separation is
rather conventional, since some papers can be related to both parts and
some to neither of them. But we believe that all papers present a valu-
able contribution to the development of symmetry analysis of equations of
mathematical physics.

Anatoly NIKITIN

December, 1999
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Lax pairs are useful in studying nonlinear partial differential equations, although finding
them is often difficult. A standard approach for finding them was developed by Wahlquist
and Estabrook [1]. It was designed to apply to for equations with two independent variables
and generally produces incomplete Lie algebras (called “prolongation structures”), which
can be written as relations among certain matrices and their commutators. Extending the
method to three variable problems is more difficult. One still gets matrix equations, but
now with a more complicated structure. Exploration of a Lax pair in a paper by Estevez [3]
suggested a variation of the method. This paper will discuss how that can be used to obtain
her Lax pair.

P.G. Estevez [3] published a recent paper dealing with a particular nonlinear partial differ-
ential equation (NLPDE):

0 = m2
y(nyt −mxxxy) +mxy

(
n2

y −m2
xy

)
+ 2my(mxymxxy − nynxy)− 4m3

ymxx (1)

with mt = nx. In this paper, subscripts mean derivatives.
This equation was a reformulation of a set of equations

0 = vy − (uw)x,
0 = λut + uxx − 2uv,
0 = λwt − wxx + 2vw

(2)

which were obtained earlier by other authors. These equations have the Painleve property, which
was used by Estevez in an investigation of Eq. (1) by the singular manifold method in which she,
among other things, found a Lax pair. Her treatment is fairly complicated. It is not obvious
from the original equations that a Lax pair exists.
Study of that Lax pair led this author to try a matrix approach to try to find the same result.

This is basically a version of the Wahlquist–Estabrook method [1] that this author spoke about
at the first Kyiv Conference “Symmetry in Nonlinear Mathematical Physics” four years ago [4].
The matrix equations are quite complicated but can be simplified, with guidance from already
known results. Here some earlier results are reviewed, with particular attention to the use of
matrices.
Lax pairs have been known since 1968, when Lax discussed them in terms of operators in his

paper of that year on the KdV equation (the 12 included here did not occur in Lax’s version) [6]

ut + 12uux + uxxx = 0. (3)

In the later treatment by Wahlquist and Estabrook [1, 2] (WE), the Lax pair may be expressed
in terms of linear matrix equations for two auxiliary variables, with coefficients involving the
variable u, whose integrability condition gives the KdV equation.
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Wahlquist and Estabrook used differential forms in analyzing partial differential equations.
We show here the definition of new variables z and p, introduced to reduce equations to first
derivatives, with the KdV equation using the new variables:

z = ux, p = zx, ut + px + 12uz = 0. (4)

Then we write these three equations in terms of three differential forms in the five variables x,
t, u, p, z (the set of these is called the ideal I of forms, I = {α, β, γ}:

α = du dt− z dx dt,

β = dz dt− p dx dt,

γ = −du dx+ dp dt+ 12uz dx dt,

(5)

where the hook product ∧ between basis forms such as du and dt is understood. (If one now
assumes that the field variables u, z, p are functions of x and t and requires these differential
forms to vanish, one recovers the original equations.)
Next, WE assume the existence of a variable y and an auxiliary 1-form, called a prolongation

form,

ω = −dy + f(y, u, p, z) dx+ g(y, u, p, z) dt. (6)

The exterior derivative of this form is to lie in the “augmented” ideal of forms I ′ = {I, ω}:
dω ⊂ {I, ω} (7)

so that when I and ω vanish, this amounts to an integrability condition.
Now take y to be a column vector and assume f and g to be linear in the components of y;

then we can rewrite (6) as a matrix equation:

ω = −dy + αy, (8)

where

α = F dx+Gdt (9)

is a matrix 1-form and where F and G are matrices and are functions of u, z and p. The
integrability condition (7) is then expressed by

dω = dα y − α ∧ dy,

= dα y − α ∧ (−ω + αy),
= (dα− α ∧ α)y modω

(10)

so that

dα− α ∧ α ⊂ I (11)

or

Gx − Ft − [F,G] = 0 (12)

which is to be satisfied if the original field equations hold.
The use of differential forms gives some insight into how the problem might be formulated

and presents an elegant structure. However, the problem can be formulated without forms.
Write

yx = F y, yt = Gy (13)
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then

yxt = Ft y + Fyt = Ft y + FGy

= Gx y +Gyx = Gx y +GFy,
(14)

giving Eq. (12) as before. For the KdV case this equation becomes simply:

Fp = Fz = 0, Gp + Fu = 0,
z Gu + pGz + 12uz Fu = [F,G].

(15)

Solution of these equations leads eventually to the relations

F = Au2 +Bu+ C,

G = −p(2uA+B) + z2A+ 6zD +K(u),
(16)

where

[B,C] = 6D, [A,B] = [A,C] = 0 (17)

and

K(u) = 2u3([A,D]− 4A) + 3u2([B,D]− 2B) + 6u[C,D] + E (18)

and where there are six more equations among A, B, C, D and E, which are constant matrices.
These equations involve commutators of commutators and will not be given here.
The set of equations for A, B, C, D and E constitutes an incomplete Lie algebra (called a

“prolongation structure” by WE). It is of interest in its own right; however, we wish to find a
representation in order to find the Lax pair. Closure of the algebra can be achieved by Ansatz,
as WE show. A two-dimensional representation for these five matrices is, where λ is constant:

A = 0, B =
[
0 −2
0 0

]
, C =

[
0 λ
0 0

]
, D = 1/3

[ −1 0
0 1

]
, E = −4λC, (19)

giving

F =
[
0 λ− 2u
1 0

]
, G =

[ −2z 4(u+ λ)(2u− λ) + 2p
−4(u+ λ) 2z

]
, (20)

with a Lax pair written as differentials of the components of y:

dy1 = (λ− 2u)y2 dx+ {[4(u+ λ)(2u− λ) + 2p]y2 − 2zy1} dt,
dy2 = y1 dx+ [2zy2 − 4(u+ λ)y1] dt.

(21)

It should be noted here that WE use the auxiliary variables in the Lax pair equations (which
they call “pseudopotentials”) to help derive Bäcklund transformations.
One can see that this method is most suited for differential equations in two independent

variables, since the prolongation form is simply a 1-form. The three independent variable case
is much harder. We can see why, from a differential form standpoint, by noting that the ideal of
forms representing equations with n independent variables generally requires n-forms (although
there are exceptions). As an example, we give the KP equation

3utt + 6(uux)x + uxxx + 3uxy = 0, (22)

and with new variables p, r, z and w defined by

p = ux, r = px, z = wx = −(3/4)ut (23)
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this becomes

wt = (3/2)up+ (1/4)rx + (3/4)uy. (24)

An ideal of 3-forms representing the KP equation is (where the ∧ is suppressed):

(du dt− p dx dt) dy,
(dp dt− r dx dt) dy,
(dw dt− z dx dt) dy,
(dp dx− (4/3) dz dt) dy,
(dw dx+ (3/2)up dx dt+ (1/4) dr dt) dy + (3/4) du dx dt.

(25)

The difficulty in such cases arises in trying to construct a prolongation form. If we simply
write it as a 1-form in three variables, then its exterior derivative is a 2-form, and its vanishing
cannot be achieved with the 3-forms in the ideal.
H. Morris’ approach [5], motivated by the WE method and here called the MWE method,

does not use forms. He proceeded by assuming the equations

ζx = −Fζ −Aζy,

ζt = −Gζ −Bζy,
(26)

where A and B are constant matrices, with F and G being matrix functions of u, p, r, z and w,
and by assuming integrability. After writing out the integrability condition and substituting from
Eq. (26) where possible, he set the coefficients of ζ, ζy and ζyy to zero, yielding the following
equations (to be taken modulo the field equations, in other words to be satisfied if the field
equations are satisfied):

[A,B] = 0,
[G,A] + [B,F ] = 0,
Ft −Gx + [G,F ] +BFy −AGy = 0.

(27)

Note that the equations are now more complicated than just relations among commutators.
Morris’ approach suggested to the author an approach to the three-variable problem using

differential forms [4]. While this has some interest, it appears rather artificial. It is not needed
here.
A solution of Morris’ equations, given by himself and corrected in [4], has this set of matrices,

where k is a constant:

A = (3/4)


 0 0 0
0 0 0
1 0 0


 , B = −(3/4)


 0 0 0
1 0 0
0 1 0


 ,

F =


 0 −1 0
3u/4 0 −1
w − k 3u/4 0


 , G =


 u/4 0 1

−w + k + p/4 −u/2 0
r/4 + 9u2/16 −w + k − p/4 u/4


 .

(28)

Equation (26), with these matrices, now constitutes a Lax pair for the KP equation.
We now go back to Estevez’ paper and equation. We write her Lax pair in matrix form,

defining new variables:

Ct =M(Cxx + 2qC), Cxy = QCy − pC, (29)
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with

q = mx, r = mxy, p = my, z = ny =
∫

mty dx, s = rx (30)

and

Q = (r1 + zM)/(2p), M =
[
1 0
0 −1

]
, (31)

where 1 in Q is the 2× 2 unit matrix and C is a 2-component column matrix. We note that her
original equation, in the new variables, is

0 = p2(zt − sx) + r
(
z2 − r2

)
+ 2p(rs− zzx)− 4p3qx, (32)

where zx = pt.
Let us now attempt to use the MWE method to find this Lax pair. We assume equations

exactly like Eq. (26),

ζx = −Aζy − Fζ,

ζt = −Bζy −Gζ,
(33)

where F and G are matrix functions of m, n, p, q, r, s and z. The equations easily show that F
is independent of n, q, r and s and is linear in z. Continuing the process eventually leads to
a trivial solution. Interchanging independent variables in Eq. (33) does not lead to a solution
either. Thus, the MWE method does not work, indicating that there is not a Lax pair of the
form (33).
So we attempt to generalize the MWE method (denote this by GMWE). We try the following,

noting that it uses a particular assumed structure, motivated by knowing the answer already!
Assume a pair of differential equations for the column vector C from above:

Ct = FCxx +GCx +HC,

Cxy = KCx + LCy +NC,
(34)

where F , G, H, K, L and N are matrix functions of m, n, p, q, r, s and z, and assume
integrability: (Ct)xy = (Cxy)t, substituting for Ct and Cxy from these equations, wherever
possible. One gets a complicated matrix equation with terms linear in Cxxx, Cxx, Cx, Cy and C.
We equate the coefficients to zero. After some simplification, such as substitution of Fy from
the first of these into other equations, we get

Fy = [K,F ],
Gy = [K,G] + [LK +N,F ]− FKx −KxF,

Lt = [H +GL+ FL2, L] + Fx(Lx + L2) + F (Lxx + 2LxL)
+ [F,L]Lx +GxL+GLx +Hx,

Nt = (2FLx + FxL)N + [H,N ] + [F,L](Nx + LN) + FNxx

+ FxNx +GxN +GNx +Hxy − LHy −KHx + [G,L]N,

Kt = [G,N + LK] + [F,LN + L2K] + [H,K] +KxG+ (N + LK −Kx)Fx

+ (LxK + 2LKx −Kxx +Nx)F + F (Nx + LxK) +Hy.

(35)

Obviously further simplification is needed. We take some hints from the known answer;
choose K = G = 0. Then Fy = 0, yielding

0 = Fmp+ Fnz + Fppy + Fqr + Frry + Fssy + Fzzy. (36)
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The coefficients of p, z, etc., must vanish, giving all derivatives of F zero, so that F is constant.
The remaining equations become

0 = [F,N ],
0 = Hy +NxF + FNx + [F,LN ],
Lt = F (Lxx + 2LxL+ LLx)− LFLx +Hx + [FL2 +H,L],
Nt = F (Nxx + LNx + 2LxN)− L(FNx +Hy) +Hxy + [F,L]LN + [H,N ].

(37)

The second of these suggests that N and H be taken as functions of separate variables whose
x- and y-derivatives are equal. p and q appear to be the obvious variables. We write H = H(q)
and N = N(p), substitute, and cancel qy(= px). Then the second equation yields

H ′ = −N ′F − FN ′, [F,LN ] = 0. (38)

Since F is constant, the fact that it commutes with N also means that it commutes with N ′. We
assume F to have an inverse. Then separation of variables in the first of Eq. (38) and dropping
matrix integration constants gives

H = aq, N = cp, (39)

where a and c are constant matrices and c = −(1/2)aF−1. We note that F , a and c now all
mutually commute. We assume that c has an inverse; then F commutes with L and with Lx as
well.
Substitution of these expressions into the last of Eq. (37) gives, after simplification,

2FLxcp = −(Fc+ a)pxx + Lamxy + czx. (40)

Multiplying by the inverses of F and c gives the equation

2pLx = 1pxx − 2Lpx + F−1zx (41)

which can be integrated and solved for L, giving

L = (1r + F−1z + U)/(2p), (42)

where U is a matrix integration constant satisfying [F,U ] = 0.
The third of Eq. (37) now becomes, after using [F,L] = 0,

F (Lxx + 2LxL) +Hx + [H,L] = Lt. (43)

We substitute for L from Eq. (42) and find, after substituting for various derivatives, for zt from
Eq. (32), multiplying by 2p3, and canceling some terms,

F
[−3prs+ 2r3 +

(
2r2 − ps

)
U

]
+ 1

(−2przx − psz + 2zr2
)

+
[
F

(
ps− r2

)
+ 1(pzx − rz)− rFU

] (
1r + F−1z + U

)
+ 2p3qxa+ p2q[a, U ]

= −1przx − pzxU + F−1
(
4p3qx + pzzx − 2prs+ r3 − rz2

)
.

(44)

By comparing terms we see immediately that F = F−1 and a = 2F, so that c = −1. The zx

term shows that U = 0; then the remaining terms cancel identically. If one now takes

F =M =
[
1 0
0 −1

]
(45)

one gets Estevez’ Lax pair Eq. (29).
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What could be done to try simplifying Eq. (35) in some other way? We can assume that all
matrices commute. Then F is constant for the same reason as before. However, one gets this
equation for G and K:

Gy = −FKx −KxF. (46)

By the same argument used for H and N above, we may write

K = Ap, G = −2FAq, (47)

where A is constant. We assume that F and A have inverses. The remaining equations are

Kt = KxG+ 2KFLx + 2LFKx + F (2Nx −Kxx) +Hy,

Lt = F (Lxx + 2LLx) + LGx +GLx +Hx,

Nt = F (Nxx + 2NLx) +NGx +GNx +Hxy −KHx − LHy.

(48)

Motivated by the first of these equations we take H = H(q) since y-derivatives of other variables
cannot be expressed in terms of the variables we are using. We expand Nx in terms of derivatives
with respect to z, p, q and r and set coefficients of zx and qx to zero, giving expressions for Nz

and Nq. Integration of those equations yields

N = (1/2)F−1Az − pAL+W (p, r). (49)

Substitution into the remaining part of the equation yields an equation linear in s. Setting the
coefficients equal to zero gives finally

N = (1/2)F−1Az − pAL+ rA− pC + E,

H = FA2q2 + 2FCq +D,
(50)

where C, D and E are constant.
Substitution of these results into the equation for Nt with elimination of Lt and zt (from

Eq. (32)) gives an equation which could be integrated on x to give L, were it not for a term
−2F−1Apqx. This fact seems to show that A must be zero after all, giving a contradiction. Thus,
at the least, A does not have an inverse and perhaps should be taken to be zero, leading to the
previous case.
We can approach this from a slightly different point of view. Let us ask what NLPDE is

consistent with the Lax pair (34) we have assumed. To simplify we will assume that all matrices
commute, as before. We get a constant F as before. We assume some basic field m with q = mx,
p = my. We get G = −2qFA + B and K = qA + C, where B and C are constant, similar to
previous results. For reasons similar to the previous ones, we take A = 0. Thus G and K are
constant. Furthermore, it seems appropriate and useful to take K = 0. Calculation for H, N
and L proceeds much as before. We finally get an equation where, in order to make all terms
proportional to the same matrix, we merely need to assume F−1 is proportional to F and c is
proportional to 1, giving F 2 = λ1 and c = µ1, where λ and µ are constants. µ can be absorbed
by change of variables. So we have a slightly more general equation than Estevez:

0 = −m2
ymxxxy +mxy

(
2mymxxy −m2

xy

) − 4m3
ymxx

+λ−1
(
mxyn

2
y − 2nymymyt +m2

ynyt

)
.

(51)

We can also generalize by taking H = H(q,m), N = N(p) when solving for those two
quantities. We get

N = cp, H = −(Fc+ cF )q +Q(m). (52)
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We assume that F and c have inverses, and this enables explicit solution for several quantities.
This all reduces eventually to the same equation as before.
One can ask what the most general equation is that is consistent with a generalized Lax pair

of the type, say,

Ct = FCxx +GCx +HC +ACyy +BCy,

Cxy = KCx + LCy +NC.
(53)

The equations resulting from this are very complicated and nothing has been done with them.
In summary, one can see that trial of a Lax pair of the generalized form (34) or something

like it could perhaps work for some equations, as a generalization of (33). Chances are that any
particular guess will not work for a new NLPDE that one might have; but this at least gives
some suggestions for how one might look for a Lax pair using matrices. Defining new variables
might motivate the linear structure that one might try. A general approach is not available.
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The brief review of new methods of factorization, autonomization and exact linearization of
the ordinary differential equations is represented. These methods along with the method of
the group analysis based on using both point and nonpoint, local and nonlocal transforma-
tions are effective tools for study of nonlinear autonomous and nonautonomous dynamical
systems. Thus a scope of exactly solvable problems of the Nonlinear analysis is extended.

Introduction

This paper is devoted to the analytical aspect of the problem of integrability of ordinary dif-
ferential equations (ODE). There are two approaches to the problem one of which is related to
the changes of variables and another to implied algebraic concepts. However, an application
of substitutions as a rule had the heuristic nature. Such powerful methods as factorization
were hardly extendable to differential equations, even linear ones; besides, they were inefficient.
Plenty of expectations was connected to an application of Lie group and Lie algebra theory to
differential equations (the group analysis), and it was not in vain. Conceptual and uniformizing
role of this theory is now universally recognized. Algebraic approach became especially fruitful
in solving mechanical and physical fundamental equations since invariance principles are back-
ground for the construction of these equations. However, its capability does not allow “to close”
the integrability problem.
Being concerned with the integrability problem for ODE, the author has concluded that the

key to its comprehension is contained in the ideas of factorization and transformation and
in realizing the necessity of their combined application since the summarized results exceed the
effect of a single idea. The uniform theory of a factorization and transformations of ODE allows
to investigate structurally nonlinear and non-stationary problems of technology and natural
sciences, what is especially important in connection with a continuous delinearization of Science
in general and Physics in particular.
For a first time the author presented the factorization method for differential operators in

connection with a transformation theory in 1967 [1]. Further logical development of this method
has led to the extension of the factorization to the nonlinear equations and the creation of effec-
tive algorithms for searching of transformations. The author [2] incorporated the fundamentals
of theories of factorization and transformations of n-th order ODE to uniform theory which
structurally permitted to solve the problems of equivalence of various classes, i.e. the problems
of their reduction to given (including canonical) prescribed form (see also [3–5]).
In the present paper the special attention is paid to autonomizable and linearizable equation

classes.
The paper is organized as follows. In Section 1 we present the new method of exact lineariza-

tion of nonlinear ODEs. We consider in detail the linearization of autonomous equations with
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the help of nonlocal transformation of variables. In Section 2 the example of the exponential
nonlocal symmetry is given. In Section 3 we consider the class of linearizable equations of the
third order and present some examples.

1 A new method for exact linearization of ODE

Theorem 1.1 [4]. The equation

y(n) − f
(
x, y, y′, . . . , y(n−1)

)
= 0 (1.1)

is reducible to the linear autonomous form

Mnz ≡ z(n)(t) +
n∑

k=1

(
n

k

)
bkz

(n−k)(t) = 0, bk = const. (1.2)

by means of the reversible transformation

y = v(x, y)z, dt = u1(x, y)dx+ u2(x, y)dy, (1.3)

where v, u1, and u2 are sufficiently smooth functions and v(u1 + u2y
′) �= 0 in a domain Γ(x, y)

iff (1.1) admits the noncommutative factorization

1∏
k=n

[
D − vx + vyy

′

v
− (k − 1)D(u1 + u2y

′)
u1 + u2y′

− rk(u1 + u2y
′)
]
y = 0, (1.4)

or the commutative one
n∏

k=1

[
1

u1 + u2y′
D − vx + vyy

′

v(u1 + u2y′)
− rk

]
y = 0,

D = d/dx, vx = ∂v/∂x, vy = ∂v/∂y,

(1.5)

where D = d/dx, and rk are the roots of the characteristic equation

Mn(r) ≡
n∑

k=0

(
n

k

)
bkr

n−k = 0, b0 = 1. (1.6)

Necessity. Factorizing (1.2) we obtain

1∏
k=n

(Dt − rk)z = 0, Dt = d/dt. (1.7)

We apply the transformation, inverse to (1.3), to (1.7):

z = v−1y, dx = 1/(u1 + u2y
′)dt :

1∏
k=n

[
1

u1 + u2y′
D − rk

]
y

v
=

2∏
k=n

[
1

u1 + u2y′
D − rk

] [
1

u1 + u2y′
D − rk

]
y

v

=
2∏

k=n

[
1

u1 + u2y′
D − rk

]
1
v

[
1

u1 + u2y′
D − Dv

v(u1 + u2y′)
− r1

]
y = 0, Dv = vx + vyy

′.
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Using the operator identity(
1

u1 + u2y′
D − rk

)
1
v
=
1
v

[
1

u1 + u2y′
D − Dv

v(u1 + u2y′)
− rk

]
,

we obtain the expression

1
v

n∏
k=1

[
1

u1 + u2y′
D − vx + vyy

′

v(u1 + u2y′)
− rk

]
y = 0,

that corresponds to the factorization (1.4). The factorization (1.5) can be obtained from (1.4)
as follows. If we apply an easily verifiable identity[

1
u1 + u2y′

D − vx + vyy
′

v(u1 + u2y′)
− rs

]
1

(u1 + u2y′)s−1

=
1

(u1 + u2y′)s

[
D − vx + vyy

′

v
− (s− 1)D(u1 + u2y

′)
u1 + u2y′

− rs(u1 + u2y
′)
]
,

s = 1, n, we get a noncommutative factorization

1
v(u1 + u2y′)n

1∏
k=n

[
D − Dv

v
− (k − 1)D(u1 + u2y

′)
u1 + u2y′

− rk(u1 + u2y
′)
]
y,

that corresponds to (1.5).
Sufficiency. Let take place the factorization (1.5) takes place. We apply transforma-

tion (1.3), sequentially changing the dependent and independent variables: a) y = vz; b) dt =
(u1 + u2y

′)dx, (D = (u1 + u2y
′)Dt). Let U = u1 + u2y

′.

1∏
k=n

[
D − Dv

v
− (k − 1)DU

U
− rkU

]
vz =

2∏
k=n

[
D − Dv

v
− (k − 1)DU

U
− rkU

]
v(D − r1U)z.

By virtue of the identity[
D − Dv

v
− (s− 1)DU

U
− rsU

]
v = v

[
D − (s− 1)DU

U
− rsU

]
v, s = 1, n

we obtain
1∏

k=n

[
D − Dv

v
− (k − 1)DU

U
− rkU

]
vz = v

1∏
k=n

[
D − (k − 1)DU

U
− rkU

]
z.

Further, changing the independent variable we get:

v
1∏

k=n

[
D − (k − 1)DU

U
− rkU

]
z = v

1∏
k=n

[
UDt − (k − 1)DU

U
− rkU

]
z

= v

2∏
k=n

[
UDt − (k − 1)DU

U
− rkU

]
U(Dt − r1)z.

Applying the operator identity:[
D − (s− 1)DU

U
− rsU

]
U s−1 = U s(Dt − rs), s = 1, n
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we have as a result the factorization
1∏

k=n

[
D − Dv

v
− (k − 1)DU

U
− rkU

]
y = vUn

1∏
k=n

(Dt − rk)z = 0,

that corresponds to the equation (1.2).
The transformation (1.3) encloses the following important ones: Kummer–Liouville transfor-

mation (KLT)

y(x) = v(x)z, dt = u(x)dx, vu �= 0, ∀ x ∈ i0 ⊂ i, v, u ∈ Cn(i0), (1.8)

exact nonlocal linearization of nonlinear autonomous equations

y = v(y)z, dt = u(y)dx, u(y(x))v(y(x)) �= 0, ∀ x ∈ I = {x | a ≤ x ≤ b}; (1.9)

the general point linearization

t = f(x, y), z = ϕ(x, y), det
(
t, z

x, y

)
= txzy − tyzx �= 0, (1.10)

corresponding to (1.3) for u1y = u2x; the point linearization

t = f(x), z = ϕ(x, y), (1.11)

preserving fibering; the linearization

y = v(x, y)z, dt = u(x, y)dx, (1.12)

connected with arbitrary point Lie symmetry; and finally, the general nonlocal linearization (1.3).

Theorem 1.2. After the sequential application the composition of the transformations (1.8)
and (1.9), i.e. of the transformations

y = v1(x)v2(y/v1(x))z, dt = u1(x)u2(y/v1(x))dx (1.13)

the equation (1.1) is reducible to (1.2) iff the commutative factorization

n∏
k=1

[
1

u1u2
D − v′1v2 + v1v

∗
2Y

′

v1v2u1u2
− rk

]
y = 0, Y =

y

v1
, (′) =

d

dx
, (∗) = d

dY
; (1.14)

or the noncommutative one
1∏

k=n

[
D − v′1

v1
− (k − 1)u

′
1

u1
− v∗2
v2
Y ′ − (k − 1)u

∗
2

u2
Y ′ − rku1u2

]
y = 0, (1.15)

takes place; and the diagram

A
f−→ B

↓ ϕ ↓ g
C

ψ−→ D

is commutative, i.e. g ◦ f = ψ ◦ ϕ.
The formulas (1.14) and (1.15) easily follow from (1.4) and (1.5) by virtue of (1.13). a

commutativity of the diagram or realization of the condition f◦g = ϕ◦ψ, is checked immediately.
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The transformations f , g, ϕ and ψ have the following form

f : y = v1(x)Y, ds = u1(x)dx; g : Y = v2(Y )z, dt = u2(Y )ds;

ϕ : y = v2(Y )P, dq = u2(Y )dx; ψ : P = V1(q)z, dt = U1(q)dq.

Here A denotes the set of equations (1.1), (1.15), B denotes the set of nonlinear autonomous
equations having the factorized form

1∏
k=n

[
Ds − v∗2

v2

dY

ds
− (k − 1)u

∗
2

u2

dY

ds
− rku2(Y )

]
Y = 0, Ds =

d

ds
,

C is a set of the linear nonautonomous reducible equations
1∏

k=n

[
Dq − 1

V1

dV1

dq
− (k − 1) 1

U1

dU1

dq
− rkU1(q)

]
P = 0,

V1(q(x)) = v1(x), U1(q(x)) = u1(x)

and D denotes the set of the linear equations (1.3), (1.7).

Remark 1.1. Theorems 1.1 and 1.2 were announced in [6]. a linearization through the transfor-
mation of unknown function was applied in [7], and through the transformation of independent
variable was used in [8, 9]. The examples can be found in [10]. In cited works [7–10], as a rule,
the considered equations had the second order. Linearization of equations of order n > 2 is
considered in [11]. Group analysis of ODE of the order n > 2 is considered in [12].

It should be mentioned, that the fact of existence of the indicated factorizations for the
differential equations allows to discover required transformations.

Theorem 1.3. The equation

y(n) = F
(
y, y′, . . . , y(n−1)

)
, n > 2 (1.16)

is reducible to the linear autonomous form

Mnz ≡ z(n)(t) +
n∑

k=1

(
n

k

)
bkz

(n−k) + c = 0, bk, c = const, (1.2′)

by means of the transformation (1.9) iff (1.16) admits the noncommutative factorization
1∏

k=n

[
D −

(
1
y
−

(
log

∫
ϕ

n2−n+2
2n exp

(∫
fdy

)
dy

)∗
+ (k − 1)u

∗

u

)
y′ − rku

]
y

+
c

β
ϕ

n2+n−2
2n exp

(
−

∫
fdy

)
= 0.

(1.17)

In expanded form it is written as

y(n) + nf(y)y′y(n−1) + · · ·+ nb1ϕ(y)y(n−1) + · · ·

+
n−1∑
m=1

(
n

m

)
bmϕ

m
∑

s1+2s2+···+(n−m)sn−m=n−m

ψ12...n−m
s1s2...sn−m

y(1)s1y(2)s2 · · · y(n−m)sn−m

+ϕ
n2+n−2

2n exp
(
−

∫
fdy

) (
bn

∫
ϕ

n2−n+2
2n exp

(∫
fdy

)
dy +

c

β

)
= 0,

(1.18)

where the coefficients ψ are the differential expressions, depending from f and ϕ, ψ12...n−m
00...1 =1.
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In addition we have the linearized transformation

z = β

∫
ϕ

n2−n+2
2n exp

(∫
f(y)dy

)
dy, dt = ϕ(y)dx, (1.19)

and also (for c = 0) the one-parameter set of solutions

∫
ϕ

n2−3n+2
2n exp

(∫
fdy

)
dy∫

ϕ
n2−n+2

2n exp
(∫

fdy
)
dy
= rkx+ C, (1.20)

where rk are distinct roots of the characteristic equation (1.6).

The equation (1.16) admits a factorization:

1∏
k=n

[
D −

(
v∗

v
+ (k − 1)u

∗

u

)
y′ − rku

]
y + cunv = 0. (1.21)

At first, writing down the product in (1.21), we obtain the expression(
1− v∗

v
y

)
y(n) −

[
n
v∗∗

v
y +

(
1− v∗

v
y

) (
2n

v∗

v
+
n2 − n+ 2

2
u∗

u

)]
y′y(n−1) + · · · , (1.22)

what is proved by induction for n ≥ 3. Really, let the formula (1.22) hold for n = m. Then for
n = m+ 1 we have:[

D −
(
v∗

v
+m

u∗

u

)
y′

] {(
1− v∗

v
y

)
y(m)

−
[
m
v∗∗

v
y +

(
1− v∗

v
y

) (
2m

v∗

v
+
m2 −m+ 2

2
u∗

u

)]
y′y(m−1) + · · ·

}
.

Collecting the terms at y(m+1) and y′y(m), we obtain the first terms of the new expression:(
1− v∗

v
y

)
y(m+1) −

[
(m+ 1)

v∗∗

v
y

+
(
1− v∗

v
y

) (
2(m+ 1)

v∗

v
+
m2 +m+ 2

2
u∗

u

)]
y′y(m) + · · · .

This prove (1.22). Let us introduce the notation

n
v∗∗

v
y +

(
1− v∗

v
y

) (
2n

v∗

v
+
n2 − n+ 2

2
u∗

u

)
= −nf(y)

(
1− v∗

v
y

)
.

We have the second order nonlinear nonautonomous equation for v(y)

v∗∗ − 2
v
v∗2 +

(
2
y
− n2 − n+ 2

2n
u∗

u
− f

)
v∗ +

(
n2 − n+ 2

2n
u∗

u
+ f

)
1
y
v = 0.

After the substitution v = V −1 this equation is reduced to the linear nonautonomous equation

V ∗∗ +
(
2
y
− n2 − n+ 2

2n
u∗

u
− f

)
V ∗ − 1

y

n2 − n+ 2
2n

u∗

u
V = 0,

admitting the factorization(
Dy +

1
y
− n2 − n+ 2

2n
u∗

u
− f

) (
Dy +

1
y

)
V = 0, Dy = d/dy
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and having the solution

V =
1
y
β

∫
u

n2−n+2
2n exp

(∫
fdy

)
dy.

Then we get

v(y) = y

(
β

∫
u

n2−n+2
2n exp

(∫
fdy

)
dy

)−1

. (1.23)

(In particular, for u = exp
(
− 2n
n2 − n+ 2

∫
fdy

)
we get v = y(βy + γ)−1, γ = const �= 0.)

Substituting (1.23) in (1.21), we obtain (1.17). Putting u = ϕ(y), in accordance with (1.23) we
get (1.19). Writing down explicitly the product in (1.17), we have (1.18). The equation (1.21)
is consisted with the first order equation

(
1− v∗

v
y

)
y′ − rkuy = 0 (1.24)

for c = 0. Put u = ϕ(y) and substitute (1.23) in (1.24), we obtain (1.20).

Remark 1.2. Rather wide class of n-th order nonlinear autonomous equations can be tested
by the method of the exact linearization. The tests can be specializations of the theorem 1.3 for
concrete values of n.

2 The example of nonlocal symmetry

Nonlocal symmetries are considered in [13–17] and other works.

Example 2.1 [17]. The equation

y′′ = y−1y′2 + pg(x)ypy′ + g′(x)yp+1, (2.1)

where p is a nonzero constant and g(x) a nonzero arbitrary function, does not possess a Lie
point symmetries except special cases. However, it has the first integral I = y′/y− g(x)yp. The
equation (2.1) admits the factorization D (y′/y − g(x)yp) = 0 and has the exponential nonlocal
symmetry

G = y exp
(∫

g(x)ypdx

)
∂

∂y
.

The author is not going to develop this theme in detail in this paper because he hopes to
develop it in other papers.

3 Linearization of the autonomous equations of the third order

Proposition 3.1. a third order autonomous equation in the form

y′′′ + f5(y)y′y′′ + f4(y)y′′ + f3(y)y′3 + f2(y)y′2 + f1(y)y′ + f0(y) = 0 (3.1)

is linearizable by the transformation (1.9)
...
z + 3b1z̈ + 3b2ż + b3z + c = 0, b1, b2, b3, c = const, (3.2)
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iff it can be represented in the form

y′′′ + 3f(y)y′y′′ +
(
1
3
ϕ∗∗

ϕ
− 5
9
ϕ∗2

ϕ2
− 1
3
f
ϕ∗

ϕ
+ f2 + f∗

)
y′3

+3b1ϕ
[
y′′ +

(
f +

1
3
ϕ∗

ϕ

)
y′2

]
+ 3b2ϕ2y′

+ϕ5/3

(
b3 exp

(
−

∫
fdy

) ∫
ϕ4/3 exp

(∫
fdy

)
dy +

c

β

)
= 0,

(3.3)

which is reduced to (3.2) by the substitution

z = β

∫
ϕ4/3 exp

(∫
fdy

)
dy, dt = ϕ(y)dx (3.4)

and we have one-parameter families of solutions as c = 0∫
ϕ1/3 exp

(∫
fdy

)
dy∫

ϕ4/3 exp
(∫

fdy
)
dy
= rkx+ C, (3.5)

where rk are the distinct roots of the characteristic equation

r3 + 3b1r2 + 3b2r + b3 = 0. (3.6)

Remark 3.1. Equations of the type

y′′′ + ϕ(y)y′y′′ + ψ(y)y′′ +
3∑

k=0

fk(y)y′k = 0 (3.7)

can be tested by the method of the exact linearization.

Example 3.1. It is known that the sin-Gordon equation

uxt = sinu (3.8)

has a generalized nonlocal symmetry of the third order
(
uxxx +

1
2
u3

x

)
∂u, which is connected

(see, for example, [18], p. 117–119) with ODE

y′′′ + 1/2y′3 = 0. (3.9)

About this equation it is said: “Unfortunately, determination of general solutions for higher
order ODE is very complicated problem”. But the equation (3.9) can be integrated. It is a
special case of (3.3), admits the factorization

2iy
(
y′′′ +

1
2
y′3

)
≡

[
D −

(
i+

1
y

)
y′

] [
D +

(
1
2
i− 1

y

)
y′

] [
D +

(
2i− 1

y

)
y′

]
y = 0

and is linearized to
...
z= 0 by the substitution z = exp(2iy), dt = exp

(
3
2
iy

)
dx. The general

solution of (3.9) in the parametric form is x =
∫ (

c1 + c2t+ c3t
2
)−3/4

dt, y = −1/2i ln(c1 + c2t

+c3t2
)
.

Consider third order equation

y′′′ = F (x, y, y′, y′′), (3.10)

which by the transformation of the form

y = v1(x)v2(y/v1(x))z, dt = u1(x)u2(y/v1(x))dx (3.11)

can be reduced to the linear autonomous form (3.2).
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About an integration of the generalized Emden–Fowler equation (EFE)

For example, let us consider one of possible generalizations of the EFE, i.e.

y′′′ + bxsyn = 0, n �= 0, n �= 1. (3.12)

We use a test of the autonomization. Equation (3.12) by means of the transformation y =
x

s+3
1−n z, dt = x−1dx is reduced to an autonomous form

...
z +(3k − 3)z̈ + [k(k − 1) + k(k − 2) + (k − 1)(k − 2)]ż + k(k − 1)(k − 2)z + bzn = 0

and has the exact solutions

y = ρxk, k(k − 1)(k − 2)ρ+ bρn = 0, k =
s+ 3
1− n

.

So, the equation (3.12) is reduced to the autonomous form

Y ′′′(τ) + bY n = 0 (3.13)

by the transformations y = x2Y , dτ = x−2dx. For thus obtained equation we apply the test of
the linearization, i.e. we use the proposition 3.1. Equation (3.13) can be related to the class
of (3.3) iff it can be represented in the form

Y ′′′ + ϕ5/3

(
b3

∫
ϕ4/3dY +

c

β

)
= 0, (3.14)

where b1 = b2 = 0 in (3.3) and ϕ satisfies the equation

1
3
ϕ∗∗

ϕ
− 5
9
ϕ∗2

ϕ2
= 0. (3.15)

The solution of equation (3.15) is a function ϕ = Y −3/2. Then equation (3.16) is in the form

Y ′′′ − b3Y
−7/2 +

c

β
Y −5/2 = 0, β = −1. (3.16)

Two cases are possible: b3 = 0, c �= 0 and b3 �= 0, c = 0. Let us consider the first one:
Y ′′′ − cY −5/2 = 0, (b3 = 0). (3.17)

At n = −5/2 we have −4 = s− 5, then s = 1. The input equation is:
y′′′ + bxy−5/2 = 0, (c = −b). (3.18)

Let c = 0. Then equation (3.16) takes the form

Y ′′′ + bY −7/2 = 0, (b3 = −b). (3.19)

For n = −7/2 we obtain s = −4− 2(−7/2) = 3. Then the equation (3.12) gets the form:
y′′′ + bx3y−7/2 = 0. (3.20)

Let us apply to equations (3.18) and (3.20) the following substitutions

y = x2Y, dτ = x−2dx, Y = Y 2z, dt = Y −3/2dτ

or the resulting substitutions in the transformed form

y = x2Y 2z, dt = x−2Y −3/2dx,
(
Y = yx−2

)
, i.e. y = x−2y2z, dt = xy−3/2dx,
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we obtain respectively
...
z −b = 0, ...

z −bz = 0. The factorizations of equations (3.18) and (3.20)
have respectively the forms:

−
(
D +

y′

y

) (
D +

1
x
− 1
2
y′

y

) (
D +

2
x
− 2y′

y

)
y + bxy−5/2 = 0,

(
D +

y′

y
− r3xy

−3/2

) (
D +

1
x
− 1
2
y′

y
− r2xy

−3/2

) (
D +

2
x
− 2y′

y
− r1xy

−3/2

)
y = 0,

where rk, k = 1, 3, satisfies to a characteristic equation r3 − b = 0.
Now let us consider the linear equation y′′′ + bxsy = 0, s �= 0, i.e. equation (3.12) for

n = 1. Then we get two values for s: s = −3, s = −6. At s = −3 we have Euler’s equation
y′′′ + bx−3y = 0, and we have the Halphen’s equation y′′′ + bx−6y = 0 for s = −6.
Let us note that the asymptotic solutions of the equation (3.14) were considered in ([19],

p. 261–265).
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The problems concerned with the complete integrability of the partial differential systems
with two independent variables are considered. The algorithms and the Maple V procedures
for the investigation of complete integrability and some examples are presented.

1 General information

This paper describes a new computer package for the investigation of partial differential systems
with two independent variables. We called this package JET because of the jet space language
is used. The package includes twenty eight basic procedures in Maple V language and fifteen
auxiliary procedures. Our main aim was to create the full collection of the instruments for the
investigation of completely integrable systems. But the package can be used for other purposes
as well.

For independent variables we used the fixed (global) names t and x. And besides, t is the
temporal variable and x is the spatial one. For the dependent variables one may use any names
that must be fixed in the list with the global name vard. For example, if we deal with the
jet space J∞(R,R2) with the local coordinates (x, ui, vi) then we must assign vard:=[u, v]:.
Then the coordinates in all programs will be denoted as x, u0, v0, u1, v1, . . . and so on.

Here is the list of the basic procedures:

dif, INT, depend, DF, DN, ED, EU, ord, pot, defeq, SU, part, chn,
cho, L_E, recursion, Frechet, Noether, INoether, implectic,
symplectic, com, Jac, evsub, struct, Cmetric, Killing, triada

We comment this list in the subsequent sections. And here we mention only that all procedures
work in interactive mode. The automatic mode is impossible in view of two following reasons.
First, the computation of the higher conserved densities or Lie–Bäcklund higher symmetries of
nonlinear systems leads us to very cumbersome partial differential systems whose solutions are
unknown to science. Second, these systems often contain dozens of thousands terms. Solving
such systems is an art but not a mechanical process.

2 Differentiation and integration

Two first names in the previous list, dif and INT, are names of procedures for differentiation
and integration. There are built-in procedures diff and int for differentiation and integration
in Maple. Nevertheless we wrote our own procedures in order to make all expressions more
compact. Everybody who computes Lie–Bäcklund symmetries or conserved densities knows
that you are forced to deal with a lot of arbitrary functions. Equations arising in such problems
often are very long. The procedure depend enables to omit all arguments of all functions. The
following example shows the difference between the built-in and our procedures:
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> vard:=[u, v]: depend(f(u0,v0,u1,v1)):
> a:=dif(f,v0)*dif(f,u0$3,v0),
> b:=diff(f(u0,v0,u1,v1),v0)*diff(f(u0,v0,u1,v1),u0$3,v0);

a :=
∂f

∂v0
∂4f

∂u03∂v0
, b :=

∂f(u0, v0, u1, v1)
∂v0

∂4f(u0, v0, u1, v1)
∂u03∂v0

The first expression is 3–4 times shorter than the second one. It is very important if you deal
with a long expression. The procedures dif and INT possess the same facilities as the built-in
diff and int. Moreover, INT possesses many powerful facilities for operating with arbitrary
functions. In continuation of the previous input dialog we give the next examples

> INT(a,u0);

∂f

∂v0
∂3f

∂u02∂v0
− 1

2

(
∂2f

∂u0∂v0

)2

> INT(u0^2*dif(f,u0$3), u0);

u02 ∂2f

∂u02
− 2u0

∂f

∂u0
+ 2 f

and so on. The built-in procedure int returns such integrals without having them evaluated.
The next procedure DF calculates the total derivative with respect to x on a jet space and

DN(f,n) calculates the n-th total derivative of f :

> vard:=[u]: depend(f(x,u0,u1), g(u0) ):
> DF(f), DF(g), DN(g,2);

∂f

∂x
+
∂f

∂u0
u1 +

∂f

∂u1
u2,

∂g

∂u0
u1,

∂g

∂u0
u2 +

∂2g

∂u02
u12

The procedure ED computes the evolution derivative

ED(F ) → Dt(F ) =
∂F

∂t
+

∑
i,α

∂F

∂uα
i

DiKα,

where D is the total derivative with respect to x and Kα are the right hand sides of an evolution
system

uα
t = Kα(u). (1)

One has to input the vector field K beforehand as the list sys (sys is the global name). For
example, if you deal with the KdV equation ut = uxxx + 6uux you must enter the following
commands:

> vard:=[u]: sys:=[u3+6*u0*u1]:
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3 Symmetries and conservation laws

The determining equation for Lie–Bäcklund symmetries of the system ut = K takes the following
form (see [1, 2] or [3] for instance):

(Dt −K ′)F = 0, (2)

where the prime denotes the Fréchet derivative

(K ′)α
β =

∂Kα

∂uβ
i

Di. (3)

Here and below the summation rule over the repeated indices is implied. The procedure Frechet
calculates the Fréchet derivative in different forms for scalar and vector cases. Let us consider
the examples.

> vard:=[u]: depend(f(u0,u1) ):
> Frechet(u3+f);

array

(
0..3,

[
(0) =

∂f

∂u0
(1) =

∂f

∂u1
(2) = 0 (3) = 1

])

Here we obtained a 1-dimensional array with scalar elements (∂F/∂ui). But in the vector case
the elements of this array are square matrices:

> vard:=[u,v]: depend(f(u0,v0,u1,v1),g(u0,v0,u1,v1) ):
> Frechet([u2+f, -v2+g]);

array


0..2,


 (0) =




∂f

∂u0
∂f

∂v0
∂g

∂u0
∂g

∂v0


 (1) =




∂f

∂u1
∂f

∂v1
∂g

∂u1
∂g

∂v1


 (2) =

[
1 0

0 −1

] 





To obtain the left hand side of equation (2) you do not need to use the procedure Frechet. More
simple way is provided by the procedure defeq. For example, in order to compute the third
order Lie–Bäcklund symmetries for the KdV equation you must enter the following commands:

> vard:=[u]: depend(F(t,x,u0,u1,u2,u3) ):
> sys:=[u3+6*u0*u1]: flag:=0: a:=defeq([F],1);

a := ED(F ) − 6u1F − 6u0D(F ) −D(3)(F )

Here flag is the control variables, D(F ) is DF(F) and D(3)(F ) is DN(F,3). If flag=0 then the
expressions ED(F), DF(F) and DN(F,n) are not expanded. But if one assigns flag:=1 or nothing
(flag:=’flag’:) then all expressions will be expanded. Let us continue our example:

> flag:=1: a:=a: nops(");

62

This means that the expression a consists of 62 terms and there is no need to look through it.
In order to know which variables this expression contains, we use the procedure ord:

> ord(a);

[5]
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This means that the order of a is equal to 5, that is, expression a contains u5. For the systems
ord(a) returns a list [m, n, . . . ]. If vard=[u,v] and ord(a)=[2,3] for example, then the expression
a contains u2 and v3 and does not contain u3, u4, . . . , or v4, v5, . . .

More detailed information about the expression a can be obtained with the help of the built-in
procedure indets. Let us mention that the obtained expression a is a polynomial with respect
to the highest order variables ui, and therefore the built-in procedure degree is useful as well.
To extract the terms with u5 one can use the procedure chn (CHoose Name), but the better
way is to use the following command:

> b:=factor(chn(a,u5));

b := −3u5
(
∂2F

∂x∂u3
+
∂2F

∂u32
u4 +

∂2F

∂u3∂u0
u1 +

∂2F

∂u3∂u1
u2 +

∂2F

∂u3∂u2
u3

)

It is easy to see that b = −3u5D(∂F/∂u3). Hence the equation b = 0 implies ∂F/∂u3 = f1(t)
or F = f1(t)u3 + f2(t, x, u0, u1, u2). To continue the computation you must enter the following
commands:

> depend(f1(t), f2(t,x,u0,u1,u2) ): F:=f1*u3+f2:
> a:=expand(eval(subs(Diff=dif,a))):

The last command is necessary for the recomputation of all derivatives because the procedure
dif returns the result in the inert form, for example dif(f,u0) → Diff(f,u0).

The next problem that we consider is the computation of conserved currents. The vector
function (ρ, θ) on the jet space is called the conserved current if it solves the equation

Dt ρ = Dθ, (4)

where Dt is the evolution derivative along the trajectories of the system ut = K(u). The
function ρ is said to be the conserved density and θ is said to be the density current. The
current (Df,Dt f) is conserved for any system and it is called the trivial conserved current. A
trivial current may be added to any conserved current and result will be the conserved current
again.

Equation (4) can be investigated with the help of the Euler operator E

Eα = (−D)n ∂

∂uα
n

(5)

that possesses an important property: E f = 0 if and only if f = D(F ) [4]. Applying the
operator E to equation (4), we obtain the following equation for the conserved densities

EDt ρ = 0. (6)

The package JET contains the procedure EU that performs the computation according to
formula (5). To obtain the left hand side of equation (6) you must call

> EU(ED(rho),k);

where k = 1, 2, . . . , m, and m is the number of the dependent variable (or number of entry of
the list vard). These equations can be solved by the same method as it was demonstrated above
for Lie–Bäcklund symmetries.

Another way of the computation of the conserved currents is given by the procedure pot
(potential) that calculates a function f if the function φ = Df is known: pot(φ)=f. Hence if
(ρ, θ) is a conserved current then θ =pot(ED(ρ)). Let us consider the zero order conserved
densities for the KdV equation:
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> pot(ED(u0)), pot(ED(u0^2));

u2 + 3u02, 2u0u2 − u12 + 4u13

Now let us take the expression ρ = u03 that is not a conserved density, of course:

> th:=pot(ED(u0^3)), rm;

Break, ord(rm) = [1]

th := 3u02 u2 − 3u0u12 +
9
2
u04, 3u13

This result means that ED(u03)=DF(th) + rm, where rm=3u13. rm is the global name for a
remainder when the pot is called.

When the zero order conserved density ρ exists, one can perform the following contact trans-
formation (t, x, u(t, x)) → (t, y, U(t, y)):

d y = ρ d x+ θ d t, U(t, y) = u(t, x). (7)

This transformation is analogous to the transformation between Lagrange and Euler variables
in the fluid dynamics. Therefore the procedure executing transformation (7) was called L E. Let
us transform the KdV equation, for example:

> L_E(u0,[U]);

[U t = 3U02 U1U2 + U03 U3 + 3U02 U1]

Here the second argument of L_E must be a list of new dependent variables. And besides the
procedure L E may be called with three arguments: L E(ρ, θ,VARD), where (ρ, θ) is a conserved
current and VARD is the list of new dependent variables. In this case the procedure works slightly
faster because θ is entered but is not evaluated.

4 Canonical conserved densities

In the paper [5] the necessary conditions of the complete integrability for evolution systems
were introduced. Later these conditions were explained and generalized in [6] for a wide class of
systems with two independent variables. Let the system

F (u) = 0 (8)

be transformable to the Cauchy–Kowalewski normal form with the help of transformation of
independent variables. Let us denote Φ(Dt, Dx) = F ′+, where Dt and Dx are the total differ-
entiation operators and + is the symbol of the formal conjugation. Then let us consider the
following system

Φ(Dt + θ, Dx + ρ)ψ = 0, (c, ψ) = 1, (9)

where (c, ψ) is the Euclidean scalar product and c is an arbitrary constant vector. The main
result is as follows.
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If system (8) is integrable by the inverse spectral transform method then system (9) possesses
a formal solution of the following form:

ρ =
∞∑

i=−n

ρi k
i, θ =

∞∑
i=−n

θi k
i, ψ =

∞∑
i=0

ψi k
i, (10)

where k is a parameter, n > 0, ρ−n �= 0 or θ−n �= 0 and (ρi, θi), i = −n,−n+ 1, . . . are local or
weakly nonlocal conserved currents of system (8).

System (9) and expansions (10) imply a recursion relation for ρi, θi and ψi. Therefore, the
continuity equations Dtρi = Dxθi give the constraints for system (8).

Let us consider the example

ut = u3 + f(u, u1). (11)

A simple calculation gives F ′+ = Dt−D3 +f0−Df1, where f0 = ∂f/∂u0, f1 = ∂f/∂u1. Hence
equation (9) takes the form [θ − (D + ρ)3 + f0 − (D + ρ) f1] 1 = 0, or

θ − ρ3 + f0 − f1 ρ−D

(
3
2
ρ2 −Dρ− f1

)
= 0.

Setting

ρ = k−1 +
∞∑
i=0

ρi k
i, θ = k−3 +

∞∑
i=0

θi k
i,

we obtain the required recursion formula

3 ρi+2 = θi − 3
i+1∑
j=0

ρj ρi−j+1 −
i∑

j,k=0

ρj ρk ρi−j−k −D2(ρi)

− 3
2
D

(
2 ρi+1 +

i∑
j=0

ρj ρi−j

)
+ (f0 −D(f1))δi0 − f1 δi,−1 − f1 ρi,

(12)

where i = −2,−1, . . . It is obvious that

ρ0 = 0, θ0 = 0, ρ1 = −1
3
f1, . . .

The conserved densities of system (8) produced by means of formula (9) are called canonical
conserved densities. The canonical conserved densities of the KdV equation defined in (12) can
be easily obtained, using the following program:

> r:=proc(n)
> local i;
> i:=n-2; if n <= 0 then RETURN(0) fi;
> if n = 1 then RETURN(-1/3*dif(f,u1)) fi;
> th.i/3-SU(r,r,0,i+1)-1/3*SU(r,r,r,0,i) - ’DF’(r(i+1))
> -1/2*’DF’(SU(r,r,0,i))-’DN’(r(i),2)/3+(dif(f,u0)-DF(dif(f,u1)))
> *DLT(i,0)/3-dif(f,u1)*DLT(i,-1)/3-dif(f,u1)*r(i)/3
> end;



Computer Package for Investigation of the Complete Integrability 41

Here DLT is an auxiliary procedure for the Kronecker δ-symbol and SU is the procedure for
the multiple sums. For example, the call SU(A,B,C,n,m) returns the sum of the monomials
A(i)*B(j)*C(k) where i, j, k ≥ n and besides i+ j + k = m. Number of arguments of SU may
be arbitrary, and arguments of SU may be under DF or DN operators. So expressions of the type
SU(A,DF(B),DN(C,p),n,m) are admissible. Moreover we assume that the expressions θ0, θ1, . . .
must be saved under the names th0,th1,...

For systems of two and more equations canonical densities may consist of dozens of hundreds
terms. The evolution derivatives of such long expressions consist of dozens thousands terms.
Processing a large expression requires very long time. And, moreover, if the number of addends
in an expression is more than 40000 then Maple finishes the computation and informs: Object
is too large. To solve this problem we apply the procedure part. The command z:=part(F,n)
returns the list z with n entries so that each entry contains a part of the expression F and
z[1]+z[2]+...+z[n] =F. Then one can perform the required operations with each element
z[i] separately and obtain the final result. Another method is based on using the procedure
cho (CHoose Order). The call cho(F, 3) for example, collects and returns those terms from
the expression F whose orders ≥ 3. As the terms with the greatest order are interesting almost
always then the procedure cho is very useful.

5 Zero curvature representations

Let us consider the following linear overdetermined system

Ψx = U Ψ, Ψt = V Ψ, (13)

where Ψ is a column, U and V are the square matrices depending on the jet space coordinates t,
x, uα

n and a parameter λ. System (13) is compatible if and only if the following equation holds

Ut − Vx + [U, V ] = 0. (14)

If equation (13) is satisfied on the solutions manifold of an evolution partial differential system
(1) but not identically then it is said that system (1) possesses the zero curvature representation.

Systems (13) and (14) are covariant under the gauge transformation:

Ψ → Ψ̃ = SΨ, U → Ũ = S U S−1 + SxS
−1, V → Ṽ = S V S−1 + StS

−1.

This transformation may be used for simplification of the matrices U and V .
To investigate equation (14) in JET-package you must enter the following commands

> depend(U(...), V(...) ): matrices:={U,V}:
> z:=ED(U) - DF(V) + com(U, V);

and solve the equation z = 0. Here matrices is the global name of the set of symbolic matrices
names, com is the name of a procedure for commutator. Arguments of com may be both
symbolic matrices (names) and arrays. Procedure com knows all properties of commutators. For
example,

> com(U, 2*U+3*V}, com(V,U), dif(com(U,V),u0);

3 [U, V ], −[U, V ],
[
∂U

∂u0
, V

]
+

[
U,

∂V

∂u0

]
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Ordering is performed automatically in the alphabetical order. Integration of com(A,B) is pos-
sible only if A and B are constants, but it suffices the analysis of equations (14). The procedure
Jac transforms the nested commutators according to the Jacobi identity:

> matrices:={U,V,A,B,C,E}:
> z1:=com(A, com(B, E)) + com(C, com(A, B)),

z1 := [A, [B, E ] ] + [C, [A, B ] ]

> Jac(z1,A,B,C), Jac(z1,A,B,B);

[A, [B, E ] ] − [A [B, C ] ] + [B, [A, C ] ], [C, [A, B ] ] + [B, [A, E ] ] − [E, [A, B ] ]

Jac searches for the first nested commutator containing the 2nd, 3rd and 4th arguments of Jac,
transforms it and returns the result. That is why different results are obtained. Here is one
more example

> z2:=com(A, com(B, C)) + com(E,com(C, com(A, B)));

z2 := [A, [B, C ] ] + [E, [C, [A, B ] ] ]

> Jac(z2,A,B,C,2); Jac(z1,A,B,C,yes,2);

[A, [B, C ] ] + [C, [E, [A, B ] ] ] + [ [A, B ], [C, E ] ]

[A, [B, C ] ] − [E, [A, [B, C ] ] ] + [E, [B, [A, C ] ] ]

The 5th argument 2 in the first case makes Jac to begin the search from the second addend. The
5th argument yes make Jac perform the transformation within the external commutator. The
call Jac(z1,A,B,C,yes) makes Jac to perform the transformation within the external commuta-
tor in the first addend and the error message will be returned. The call Jac(z1,A,B,C,2,yes)
is the mistake as well, both parameters 2 and yes will be ignored and the first term will be
transformed in this case.

When equation (14) is solved, the next problem is to construct the Lie algebra. Let us
consider the KdV equation as an example. After some simple calculations one can obtain the
matrices U = A1 u0 +A2 and

V = A1u2 − [A1, A2 ]u1 + 3A1u2
0 − 1/2u2

0 [A1, [A1, A2 ] ] − [A2, [A1, A2 ] ]u0,

where Ai are constant matrices. Moreover the following equations are obtained

[A1, [A2, A3 ] ] + 2A3 = 0, [A1, A2 ] = A3,

[A1, [A1, A3 ] ] = 0, [A2, [A2, A3 ] ] = 0.
(15)

There are different ways to solve this system. For example, one can choose one of the matrices
in the Jordan normal form and try to solve the equations directly. But this way is difficult for
large algebras and the better way is investigation of equations (15) in the spirit of the ideas by
H.D. Wahlquist and F.B. Estabrook [7]. There is very useful procedure struct for obtaining the
closed algebra in this approach . The procedure struct constructs the adjoint representation
of a Lie algebra and returns the equations for unknown structural constants if the input algebra
is not closed. In our example we can use struct at once, but it is necessary to enter the basis
of the algebra beforehand. Let us assume that A1, A2 and A3 form the basis and enter the
commands:
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> s:={com(A1,A2)=A3}: bas:=[A1,A2,A3]:
> struct(bas,s,x);

Structural constants are given by array C[i][kj]=Cˆk {ij}
Table of commutators [e i,e n]=Cˆk {in}∗e k is given by set EQ

Substitutions bas[i]=C[i] are set S, and constraints are:
z:=[[-x1 x6+x3 x4, x3 x1+x2 x6, x1+x5]]

Here the first parameter bas is the list of basis elements, the second parameter s must be a set
of commutation relations and the third parameter of struct must be a name x so that x1, x2,
. . . , are free variables. These variables are used in the table of commutators:

EQ = {[A1, A2 ] = A3, [A1, A3 ] = x1A1 + x2A2 + x3A3,

[A2, A3 ] = x4A1 + x5A2 + x6A3}.
The names C, EQ and S are global. The obtained list z contains the left hand sides of the
equations

−x1x6 + x3x4 = 0, x3x1 + x2x6 = 0, x1 + x5 = 0.

Solving these equations we obtain the closed table of commutators EQ. Setting for example
x1 = −x5 = 2, x2 = k, x3 = x4 = x6 = 0, where k is a parameter we obtain the standard
algebra sl(2) for the KdV:

> EQ;

{[A1, A2 ] = A3, [A1, A3 ] = 2A1 + k A2, [A2, A3 ] = −2A2} (16)

This algebra solves all equations (15). Constructing then a representation of the obtained Lie
algebra we can find an explicit form of the matrices U and V .

For solving the problems considered in this section the following procedures are useful: ev-
sub, Cmetric and Killing. The command evsub(A) is used for evaluation and simplification
of the elements of 2-dimensional array A. The call evsub(s,A) where s is the set of substitu-
tions is used for performing the substitutions into 2-dimensional array A. The call Cmetric()
returns the Cartan metric tensor gij of a Lie algebra. And the call Cmetric(y) returns the
quadratic form gij y

i yj . The command Killing(A,B) returns the value of the Killing form
〈A,B〉=trace(adA adB) for the pair of elements A, B of a Lie algebra.

6 Recursion operators

The recursion operator Λ of evolution system (1) satisfies the following equation

[Dt −K ′, Λ ] = 0 (17)

by definition (see [1–3]). There are two procedures in JET for the computation of the recursion
operator.

If you know the zero curvature representation for your system, try call the procedure triada
that uses the algorithm published in [8, 9]. For example, the KdV equation possesses algebra
(16) and we have

> triada(U,s);[
∂3g

∂x3
+ 4u0

∂g

∂x
− k

∂g

∂x
+ 2u1 g

]
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Now you should transform this equation (or system in the vector case) to the following form
Lg = k g. Then Λ = L+ [8, 9]. In our example this gives the well-known Lenard operator

Λ = D2 + 4u0 + 2u1D
−1.

When the matrices U and V are embedded in the Lie algebra of a small dimension then this
approach is acceptable. Otherwise the equation L(u, k)g = 0 is too large object. In this case
you can try calculate the recursion operator or Noether operators directly. If we set

Λ =
n∑

i=0

Fn−i(u)Di + Σ(u)D−1Γ(u), (18)

then equation (17) implies that the columns of Σ are symmetries and the rows of Γ are gradients
of conserved densities. That is, Σ satisfies equation (2) and ΓT satisfies the adjoint equation

(Dt +K ′+)ΓT = 0.

The coefficients Fi, Σ and Γ satisfy a cumbersome system that can be obtained with the help
of procedure recursion. It can be called with one or two input parameters:

> sys:=[u3+u0*u1]:
> recursion(0); recursion(1); recursion(1,2);

(F0& ∗K3) − (K3& ∗ F0)

(F1& ∗K3) − (K3& ∗ F1) + (F0& ∗K2) − (K2& ∗ F0) + n (F0& ∗D(K3))

−3 (K3& ∗D(F0)) − (rsys(3 + n)& ∗ (Σ& ∗ Γ)) + (Σ& ∗ (Γ& ∗ rsys(3 + n)))

(F1& ∗K3) − (K3& ∗ F1) + (F0& ∗K2) − (K2& ∗ F0) + n (F0& ∗D(K3))

−3 (K3& ∗D(F0))

Here &∗ is a symbol of the matrix multiplication, F0, F1 etc., Σ and Γ are exactly the coefficients
of operator (18), K0, K1 etc. are the coefficients of the operator

K ′ =
N∑

i=0

KiD
i,

rsys(i)=Ki if 0 ≤ i ≤ N and otherwise rsys(i)=0. The number N is determined by the
list sys (N = 3 in our example) and n is a nonnegative parameter. The call recursion(1,2)
means that we assume n ≥ 2. Then the result is shorter. The number of equations returned by
procedure recursion is N + n+ 1. To solve the equations for F0, F1, . . . you must substitute
there these matrices with undetermined coefficients and the matrices K0, K1, . . . that one can
obtain with help of the procedure Frechet. Matrices Σ and Γ must be calculated beforehand.
If you solve the first equation and find F0, try enter n = 0 or n = 1 and solve next equations.
If such solution does not exist then you can call recursion(i,2), i = 0, 1, . . . and solve these
equations with arbitrary n (but n ≥ 2). Then you can enter n = 2 and so on.
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7 Noether operators

Let us consider a pair of operators Θ and J satisfying the following equations

(Dt −K ′)Θ = Θ(Dt +K ′+), (19)

(Dt +K ′+)J = J(Dt −K ′). (20)

The operator Θ is called a Noether operator and J is called the inverse Noether operator [10, 11].
Of course if Θ satisfies equation (19) then Θ−1 satisfies equation (20). But one cannot find Θ−1

or J−1 explicitly as a rule. If an evolution system admits two Noether operators Θ1 and Θ2

and Θ2 is invertible then Θ1 Θ−1
2 is the recursion operator. If two inverse Noether operators J1

and J2 exist and J2 is invertible then J−1
2 J1 is the recursion operator. Sometimes system (1)

admits Noether operator Θ and inverse Noether operator J (�= Θ−1) then ΘJ is the recursion
operator [11].

The most general form of the Noether and inverse Noether operators known today is

Θ =
n∑

i=0

θn−iD
i +AD−1B, (21)

J =
n∑

i=0

Jn−iD
i +GD−1H. (22)

Here the columns of A and rows of B are Lie–Bäcklund symmetries of system (1); the columns
of G and rows of H are gradients of the conserved densities of system (1). It happens that A = 0
or G = 0 for some systems.

The procedure Noether returns the equations for the matrices θi, A and B of operator (21).
The procedure INoether returns the equations for the matrices Ji, G and H of operator
(22). Both procedures have the same syntax as the procedure recursion: Noether(m) or
Noether(m,k). Here m is a number of the returned equation, the second parameter k is used if
you know that the order of Θ or J is greater than or equal to k.

The Noether operator of an integrable evolution system is an implectic operator and the
inverse Noether operator is a symplectic operator as a rule.

The operator Θ is called implectic if it is antisymmetric (Θ+ = −Θ) and the bracket
{f, g, h; Θ} = 〈f, Θ′[Θ g]h〉 satisfies the Jacobi identity

{f, g, h; Θ} + {g, h, f ; Θ} + {h, f, g; Θ} = 0. (23)

The operator J is called symplectic if it is antisymmetric (J+ = −J) and the bracket
[f, g, h; J ] = 〈f, J ′[g]h〉 satisfies the Jacobi identity

[f, g, h; J ] + [g, h, f ; J ] + [h, f, g; J ] = 0. (24)

The procedure implectic checks the identities Θ+ = −Θ and (23). The syntax is
implectic(L,n). Here L=[θ0, θ1, . . . , θn, A,B] is the list of the coefficients of operator (21),
the second parameter n is the order of Θ.

The procedure symplectic checks the identities J+ = −J and (24). The syntax is
symplectic(L,n). Here L=[J0, J1, . . . , Jn, G,H] is the list of the coefficients of operator (22),
the second parameter n is the order of J .

Both procedures implectic and symplectic return the text information: “Antisymmetry –
OK” or “Antisymmetry is not valid, reminder is saved as rm” Then these procedures simplify
the left hand sides of identities (23) and (24) as much as possible and return them as the results.
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Conclusion

We are going to prepare the help file for our package and place it in Internet.

References
[1] Ibragimov N.H., Transformation Groups in Mathematical Physics, Moscow, Nauka, 1983.

[2] Olver P.J., Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986.

[3] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N.H. Ibragimov, London, Tokyo, CRC
Press, 1994, 1995, etc.

[4] Galindo A. and Martinez L., Lett. Math. Phys., 1978, V.2, N 5, 385–390.

[5] Chen H.H., Lee Y.C. and Liu C.S., Integrability of nonlinear Hamiltonian systems by inverse scattering
transform, Phys. Scr., 1979, V.20, N 3, 490–492.

[6] Meshkov A.G., Necessary conditions of the integrability, Inverse Problems, 1994, V.10, 635–653.

[7] Wahlquist H.D. and Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math.
Phys., 1975, V.16, 1–7.

[8] Fokas A.S. and Anderson R.L., On the use of isospectral eiganvalue problems for obtaining hereditary
symmetries for Hamiltonian systems, J. Math. Phys., 1982, V.23, N 6, 1066–1073.

[9] Meshkov A.G., Symmetries and Conservation Laws for Evolution Equations, VINITI, N 1511–85, Moscow,
1985.

[10] Fokas A.S. and Fuchssteiner B., Lett. Nuovo Cimento, 1980, V.28, 299.

[11] Fuchssteiner B. and Fokas A.S., Physica D, 1981, V.4, 47.



Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 47–59.

Symmetries of Systems

of Nonlinear Reaction-Diffusion Equations

A.G. NIKITIN † and R.J. WILTSHIRE ‡

† Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine
E-mail: nikitin@imath.kiev.ua

‡ Division of Mathematics, University of Glamorgan, Pontypridd CF37 1DL, UK

We present the complete analysis of classical Lie symmetries of systems of two nonlinear
diffusion equations with 1 +m independent variables t, x1, . . . , xm, whose nonlinearities do
not depend on t and x.

1 Introduction

Coupled systems of nonlinear diffusion equations have many important applications in mathe-
matical physics, chemistry and biology. These systems are very complex in nature and admit
fundamental particular solutions (for example, traveling waves and spiral waves) which have
a clear group-theoretical interpretation and which can be obtained using the classical Lie ap-
proach. The existence of such solutions predetermines an important role for the group theoretical
approach in the analysis of systems of reaction diffusion equations. However, to the best of our
knowledge, a comprehensive group analysis has not been undertaken previously although anal-
yses of some special cases do exist.
In the present paper we investigate Lie symmetries of equations in the general form

∂u

∂t
− Λ

∑
i

∂2u

∂x2
i

− f(u) = 0, (1.1)

where the dependent variable u = column(u1, u2, . . . , un) is a n-component vector-function,
dependent on m+ 1 variables t, x1, x2, . . . , xm. Also, f = column(f1, f2, . . . , fn) is an arbitrary
vector-function of u and Λ is a n× n constant matrix which is non-singular.
Classical Lie symmetries of equation (1.1) with, n = m = 1, were investigated by Ovsian-

nikov [1] whose results were completed by Dorodnitsyn [2]. The related conditional (nonclassical)
symmetries were described by Fushchych and Serov [3] and Clarkson and Mansfield [4]. Sym-
metries of equation (1.1) with m > 1 and (or) n > 0 were partly investigated in papers [5–7].
We notice that it was equation (1.1) for m = n = 1, f ≡ 0, was the subject of a group analysis
by Sophus Lie [8].
An investigation of the symmetries of the general equation (1.1) can be undertaken within the

framework of the classical Lie algorithm (see, for example, [9, 10]) which reduces the problem of
determining symmetry to the solution the systems of linear over-determined equations for the
coefficients of the symmetry operators. We will show that when applied to systems (1.1), this
algorithm admits a rather simple formulation which may also be applied to an extended class
of partial differential equations.
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2 Determining equations for symmetries of the system (1.1)

We require form-invariance of the system of reaction diffusion equations (1.1) with respect to
the one-parameter group of transformations:

t→ t′(t, x, ε), x→ x′(t, x, ε), u→ u′(t′, x′, ε), (2.1)

where ε is a group parameter. In other words, we require that u′(t′, x′, ε) satisfies the same
equation, as u(t, x):

L′u′ = f(u′), L′ =
∂

∂t′
− ∂2

∂x′2
. (2.2)

From the infinitesimal transformations:

t→ t′ = t+∆t = t+ εη, xa → x′a = xa +∆xa = xa + εξa,

ua → u′a = ua +∆ua = ua + επa

(2.3)

we obtain the following representation for the operator L′.

L′ =
[
1 + ε

(
η
∂

∂t
+ ξa

∂

∂xa

)]
L

[
1− ε

(
η
∂

∂t
+ ξa

∂

∂xa

)]
+O

(
ε2

)
. (2.4)

Using the classical Lie algorithm, it is possible to find the determining equations for the
functions η, ξa and πa, which specify the generator X of the symmetry group:

X = η
∂

∂t
+ ξa

∂

∂xa
− πa ∂

∂ua
, (2.5)

where a summation from 1 to m is assumed over repeated indices. This system will not be
reproduced here but we note that three of the equations are:

∂η

∂ua
= 0,

∂ξa

∂ub
= 0,

∂2πa

∂uc∂ub
= 0. (2.6)

So from (2.6), η and ξa are functions of t and xa and πa is linear in ua. Thus:

πa = −πabub − ωa, (2.7)

where πab and ωa are functions of t and x = (x1, x2, . . . xm).
From (2.6) it is possible to deduce all the remaining determining equations. Indeed, substi-

tuting (2.3), (2.7) into (2.4), using (1.1) and neglecting the terms of order ε2, we find that

[Q,L]u+ Lω = πf +
∂f

∂ua

(
−πabub − ωa

)
, Q = η

∂

∂t
+ ξa

∂

∂xa
+ π, (2.8)

and π is a matrix whose elements πab are defined by the relation (2.7).
To guarantee that equation (2.8) is compatible with (1.1) and does not impose new nontrivial

conditions for u in addition to (1.1), it is necessary to suppose that the commutator [Q,L] admits
the representation:

[Q,L] = ΛL+ ϕ(t, x), (2.9)

where Λ and ϕ are n× n matrices dependent on (t, xa).
Substituting (2.9) into (2.8) the following determining equations for f are obtained:(

Λkb − πkb
)
f b + ϕkbub + Lωk = −

(
ωa + πabub

) ∂fk

∂ua
. (2.10)
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Thus, to find all nonlinearities fk generating Lie symmetries for equation (1.1) it is necessary
to solve the operator equation (2.9) for L, Q given in (2.2), (2.8) and determine the corresponding
matrices Λ, π, ϕ and functions η and ξ. In the second step the nonlinearities fa may be found
by solving the system of first order equations (2.10) with their known coefficients.
Equation (2.9) is a straight forward generalization of the invariance condition for the linear

system of diffusion equations (1.1) with f (u) = 0, so that:

[Q,L] = ΛL

which may readily be solved. By means of this “linearization” the problem of investigating sym-
metries of systems of nonlinear diffusion equations is reduced to the, rather simple, application
of elements of matrix calculus in order to classify non-equivalent solutions of the determining
equations.
We note also that calculations of the conditional (nonclassical) symmetries for the sys-

tem (1.1) may be reduced to the solution of the determining equations (2.10) where now Λ,
π, ϕ, η and ξ are defined as solutions of the following relationship:

[Q,L] = ΛL+ ϕ(t, x) + µ(t, x)Q, (2.11)

where µ(t, x) is an unknown function of the independent variables.

3 General form of symmetry operators

We now determine the general solutions for matrices Λ, ϕ, π and also the functions ξ, η, π
which satisfy (2.10), (2.9). Evaluating the commutator in (2.9) and equating the coefficients for
linearly independent differential operators, we obtain the determining equations:

2Aξab = −δab(ΛA+ [A, π]), (3.1)

η̇a = 0, η̇ = Λ, (3.2)

ξ̇a − 2Aπa −Aξann = 0, (3.3)

ϕ = Aπnn − π̇. (3.4)

Here the dots denotes derivatives with respect to t and subscripts denote derivatives with
respect to the spatial variables, so for example, ηa = ∂η

∂xa
.

From (3.2) Λ is proportional to the unit matrix, Λ = λI. Moreover, it follows from (3.1) that
[A, π] ≡ 0. Indeed, choosing in (3.1) a = b we obtain

π −A−1πA = (2ξaa − λ)I. (3.5)

The trace of the left hand side of (3.5) is equal to zero, and so 2ξaa −λ ≡ 0 and Aπ−πA = 0.
Equations (3.1)–(3.4) contain matrices which commute, and so they may easily be integrated

using, for example, the method of characteristics. The general solution of (3.1)–(3.4) is:

ξa = C [ab]xb + ḋxa + ga, η = −2d,

π =
1
2
A−1

(
d̈

2
x2 + ġaxa

)
+ C, Λ = −2ḋI,

ϕ =
m

2
d̈− Ċ − 1

2
A−1

( ...
d

2
x2 + g̈axa

)
,

(3.6)

where d, ga are arbitrary functions of t and C is a t-dependent matrix commuting with A.
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By considering the x-dependence of functions (3.6) it is convenient to represent a still un-
known function ω, occuring in (2.10), as:

ωa = ωa
2x

2 + ωab
1 xb + ωa

0 + µ
a, (3.7)

where ωa
2 , ω

ab
1 , ω

a
0 are functions of t, and µ

a is a function of t and x, x2 = x2
1 + x

2
2 + · · · + x2

m.
Without loss of generality we suppose that all terms in the right hand side of (3.7) are linearly
independent. Then comparing with (2.10), (3.6) the functions µk have to satisfy:

Lµk = λkbµb + ξk0 + ξ
kb
1 xb + ξk2x

2, (3.8)

where λkb are constants and ξk0 , ξ
kb
1 , ξ

k
2 are functions of t.

The final step is to substitute (3.5), (3.7) into (2.10) and equate coefficients for all different
powers of xa. As a result we obtain the system of equations:

d̈
(
A−1

)kb
f b +

...
d(A−1)kbub − d̈ (

A−1
)ab
ub∂f

k

∂ua
= 4

(
ω̇k

2 + ξ
k
2 − ωb

2

∂fk

∂ub

)
= 0, (3.9)

ġa
(
A−1

)kb
f b + g̈a

(
A−1

)kb
ub − ġa

(
A−1

)kb
ub∂f

k

∂ua
= 2

(
ω̇ka

1 + ξk1a− ωba
1

∂fk

∂ua

)
= 0, (3.10)

(
2ḋδkb+Ckb

)
f b+

(
Ċkb−m

2
d̈δkb

)
ub−

(
ωa

0+C
abub

)∂fk

∂xa
= ωk

0 − 2mAkbωb
2 − ωb

0

∂fk

∂ub
, (3.11)

∂fk

∂ub
µb = λkbµb. (3.12)

Thus, the general form of symmetry group generators for equation (1.1) is given by relations
(2.5), (3.6), (3.7), where d, ga, Cab, ωk

0 , ω
kb
1 , ω

a
2 , µ

a are functions of t to be specified using
equations (3.9)–(3.12).

4 Nonlinearities and symmetries

We will not give the detailed calculations but present the general solution of relations (3.9)–(3.12)
in the form of the following Tables 1–3.
In Table 1 the Greek letters denote arbitrary coefficients while Dµ, Gi

a and Ḡ
i
a, XA, Ya, F̂ ,

B̂ are various types of dilatation, Galilei and special transformation generators as follows:

D0 = 2t
∂

∂t
+ xa

∂

∂xa
, D1 = D0 − 2

k
F̂ , D2 = D0 − 2s√

k2 + s2

(
u
∂

∂u1
+

∂

∂u2

)
,

D3 = D0 − 2
k

(
∂

∂u1
− 2nu1

∂

∂u1

)
, D4 = D0 − 2

k
ωa

∂

∂ua
,

Ga = t
∂

∂xa
− 1
2
xa

(
A−1

1

)nb
ub

∂

∂un
, Ĝa = exp (nt)

(
∂

∂xa
− 1
2
nxa

(
A−1

1

)nb
ub

∂

∂un

)
,

X0 = α
∂

∂t
+ βa

∂

∂xa
+ ν[a,b]xa

∂

∂xb
, ν[a,b] = −ν[b,a], Y1 = ntF̂ − B̂,

Y2 = exp(st)
(
u1

∂

∂u1
+ n

∂

∂u2

)
, Y2 = u1

∂

∂u2
− n ∂

∂u1
, Y3 = u1

∂

∂u2
− 2n ∂

∂u2
,

Y4 = exp(kt)
(
u1

∂

∂u2
+
nx2

2m
∂

∂u2

)
,

(4.1)
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where k, n, s are parameters used in the definitions of the nonlinear terms,

F̂ = F abub
∂

∂ua
, B̂ = Babub

∂

∂ua
, F =

(
0 0
1 1

)
(4.2)

and B is one of the matrices:

I. B =
(
1 0
0 d

)
; II. B =

(
d −1
1 d

)
;

IIIa. B =
(
0 0
1 0

)
; IIIb. B =

(
1 0
d 1

)
.

(4.3)

In Tables 2 and 3 we form a two-dimensional Lie algebra based upon the matrices, F and B,
classified the categories:

I. F =
(
1 0
0 d

)
, B =

(
0 0
0 1

)
;

IIa. F =
(
1 0
0 1

)
, B =

(
0 −1
1 0

)
;

IIb. F =
(
d −1
1 d

)
, B =

(
1 0
0 1

)
;

IIIa. F =
(
0 0
1 0

)
, B =

(
1 0
0 d

)
;

IIIb. F =
(
1 0
d 1

)
, B =

(
0 0
1 0

)
.

(4.4)

Here, κ = const, ∆ = k0n1 − n0k1, δ = 1
4(k0 − n1)2 + k1n0 and:(

∂

∂t
−

m∑
i=1

∂2

∂x2
i

)
ψn = nψn, n = 0, b. (4.5)

The generators Dµ, Âα, Ga, Ĝa, Xν , Ys when not specified in (4.1) are given by:

Â0 = t2
∂

∂t
+ txa

∂

∂xa
− 1
4
x2

(
A−1

)ab
ub

∂

∂ua
− m

2
+

(
u1

∂

∂u1
+ u2

∂

∂u2

)
,

Â1 = Â0 + nt2F̂ − m

2
B̂, D5 = D0 − m

2

(
u1

∂

∂u1
+ u2

∂

∂u2

)
,

D6 = D0 − 2tnF̂ − 2
k
B̂, D7 = D0 +

2
r

(
kst

r
− 1

)
u1

∂

∂u1
− 2st
r

∂

∂u2
,

D8 = D0 − 2st(u2 − 1) ∂
∂u1

− 2 ∂
∂u2

, D9 = D0 −
( p
m
x2 + 2qt

) ∂

∂u1
− 2 ∂

∂u2
,

D10 = D0 − 1
n

(
u1

∂

∂u1
+ 2u2

∂

∂u2

)
+

t

2sn
∂

∂u1
− t

s
u1

∂

∂u2
,

D11 = D0 − 1
k

(
u1

∂

∂u1
+ u2

∂

∂u2
− s(2k + 1)x2 ∂

∂u1

)
,
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X1 = µ exp(λ+t)F̂1 + ν exp(λ−t)F̂2, F1 =
[
1
2
(ko − n1) +

√
δ

]
F + n0B, n = λ+,

F2 = k1F −
[
1
2
(ko − n1) +

√
δ

]
B, n = λ−, λ± =

1
2
(k0 + n1)± δ,

X2 = µ exp(nt)F̂3 + νF̂4, n = k0 + n1, F3 = k0F + n0B, F4 = k0B − k1F ;

X3 = µ exp(nt)F̂5 + νF̂6, n = k0 + n1, F5 = k1F + n0B, F6 = n1F − n0B,

X4 = exp(nt)F̂7, n =
1
2
(k0 + n1), F7 = µF + νB,

X5 = exp(nt)
[
µ(k1tF̂ + B̂) + νF̂

]
,

X6 = exp(nt)
[
µ

(
F̂ + n0tB̂

)
+ νB̂

]
, n =

1
2
(k0 + n1),

X7 = exp(nt)µ
[(√

−n0k1t+ 1
)
F̂ + n0tB̂

]
+ ν

[(
k1F̂ −

√
−n0k1B̂

)
t+ B̂

]
,

n =
1
2
(k0 + n1),

X8 = ν
[
k1tF̂ + (1− k0t)B̂ + µ

(
k1F̂ − k0B̂

)]
,

X9 = exp(nt)
[
1
2
(n1 − k0) cos(ωt) + ω sin(ωt)

]
F̂ − n0 cos(ωt)B̂,

X10 = exp(nt)
[
ω sin(ωt) +

1
2
(k0 − n1) cosωt

]
B̂ − k1 cos(ωt)F̂ , n =

1
2
(k0 − n1),

Y5 = exp(nt)
(
u1

∂

∂u2
− q

2p

(
sx2

2m
∂

∂u2
− ∂

∂u1

))
, Y6 = exp(nt)

(
u1

∂

∂u2
− ∂

∂u1

)
,

Y7 = u1
∂

∂u1
+ nt

∂

∂u2
, Y8 = exp(kt)

(
u1

∂

∂u1
+ nt

∂

∂u2

)
,

Y9 = exp(kt)
(
u1

∂

∂u1
+

n

k − b
∂

∂u2

)
, Y10 = ku1

∂

∂u1
− r ∂

∂u2
,

Y11 = exp(nt)
(
sin(pt)u1

∂

∂u1
+ cos(pt)

∂

∂u2

)
,

Y12 = exp(nt)
(
cos(pt)u1

∂

∂u1
− sin(pt) ∂

∂u2

)
,

Y13 = exp(nt)
(
ptu1

∂

∂u1
+

∂

∂u2

)
, Y14 = exp(nt)u1

∂

∂u1
.
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Table 1. Nonlinearities with arbitrary functions

No Nonlinear terms
Type of

matrix B (4.3)
Arguments
of ϕ1, ϕ2

Conditions
for parametrs

Symmetries
A−1 �= κB

Symmetries
A−1 = κB

1.
f1 = uk+1

1 ϕ1

f2 = uk+d
1 ϕ2

I u2

ud
1

k �= 0 X0 + νD1 X0 + νD1

2.
f1 = exp(kθ)[ϕ1u2 + ϕ2u1]
f2 = exp(kθ)[ϕ1u1 − ϕ2u2]

II R e−dθ k �= 0 X0 + νD1 X0 + νD1

3.
f1 = ϕ1u

k+1
1

f2 = (ϕ1 lnu1 + ϕ2)uk+1
IIIb, d = 1 u1e

−u2
u1 k �= 0 X0 + νD1 X0 + νD1

4.
f1 = exp

(
k u2

u1

)
ϕ1u1

f2 = exp
(
k u2

u1

)
(ϕ1u2 + ϕ2)

IIIa u1 k �= 0 X0 + νD1

5.
f1 = u1(n lnu1 + ϕ1)
f2 = u2(n lnu2 + ϕ2)

I u2

ud
1

n �= 0 X0 + µentB̂ X0 + νaG̃a + µentB̂

n = 0 X0 + µB̂ X0 + µB̂ + νaGa

6.

f1 = ϕ1u2 + ϕ2u1

+n
2

(
1
d lnR+ θ

)
(du1 − u2)

f2 = ϕ1u1 − ϕ2u2

+n
2

(
1
d lnR+ θ

)
(du2 + u1)

R2 = u2
1 + u

2
2, θ = arctan

(
u2
u1

)
II, d �= 0 Re−dθ

n �= 0 X0 + µentB̂ X0 + νaĜa + µentB̂

n = 0 X0 + µB̂ X0 + µB̂ + λaGa

7.
f1 = (ϕ1 − nθ)u2 + ϕ2u1

f2 = ϕ1u1 − ϕ2u2
II, d = 0 R

n �= 0 X0 + µentB̂ X0 + νaĜa + µentB̂

n = 0 X0 + µB̂ X0 + µB̂ + λaGa

8.
f1 = ϕ1u1 + nu2

f2 = (ϕ1u2 + u1ϕ2) + nu2

(
1 + u2

u1

) IIIb, d = 1 u2
u1

− lnu1

n �= 0 X0 + µentB̂ X0 + νaĜa + µentB̂

n = 0 X0 + µB̂ X0 + µB̂ + λaGa



54
A
.G
.
N
ikitin

and
R
.J.
W
iltshire

Table 1 (continued). Nonlinearities with arbitrary functions

No Nonlinear terms
Type of

matrix B (4.3)
Arguments
of ϕ1, ϕ2

Conditions
for parametrs

Symmetries
A−1 �= κB

Symmetries
A−1 = κB

9.
f1 = ϕu1

f2 = ϕu2 − nu1
IIIa, d = 0 u1 X0 + µB̂ + νY1

10.
f1 = ϕu1

f2 = ϕ1u2 + ϕ2u1 + nu2
IIIa u1 X0 + µentB̂

11.
f1 = u

(
k+ k2√

k2+s2

)
1

× exp
[(
s+ sk√

k2+s2
u2

)]
ϕ1

f2 = uk
1 exp(su2)ϕ2

I, d = 0 s lnu1 + ku2 X0 + νD2

12.
f1 = ϕ1 exp

(
nu2

n2+1

)
u

1
n2+1

1

+ s
n2+1

u1 (nu2 + lnu1)
f2 = ϕ2 + ns

n2+1
(nu2 + lnu1)

I, d = 0 u2 − n lnu1 X0 + νY2

13.
f1 = exp(ku1)ϕ1

f2 = exp(ku1)(ϕ2 − 2nϕ1 lnu1)
IIIa nu2

1 + u2 k �= 0 X0 + λD3

14.
f1 = ϕ1 + su1

f2 = ϕ2 − 2nϕ1u1 + 2su2
IIIa nu2

1 + u2 X0 + λY3

15.
f1 = n
f2 = ku2 + ϕ2

IIIa u1 X0 + λY4 + ψk
∂

∂u2

16.
fα = exp

[
k
ω (ω1u1 + ω2u2)

]
ϕα

α = 1, 2, ω2 = ω2
1 + ω

2
2

any ω1u2 − ω2u1 k �= 0 X0 + νD4 X0 + νD4

17.
f1 = ϕ1

f2 = ϕ2
any (u1, u2) X0 X0
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Table 2. Non-linearities with arbitrary parameters which generate symmetry with respect to dilatation

No Nonlinear terms
Conditions

for parameters
Symmetries,
A−1 �= κF

Symmetries,
A−1 = κF

Matrix class
and symmetry
generator
parameters

1
f1 = (guq

1u
r
2 − s)u1

f2 =
(
puq

1u
r
2 − rs

q

)
u2

s = 0, q �= 0
q + r = 4

m

X0 + µF̂ + νD5 X0 + µF̂ + νD5 + σaGa + λA0 I, d = − q
r

s = 0, q �= 0, r �= 0
0 �= q + r �= 4

m

X0 + νF̂ + µD5 X0 + νF̂ + µD5 + σaGa
I, k = r + q
d = − q

r

s �= 0, q �= 0 X0 + νF̂ + µD6 X0 + νF̂ + µD6 + σaGa
I, k = r
d = − q

s

2

f1 = eqθRr (gu1 − pu2)
+su2 − lu1

f2 = eqθRr (gu2 + pu1)
−su1 − lu2

R2 = u2
1 + u

2
2

θ = tan−1
(

u2
u1

)

s = l = 0
r = 4

m

X0 + νF̂ + µD5 X0 + νF̂ + µD5 + σaGa + λA0
IIb, k = r
d = − q

r

r �= 4
m , r �= 0

s = l = 0
X0 + νF̂ + µD5 X0 + νF̂ + µD5 + σaGa

IIb, k = 4
m

d = − q
r

l = sq
(
1 + 1

r

)
s �= 0, r �= 0 X0 + νF̂ + µD6 X0 + νF̂ + µD6 + σaGa

IIb, k = r
n = sq

d = q
(
1 + 1

r

)
s = 0, l �= 0
q �= 0, r = 0 X0 + νF̂ + µD6 X0 + νF̂ + µD6 + σaGa

IIa, k = q
n = lq

3

f1 =
(
pur

1e
q

u2
u1 − s

)
u1

f2 = eq
u2
u1 (pu2 + gu1)ur

1

−s
(
u2 − r

qu1

)

r = −q = 4
m

l = s = 0
X0 + νF̂ + µD5 X0 + νF̂ + µD5 + αaGa + λA1

IIIb, d = 1
k = 4

m

−q = r �= 4
m

l = s = 0, r �= 0 X0 + νF̂ + µD5 X0 + νF̂ + µD5 + αaGa
IIIb, d = 1
k = r

q �= 0, s �= 0 X0 + νF̂ + µD6 X0 + νF̂ + µD6 + σaGa
IIIb, k = q

n = sq, d = −n
q
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Table 2 (continued). Non-linearities with arbitrary parameters which generate symmetry with respect to dilatation

No Nonlinear terms
Conditions

for parameters
Symmetries,
A−1 �= κF

Symmetries,
A−1 = κF

Matrix class
and symmetry
generator
parameters

4
f1 = puk+1

1

f2 = uk
1

(
pu2 + qud

1

) − n
d+k−1u1

d+ k �= 1
k �= 0, q �= 0 X0 + νF̂ + µD6 IIIa

k �= 0, n = 0
q = 0

X0 + νF̂ + µD5 + λB̂ IIIa, d = 0

k �= 0, n = 0
q = 0

X0 + νF̂ + µD5 + λY1 IIIa, d = 0

5
f1 = puk+1

1

f2 = puk
1u2 + qu1 + nu1 lnu1

k �= 0, n �= 0 X0 + νF̂ + µD6 IIIa, d = 1− k

6
f1 = qur+1

1 eku2 + ks
r2u1

f2 = pur
1e

ku2 + r
s

r �= 0,−1 p �= 0 X0 + νD7 + µY7 I

7
f1 = eu2 + su2 + q
f2 = n

q = 0 X0 + νD7 + µY7 + ψn
∂

∂u1
I, k = −r = 1

s = 0, q �= 0
n �= 0

X0 + νD1

+µ
(
Y7 − qt ∂

∂u1

)
+ ψ0

∂
∂u1

I, d = 0, k = 1

q = n = 0
s �= 0 X0 + νD8 + µF̂ + ψ0

∂
∂u1

IIIa

8
f1 = k1e

u2 − pA21

f2 = k2e
u2 − pA11 + q

X0 + λD9 + ψ0
∂

∂u1
X0 + νD9 + ψ0

∂
∂u1

any

9

f1 = p
(
u2 + nu2

1

)s+ 1
2 + 1

2n(2s+1)

f2 = q
(
u2 + nu2

1

)s+1 − 1
2s+1u1

−2npu1

(
u2 + nu2

1

)s+ 1
2

s �= 0, s �= 1
2

p �= 0, n �= 0 X0 + νD10 I

10
f1 = pu2k+1

1 − 2msA11

f2 = qu2k+1
1 − 2msA21

k �= 0 X0 + νD11 + ψ0
∂

∂u2
any
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Table 3. Further non-linearities with arbitrary parameters

No Nonlinear terms
Matrix

Class (4.4)
Conditions

for parameters
Symmetries,
A−1 �= κF

Symmetries,
A−1 = κF

1
f1 = (k0 lnu1 + k1 lnu2 + q)u1

f2 = (n0 lnu1 + n1 lnu2 + p)u2
I, d = 0

δ > 0, ∆ �= 0
F = F1,F2

X0 + νX1 X0 + λX1 + σaĜa

δ > 0, ∆ = 0
n1 = 0, k1 �= 0, F = F3

X0 + λX2 X0 + λX2 + σaĜa

2

f1 = (k0u1 − n0u2) lnR
+θ (k1u1 − n1u2) + pu1 − qu2

f2 = (k0u2 + n0u1) lnR
+θ (n1u1 + k1u2) + qu1 + pu2

IIa

δ > 0, ∆ = 0
n1 = 0, k1 �= 0, F = F4

X0 + λX2 X0 + λX2 + σaGa

δ > 0, ∆ = 0
n1 �= 0, F = F5

X0 + λX3 X0 + λX3 + σaĜa

δ > 0, ∆ = 0
n1 �= 0, F = F6

X0 + λX3 X0 + λX3 + σaGa

3

f1 = (k0 lnu1 + q)u1 + k1u2

f2 = (n0u1 + k0u2) lnu1

+k1
u2
2

u1
+ pu1 + (n1 + q)u2

IIIa

δ = 0, ∆ �= 0
k1 = n0 = 0, F = F7

X0 + λX4 X0 + λX4 + σaĜa

δ = 0, ∆ �= 0
n0 = 0, k1 �= 0, F = F

X0 + λX5 X0 + λX5 + σaĜa

δ = 0, ∆ �= 0
k1 = 0, n0 �= 0, F = B

X0 + λX6 X0 + λX6 + σaĜa

δ = 0, ∆ �= 0
n0k1 < 0

X0 + λX7

δ = 0 = ∆
k1 = 0, n0 = 0
F = αF + µB

X0 + νF̂ + µB̂ X0 + νF̂ + µB̂ + σaGa

δ = 0 = ∆
k1 = 0, n0 �= 0, F = B

X0 + νB̂
+µ

(
F̂ + n0tB̂

) X0 + νB̂
+µ

(
F̂ + n0tB̂

)
+ σaGa

δ = 0,∆ = 0
k1 �= 0, n0 = 0, F = F

X0 + νF̂
+µ

(
B̂ + k1tF̂

) X0 + νF̂
+µ

(
B̂ + k1tF̂

)
+ σaGa

δ = 0,∆ = 0, n0k1 �= 0
F = k1F − k0B

X0 + νX8 X0 + νX8 + σaGa

δ = −ω2 < 0 X0 + νX9 + µX10
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Table 3 (continued). Further non-linearities with arbitrary parameters

No Nonlinear terms
Matrix

Class (4.4)
Conditions

for parameters
Symmetries,
A−1 �= κF

Symmetries,
A−1 = κF

4
f1 = qu1

f2 = nu2 + pud
1su1 + k

IIIa

d �= 1, 2, k = 0
s = 0, n �= q, F = B

X0 + νB̂ + ψn
∂

∂u2
X0 + νB̂ + ψn

∂
∂u2

+ σaGa

d �= 0, 2, n = 0
s = 0,F = B

X0 + ψ0
∂

∂u2
+ ν

(
B̂ − dkt ∂

∂u2

) X0 + ψ0
∂

∂u2

+ν
(
B̂ − dkt ∂

∂u2

)
+ σaGa

d �= 0, 1, 2, n = q
k = 0, s = 1

1−d

F = B
X0 + νF̂ + µB̂ + ψn

∂
∂u2

X0 + νF̂ + µB̂
+ψn

∂
∂u2

+ σaGa

d = 2, n = q
k = 0, s �= 0 X0 + µY5 + ψn

∂
∂u2

d = 2, n = q
k = s = 0, F = B

X0 + νB̂ + ψ0
∂

∂u2

X0 + νB̂ + entF̂

+ψ0
∂

∂u2
+ σaGa

n = 2 (q + p) , d = 2
k = s = 0, F = B

X0 + νY6 + µB̂ + ψ0
∂

∂u2

X0 + νY6 + µB̂
+ψ0

∂
∂u2

+ σaGa

d = 2, p = −q
n = s = 0

X0 + νY6 + ψ0
∂

∂u2

+µ
(
B̂ − dkt ∂

∂u2

)

5
f1 = ku1 lnu1 + pu1

f2 = bu2 + n lnu1 + q
I

b = k = q = 0
p �= 0 X0 + νY7 + ψ0

∂
∂u2

q = p = 0
b = k

X0 + νY8 + ψb
∂

∂u2

q = p = 0
b �= k, b �= 0 X0 + νY9 + ψb

∂
∂u2

k �= 0, b = p = 0 X0 + νY9 + ψ0
∂

∂u2

6
f1 = pu1u2 + nu1 lnu1

f2 = nu2 − q lnu1
I

q = p X0 + νY11 + µY12

q = 0 X0 + νY13 + µY14
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5 Discussion

Thus we have found all possible versions of systems of diffusion equations which admit a non-
trivial Lie symmetry. These results can be used to construct mathematical models with required
symmetry properties in, for example, physics, biology, chemistry. On the other hand, our re-
sults give ad hoc solution of problems of group analysis of all models using systems of diffusion
equations. As an example consider the nonlinear Schrödinger equation in m-dimensional space(

i
∂

∂t
−

m∑
i=1

∂2

∂x2
i

)
ψ = F (ψ,ψ∗)ψ (5.6)

which is also is a particular case of (1.1). If we denote

u1 =
1
2
(ψ + ψ∗), u2 =

1
2i
(ψ − ψ∗) (5.7)

then (5.6) reduces to the form (1.1) with A = iσ2, and

f1 =
1
2
(F ∗ + F )u2 +

1
2i
(F − F ∗)u1,

f2 =
1
2i
(F − F ∗)u2 − 1

2
(F + F ∗)u1.

In other words, any solution given in Tables 2, 3 with matrices belonging to Classes I, II give
rise to the nonlinearity

F =
1
R2

[(
u2f

1 − u1f
2
)
+ i

(
u2f

2 + f1u1
)]

for the nonlinear Schrödinger equation (5.6) which admits a nontrivial Lie symmetry. We see
that the number of nonlinearities which guarantee a non-trivial symmetry for the non-linear
Schödinger equation is very extended and exceeds one hundred.
We notice that the nonlinear Schrödinger equations with ad hoc required symmetry with

respect to the (extended) Galilei group where described in [11, 12].

The authors wish to thank the Royal Society fot their support with this research.
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The transformation group theoretic approach is applied to present an analysis of distribution
of electro-static potential between two eccentric conducting cylindrical surfaces. A conformal
mapping is used to map the region between two eccentric circles, in the complex potential-
plane onto a region of concentric circles in another complex-plane. The application of one-
parameter group reduces the number of independent variables by one, and consequently the
Laplace’s equation with the boundary conditions to an ordinary differential equation with
appropriate corresponding conditions. The obtained differential equation is solved analyti-
cally.

1 Introduction

The Laplace equation arises in many branches of physics, from which it attracts a wide band of
researchers. Electro-static potential, temperature in the case of steady state heat conduction,
velocity potential in the case of steady irrotational flow of an ideal fluid, concentration of a
substance that is diffusing through a solid, and the displacements of a two-dimensional membrane
in equilibrium state, are counter examples in which the Laplace’s equation is satisfied.
The arrangement of two parallel conducting cylinders, each of circular cross section is an

important type of transmission line.
Transmission lines are used to transmit electric energy and signals from one point to another.

The basic transmission line connects a source to a load. This may be a transmitter and an
antenna, a shift register and the memory core in a digital computer, a hydroelectric generating
plant and a substation several hundred miles away, a television antenna and a receiver, and one
input of the preamplifier, see Hayt [7]. While short transmission line segments (few millimeters
in microwave circuits to inches or feet or hundreds of feet in devices at lower frequencies) perform
many different functions, within the terminal units of the systems such as: resonant elements,
filters and wave-shaping networks, see Chipman [5].
A conformal mapping is used to map the region between two eccentric circles, in the complex

potential-plane onto a region of concentric circles in another complex-plane. Then the mathe-
matical technique used in the present analysis is the parameter-group transformation. The
group methods, as a class of methods which lead to reduction of the number of independent
variables, were first introduced by Birkhoff [4] in 1948, where he made use of one-parameter
transformation groups. In 1952, Morgan [9] presented a theory which has led to improvements
over earlier similarity methods. The method has been applied intensively by Abd-el-Malek et
al. [1–3].
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In this work we present a general procedure for applying one-parameter group transformation
to the Laplace’s equation in a region between two long cylinders with parallel axis. Under the
transformation, the partial differential equation with variable boundary conditions, is reduced to
an ordinary differential equation with the appropriate corresponding conditions. The equation
is solved analytically.

2 Mathematical formulation

Consider the electro-static potential V (x, y) over any cross section Ω (Fig. 1.1 or Fig. 1.2) of a
domain between two long cylinders with parallel axis.

Ω

B

y

C E G A x

L0

L1

F

D

(−R1, 0) (x2, 0) (x1, 0) (R1, 0)

y

B

A

(−R1, 0)

C

(R1, 0)

L1

D

(x2, 0)

F

(x1, 0)

E

L0

x

Ω

Fig. 1.1. Cross section in two long
eccentric cylinders with parallel axis
where −R1 < x2 < x1 < R1.

Fig. 1.2. Cross section in two long parallel
cylinders where R1 < x2 < x1.

Under the assumption that cylinders have variable potentials, the governing equation may
be written as

∂2V

∂x2
+

∂2V

∂y2
= 0, (x, y) ∈ Ω (1)

with the boundary conditions

V (x, y) = V1q(x, y), (x, y) ∈ L1;
V (x, y) = V0q(x, y), (x, y) ∈ L0,

(2)

where V1 and V0 are constants and q(x, y) is an arbitrary function to be determined later on.
The Möbius or the linear fractional transformation

w =
z − aR1

az −R1
, (3)

where

w = u+ iv = reiθ, z = x+ iy,

a =
R2

1 + x1x2 +
√(

R1
2 − x1

2

) (
R1

2 − x2
2

)
R1(x1 + x2)

, (4)
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R0 =
R2

1 − x1x2 +
√(

R2
1 − x2

1

) (
R2

1 − x2
2

)
εR1(x1 − x2)

, (5)

ε = 1 for Ω shown in Fig. (1.1) and ε = −1 for Ω shown in Fig. (1.2), maps the region Ω shown
in Fig. 1.1 onto Ω̄ shown in Fig. 2.1 and also maps the region Ω shown in Fig. 1.2 onto Ω̄ shown
in Fig. 2.2, see Churchill and Brown [6].

Ω̄

v

F ′

B′

G′

(−R0, 0)

A′

(−1, 0)
C′

(1, 0)

E′

(R0, 0)

u

D′
L̄1

L̄0

Ω̄

v

B′

E′

u

L̄0

L̄1

C′

(−1, 0)
D′

(−R0, 0)

F ′

(R0, 0)

A′

(1, 0)

Fig. 2.1. Cross section in mapped two long
eccentric cylinders with parallel axis.

Fig. 2.2. Cross section in mapped two long
parallel cylinders.

From (3) we get

u =
a

(
x2 + y2

) − (
a2 + 1

)
xR1 + aR2

1

a2 (x2 + y2)− 2axR1 +R2
1

, (6)

v =

(
a2 − 1

)
yR1

a2 (x2 + y2)− 2axR1 +R2
1

. (7)

Now, the governing equation satisfied in region Ω̄, in polar coordinates, has the form

∂2V

∂r2
+
1
r

∂V

∂r
+
1
r2

∂2V

∂θ2
= 0, (8)

with the boundary conditions

V (1, θ) = V1q(θ), (r, θ) ∈ L̄1,

V (R0, θ) = V0q(θ), (r, θ) ∈ L̄0,
− π < θ ≤ π. (9)

We restrict θ to an interval (−π, π]. This requires that:

V (r, π) = V (r,−π), 1 < r < R0, (10)

∂V

∂θ
(r, π) =

∂V

∂θ
(r,−π), 1 < r < R0. (11)

Write

V (r, θ) = w(r, θ)q(θ), q(θ) �≡ 0 in Ω̄. (12)
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Hence (8) and (9) take the form:

q(θ)
[
∂2w

∂r2
+
1
r

∂w

∂r

]
+
1
r2

[
w
d2q

dθ2
+ 2

∂w

∂θ

dq

dθ
+ q

∂2w

∂θ2

]
= 0 (13)

with the boundary conditions:

w(1, θ) = V1, (r, θ) ∈ L̄1,

w(R0, θ) = V0, (r, θ) ∈ L̄0,
− π < θ < π. (14)

3 Solution of the problem

The method of solution depends on the application of a one-parameter group transformation
to the partial differential equation (13) and the boundary conditions (14). Under this transfor-
mation the two independent variables will be reduced by one and the differential equation (13)
transforms into an ordinary differential equation in only one independent variable, which is the
similarity variable.

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter “b” of
the form

G : S̄ = CS(b)S +KS(b), (15)

where S stands for r, θ; w, q and the CS and KS are real-valued and at least differentiable in
the real argument “b”.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives are obtained from G
via chain-rule operations:

S̄ī =
(
CS

Ci

)
Si, S̄īj̄ =

(
CS

CiCj

)
Sij , i = r, θ; j = r, θ, (16)

where S stands for w and q.
Equation (13) is said to be invariantely transformed whenever

q̄
(
r̄2w̄r̄r̄ + r̄w̄r̄

)
+ w̄q̄θ̄θ̄ + 2w̄θ̄q̄w̄θ̄θ̄

= H(b)
[
q
(
r2wrr + rwr

)
+ wqθθ + 2wθqθ + qwθθ

] (17)

for some function H(b) which may be a constant.
Substitution from equations (15) into equation (17), using (16), for the independent variables,

the functions and their partial derivatives yields

q
(
[CqCw] r2wrr + [CqCw] rwr

)
+

[
CqCw

(Cθ)2

]
wqθθ + 2

[
CqCw

(Cθ)2

]
wθqθ

+

[
CqCw

(Cθ)2

]
qwθθ + ζ(b) = H(b)

[
q
(
r2wrr + rwr

)
+ wqθθ + 2wθqθ + wqθθ

]
,

(18)
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where

ζ(b) = Kq

[
(Crr +Kr)2

(
Cw

(Cr)2

)
wrr + (Crr +Kr)

(
Cw

Cr

)
wr

]

+

[
KwCq

(Cθ)2

]
qθθ +Kq

[
Cw

(Cθ)2

]
wθθ.

(19)

The invariance of (18) implies ζ(b) ≡ 0. This is satisfied by putting

Kq = Kw = 0 (20)

and

[CqCw] =
[
CqCw

(Cθ)2

]
= H(b), (21)

which yields

Cθ = ±1. (22)

Moreover, the boundary conditions (14) are also invariant in form, imply that Kr = Kw = 0
and Cw = Cr = 1.
Finally, we get the one-parameter group G which transforms invariantely the differential

equation (13) and the boundary conditions (14). The group G is of the form

G :



r̄ = r,
θ̄ = ±θ +Kθ,
w̄ = w,
q̄ = Cqq.

(23)

3.3 The complete set of absolute invariant

Our aim is to make use of group methods to represent the problem in the form of an ordinary
differential equation (similarity representation) in a single independent variable (similarity vari-
able). Then we have to proceed in our analysis to obtain a complete set of absolute invariant. In
addition to the absolute invariant of the independent variable, there are two absolute invariant
of the dependent variables w and q.
If η ≡ η(r, θ) is an absolute invariant of the independent variables, then

gj(r, θ;w, q) = Fj [η, (r, θ)], j = 1, 2 (24)

are two absolute invariant corresponding to w and q. The application of a basic theorem in group
theory, see Morgan and Gaggioli [8], states that: a function g(r, θ;w, q) is an absolute invariant
of a one-parameter group if it satisfies the following first-order linear differential equation

4∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, (25)

where Si, stands for r, θ, w and q, respectively and

αi =
∂CSi

∂b

(
b0

)
and βi =

∂KSi

∂b

(
b0

)
, i = 1, 2, 3, 4 (26)

where b0 denotes the value of “b” which yields the identity element of the group.
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From which we get: α1 = α2 = α3 = 0 and β1 = β3 = β4 = 0.
At first, we seek an absolute invariant of the independent variables. Owing to equation (11),

η(r, θ) is an absolute invariant if it satisfies the first-order partial differential equation

∂η

∂θ
= 0, (27)

which has a solution in the form η(r, θ) = Γ(r).
Without loss of generality, take the function Γ as an identity function, hence

η(r, θ) = r. (28)

The second step is to obtain the absolute invariant of the dependent variables w and q.
Applying (25), we get

q(θ) = R(θ)Φ(η). (29)

Since q(θ) and R(θ) are independent of η, while Φ is a function of η, then φ(η) must be a
constant, say Φ(η) = 1, and from which

q(θ) = R(θ), (30)

and the second absolute invariant is:

w(r, θ) = F (η). (31)

From (30), (31), and (12). the conditions (10) and (11) will be changed to corresponding
conditions on R(θ) as follows

R(π) = R(−π), (32)

dR

dθ
(π) =

dR

dθ
(−π). (33)

4 Reduction to ordinary differential equation

As the general analysis proceeds, the established forms of the dependent and independent abso-
lute invariant are used to obtain ordinary differential equation. Generally, the absolute invariant
η(r, θ) has the form given in (28).
Substituting from (28), (30) and (31) into equation (13) yields

d2F

dη2
+
1
η

dF

dη
+

(
1

Rη2

d2R

dθ2

)
F = 0. (34)

For (34) to be reduced to an expression in the single independent invariant η, the coefficients in
(34) should be constants or functions of η. Thus take

1
R

d2R

dθ2
= C, (35)

where C is an arbitrary constant.
Thus (34) may be written as

η2d
2F

dη2
+ η

dF

dη
+ CF = 0. (36)

Under the similarity variable η, the boundary conditions are:

F (R0) = V0,

F (1) = V1.
(37)
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5 Analytical solution

Case (1): C = −α2, α �= 0. Substituting for C into (35), we get

d2R

dθ2
+ α2R = 0. (38)

Solution of (38) is:

R(θ) = c1 cosαθ + c2 sinαθ. (39)

The function R(θ) in (39) satisfies boundary conditions (32) and (33) for α = n, where n =
±1,±2,±3, . . ..
Since q(θ) is an arbitrary function, then R(θ) is also an arbitrary function. Thus we can take

R(9) in the form

R(θ) = sin θ, −π < θ ≤ π, (40)

and consequently q(x, y) has the form

q(x, y) = sin

[
tan−1

( (
a2 − 1

)
yR1

a (x2 + y2)− (a2 + 1)xR1 + aR2
1

)]
.

Substituting for C into (36), we get

η2d
2F

dη2
+ η

dF

dη
− n2F = 0, (41)

which has the solution

F (η) = k1η
n +

k2

ηn
, (42)

where k1 and k2 are constant.
Applying boundary conditions (37), we get

F (η) =
V1 − V0R

n
0

1−R2n
0

ηn +
V0R

n
0 − V1R

2n
0(

1−R2n
0

)
ηn

, n = ±1,±2,±3, . . . . (43)

From which we get

V (x, y) =
(

sin θ
1−R2n

0

) [
(V1 − V0R

n
0 )

√
u2 + v2 +

V0R
n
0 − V1R

2n
0√

u2 + v2

]
,

n = ±1,±2,±3, . . . ,
(44)

where θ = tan−1 (v/u), u and v are given by (6) and (7), respectively.
To obtain the electrostatic potential in the case of coaxial cylinders, take limit as a → ∞ in

(44), and for n = 1, we get

V (ρ,Ψ) =
sinΨ
ρ2

1 − ρ2
0

[(
V1ρ

2
0 − V0ρ0ρ1

) (
ρ1

ρ

)
+ (V0ρ0 − V1ρ1) ρ

]
, (45)

where ρ0 and ρ1 are the raduii of the inner and outer cylinders, respectively.
It is noticed that the case of c = α2 is neglected since the obtained form of the function R(θ)

does not satisfy the conditions (32) and (33).
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Case (2): C = 0. Substituting for C into (35), we get

d2R

dθ2
= 0. (46)

Equation (46) has the solution

R(θ) = c3θ + c4. (47)

Since q(θ) is an arbitrary function, then R(θ) is also an arbitrary function. Thus we can take,
without loss of generality, R(θ) in the form

R(θ) = 1, (48)

which satisfies conditions (32) and (33).
This corresponds to q(x, y) = 1, i.e. constant potential along the boundary.
Substituting for C into (36), we get

η2d
2F

dη2
+ η

dF

dη
= 0. (49)

Equation (49) has the solution

F (η) = k3 + k4 ln η, (50)

where k3 and k4 are constants.
With the aid of the boundary conditions (37), the solution is

F (η) = V1 +
(
V0 − V1

lnR0

)
ln η, (51)

from which we get

V (x, y) = V1 +
(
V0 − V1

2 lnR0

)
ln

(
u2 + v2

)
, (52)

where u and v are given by (6) and (7) repectively.
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New Evolution Completely Integrable System
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We present a detailed algebraic investigation of the evolution system ut = u3 + u1 v1 +
δ u1 + u v2/2, vt = u2 that was obtained in the recent paper by two of the authors. We
present the zero curvature representation, the infinite sequences of the conserved densities
and Lie–Bäcklund symmetries for the system under consideration. We also found the Noether
operator, the Hamiltonian form, and the inverse Noether operator. The one-soliton solution
is also obtained.

In our previous paper [1] we presented the classification of evolution systems satisfying the
necessary conditions of integrability. This classification was obtained with the help of the con-
served canonical densities approach. Here we present more detailed investigation of one of that
systems

ut = u3 + u1 v1 − δ u1 +
1
2
u v2, vt = u2. (1)

Here ui = (∂iu/∂xi), ut = (∂u/∂t). We found the zero curvature representation, the infinite
sequences of the conserved densities and Lie–Bäcklund symmetries for system (1). We also found
the Noether operator Θ and the inverse Noether operator J . The operator Θ is implectic and
provides the Hamiltonian form of system (1) and the product ΘJ = Λ is the recursion operator
for system (1). The one-soliton solution was also obtained.

1. To find the linear system realizing the zero curvature representation

Ψx = U Ψ, Ψt = V Ψ (2)

we assumed that U = U(u0, v0). Then we solved the compatibility equation for system (2)

Ut − Vx + [U, V ] = 0, (3)

where [U, V ] is the commutator, and obtained the matrices U and V in the following form

U = A1 +A2 u+A3 v +A4 v
2,

V = A2 u2 + 1/2A2 u v1 +A5 u1 + 1/2 v A2 u1 + 1/8 v2A2 u

+1/2u2A7 + uA6 + 1/2u v A5 − δ uA2 +A8,

(4)

where Ai are constant unknown matrices satisfying the following commutation relations:

[A4, A7 ] = 0, [A3, A5 ] = 0, [A2, A8 ] + [A1, A6 ] = δ A5, [A1, A8 ] = 0,
[A2, A7 ] = 0, [A3, A7 ] = −4A4 −A7, [A3, A8 ] = 0, [A4, A8 ] = 0,
[A4, A6 ] = −1/8A5, [A3, A6 ] = −1/2A6 + δ/2A2, [A1, A2 ] = A5,

[A1, A7 ] + 2 [A2, A6 ] = −2A3, [A2, A4 ] = 0, [A1, A5 ] = A6,

[A2, A5 ] = A7, [A2, A3 ] = −1/2A2, [A3, A5 ] = 0, [A4, A5 ] = −1/8A2.

This table of commutators is obviously not closed, and the first problem is to obtain all com-
mutators [Ai, Aj ]. Following ideas of Wahlquist and Estabrook [2] we consider the unknown
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commutators as new elements of Lie algebra. For example, we set [A1, A6 ] = A9 and so on.
Then using the Jacobi identity we found some commutation relations for the new elements Ai.
But in general case this process is infinite. To make it finite we assume a linear dependence
between the elements Ai. It is important that system (1) satisfies sufficiently many conditions
of the integrability and representation (3) exists. Therefore if one introduces sufficiently many
new elements Ai then the linear constraint provides the closed nontrivial algebra. To close the
presented algebra we were forced to consider 19-dimensional Lie algebra. But when we obtained
the complete table of the commutators we found a 4-dimensional ideal I. We set the elements
of the ideal to be zeros and obtained the 15-dimensional Lie algebra. This new algebra is iso-
morphic to the factor algebra with respect to ideal I and is simple. We cannot write here the
final table of the commutators because it consists of 105 equations.

To construct the representation of the obtained simple algebra we found the Cartan–Weyl
basis and the Dynkin diagram for it. It was the diagram of sl(4) algebra. Hence the minimal
dimension of a representation of the algebra is 4. The final result takes the following form

U =




−v
2

1
2

0 0

δ − v2

4
0 0

1
2

2u
3

0 0 0

4µ δ − v2

4
−2u

v

2



, V =




0 0 −u
2

0

u2

3
0 −u1 − u v

2
0

f

3
−u1

3
− u v

6
−µ u

6

0
u2

3
−f 0




, (5)

where µ is the spectral parameter and

f = 2u2 + u v1 + v u1 + 1/4 v2 u− δ u.

2. To check whether the obtained zero curvature representation is nontrivial we constructed
from the matrix U the sequence of the conserved densities following to J.M. Alberty, T. Koikawa
and R. Sasaki’s algorithm [3]. Let c be a constant vector and (c, ψ) be the Euclidean scalar
product. Setting ϕ = ψ/(c, ψ) one can obtain from system (2) the following nonlinear system

ϕx = U ϕ− ϕ (cUϕ), ϕt = V ϕ− ϕ (c V ϕ). (6)

It is easy to check that the following continuity equation

(cUϕ)t = (c V ϕ)x

follows from equation (3). Hence the function

ρ = (cUϕ) (7)

is the generating function for conserved densities of system (1). Setting

c = (0, 0, 1, 0),

ϕ1 =
∞∑
i=1

fi k
i, ϕ2 =

∞∑
i=1

gi k
i, ϕ4 =

∞∑
i=1

hi k
i, k = 1/(4µ),
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we obtained from (6) the following recursion formulas

gi = 2Dfi + v fi +
4
3
u

i−1∑
j=1

fj fi−j ,

hi = 2Dgi +
(
1
2
v2 − 2 δ

)
fi +

4
3
u

i−1∑
j=1

fj gi−j ,

fi+1 = Dhi +
(
1
4
v2 − δ

)
gi − 1

2
v hi +

2
3
u

i−1∑
j=1

fj hi−j ,

(8)

where D = ∂/∂x, f1 = 2u and i > 0. Formula (7) is reduced now to the form

ρ =
2
3

∞∑
i=1

ρi k
i, ρi = u fi, (9)

and provides an infinite sequence of conserved densities ρi. It is obvious that the conserved
densities provided by equations (8) are local. It can be easily verified that some first even
densities are trivial, but the odd densities are nontrivial. Hence the presented zero curvature
representation is nontrivial. The first two nontrivial densities take the following form

ρ1 = u2,

ρ3 = u2
3 + u3 (u v2 + 2u1 v1) + 2δ u2

2 +
1
4
u2 v2

2

+uu2 v1

(
δ − 1

2
v1

)
+

(
δ2 +

7
3
u2 +

1
2
v2
1 − δ v1

)
u2

1 +
1
3
u4 (δ − v1).

The subsequent densities are very cumbersome and we do not give them here. Let us note
that system (1) possesses other conserved densities, that are not expressed by formula (9). For
example, the function

ρ =
1
4
v2

2 − δ v12 +
1
3
v1

3 + 3u1
2 − 2 v1 u2

is a conserved density as well.
3. Let us denote by K the vector field that determines system (1), that is, K = {u3+u1 v1−

δ u1 + 1/2u v2, u2}. And let K ′ be the Fréchet derivative of K and K ′+ be the adjoint of the
operator K ′. It is well known (see [4, 5] or [6], for instance) that the equation

(Dt −K ′)σ = 0,

is the determining equation for the Lie–Bäcklund symmetries σ of system (1). And the gradients
of conserved densities (γα = Eα ρ ≡ {δ ρ/δ u, δ ρ/δ v}) satisfy the equation

(Dt +K ′+) γ = 0.

In the papers [7] and [8] two following operators were introduced. An operator Θ satisfying the
equation

(Dt −K ′)Θ = Θ(Dt +K ′+), (10)
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maps the set of the gradients of the conserved densities Γ into the set of the Lie–Bäcklund
symmetries Σ. It is called the Noether operator. And an operator J satisfying the equation

(Dt +K ′+)J = J (Dt −K ′), (11)

provides the inverse map Σ → Γ. It is called the inverse Noether operator. An elementary
computation shows that the operator Λ = ΘJ is the recursion one. That is, Λ solves the
equation

[Dt −K ′, Λ ] = 0. (12)

We found the operators Θ and J for system (1) in the following form:

Θ =



D3 + (v1 + δ)D +

1
2
v2 −4

3
u− 2

3
u1D

−1

4
3
u− 2

3
D−1 u1 −4

3
D − 2

3
(D−1 v1 + v1D−1) +

4
3
δ D−1


 ,

J =




36D3 + wD + 18 v2 + 32uD−1 u 20uD2 + 30u1D + 8uw + 12u2

−20uD2 − 10u1D − 8uw − 2u2 D5 + 5wD3 +
15
2
v2D

2 + pD + q


 ,

where p = 4w2 + 9/2 v3 − 2u2, q = 4 v2w+ v4 − 8uu1, w = v1 − δ. It may be checked that the
operator Θ is implectic . Hence it yields the Hamiltonian form of system (1):

(
ut

vt

)
= ΘEH, H =

1
2
u2 =

1
2
ρ1,

where E is the Euler operator. The Noether operator Θ generates an infinite sequence of Lie–
Bäcklund symmetries

σn = ΘE ρn, n ≥ 0, ρ0 = 1; σ0 =
(
c1 u1

c1 v1 + c2

)
, σ1 = K, . . .

These symmetries can be constructed by means of the recursion operator Λ. One can easily
see that the differential part of Λ has order 6. Therefore Λσ0 is the 7th-order symmetry. But
system (1) possesses the lower order symmetries σ0, σ1 and σ2:

σu
2 = u5 + 5/3u3 v1 + 5/2u2 v2 + 5/9u0 v4 + 35/18u1 v3 + 5/9 v1 u0 v2

+5/18u0 δ v2 + 5/9u1 v
2
1 + 5/9u1 δ v1 − 5/9 δ2 u1 + 10/9u2

0 u1,

σv
2 = −1/9 v5 + 20/9u0 u2 + 5/9u2

1 − 5/9 v1 v3 + 5/9 δ v3 + 10/9 v1 u2
0

+5/9u2
0 δ − 5/12 v2

2 + 5/9 v2
1 δ − 5/27 v3

1.

Hence, we have the triple sequence of symmetries: σ3n = Λn σ0, σ3n+1 = ΛnK, σ3n+2 = Λnσ2.
So, system (1) possesses the nontrivial zero curvature representation and is exactly solvable.

We present the one-soliton solution of system (1):

u =
k2

√
3

cosh(k x+ k3 t)
, v = 3 k tanh(k x+ k3 t) + δ x.

Here are the plots of this solution for t = 0, k = 2 and two values of δ:
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δ = 0 δ = − 1
2

v(x, 0)

u(x, 0)

v(x, 0)

u(x, 0)

x x

Fig. 1, 2. Soliton solution of system (1).

It is obvious that the u-curve has the typical soliton form and the v-curve has the kink form.
The plots of the function v have two asymptotics v = δ x± 3 k.

In conclusion we note that system (1) can be reduced to the following single equation

vtt =
∂

∂x

[
vtxx − 3

4
v2
tx

vt
+ vt vx + δ vt

]

that is integrable of course.
All calculations were performed with the help of an IBM computer and the JET package

presented in the separate paper.
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An approach to construction of exact solutions of nonlinear equations on the basis of sepa-
rated variables is proposed.

1 Introduction

To construct the exact solutions of nonlinear equations in mathematical physics the following
ansatz is commonly used

u(x) = f(x)ϕ(ω) + g(x), (1)

where f(x), g(x), ω = ω(x, u) are certain functions, and functions ϕ(ω) are undetermined. If
the explicit form of variables ω = ω(x, u) and functions f(x), g(x) is determined on the basis of
subalgebra of invariance algebra of this equation, then ansatz (1) is called as a symmetry or Lie
one. Not all ansatzes are symmetry ones.
In [1–4] a definition of conditional invariance of this differential equation was introduced.

If the explicit form of new variables ω = ω(x, u) and functions f(x), g(x) are determined on
the basis of conditional symmetry operators then ansatz (1) is called an arbitrary invariant or
non-Lie one. By means of arbitrary invariant ansatzes new classes (types) of exact solutions of
many nonlinear equations in mathematical physics were constructed. Let us note an effective
algorithm for finding of arbitrary symmetry operators is not found yet.
In this paper an approach to the construction of exact solutions of nonlinear equations is

proposed. It is based on the method of separated variables and has a great advantage in view
of its simplicity and possibility to be unchanged for construction of exact solutions for many-
dimensional equations. We will consider this approach using the Boussinesq equation.

2 Exact solutions of the Boussinesq equation
u0 = λ(∇u)2 + λu∆u

Let us consider the Boussinesq equation

u0 = λ(∇u)2 + λu∆u, (2)

where λ is an arbitrary constant, u = u(x0, x1, . . . , xn), u0 =
∂u

∂x0
, and

(∇u)2 =
(

∂u

∂x1

)2

+ · · ·+
(

∂u

∂xn

)2

, ∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂xn
.
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Certain partial solutions of Eq.(2) for two variables x0, x have been obtained in [5, 6], and
for many variables in [1, 7].
Now let us consider the one-dimensional Boussinesq equation

u0 = λ

(
∂u

∂x1

)2

+ λu
∂2u

∂x2
1

. (3)

2.1. We seek for a solution of Eq.(3) in the form u = a(x0)b(x1), where functions a(x0) and
b(x1) are not constants. Substituting into Eq.(3) we have

λa2bb′′ + λa2b
′2 − a′b = 0. (4)

It follows from (4) that the functions a2, a′ are linearly dependent. Consequently a′ = αa2 for a
real number α and Eq.(3) has the form (λbb′′ + λb

′2)a2 − αa2b = 0. We find from this equation
λbb′′+λb

′2−αb = 0. Notice that the substitution a′ = αa suggests α = 1. Thus we will consider
the equation

λbb′′ + λb
′2 − b = 0. (5)

The general solution of Eq.(5) has the form

∫
b db√
c+ b3

= ±
√
2
3λ
(x1 + c1), (6)

where c, c1 are arbitrary constants. If, for example, c = 0, then b = 1
6λ(x1+ c1)2, and we obtain

the solution of (3)

u = − (x1 + c1)2

6λ(x0 + c2)
,

which is transformed into

u = − x2
1

6λx0
. (7)

The solution (7) is a partial case for

u = − x2
1

6λx0
+ f(x0, x1).

Substituting into Eq.(3), we find

f0 = −2x1f1

3x0
− x2

1

6x0
f11 − 1

3x0
f + λf2

1 + λff11. (8)

The solution of Eq.(8) can be found in the form f = a(x0)b(x1) and we have

a′b =
a

x0

(
−2
3
x1b

′ − x2
1

6
b′′ − 1

3
b

)
+ a2

(
λb

′2 + λbb′′
)

.

Let a′ = α a
x0
, where α is a real number. Hence, a = cxα

0 . To determine the function b(x1) we
find the system of equations:

x2
1b

′′ + 4x1b
′ + (2 + 6α)b = 0, b′2 + bb′′ = 0.
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Thus, the Boussinesq equation possesses the following solution

u = cx
−5/8
0 x

1/2
1 − x2

1

6λx0
.

If the function f in (8) depends on x0 only, then we obtain f0 = − 1
3x0

f . Thus, Eq.(3) has a
solution

u = − x2
1

6λx0
+ cx

−1/3
0 .

2.2. Now let us consider Eq.(2) for the case n > 1. We shall look for solution of (2) in
the form u = a(x0)b(x1, . . . , xk), where the functions a(x0) and b(x1, . . . , xk) are not constant.
Substituting this expression into (2) we find

λa2
[
(∇b)2 + b∆b

] − a′b = 0. (9)

It follows from (9) that functions a2, a′ are linearly dependent, thus a′ = αa2 and Eq.(9) has a
form (

λb∆b+ λ(∇b)2
)
a2 − λa2b = 0.

It can be obtained from this equation that

λb∆b+ λ(∇b)2 − αb = 0. (10)

The function b = ϕ(ω), ω = x2
1 + · · ·+ x2

k, b ≤ n satisfies Eq.(10) iff

4λωϕϕ′′ + 2kλϕϕ′ + 4λωϕ′2 − αϕ = 0. (11)

If α = 2λ(k+ 2) then a particular solution of Eq.(11) is the function ϕ = ω. Since the equation
a′ = αa2 possesses the solution a = − 1

αx0
, then Eq.(2) has a solution of the form

u = −x2
1 + · · ·+ x2

k

2λ(k + 2)x0
. (12)

The solution (12) is a particular case of

u = −x2
1 + · · ·+ x2

k

2λ(k + 2)x0
+ f(x0, . . . , xk).

Substituting this expression into Eq.(2) we obtain

f0 = − 2x1f1

λ(k + 2)x0
− · · · − 2xkfk

λ(k + 2)x0
+ λ

(
f2
1 + · · ·+ f2

k + f2
k+1 + · · ·+ f2

n

)

+λ

(
−x2

1 + · · ·+ x2
k

2λ(k + 2)x0
+ f

)
(f11 + · · ·+ fnn)− k

(k + 2)x0
f.

(13)

Let the function f be independent of x1, . . . , xk, then

f0 = λ
(
f2

k+1 + · · ·+ f2
n

)
+ λ

(
−x2

1 + · · ·+ x2
k

2λ(k + 2)x0
+ f

)
(fk+1,k+1 + · · ·+ fnn)− k

(k + 2)x0
f.

Thus,

(fk+1,k+1 + · · ·+ fnn) = 0, f0 = λ
(
f2

k+1 + · · ·+ f2
n

) − k

(k + 2)x0
f. (14)
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The solution of (14) can be found in the form

f = µk+1xk+1 + · · ·+ µnxn + ν,

where µk+1, . . . , µn, ν are functions dependent on x0 only. Substituting this expression into the
second equation of (14) we have

∂µk+1

∂x0
xk+1 + · · ·+ ∂µn

∂x0
xn +

∂ν

∂x0

= λ
(
µ2

k+1 + · · ·+ µ2
n

) − k

(k + 2)x0
(µk+1xk+1 + · · ·+ µnxn + ν) .

Thus,

∂µk+1

∂x0
= − k

(k + 2)x0
µk+1,

· · · · · · · · · · · · · · ·
∂µn

∂x0
= − k

(k + 2)x0
µn,

∂ν

∂x0
= λ

(
µ2

k+1 + · · ·+ µ2
n

) − k

(k + 2)x0
ν.

(15)

The general solution of (15) has the following form:

µk+1 = ck+1x
− k

k+2

0 , . . . , µn = cnx
− k

k+2

0 ,

ν =
λ(k + 2)

2
(
c2
k+1 + · · ·+ c2

n

)
x

−k+2
k+2

0 + cx
− k

k+2

0 ,

where c, ck+1, . . . , cn are arbitrary constants.
Thus, we obtain the multiparameter set of solutions of Eq.(2)

u = −x2
1 + · · ·+ x2

k

2λ(k + 2)x0
+ (ck+1xk+1 + · · ·+ cnxn + c)x

− k
k+2

0

+
λ(k + 2)

2
(
c2
k+1 + · · ·+ c2

n

)
x

−k+2
k+2

0 .

(16)

Moreover, if k = 1, n = 3 then solution (16) takes the form

u = − x2
1

6λx0
+ (c2x2 + c3x3)x

−1/3
0 +

3λ
2

(
c2
2 + c2

3

)
x

1/3
0 .

If k = 2, n = 3 then solution (16) has a form

u = −x2
1 + x2

2

8λx0
+ c3x3x

−1/2
0 + 2λc2

3.

If the function f in (13) does not depend on x1, . . . , xk, then we have

f0 = − k

(k + 2)x0
f.

Thus,

f = cx
− k

k+2

0 .
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And the Boussinesq equation (2) has also the following solution

u = −x2
1 + · · ·+ x2

k

2λ(k + 2)x0
+ cx

− k
k+2

0 .

If, for example, k = 2 then we have

u = −x2
1 + x2

2

8λx0
+ cx

−1/2
0 .

In the case of k = 3 we have

u = −x2
1 + x2

2 + x2
3

10λx0
+ cx

−3/5
0 .

3 Exact solutions of the Boussinesq equation
u00 + (∇u)2 + u∆u + ∆(∆u) = 0

Let us consider the Boussinesq equation

u00 + uu11 + u2
1 + u1111 = 0, (17)

where

u = u(x), x = (x0, x1), u1 =
∂u

∂x1
, u11 =

∂2u

∂x2
1

, u1111 =
∂4u

∂x4
1

.

It is invariant with respect to the algebra with operators [8]

P0 =
∂

∂x0
, P1 =

∂

∂x1
, D = 2x0

∂

∂x0
+ x1

∂

∂x1
− 2u ∂

∂u
.

Operators P0, P1 and D give rise to the one-parameter symmetry group of equations:

G0 : (x0, x1, u)→ (x0 + ε, x1, u),
G1 : (x0, x1, u)→ (x0, x1 + ε, u),
G2 : (x0, x1, u)→

(
e2εx0, e

εx1, e
−2εu

)
.

(18)

Eq.(17) is also invariant under the discrete transformations

(x0, x1, u)→ (−x0, x1, u),
(x0, x1, u)→ (x0,−x1, u),
(x0, x1, u)→ (−x0,−x1, u).

(19)

One-parameter subgroups (18) and discrete transformations (19) give rise to the group G of
Eq.(17). Therefore, the most general solution obtained from u = f(x0, x1) by means of the
transformations of the group G has the form

u = α2f
(
α2x0 + β0, αx1 + β1

)
,

where α, β0, β1 are arbitrary real numbers.
The derivation of exact solutions of Eq.(17) is discussed in [1–4]. A new method of invariant

reduction of the Boussinesq equation is proposed in [2]. Exact solutions of Eq.(17) on the basis
of the conditional symmetry concept are obtained in [3–4].
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3.1. We seek a solution of Eq.(17) in the form u = a(x0)+ b(x1), where the functions a(x0) and
b(x1) are not constant. Substituting this expression into Eq.(17) we have

a′′ + ab′′ +
(
bb′ + b′2 + b′′′′

)
= 0. (20)

Since b is independent of x0, it is clear from Eq.(20) that a′′ = α+βa for real α and β. Therefore,
we obtain from (20) that a(β + b′′) + (α+ bb′′ + b′2 + b′′′′) = 0, i.e.

b′′ + β = 0, bb′′ + b′2 + b′′′′ + α = 0. (21)

If β = 0 then the system of Eqs.(21) possesses a solution b = γx1 + δ, where γ2 = −α. The
function b(x1) can be transformed into 2x1 by means of a transformation from the group G.
Then α = −4 and a = −2x2

0+γ1x0+δ1, where γ1, δ1 are real numbers. Since a can be rewritten
as a = −2(x0 − γ1/2)2 + δ1 − γ2

1/4, this solution can be transformed with the help of the group
G to become

u = 2
(
x1 − x2

0

)
. (22)

Let us construct another type of solutions to Eq.(17) with partial solution (22) to the Boussinesq
equation. A partial solution of Eq.(17) can be found in the form

u = 2
(
x1 − x2

0

)
+ f(x0, x1). (23)

Ansatz (23) reduces Eq.(17) to the form

f00 + ff11 + f2
1 + f1111 + 2

(
x1 − x2

0

)
f11 + 4f1 = 0. (24)

Ansatz ϕ = ϕ(ω), ω = x1 + x2
0 reduces Eq.(24) to the ordinary differential equation

ϕϕ′′ + ϕ′2 + ϕ′′′′ + 2ωϕ′′ + 6ϕ′ = 0. (25)

A partial solution of Eq.(25) we find in the form ϕ = tωs, s 
= 1. Substituting it into (25) we
obtain s = −2, t = −12. Thus, the function

u = 2
(
x1 − x2

0

) − 12 (
x1 + x2

0

)−2 (26)

is a solution of Eq.(17).

3.2. Now, we look for a solution of Eq.(17) in the form u = a(x0)b(x1), where the functions
a(x0) and b(x1) are not constant. Substituting this expression into (17) we obtain

a′′b+ a2
(
bb′′ + b′2

)
+ ab′′′′ = 0. (27)

In complete analogy with Subsection 3.1 we see that a′′ = αa2+βa. Substituting a′′ into Eq.(27)
and taking into account the functions a and a2 are linearly independent we obtain the following
system to determine the function b(x1)

b′′′′ + βb = 0, bb′′ + b′2 + αb = 0. (28)

It may be easily seen from these equations that β = 0 and α 
= 0. We can always set α = 6
by multiplying the function a by the number α/6 and the function b by 6/α. Since β = 0, we
see from the first of equations (28) that b is polynomial in x1 of degree not higher than three.
Plugging b in the form of the general polynomial of degree three into the second of equations
(28), we see that in fact b = −x2

1. Hence, Eq.(17) possesses the solution

u = −x2
1P(x0), (29)
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u = −x2
1x

−2
0 , (30)

where P(x0) is the Weierstrass function with invariants g2 = 0 and g3 = c1.
A new class of solutions of Eq.(17) can be constructed using its partial solution (29). We

look for these new solutions in the form

u = −x2
1P(x0) + f(x0, x1). (31)

Ansatz (31) reduces Eq.(17) to
(
f00 + ff11 + f2

1 + f1111

) − P (
x2

1f11 + 4x1f1 + 2f
)
= 0. (32)

If the function f is independent of x1, then we have f00 = 2Pf . This is the Lamé equation
and its solutions are well-known [11]. Thus, the function

u = −x2
1P(x0) + Λ(x0), Λ′′ = 2PΛ (33)

is a solution of the Boussinesq equation.
If the function f in (32) does not depend on x0, then we have a system of equations to

determine the function f

x2
1f11 + 4x1f1 + 2f = 0, ff11 + f2

1 + f1111 = 0. (34)

The first equation of this system is linear and its complementary function is well-known [11].
Hence, f = −12x−2

1 , and Eq.(17) possesses a solution

u = −x2
1P(x0)− 12x−2

1 . (35)

We obtain simultaneously that the function

u = −12x−2
1 (36)

is a solution of the Boussinesq equation too.
Then we find a solution of Eq.(32) which is dependent on x0 and x1. It can be found in

the form f = a(x0)b(x1) + c(x0) where functions a(x0) and c(x0) are linearly independent.
Substituting into Eq.(17) we obtain

c′′ + a′′b+ a2
(
bb′′ + b′2

)
+ acb′′ + ab′′′′ + aP (−x−2

1 b′′ − 4x1b
′ − 2b) − 2Pc = 0. (37)

Without going into details let us suppose from the outset that b′′ = 0. Then b = αx1 + β and
consequently f = αa(x0)x1 + (βa(x0) + c(x0)). It means that setting α = 1, β = 0 in Eq.(37)
we arrive at

c′′ + αa′′x1 + a2 + aP(−4x1 − 2x1)− 2Pc = 0.

Thus,

a′′ − 6Pa = 0, c′′ = −a2 + 2Pc. (38)

The equation a′′ − 6Pa = 0 is the Lamé equation with a solution a = P(x0). Hence the
complementary function of the Lamé equation can be written as a = γ1P(x0) + γ2Λ(x0), where
P(x0) and Λ(x0) are linearly independent. The corresponding solution of Eq.(17) has the form

u = −P(x0)(x1 − γ1/2)2 + γ2x1Λ(x0) +
(
c(x0) + γ2

1/4P(x0)
)
.
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Under transformations from the group G it reduces to

u = −x2
1P(x0) + γ2x1Λ(x0) + d(x0), (39)

where the function d(x0) is a solution of the following equation

d′′ = −γ2
1Λ

2 + 2Pd.

In a similar manner from (30) a new class of the Boussinesq equation solutions can be con-
structed

u = −x2
0x

2
1 − 12x−2

1 , (40)

u = −x2
0x

2
1 + c1x

3
0x1 − c2

1

54
x8

0 + c2x
2
0 + c3x

−1
0 . (41)

The solution of Eq.(17) is in the form u = a(x0)b(x1) + c(x0), where functions a(x0) and c(x0)
are linearly independent. By substituting in Eq.(17) we obtain

a′′b+ c′′ + a2
(
b′2 + bb′′

)
+ acb′′ + ab′′′′ = 0.

If c′′ = αa2, a′′ = 0, then

a2
(
α+ b′2 + bb′′

)
+ acb′′ + ab′′′′ = 0.

It follows from this equation that

b′2 + bb′′ + a = 0, b′′ = 0.

The solution of this system up to transformations from the group G is a function b = x1 if
α = −1. Then with the requirement that c′′ = αa2, a′′ = 0, it is possible to obtain a = x0,
c = − 1

12x4
0 + γx0 + δ. Thus the function

u = x0x1 − 1
12

x4
0 + γx0 + δ

is the Boussinesq equation solution with arbitrary real numbers γ, δ.

3.3. We go now to the construction of exact solutions of the Boussinesq equation for the case
n > 1. The generalization of Eq.(17) for arbitrary number of variables x0, x1, . . . , xn is the
equation [10]

u00 + (∇u)2 + u∆u+∆(δu) = 0, (42)

where

(∇u)2 =
(

∂u

∂x1

)2

+ · · ·+
(

∂u

∂xn

)2

, ∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

.

The solution of (42) can be found in the form u = a(x0)b(x1, . . . , xk), k ≤ n. Substituting this
expression into (42) we have

a′′b+ a2
[
b∆b+ (∇b)2

]
+ a∆(∆b) = 0.

Hence c′′ = αa2 + βa and as a result we obtain the following system to determine the function
b(x1, . . . , xk)

∆(∆b) + βb = 0, b∆b+ (∇b)2 + αb = 0.
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If b = 0, then α 
= 0 and it may be considered that α = 6. The system has a solution
b = − 3

k+2

(
x2

1 + · · ·+ x2
k

)
for these values b and α. Therefore, the Boussinesq equation solutions

are functions

u = − 3
k + 2

(
x2

1 + · · ·+ x2
k

)P(x0), (43)

u = − 3
k + 2

(
x2

1 + · · ·+ x2
k

)
x−2

0 . (44)

Let us construct another solution of Eq.(42) from (43). We will look for it in the form

u = − 3
k + 2

(
x2

1 + · · ·+ x2
k

)P(x0) + f(x0, x1, . . . , xk). (45)

Ansatz (45) reduces Eq.(42) to

f00 + (∇f)2 + f∆f +∆(∆f)

−P
[
3

k + 2
(
x2

1 + · · ·+ x2
k

)
∆f + (4x1f1 + · · ·+ 4xkfk) + 2kf

]
= 0.

(46)

If f does not depend on variables x1, . . . , xk in Eq.(46) then f00 = 6k
k+2f and, therefore, the

function

u = − 3
k + 2

(
x2

1 + · · ·+ x2
k

)P(x0) + Λ(x0), Λ′′ =
6k

k + 2
PΛ (47)

is a solution of Eq.(42).
If the function f depends on variables x0, x1, . . . , xk in (46) then the solution of Eq.(42) can

be obtained in the following form

u = − 3
k + 2

(
x2

1 + . . .+ x2
k

)P(x0) + αx1Λ(x0) + c(x0), (48)

where P11 = 6P2, Λ′′ = (4 + 2k)PΛ, c′′ = −α2Λ2 + 2Pc.
Similarly we find a solution of Eq.(42) from (44):

u = − 3
k + 2

(
x2

1 + . . .+ x2
k

)
x−2

0 + c1x
3
0x1 − k + 2

50k + 112
x8

0 + c2x

1+

√
25k+2
k+2

2
0 + c3x

1−
√

25k+2
k+2

2
0 ,

where c1, c2, c3, c4 are arbitrary real numbers; k = 1, . . . , n.
A new type of solutions of Eq.(42) can be constructed using

u = −x2
1P(x0) + f(x0, x2, x3). (49)

Substituting anzats (49) into (42) we have

f00 + (∇f)2 + f(∆f) + ∆(∆f)− x2
1P(∆f)− 2Pf = 0.

Since the function f does not depend on x1, then ∆f = 0 and we obtain the following system
of equations to determine the function f :

f00 + f2
2 + f2

3 − 2Pf = 0, f22 + f33 = 0. (50)

We will seek now a solution of Eqs.(50) in the form f = a(x0)x2+ b(x0)x3+ c(x0). Substitution
of f into the first equation of (50) gives

a′′x2 + b′′x3 + c′′ + a2 + b2 − 2P(ax2 + bx3 + c) = 0.
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It follows from this equation that

a′′ = 2Pa, b11 = 2Pb, c′′ = −a2 − b2 + 2Pc. (51)

Solving Eq.(51) we find the explicit form of functions a(x0), b(x0), c(x0) and the solution of
Eq.(42) too.
If we use the ansatz

u = −x2
1x

−2
0 + f(x0, x2, x3),

we construct by analogy with the above the following solution of Eq.(42):

u = −x2
1x

−2
0 +

(
c1x

2
0 + c4x

−1
0

)
x2 +

(
c3x

2
0 + c4x

−1
0

)
x3

−c2
1 + c2

3

28
x6

0 −
c1c2 + c3c4

2
x3

0 +
c2
2 + c2

3

28
.

And using the ansatz

u = −1
2

(
x2

1 + x2
2

)P(x0) + f(x0, x3)

another solution of Eq.(42) can be obtained

u = −1
2

(
x2

1 + x2
2

)P(x0) + Λ(x0)x3 + c(x0),

where Λ′′ = 2PΛ, c′′ = −Λ2 + 2Pc.
Making use of

u = −1
2

(
x2

1 + x2
2

)
x−2

0 + f(x0, x3)

we find a solution of Eq.(42) in the form

u = −1
2

(
x2

1 + x2
2

)
x−2

0 +
(
c1x

2
0 + c2x

−1
0

)
x3 +

c2
1

28
x6

0 −
c1c2

2
x3

0 +
c2
2

2
.
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On Exact Solutions of the Nonlinear Heat

Conduction Equation with Source
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The symmetry reduction of the equation u0 = ∇ [uµ∇u] + δu to ordinary differential equa-
tions with respect to all subalgebras of rank three of the invariance algebra of this equation
is performed. Some exact solutions of this equation are obtained.

1 Introduction

Symmetry reduction of nonlinear heat conduction equations without a source is investigated in
references [1–7]. In this paper, we investigate the equation

∂u

∂x0
= ∇ [uµ∇u] + δu, (1)

where u = u(x0, x1, x2, x3), ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
; µ, δ are real numbers, µ �= 0 and |δ| = 1.

The substitution u = v
1
µ transforms equation (1) into the equation

∂v

∂x0
= v∆v +

1
µ
(∇v)2 + δµv. (2)

Let L be the maximal invariance algebra of equation (2). If µ �= −4
5 , then L is the direct sum

of the extended Euclidean algebras AẼ(1) = 〈P0, D1〉 and AẼ(3) = 〈Pa, Jab, D2 : a, b = 1, 2, 3〉,
generated by the vector fields [8]:

P0 = e−δµx0

(
∂

∂x0
+ δµv

∂

∂v

)
, D1 =

1
δµ

∂

∂x0
, Pa =

∂

∂xa
,

Jab = xa
∂

∂xb
− xb

∂

∂xa
, D2 = xa

∂

∂xa
+ 2v

∂

∂v

(3)

with a, b = 1, 2, 3. If µ = −4
5 , then L decomposes [8] into the direct sum of AẼ(1) and the

conformal algebra AC(3) = 〈Pa, Ka, Jab, D2 : a, b = 1, 2, 3〉, where P0, Pa, Jab, D2 are vector
fields (3), and

Ka =
(
x2

1 + x2
2 + x2

3

) ∂

∂xa
− 2xaD2, a = 1, 2, 3.

In this paper, the symmetry reduction of equation (2) is performed with respect to all subal-
gebras of rank three of the algebra L, up to conjugacy with respect to the group AdL of inner
automorphisms.

Let u = f(x1, x2, x3) be a solution of equation (1). If µ+1 �= 0, then ∆uµ+1 + δ(µ+1)u = 0,
and if µ+1 = 0, then ∆ lnu+ δu = 0. Hence, the search for stationary solutions to equation (1)
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is reduced to a search for relevant solutions of the d’Alembert equation or Liouville equation. Let
u = u(x0, x1, x2, x3) be a solution of equation (1) invariant under P0. In this case, if µ + 1 �= 0,
then u = eδx0ϕ(x1, x2, x3)

1
µ+1 , where ∆ϕ = 0. If µ + 1 = 0, then

u = eδx0+ψ(x1,x2,x3),

where ∆ψ = 0. In this connection, let us restrict ourselves to those subalgebras of L that do
not contain P0 and D1. The list of I-maximal subalgebras of rank 3 is obtained in [4, 6, 7].

2 Reduction of equation (2) for an arbitrary µ
to ordinary differential equations

Up to the conjugacy under the group of inner automorphisms, the algebra AẼ(1)⊕AẼ(3) has 12
I-maximal subalgebras of rank three, which do not contain P0 and D1 [4, 7]:

L1 = 〈P1, P2, P3, J12, J13, J23〉;
L2 = 〈P0 + P1, P2, P3, J23〉;
L3 = 〈P2, P3, J23, D1 + αD2〉 (α ∈ R, α �= 0);

L4 = 〈P0 + P1, P3, D1 + D2〉;
L5 = 〈P3, J12, D1 + αD2〉 (α ∈ R, α �= 0);

L6 = 〈P0 + P3, J12, D1 + D2〉;
L7 = 〈P3, J12 + αP0, D2 + βP0〉 (α = 1, β ∈ R or α = 0 and β = 0,±1);
L8 = 〈P2, P3, J23, D1 + P1〉;
L9 = 〈P2, P3, J23, D2 + αP0〉 (α = 0,±1);
L10 = 〈P3, D1 + αJ12, D2 + βJ12〉 (α, β ∈ R and α > 0);

L11 = 〈J12, J13, J23, D1 + αD2〉 (α ∈ R, α �= 0);

L12 = 〈J12, J13, J23, D2 + αP0〉 (α = 0,±1).
For each of the subalgebras L1, . . . , L12 we indicate the corresponding ansatz ω′ = ϕ(ω)

solved for v, where ω and ω′ are functionally independent invariants of a subalgebra, as well
as the reduced equation which is obtained by means of this ansatz. In cases when the reduced
equation can be solved, we indicate the corresponding invariant solutions of equation (2).

2.1. L1 : v = ϕ(ω), ω = x0, ϕ̇ = δµϕ.

In this case

v = Ceδµx0 ,

where C is an arbitrary constant.

2.2. L2 : v = eδµx0ϕ(ω), ω =
1
δµ

eδµx0 − x1, ϕϕ̈ +
1
µ

ϕ̇2 − ϕ̇ = 0.

Integrating the reduced equation, we obtain ϕ = C ′ or∫
dϕ

µ + C|ϕ|− 1
µ

= ω + C ′,
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where C, C ′ are arbitrary constants and C �= 0. Corresponding invariant solutions to equation (2)
are of the form

v = C−1e−δx0 [1 + C̃ exp(−δCe−δx0 − Cx1)], if µ = −1;

v = Ae−
1
2
δx0 tan

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)
, if µ = −1

2
, C = − 1

2A2
;

v = Ae−
1
2
δx0 tanh

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)

and

v = Ae−
1
2
δx0 coth

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)
, if µ = −1

2
, C =

1
2A2

.

2.3. L3 : v = x1
2ϕ(ω), ω = αδµx0 − lnx1,

ϕϕ̈ +
1
µ

ϕ̇2 − 3µ + 4
µ

ϕϕ̇ − αδµϕ̇ +
2µ + 4

µ
ϕ2 + δµϕ = 0.

If µ = −2, α = −1
2 , then ϕ = −2δω + C is a solution of the reduced equation. By means of

ϕ we obtain the exact solution

v = x2
1(−2x0 + 2δ lnx1 + C)

of equation (2).

2.4. L4 : v = x2e
δµx0ϕ(ω), ω =

δµx1 − eδµx0

x2
,

µ(µ2 + ω)ϕϕ̈ + µ2ϕ̇2 + (ϕ − ωϕ̇)2 + δµ2ϕ̇ = 0.

The function ϕ = Aω + B, where A and B are constants, satisfies this reduced equation if and
only if B2 = −(δA+A2)µ2. The corresponding invariant solution of equation (2) is of the form

v = A
(
δµx1e

δµx0 − e2δµx0

)
+ Bx2e

δµx0 .

2.5. L5 : v =
(
x2

1 + x2
2

)
ϕ(ω), ω = αδµx0 − 1

2
ln

(
x2

1 + x2
2

)
,

ϕϕ̈ +
µ + 1

µ
(2ϕ − ϕ̇)2 − ϕ̇2 − αδµϕ̇ + δµϕ = 0.

2.6. L6 : v =
(
x2

1 + x2
2

) 1
2 eδµx0ϕ(ω), ω = (δµx3 − eδµx0)

(
x2

1 + x2
2

)− 1
2 ,

(
ω2 + µ2

)
ϕϕ̈ −

(
1 +

2
µ

)
ωϕϕ̇ +

(
µ +

ω2

µ

)
ϕ̇2 + δµϕ̇ +

(
1 +

1
µ

)
ϕ2 = 0.

For µ = −1, this equation has the solution ϕ = −δω. In this case

v = δe−2δx0 + x3e
−δx0

is the corresponding solution of (2).

2.7. L7 : v = eδµx0
(
x2

1 + x2
2

)
ϕ(ω), ω = αδµ arctan

x1

x2
− βδµ

2
ln

(
x2

1 + x2
2

)
+ eδµx0 ,

(
α2 + β2

)
µ2ϕϕ̈ +

(
α2 + β2

)
µϕ̇2 − 4βδ(1 + µ)ϕϕ̇ − δµϕ̇ +

4(µ + 1)
µ

ϕ2 = 0. (4)
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For α = β = 0, µ �= −1, the reduced equation takes the form

−δµϕ̇ +
4(µ + 1)

µ
ϕ2 = 0.

It’s general solution is

ϕ =
µ2

C − 4δ(µ + 1)ω
,

and the corresponding invariant solution of equation (2) is

v = µ2
(
x2

1 + x2
2

)
eδµx0 [C − 4δ(µ + 1)eδµx0 ]

−1
.

If µ = −1, α2 + β2 �= 0, then equation (4) takes the form
(
α2 + β2

)
ϕϕ̈ − (

α2 + β2
)
ϕ̇2 + δϕ̇ = 0.

In this case, ϕ = C ′ or

ϕ =
1
C

[
C ′ exp

(
Cω

α2 + β2

)
− δ

]
,

and, therefore,

v = C ′e−δx0
(
x2

1 + x2
2

)
or

v =
1
C

(
x2

1 + x2
2

)
e−δx0

{
C ′ exp

[
C

α2 + β2

(
−αδ arctan

x1

x2

+
βδ

2
ln

(
x2

1 + x2
2

)
+ e−δx0

)]
− δ

}
,

where C, C ′ are arbitrary constants and C �= 0.

2.8. L8 : v = ϕ(ω), ω = δµx0 − x1, ϕϕ̈ +
1
µ

ϕ̇2 + δµ(ϕ − ϕ̇) = 0.

For µ = −1, the reduced equation has the solution ϕ = Ceω, where C is an arbitrary constant.
The corresponding invariant solution of the equation (2) is of the form v = C exp(−δx0 − x1).

2.9. L9 : v = x2
1e

δµx0ϕ(ω), ω = α lnx1 − 1
δµ

eδµx0 ,

α2ϕϕ̈ +
α2

µ
ϕ̇2 +

(
3α +

4α
µ

)
ϕϕ̇ + ϕ̇ +

(
2 +

4
µ

)
ϕ2 = 0.

For α = 0, µ �= −2, we obtain ϕ = µ[(2µ + 4)ω + C̃]−1, therefore,

v =
µ2x2

1e
δµx0

C − δ(2µ + 4)eδµx0
.

If α = 0, µ = −2, then
v = Cx2

1e
−2δx0 .
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For α �= 0, µ = −2, the reduced equation has the solution ϕ = 1
α + Ce−2αω. The corresponding

invariant solution of equation (2) is of the form

v = α−1x2
1 exp(−2δx0) + C exp[−2δx0 − αδ exp(−2δx0)].

2.10. L10 : v =
(
x2

1 + x2
2

)
ϕ(ω), ω = arctan

x1

x2
+ αδµx0 +

β

2
ln

(
x2

1 + x2
2

)
,

(
1 + β2

)
ϕϕ̈ +

1 + β2

µ
ϕ̇2 + 4β

(
1 +

1
µ

)
ϕϕ̇ − αδµϕ̇ + 4

(
1 +

1
µ

)
ϕ2 + µδϕ = 0.

2.11. L11 : v =
(
x2

1 + x2
2 + x2

3

)
ϕ(ω), ω = αδµx0 − 1

2
ln

(
x2

1 + x2
2 + x2

3

)
,

ϕϕ̈ −
(
5 +

4
µ

)
ϕϕ̇ +

1
µ

ϕ̇2 − αδµϕ̇ +
(
6 +

4
µ

)
ϕ2 + δµϕ = 0.

For α = 3
2 , µ = −2

3 , the reduced equation has the solution ϕ = 2
3δω +C, and the corresponding

solution of (2) is of the form

v =
(
x2

1 + x2
2 + x2

3

) [
C − 2

3
x0 − 1

3
δ ln

(
x2

1 + x2
2 + x2

3

)]
.

2.12. L12 : v =
(
x2

1 + x2
2 + x2

3

)
eδµx0ϕ(ω), ω = eδµx0 − αδµ

2
ln

(
x2

1 + x2
2 + x2

3

)
,

α2µ2ϕϕ̈ − (5µ + 4)αδϕϕ̇ + α2µϕ̇2 − δµϕ̇ +
(
6 +

4
µ

)
ϕ2 = 0.

If α = 0, then ϕ = µ2[C − (6µ + 4) δω]−1, where C �= 0 or 6µ + 4 �= 0. Therefore,

v =
µ2

(
x2

1 + x2
2 + x2

3

)
eδµx0

C − (6µ + 4)δeδµx0
.

For µ = −2
3 , α �= 0, the reduced equation has the solution

∫
dϕ

Cϕ
3
2 − 3

αδϕ + 1
α2δ

= ω + C ′.

If C = 0, then

ϕ =
1
3α

+ Ae−
3

αδ
ω,

where A is an arbitrary constant. In this case,

v =
1
3α

(
x2

1 + x2
2 + x2

3

)
exp

(
−2
3
δx0

)
+ A exp

[
−2
3
δx0 − 3

αδ
exp

(
−2
3
δx0

)]
.
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3 Complementary reduction of equation (2) for µ = −4
5

to ordinary differential equations

Let F be an I-maximal subalgebra of rank three of the algebra AẼ(1)⊕AC(3) and P0, D1 /∈ F .
If a projection of F onto AC(3) is not conjugate to any subalgebra of the algebra AẼ(3) under
the group AdAC(3), then F is conjugate under the group Ad(AẼ(1) ⊕ AC(3)) to one of the
following subalgebras [6, 7]:

F1 = 〈P1 + K1, P2 + K2, J12, K3 − P3〉;
F2 = 〈Pa + Ka, Jab : a, b = 1, 2, 3〉;
F3 = 〈P1 + K1, P2 + K2, J12, K3 − P3 + αD1〉 (α ∈ R, α > 0);

F4 = 〈P1 + K1, P2 + K2, J12, K3 − P3 + P0〉;
F5 = 〈Ka − Pa, Jab : a, b = 1, 2, 3〉.

3.1. F1 : v =
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

]
ϕ(ω), ω = x0, ϕ̇ = −4ϕ2 − 4

5
δϕ.

The general solution of the reduced equation is ϕ = Cδ
[
e

4
5
δω − 5C

]−1
, where C is an arbitrary

constant. The corresponding invariant solution of equation (2) is of the form

v = Cδ
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

] (
e

4
5
δx0 − 5C

)−1
.

3.2. F2 : v =
(
x2

1 + x2
2 + x2

3 − 1
)2

ϕ(ω), ω = x0, ϕ̇ = −12ϕ2 − 4
5
δϕ.

In this case, ϕ = Cδ
15

[
e

4
5
δω − C

]−1
, therefore,

v =
Cδ

15
(
x2

1 + x2
2 + x2

3 − 1
)2

(
e

4
5
δx0 − C

)−1
.

3.3. F3 : v =
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

]
ϕ(ω), ω = arctan

x2
1 + x2

2 + x2
3 − 1

2x3
− 8

5αδ
x0,

4ϕϕ̈ − 5ϕ̇2 +
8

5αδ
ϕ̇ − 4ϕ2 − 4

5
δϕ = 0.

3.4. F4 : v = e−
4
5
δx0

[(
x2

1 + x2
2 + x2

3 − 1
)2 + 4x2

3

]
ϕ(ω),

ω = arctan
x2

1 + x2
2 + x2

3 − 1
2x3

− 5δ
2

e−
4
5
δx0 ,

4ϕϕ̈ − 5ϕ̇2 − 2ϕ̇ − 4ϕ2 = 0.

3.5. F5 : v =
(
x2

1 + x2
2 + x2

3 + 1
)2

ϕ(ω), ω = x0, ϕ̇ = 12ϕ2 − 4
5
δϕ.

Integrating this equation, we obtain ϕ = δ
[
15− Ce

4
5
δω

]−1
, and, therefore,

v = δ
(
x2

1 + x2
2 + x2

3 + 1
)2

(
15− Ce

4
5
δx0

)−1
.
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The Exact Linearization of Some Classes

of Ordinary Differential Equations for Order n > 2
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“When integrating the differential equations the most diffi-
cult task is the introduction of suitable variables, which may
not be found by the general rule. That’s why we have to
go in reverse order. After finding a splendid substitution,
we should look for such problems, where it might be adopted
with success.”

Karl Jacobi

The method of exact linearization nonlinear ordinary differential equations (ODE) of order n
suggested by one of the authors is demonstrated in [1, 2]. This method is based on the
factorization of nonlinear ODE through the first order nonlinear differential the operators,
and is also based on using both point and nonpoint, local and nonlocal transformations.
Exact linearization of autonomous the third, the fourth and the fifth orders ODE is presented
in this paper. For the first time general form of autonomous fourth [3] and fifth order
equations, admitting exact linearization with using nonpoint transformation is found by
second of the authors. We obtain the formulas in quadratures for finding general and partial
solutions of investigated classes of equations. For the realization of transformations and
construction of the considered equations we used the computer algebra system MAPLE.

1 Preliminary informations

The following result plays an important role in this paper:

Proposition 1.1 [1]. The equation

y(n) = f
(
y, y′, . . . , y(n−1)

)
, (′) = d/dx (1.1)

by means of the invertible transformation

y = v(y)z, dt = u(y)dx, (1.2)

where v(y) and u(y) are smooth functions in domain (x, y), reduces to linear autonomous form

z(n)(t) +
n∑

k=1

(
n

k

)
bkz

(n−k)(t) + c = 0, bk, c = const, (1.3)

if and only if (1.1) admits the factorization of the form
n∏

k=1

[
1
u

D − v∗

vu
y′ − rk

]
y + cv = 0, D = d/dx, (∗) = d/dy (1.4)
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via nonlinear first order differential operators (commutative factorization) or

1∏
k=n

[
D −

(
v∗

v
+ (k − 1)

u∗

u

)
y′ − rku

]
y + cunv = 0 (1.5)

(noncommutative factorization), where rk are distinct roots of the characteristic equation

rn +
n∑

k=1

(
n

k

)
bkr

n−k = 0. (1.6)

In what follows we shall sequentially consider the corresponding class of ODE for the cases
n = 3, n = 4, and n = 5. Although first two cases are known [1–3], they are considered here
because they form the base of investigation of 5th order ODE.

For finding the transformation (1.2) we use also the proposition about the structure of basis
of solutions of linear ODE with variable coefficients.

Proposition 1.2 [2]. The second order nonlinear nonautonomous equation

v∗∗ − 2
v
v∗2 +

(
2
y
− n2 − n + 2

2n
u∗

u
− f

)
v∗ +

(
n2 − n + 2

2n
u∗

u
+ f

)
1
y
v = 0

has the solution

v(y) = y

(
α + β

∫
u

n2−n+2
2n exp

(∫
fdy

)
dy

)−1

.

2 Linearization of the third order equations

Let us consider the equation

y′′′ = F
(
y, y′, y′′

)
. (2.1)

By virtue of Proposition 1.1, it can be reduced to the linear ODE
...
z +3b1z̈ + 3b2ż + b3z + c = 0 (2.2)

by transformation (1.2), if and only if, it admits the factorization (up to the term cu3v):[
D −

(
v∗

v
+ 2

u∗

u

)
y′ − r3u

][
D −

(
v∗

v
+

u∗

u

)
y′ − r2u

][
D − v∗

v
y′ − r1u

]
y+cvu3 = 0.(2.3)

We obtain the differential equation

y′′′
(
1− v∗

v
y

)
− y′′y′

[
3
v∗∗

v
y +

(
1− v∗

v
y

) (
6
v∗

v
+ 4

u∗

u

)]
+ y′3

[(
1− v∗

v
y

)

×
(
6
v∗2

v2
+ 6

u∗v∗

uv
+ 3

u∗2

u2
− 2

v∗∗

v
− u∗∗

u

)
+ 4

v∗v∗∗

v2
y + 3

u∗v∗∗

uv
y − v∗∗

v
− v∗∗∗

v
y

]

−u(r1 + r2 + r3)
{

y′′
(
1− v∗

v
y

)
− y′2

[
v∗∗

v
y +

(
1− v∗

v
y

) (
2
v∗

v
+

u∗

u

)]}

+(r1r2 + r1r3 + r2r3)u2y′
(
1− v∗

v
y

)
− r1r2r3u

3y + cvu3 = 0.

(2.4)
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For the sake of determination of the explicit form of transformation (1.2), let us introduce
the notation

−
[
3
v∗∗

v
y +

(
6
v∗

v
+ 4

u∗

u

) (
1− v∗

v
y

)]
= 3f(y)

(
1− v∗

v
y

)
, (2.5)

from where we’ll obtain the equation for the transformation factor v(y) in (1.2):

v∗∗ − 2
v∗2

v
+

(
2
y
− 4

3
u∗

u
− f

)
v∗ +

1
y

(
4
3

u∗

u
+ f

)
v = 0, f = f(y). (2.6)

Proposition 2.1. Equation (2.6) has general solution, expressed through quadratures

v(y) =
y

α + β

∫
u4/3 exp

(∫
fdy

)
dy

, (2.7)

where α, β are integration constants.

The formulas (2.6) and (2.7) could be obtained from Proposition 1.2 and [2].

Proposition 2.2. Equation (2.1) can be linearized by means of the transformation of type (1.2),
if and only if it has the following form:

y′′′ + 3fy′y′′ +

(
1
3

ϕ∗∗

ϕ
− 5

9
ϕ∗2

ϕ2
− 1

3
f

ϕ∗

ϕ
+ f2 + f∗

)
y′3 + 3b1ϕy′′ + b1ϕ

(
3f +

ϕ∗

ϕ

)
y′2

+3b2ϕ
2y′ + ϕ5/3

[
b3 exp

(
−

∫
fdy

) ∫
ϕ4/3 exp

(∫
fdy

)
dy +

c

β

]
= 0,

(2.8)

Such an equation can be linearized by means of the transformation

z = β

∫
ϕ4/3 exp

(∫
fdy

)
dy, dt = ϕdx, (2.9)

where β is normalizing factor.

For c = 0 we shall obtain the one-parameter solutions sets∫
ϕ1/3 exp

(∫
fdy

)
dy∫

ϕ4/3 exp
(∫

fdy

)
dy

= rkx + C, (2.10)

where rk are the simple roots of characteristic equation (2.11):

r3 + 3b1r
2 + 3b2r + b3 = 0. (2.11)

Transforming (2.3) with the aid of (2.4), (2.7) (where α = 0), assuming u = ϕ(y) and
assuming that rk, k = 1, 2, 3 are the distinct roots of the characteristic equation (2.11), we
shall arrive at (2.8).

The special case of equation (2.8) is obtained for ϕ = exp
(
−3
4

∫
fdy

)
.

Remark 1. Thus, the equations of type

y′′′ + f(y)y′y′′ + ϕ(y)y′′ +
3∑

k=0

fk(y)y′k = 0 (2.12)

may be tested by the method of exact linearization.
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Example 1. The equation

y′′′ − y′y′′

y
+ 3b1yy′′ + 3b2y

2y′ +
1
2
b3y

4 +
c

2
y2 = 0 (2.13)

by the substitution

z = y2, dt = ydx (2.14)

is reducible to the linear equation of the form (2.2) and has one-parameter set of solutions of
the form

y = −2/(rkx + C), (2.15)

where rk are simple roots of the characteristic equation (2.11).

Example 2. The elementary nontrivial system of hydrodynamic type (so-called the
triplet). It was shown in [4] that corresponding system can be transformed into the set of Euler
equations (the Euler–Poinsot case of a rigid body dynamics), which can be written in in terms
of energy variables as

u̇1 = au2u3, u̇2 = bu3u1, u̇3 = cu1u2, a + b + c = 0. (2.16)

Eliminating the variables of the coupled system (2.16), we obtained decoupled system

...
u1 − 1

u1
u̇1ü1 − 4bcu2

1u̇1 = 0,
...
u2 − 1

u2
u̇2ü2 − 4cau2

2u̇2 = 0,

...
u3 − 1

u3
u̇3ü3 − 4bcu2

3u̇3 = 0.
(2.17)

The equations (2.17) are factorizables:(
Dt − u̇i

ui
− r3iui

)
(Dt − r2iui)

(
Dt − u̇i

ui
− r3iui

)
ui = 0, i = 1, 3,

where rki, k = 1, 3, are roots of corresponding characteristic equations. After the transformations
u2

i = zi, dτi = uidt the system (2) reduces to the linear one (see also [1]):

z′′′1 (τ1)− 4bcz′1(τ1) = 0, z′′′2 (τ2)− 4acz′2(τ2) = 0, z′′′3 (τ3)− 4abz′3(τ3) = 0.

3 Linearization of the fourth-order equations

Let us consider the autonomous nonlinear fourth–order differential equation

yiv = F
(
y, y′, y′′, y′′′

)
. (3.1)

Equation (3.1) could be linearized by the transformation (1.2) to the form
....
z +4b1

...
z +6b2z̈ + 4b3ż + b4z + c = 0, (3.2)

according to Proposition 1.1, if and only if it admits the factorization (up to the term cvu4)[
D −

(
v∗

v
+ 3

u∗

u

)
y′ − r4u

] [
D −

(
v∗

v
+ 2

u∗

u

)
y′ − r3u

]

×
[
D −

(
v∗

v
+

u∗

u

)
y′ − r2u

] [
D − v∗

v
y′ − r1u

]
y + cvu4 = 0.

(3.3)
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Proposition 3.1. If equation (3.1) can be linearized by means of (1.2), then it admits the
factorization(

1− v∗

v
y

)
yiv − y′y′′′

[
4
v∗∗

v
y +

(
1− v∗

v
y

) (
8
v∗

v
+ 7

u∗

u

)]
− y′′2

[
3
v∗∗

v
y +

(
1− v∗

v
y

)

×
(
6
v∗

v
+ 4

u∗

u

)]
+ y′2y′′

[(
1− v∗

v
y

) (
36

v∗2

v2
− 18

v∗∗

v
+ 44

u∗v∗

uv
+ 25

u∗2

u2
+ 7

u∗∗

u

)

+18
v∗∗v∗

v2
y + 22

u∗v∗∗

uv
y − 6

v∗∗∗

v
y

]
− y′4

[
v∗∗∗∗

v
y −

(
2
v∗∗∗

v
y − 6

v∗∗v∗

v2
y

) (
2
v∗

v
+ 3

u∗

u

)

−6
v∗∗2

v2
y + 15

v∗∗u∗2

vu2
y − 4

v∗∗u∗∗

uv
y +

(
1− v∗

v
y

) (
4
v∗∗∗

v
− 24

v∗∗v∗

v2
+ 24

v∗3

v3
− 18

u∗v∗∗

uv

+36
u∗v∗2

uv2
+ 30

u∗2
v∗

u2v
− 8

u∗∗v∗

uv
− 10

u∗u∗∗

u2
+ 15

u∗3

u3
+

u∗∗∗

u

)]
+ 4b1u

{
y′′′

(
1− v∗

v
y

)

−y′3
[

v∗∗∗

v
y − 3

v∗∗u∗

uv
y − 3

v∗∗v∗

v2
y +

(
1− v∗

v
y

) (
u∗∗

u
− 6

u∗v∗

vu
+ 3

v∗∗

v
− 6

uv∗2

v2
− 3

u∗2

u2

)]

−y′y′′
[
3
v∗∗

v
y +

(
1− v∗

v
y

) (
6
v∗

v
+ 4

u∗

u

)]}
+ 6b2u

2

{
y′′

(
1− v∗

v
y

)

−y′2
[
v∗∗

v
y +

(
1− v∗

v
y

) (
u∗

u
+ 2

v∗

v

)]}
+ 4b3u

3y′
(
1− v∗

v
y

)
+ b4u

4y + cvu4 = 0.

(3.4)

Applying the differential operator
[
D −

(
v∗

v
+ 3

u∗

u

)
y′ − r4u

]
to (2.4) and adding to the

obtained expression term cvu4, we shall arrive at the formula (3.4), where rk satisfy the charac-
teristic equation

r4 + 4b1r
3 + 6b2r

2 + 4b3r + b4 = 0. (3.5)

Introducing the notation 4
v∗∗

v
y +

(
1− v∗

v
y

) (
8
v∗

v
+ 7

u∗

u

)
= −4f(y)

(
1− v∗

v
y

)
, we shall

arrive at the equation

v∗∗ − 2
v
v∗

2
+

(
2
y
− 7

4
u∗

u
− f

)
v∗ +

(
7
4

u∗

u
+ f

)
1
y
v = 0, f = f(y). (3.6)

Proposition 3.2. Equation (3.6) has general solution of the form

v(y) =
y

α + β

∫
u7/4 exp

(∫
fdy

)
dy

, (3.7)

where α, β are arbitrary constants.

The formulas (3.6) and (3.7) could be obtained from Proposition 1.2 and [2].

Proposition 3.3. The equation (3.1) can be linearized by means of transformation (1.2) if and
only if it has the following form:

y(iv) + 4f(y)y′y′′′ + y′′2
(
5
4

ϕ∗

ϕ
+ 3f

)
+ y′2y′′

(
7
2

ϕ∗∗

ϕ
− 45

8
ϕ∗2

ϕ2
− ϕ∗

ϕ
f + 6

(
f2 + f∗))
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+y′4
(
195
64

ϕ∗3

ϕ3
− 57

16
ϕ∗ϕ∗∗

ϕ2
+

3
4

ϕ∗∗∗

ϕ
+

(
5
4

ϕ∗∗

ϕ
− 33

16
ϕ∗2

ϕ2

)
f +

21
4

ϕ∗

ϕ

(
f2 + f∗)

+f3 + 3ff∗ + f∗∗
)

+ 4b1ϕ

{
y′′′ + y′y′′

(
3f +

5
4

ϕ∗

ϕ

)
− y′3

(
15
16

ϕ∗2

ϕ2
− 3

4
ϕ∗∗

ϕ

−1
2

ϕ∗

ϕ
f − f2 − f∗

)}
+ 6b2ϕ

2

{
y′′ + y′2

(
3
4

ϕ∗

ϕ
+ f

)}
+ 4b3ϕ

3y′

+ϕ
9
4 e−

∫
fdy

[
b4

∫
ϕ

7
4 e

∫
fdydy +

c

β

]
= 0.

(3.8)

It can be reduced to (3.2) by means of the transformation

z = β

∫
ϕ7/4 exp

(∫
f(y)dy

)
dy, dt = ϕ(y)dx. (3.9)

Transforming (3.3) with the aid of (3.4), (3.6) (where α = 0, assuming that ϕ = u(y) and
that rk, k = 1, 4 are distinct roots of the characteristic equation (3.5), we shall arrive at (3.8).

Equation (3.8) is recovered as the particular case of the above for ϕ = exp
(
−4
7

∫
f(y)dy

)
.

Remark 2. Thus, the equations of the type

yiv + fy′y′′′ + ϕ1y
′′2 + ϕ2y

′2y′′ + f4y
′4 + ϕy′′′ + ϕ3y

′y′′ + ϕ4y
′′ + f3y

′3 + f2y
′2 + f1y

′ + f0 = 0

may be tested by the method of exact linearization.

Example 3. The equation

yiv − 3
y
y′y′′′ − 1

y
y′′2 +

3
y2

y′2y′′ + 4b1yy′′′ − 4b1y
′y′′ + 6b2y

2y′′ + 4b3y
3y′ +

1
2
b4y

5 +
1
2
cy4 = 0

is reduced to (3.2) by means of the substitution (2.14) and admits for c = 0 one-parameter set
of solutions (2.15), where rk are different characteristic roots of the equation (3.5).

4 Linearization of the fifth-order equation

Let us consider the autonomous nonlinear fifth-order differential equation

yv = F
(
y, y′, y′′, y′′′, yiv

)
. (4.1)

Equation (4.1) can be reduced by means of transformation (1.2) to the linear equation of the
form

z(v)(t) + 5b1z
(iv)(t) + 10b2z

′′′(t) + 10b3z
′′(t) + 5b4z

′(t) + b5z(t) + c = 0, (4.2)

by virtue of Proposition 1.1 if and only if it admits the factorization (up to the term cvu5)[
D −

(
v∗

v
+ 4

u∗

u

)
y′ − r5u

] [
D −

(
v∗

v
+ 3

u∗

u

)
y′ − r4u

] [
D −

(
v∗

v
+ 2

u∗

u

)
y′ − r3u

]

×
[
D −

(
v∗

v
+

u∗

u

)
y′ − r2u

] [
D − v∗

v
y′ − r1u

]
y + cvu5 = 0.

(4.3)
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Proposition 4.1. If equation (4.1) can be linearized with the aid of (1.2), then there exists the
factorization(

1− v∗

v
y

)
yv − y′yiv

[
5
v∗∗

v
y +

(
1− v∗

v
y

) (
10

v∗

v
+ 11

u∗

u

)]
− 5y′′y′′′

[
2
v∗∗

v
y

+
(
1− v∗

v
y

) (
4
v∗

v
+ 3

u∗

u

)]
+ y′2y′′′

[(
1− v∗

v
y

) (
60

v∗2

v2
− 30

v∗∗

v
+ 90

u∗v∗

uv
+ 60

u∗2

u2

−14
u∗∗

u

)
+ 30

v∗∗v∗

v2
y + 45

u∗v∗∗

uv
y − 10

v∗∗∗

v
y

]
y′y′′2

[(
1− v∗

v
y

) (
90

v∗2

v2
− 45

v∗∗

v

+120
u∗v∗

uv
+ 70

u∗2

u2
− 18

u∗∗

u

)
+ 45

v∗∗v∗

v2
y + 60

u∗v∗∗

uv
y − 15

v∗∗∗

v
y

]
− y′3y′′

[
10

v∗∗∗∗

v
y

−10
(

v∗∗∗

v
y − 3

v∗∗v∗

v2
y

) (
4
v∗

v
+ 7

u∗

u

)
− 60

v∗∗2

v2
y + 195

v∗∗u∗2

vu2
y − 45

v∗∗u∗∗

uv
y

+
(
1− v∗

v
y

) (
40

v∗∗∗

v
− 240

v∗∗v∗

v2
+ 240

v∗3

v3
− 210

u∗v∗∗

uv
+ 420

u∗v∗2

uv2
+ 390

u∗2
v∗

u2v

−90
u∗∗v∗

uv
− 125

u∗u∗∗

u2
+ 210

u∗3

u3
+ 11

u∗∗∗

u

)]
− y′5

[
v∗∗∗∗∗

v
y − 5

(
v∗∗∗∗

v
y − 4

v∗∗∗v∗

v2
y

+12
v∗∗v∗2

v3
y − 6

v∗∗u∗∗

uv
y

) (
v∗

v
+ 2

u∗

u

)
+ 60

v∗∗2
v∗

v3
y − 20

v∗∗∗v∗∗

v2
y − 10

v∗∗∗u∗∗

vu
y

−5
v∗∗u∗∗∗

vu
y + 60

v∗∗2
u∗

v2u
y + 45

v∗∗∗u∗2

u2v
y − 135

v∗∗v∗u∗2

v2u2
y − 105

v∗∗u∗3

vu3
y +

(
1− v∗

v
y

)

×
(
5
v∗∗∗∗

v
− 40

v∗∗∗v∗

v2
− 30

v∗∗2

v2
+ 180

v∗∗v∗2

v3
− 120

v∗4

v4
− 30

u∗∗v∗∗

uv
− 40

u∗v∗∗∗

uv

+135
v∗∗u∗2

u2v
+ 240

v∗∗v∗u∗

uv2
+ 60

u∗∗v∗2

uv2
− 270

u∗2
v∗2

u2v2
+ 120

u∗u∗∗v∗

u2v
− 210

u∗3
v∗

u3v

−10
u∗∗∗v∗

uv
− 240

v∗3
u∗

v3u
− 10

u∗∗2

u2
− 15

u∗u∗∗∗

u2
+ 105

u∗2
u∗∗

u3
− 105

u∗4

u4
+

u∗∗∗∗

u

)]

+5b1u

{
y(iv)

(
1− v∗

v
y

)
− y′y′′′

[
4
v∗∗

v
y +

(
1− v∗

v
y

) (
8
v∗

v
+ 7

u∗

u

)]
+ y′2y′′

[(
1− v∗

v
y

)

×
(
36

v∗2

v2
− 18

v∗∗

v
+ 44

u∗v∗

uv
+ 25

u∗2

u2
− 7

u∗∗

u

)
+ 18

v∗∗v∗

v2
y + 22

u∗v∗∗

uv
y − 6

v∗∗∗

v
y

]

−y′′2
[
3
v∗∗

v
y +

(
1− v∗

v
y

) (
6
v∗

v
+ 4

u∗

u

)]
− y′4

[
v∗∗∗∗

v
y −

(
2
v∗∗∗

v
y − 6

v∗∗v∗

v2
y

)

×
(
2
v∗

v
+ 3

u∗

u

)
− 6

v∗∗2

v2
y + 15

v∗∗u∗2

vu2
y − 4

v∗∗u∗∗

uv
y +

(
1− v∗

v
y

) (
4
v∗∗∗

v
− 24

v∗∗v∗

v2

+24
v∗3

v3
− 18

u∗v∗∗

uv
+ 36

u∗v∗2

uv2
+ 30

u∗2
v∗

u2v
− 8

u∗∗v∗

uv
− 10

u∗u∗∗

u2
+ 15

u∗3

u3
+

u∗∗∗

u

)]}

+10b2u
2

{
y′′′

(
1− v∗

v
y

)
− y′y′′

[
3
v∗∗

v
y +

(
1− v∗

v
y

) (
6
v∗

v
+ 4

u∗

u

)]
− y′3

[
v∗∗∗

v
y − 3

v∗∗u∗

uv
y

(4.4)
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−3
v∗∗v∗

v2
y +

(
1− v∗

v
y

) (
3
v∗∗

v
− 6

v∗2

v2
− 6

u∗v∗

uv
− 3

u∗2

u2
+

u∗∗

u

)]}
+ 10b3u

3

{
y′′

(
1− v∗

v
y

)

−y′2
[
v∗∗

v
y +

(
1− v∗

v
y

) (
2
v∗

v
+

u∗

u

)]}
+ 5b4u

4y′
(
1− v∗

v
y

)
+ b5u

5y + cvu5 = 0.

Applying the differential operator
[
D −

(
v∗

v
+ 4

u∗

u

)
y′ − r5u

]
to (3.3) (up to the term cvu4)

and adding to the obtained expression the term cvu5, we arrive at (4.4), where rk satisfy char-
acteristic equation

r5 + 5b1r
4 + 10b2r

3 + 10b3r
2 + 5b4r + b5 = 0. (4.5)

Introducing the notation
v∗∗

v
y +

(
1− v∗

v
y

) (
10

v∗

v
+ 11

u∗

u

)
= −5f(y)

(
1− v∗

v
y

)
, we shall

arrive at the equation

v∗∗ − 2
v
v∗

2
+

(
2
y
− 11

5
u∗

u
− f

)
v∗ +

(
11
5

u∗

u
+ f

)
1
y
v = 0, f = f(y). (4.6)

Proposition 4.2. Equation (4.6) has general solution of the form

v(y) =
y

α + β

∫
u11/5 exp

(∫
fdy

)
dy

, (4.7)

α, β are arbitrary constants.

The formulas (4.6) and (4.7) could be obtained from Proposition 1.2 and [2].

Equation (4.4)is the particular case of the above for ϕ = exp
(
− 5
11

∫
fdy

)
.

Proposition 4.3. Equation (4.1) can be linearized by means of the transformation of the form
(1.2) if and only if it has the form:

y(v) + 5f(y)y′y(iv) + y′′y′′′
(
7
ϕ∗

ϕ
+ 10f

)
+ y′2y′′′

[
8
ϕ∗∗

ϕ
− 63

5
ϕ∗2

ϕ2
− ϕ∗

ϕ
f + 10

(
f2 + f∗)]

+y′y′′2
[
15

ϕ∗∗

ϕ
− 112

5
ϕ∗2

ϕ2
+ 6

ϕ∗

ϕ
f + 15

(
f2 + f∗)] + y′3y′′

[
987
25

ϕ∗3

ϕ3
− 244

5
ϕ∗ϕ∗∗

ϕ2
+ 11

ϕ∗∗∗

ϕ

+

(
21

ϕ∗∗

ϕ
− 169

5
ϕ∗2

ϕ2

)
f − 4

ϕ∗

ϕ

(
f2 + f∗) + 10

(
f3 + 3ff∗ + f∗∗)] − y′5

[
8064
625

ϕ∗4

ϕ4

−2946
125

ϕ∗2
ϕ∗∗

ϕ3
+

102
25

ϕ∗∗2

ϕ2
+

186
25

ϕ∗ϕ∗∗∗

ϕ2
− 6

5
ϕ∗∗∗∗

ϕ
−

(
1989
125

ϕ∗3

ϕ3
− 458

25
ϕ∗ϕ∗∗

ϕ2
+

19
5

ϕ∗∗∗

ϕ

)
f

+

(
129
25

ϕ∗2

ϕ2
− 16

5
ϕ∗∗

ϕ

)(
f2 + f∗) + 6

5
ϕ∗

ϕ

(
f3 + 3ff∗ + f∗∗) − (

f4 + 6f2f∗ + 3f∗2
+ 4ff∗∗

+f∗∗∗)

]
+ 5b1ϕ

{
y(iv) + y′y′′′

(
4f +

9
5

ϕ∗

ϕ

)
+ y′2y′′

[
31
5

ϕ∗∗

ϕ
− 189

25
ϕ∗2

ϕ2
+

22
5

ϕ∗

ϕ
f

+6
(
f2 + f∗)] + y′′2

(
3f +

13
5

ϕ∗

ϕ

)
+ y′4

[
336
125

ϕ∗3

ϕ3
+

118
25

ϕ∗ϕ∗∗

ϕ2
+

6
5

ϕ∗∗∗

ϕ
+

(
33
5

ϕ∗∗

ϕ

(4.8)
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−87
25

ϕ∗2

ϕ2

)
f +

3
5

ϕ∗

ϕ

(
f2 + f∗) + (

f3 + 3ff∗ + f∗∗)]}
+ 10b2ϕ

2

{
y′′′ + y′y′′

(
3f +

13
5

ϕ∗

ϕ

)

+y′3
[
6
5

ϕ∗∗

ϕ
− 24

25
ϕ∗2

ϕ2
+

7
5

ϕ∗

ϕ
f +

(
f2 + f∗)]}

+ 10b3ϕ
3

{
y′′ + y′2

(
6
5

ϕ∗

ϕ
+ f

)}
+ 5b4ϕ

4y′

+ϕ14/5 exp
(
−

∫
fdy

) [
b5

∫
ϕ11/5 exp

(∫
fdy

)
dy +

c

β

]
= 0.

By means of the transformation

z = β

∫
ϕ11/5 exp

(∫
fdy

)
dy, dt = ϕdx (4.9)

it reduces to the linear equation

zv + 5b1z
iv + 10b2z

′′′ + 10b3z
′′ + 5b4z

′ + b5z + c = 0. (4.10)

The equation (4.8) admits for c = 0 one-parameter set of solutions∫
ϕ6/5 exp

(∫
fdy

)
dy∫

ϕ11/5 exp
(∫

fdy

)
dy

= rkx + C, (4.11)

where rk are roots of the characteristic equation

r5 + 5b1r
4 + 10b2r

3 + 10b3r
2 + 5b4r + b5 = 0. (4.12)

Remark 4. Thus, the equations of the type

yv + fy′yiv + ϕ1y
′′y′′′ + ϕ2y

′2y′′′ + ϕ3y
′y′′2 + ϕ4y

′3y′′ + ϕyiv + ϕ5y
′y′′′ + ϕ6y

′′2

+ϕ7y
′2y′′ + ϕ8y

′′′ + ϕ9y
′y′′ + ϕ10y

′′ +
5∑

k=0

fky
′k = 0

may be tested by the method of exact linearization.

Example 4. Equation

yv − 6
y
y′yiv − 5

y
y′′y′′′ +

15
y2

y′2y′′′ +
10
y2

y′y′′2 − 15
y3

y′3y′′ + 5b1yyiv − 15b1y
′y′′′ − 5b1y

′′2

+
15
y

b1y
′2y′′ + 10b2y

2y′′′ − 10b2yy′y′′ + 10b3y
3y′′ + 5b4y

4y′ +
1
2
b5y

6 +
1
2
cy5 = 0

(4.13)

by the substitution (2.14) is reduced to (4.2) and admits for c = 0 one-parameter set of solutions
(2.15), where rk are distinct characteristic roots of the equation (4.5).
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On Galilei Invariance of Continuity Equation
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Classes of the nonlinear Schrödinger-type equations compatible with the Galilei relativity
principle are obtained. Solutions of these equations satisfy the continuity equation.

The continuity equation is one of the most fundamental equations of quantum mechanics
∂ρ

∂t
+ �∇ ·�j = 0. (1)

Depending on definition of ρ (density) and�j = (j1, . . . , jn) (current), we can construct essentially
different quantum mechanics with different equations of motion, which are distinct from classical
linear Schrödinger, Klein–Gordon–Fock, and Dirac equations.

At the beginning we study a symmetry of the continuity equation considering (ρ,�j) as de-
pendent variables related by (1).

Theorem 1 [1]. The invariance algebra of equation (1) is an infinite-dimensional algebra with
basis operators

X = ξµ(x)
∂

∂xµ
+

(
aµν(x)jν + bµ(x)

) ∂

∂jµ
, (2)

where j0 ≡ ρ; ξµ(x) are arbitrary smooth functions; x = (x0 = t, x1, x2, . . . , xn) ∈ Rn+1;

aµν(x) =
∂ξµ

∂xν
− δµν

(
∂ξi

∂xi
+ C

)
; C = const, δµν is the Kronecker delta; µ, ν, i = 0, 1, . . . , n,(

b0(x), b1(x), . . . , bn(x)
)
is an arbitrary solution of equation (1).

Here and below we imply summation over repeated indices.
An infinite-dimensional algebra with basis operators (2) contains as subalgebras the general-

ized Galilei algebra

AG2(1, n) = 〈Pµ, Jab, Ga, D
(1), A〉 (3)

and the conformal algebra

AP2(1, n) = AC(1, n) = 〈Pµ, Jab, J0a, D
(2),Kµ〉. (4)

We use the following designations in (3) and (4)

Pµ = ∂µ, Jab = xa∂b − xb∂a + ja∂jb − jb∂ja (a < b),

Ga = x0∂a + ρ∂ja , J0a = xa∂0 + x0∂a + ja∂ρ + ρ∂ja ,

D(1) = 2x0∂0 + xa∂a − nρ∂ρ − (n+ 1)ja∂ja , D(2) = xµ∂µ − nρ∂ρ − nja∂ja ,

A = x2
0∂0 + x0xa∂a − nx0ρ∂ρ + (xaρ− (n+ 1)x0j

a)∂ja ,

Kµ = 2xµD
(2) − xνx

νgµi∂i − 2xνSµν , Sµν = gµij
ν∂ji − gνij

µ∂ji ,

gµν =




1, µ = ν = 0
−1, µ = ν �= 0
0, µ �= ν,

µ, ν, i = 0, 1 . . . , n; a, b = 1, 2, . . . , n.



100 V. Boyko

Thus, the continuity equation satisfies the Galilei relativity principle as well as the Lorentz–
Poincare–Einstein relativity principle and, depending on the definition of ρ and �j, we will come
to different quantum mechanics.

Let us consider the scalar complex-valued wave functions and define ρ and �j in the following
way

ρ = f(uu∗), jk = −1
2
ig(uu∗)

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n, (5)

where f , g, ϕ are arbitrary smooth functions, f �= const, g �= 0. Without loss of generality, we
assume that f ≡ uu∗.

Let us describe all functions g(uu∗), ϕ(uu∗) for continuity equation (1), (5) to be compatible
with the Galilei relativity principle, defined by the following transformations:

t → t′ = t, xa → x′a = xa + vat.

Here we do not fix transformation rules for the wave function u.
If ρ and �j are defined according to formula (5), then the continuity equation (1) is Galilei-

invariant iff

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n. (6)

The corresponding generators of Galilei transformations have the form

Ga = x0∂a + ixa (u∂u − u∗∂u∗) , a = 1, 2, . . . , n.

If in (6)

ϕ = λuu∗, λ = const, (7)

then the continuity equation (1), (6), (7) coincides with the Fokker–Planck equation

∂ρ

∂t
+ �∇ ·�j + λ∆ρ = 0, (8)

where

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
, k = 1, 2, . . . , n. (9)

The continuity equation (1), (6), (7) was considered in [3, 5].
In [1] we investigated the symmetry properties of the nonlinear Schrödinger equation the

following form

iu0 +
1
2
∆u+ i

∆ϕ(uu∗)
2uu∗

u = F
(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, (10)

where F is an arbitrary real smooth function.
For the solutions of equation (10), equation (1), (6) is satisfied and therefore this equation is

compatible with the Galilei relativity principle.
In terms of the phase and amplitude

(
u = R exp(iΘ)

)
, equation (10) has the form

R0 +RkΘk +
1
2
R∆Θ+

1
2R

∆ϕ = 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+ F

(
R2,

(
�∇ (

R2
))2

,∆R2

)
= 0.

(11)
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Theorem 2 [1]. The maximal invariance algebras for system (11) if F = 0 are the following:

1. 〈Pµ, Jab, Q,Ga, D〉 (12)

when ϕ is an arbitrary function;

2. 〈Pµ, Jab, Q,Ga, D, I, A〉 (13)

when ϕ = λR2, λ = const.

In (12) and (13) we use the following designations:

Pµ = ∂µ, Jab = xa∂xb
− xb∂xa , a < b,

Ga = x0∂xa + ixa∂Θ, Q = ∂Θ, D = 2x0∂x0 + xa∂xa , I = R∂R,

A = x2
0∂x0 + x0xa∂xa − n

2
x0R∂R +

1
2
x2

a∂Θ,

µ = 0, 1, . . . , n; a, b = 1, 2, . . . , n.

(14)

Algebra (13) coincides with the invariance algebra of the linear Schrödinger equation.

Corolarry. System (11), (7) is invariant with respect to algebra (13) if

F = R−1∆R N

(
R∆R

(�∇R)2

)
,

where N is an arbitrary real smooth function.

Let us consider a more general system than (10)

iu0 +
1
2
∆u = (F1 + iF2)u, (15)

where F1, F2 are arbitrary real smooth functions,

Fm = Fm

(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, m = 1, 2. (16)

The structure of functions F1, F2 may be described in form (16) by virtue of conditions for
system (15) to be Galilei-invariant.

In terms of the phase and amplitude, equation (15) has the form

R0 +RkΘk +
1
2
R∆Θ−RF2 = 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+ F1 = 0,
(17)

where Fm = Fm

(
R2,

(
�∇ (

R2
))2

,∆R2

)
, m = 1, 2.

Theorem 3. System (17) is invariant with respect to algebra (13) if it has the form

R0 +RkΘk +
1
2
R∆Θ−∆R M

(
R∆R

(�∇R)2

)
= 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+
∆R

R
N

(
R∆R

(�∇R)2

)
= 0,

(18)

where N,M are arbitrary real smooth functions.
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System (18) written in terms of the wave function has the form

iu0 +
1
2
∆u =

∆|u|
|u|

(
N

(
|u|∆|u|
(�∇|u|)2

)
+ iM

(
|u|∆|u|
(�∇|u|)2

))
u. (19)

Thus, equation (19) admits an invariance algebra which coincides with the invariance algebra of
the linear Schrödinger equation with arbitrary functions M , N .

With certain particular M and N the symmetry of system (18) can be essentially extended.

If in (18) N =
1
2
, then the second equation of the system (equation for the phase) will be the

Hamilton–Jacobi equation [4].
Let us consider some forms of the continuity equation (1) for equation (19).

Case 1. If M = 0, then for solutions of equation (18) equation (1) holds true, where the density
and current can be defined in the classical way (9).

Case 2. If M∆R = −λ
(
∆R +

(�∇R)2

R

)
, then for solutions of equation (19), the continuity

equation (1), (6), (7) (or the Fokker–Planck equation (8), (9)) is valid.
Case 3. If M is arbitrary then for solutions of equation (19), the continuity equation is valid,
where the density and current can be defined by the conditions

ρ = uu∗, �∇ ·�j =
∂

∂xk

(
−1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

))
− 2|u|∆|u| M

(
|u|∆|u|
(�∇|u|)2

)
.

Thus, we constructed wide classes of the nonlinear Schrödinger-type equations which are
invariant with respect to algebra (13) (maximal invariance algebra of the linear Schrödinger
equation) and for whose solutions the continuity equation (1) is valid.

The necessary and sufficient condition for the Lorentz invariance of the continuity equation
for the electromagnetic field, where energy density and Poiting vectors depend on the vector
fields �E, �H has been obtained in [6].
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Using the subgroup structure of the generalized Poincaré group P (1, 4), the symmetry re-
duction of the five-dimensional Dirac equation to systems of differential equations with fewer
independent variables is done.

The Dirac equation in spaces of various dimensions has many applications (see, for example,
[1–9]).

Let us consider the equation(
γkP

k − m
)

ψ(x) = 0, (1)

where x = (x0, x1, x2, x3, x4), Pk = i ∂
∂xk

, k = 0, 1, 2, 3, 4; γk are 4× 4 Dirac matrices. Equation
(1) is invariant under the generalized Poincaré group P (1, 4). Continuous subgroups of the
group P (1, 4) were in [10–14]. For all continuous subgroups of the group P (1, 4) invariants in
five-dimensional Minkowski space are constructed. The majority of these invariants has been
presented in [15, 16].

Following [17–23] and using the subgroup structure of the group P (1, 4) ansatzes which
reduce equation (1) to systems of differential equations with fewer independent variables were
constructed and the corresponding symmetry reduction has been obtained. Some of these results
were presented in [24].

In the present paper we give some new results which are obtained on the basis of subgroup
structure of the group P (1, 4) and invariants of its nonconjugate subgroups.

First we present some ansatzes which reduce the equation (1) to systems of ordinary diffe-
rential equations and we give the corresponding systems of reduced equations.

1. ψ(x) = exp

[
−1
2
γ4γ0 ln(x0 + x4) +

1
2
γ2γ1 arcsin

x1√
x2

1 + x2
2

]
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2 ;

i

[
γ2ϕ

′ +
1
2

(
γ0 + γ4 +

1
ω

γ2

)
ϕ

]
− mϕ = 0.

2. ψ(x) = exp

[
1
2
(γ2γ1 + dγ4γ0) arcsin

x1√
x2

1 + x2
2

]
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2
, d > 0;

i

[
γ2ϕ

′ +
1
2ω

(γ2 + dγ0γ1γ4)ϕ
]
− mϕ = 0.

3. ψ(x) = exp

{
1
2
[γ2γ1 + ε(γ0 + γ4)γ3] arcsin

x1√
x2

1 + x2
2

}
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2
, ε = ±1;

i

[
γ2ϕ

′ +
1
2ω

(γ2 + εγ1(γ0 + γ4)γ3)ϕ

]
− mϕ = 0.
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4. ψ(x) = exp

[
1
2
γ4γ0

(
−1

a
x3 − d

a
arcsin

x1√
x2

1 + x2
2

)
+

1
2
γ2γ1 arcsin

x1√
x2

1 + x2
2

]
ϕ(ω),

ω =
(
x2

1 + x2
2

)1/2
, a �= 0, d �= 0;

i

{
γ2ϕ

′ − 1
2

[
1
ω

(
d

a
γ0γ1γ4 − γ2

)
+

1
a
γ0γ3γ4

]
ϕ

}
− mϕ = 0.

5. ψ(x) = exp

[
1
2
γ2γ1 arcsin

x1√
x2

1 + x2
2

+
1
2
(γ0 + γ4)γ3(x0 + x4)

]
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2 ;

i

(
γ2ϕ

′ +
1
2ω

γ2ϕ

)
− mϕ = 0.

6. ψ(x) = exp

[
1
2
γ2γ1 arcsin

x1√
x2

1 + x2
2

− 1
2
(γ0 + γ4)γ3(x0 + x4)

]
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2 ;

i

(
γ2ϕ

′ +
1
2ω

γ2ϕ

)
− mϕ = 0.

7. ψ(x) = exp

[
− 1
2a

γ4γ0x3 +
1
2
γ2γ1 arcsin

x1√
x2

1 + x2
2

]
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2
, a �= 0;

i

{
γ2ϕ

′ +
1
2

[
1
ω

γ2 − 1
a
γ0γ3γ4

]
ϕ

}
− mϕ = 0.

8. ψ(x) = exp
[
− 1
2e

(γ2γ1 + eγ4γ0) ln(x0 + x4)
]

ϕ(ω), ω =
(
x2

0 − x2
4

)1/2
, e > 0;

i

2

{[
ω(γ0 + γ4) +

1
ω
(γ0 − γ4)

]
ϕ′ + (γ0 + γ4)(1− 1

e
γ2γ1)ϕ

}
− mϕ = 0.

9. ψ(x) = exp
{
−1
2
γ4γ0 ln(x0 + x4) +

1
2µ

γ2γ1[α ln(x0 + x4)− x3]
}

ϕ(ω),

ω =
(
x2

0 − x2
4

)1/2
, α �= 0, µ �= 0;

i

2

{[
ω(γ0 + γ4) +

1
ω
(γ0 − γ4)

]
ϕ′ +

[
(γ0 + γ4)

(
1 +

α

µ
γ2γ1

)
+

1
µ

γ1γ2γ3

]
ϕ

}
− mϕ = 0.

10. ψ(x) = exp
[
−1
2
γ4γ0 ln(x0 + x4)− 1

2α
γ2γ1x3

]
ϕ(ω), ω =

(
x2

0 − x2
4

)1/2
, α �= 0;

i

2

{[
ω(γ0 + γ4) +

1
ω
(γ0 − γ4)

]
ϕ′ +

[
γ0 + γ4 +

1
α

γ1γ2γ3

]
ϕ

}
− mϕ = 0.

11. ψ(x) = exp

(
1
2
γ4γ3 arcsin

x3√
x2

3 + x2
4

+
1
2d

γ2γ1x0

)
ϕ(ω), ω =

(
x2

3 + x2
4

)1/2
, d �= 0;

i

[
γ4ϕ

′ +
1
2

(
1
d
γ0γ2γ1 +

1
ω

γ4

)
ϕ

]
− mϕ = 0.
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12. ψ(x) = exp

[
1
2

(
γ4γ3 +

e

2
γ2γ1

)
arcsin

x3√
x2

3 + x2
4

]
ϕ(ω), ω =

(
x2

3 + x2
4

)1/2
, e �= 0;

i

[
γ4ϕ

′ +
1
2ω

(
γ4 +

e

2
γ3γ2γ1

)
ϕ

]
− mϕ = 0.

13. ψ(x) = exp
(
− 1
2α

γ2γ1x3

)
ϕ(ω), ω = x0, α �= 0;

i

(
γ0ϕ

′ +
1
2α

γ1γ2γ3ϕ

)
− mϕ = 0.

14. ψ(x) = exp
[
−1
2
(γ0 + γ4)γ3x1

]
ϕ(ω), ω = x2;

i

[
γ2ϕ

′ − 1
2
γ1(γ0 + γ4)γ3ϕ

]
− mϕ = 0.

15. ψ(x) = exp
[
1
2
(γ0 + γ4)γ3(x0 + x4)

]
ϕ(ω), ω = x2;

iγ2ϕ
′ − mϕ = 0.

16. ψ(x) = exp
[
−1
2
γ4γ0 ln(x0 + x4)

]
ϕ(ω), ω = x3;

i

[
γ3ϕ

′ +
1
2
(γ0 + γ4)ϕ

]
− mϕ = 0.

17. ψ(x) = exp
(
− 1
2ã2

γ4γ0x2

)
ϕ(ω), ω = x3, ã2 > 0;

i

(
γ3ϕ

′ − 1
2ã2

γ0γ2γ4ϕ

)
− mϕ = 0.

18. ψ(x) = exp
(
1
d
γ2γ1x0

)
ϕ(ω), ω = x3, d > 0;

i

(
γ3ϕ

′ − 1
d
γ0γ1γ2ϕ

)
− mϕ = 0.

19. ψ(x) = exp
[
− 1
2e

(γ2γ1 + eγ4γ0) ln(x0 + x4)
]

ϕ(ω), ω = x3, e > 0;

i

[
γ3ϕ

′ +
1
2
(γ0 + γ4)

(
1− 1

e
γ2γ1

)
ϕ

]
− mϕ = 0.

20. ψ(x) = exp
(
− 1
2d3

γ2γ1x3

)
ϕ(ω), ω = x4, d3 �= 0;

i

(
γ4ϕ

′ +
1
2d3

γ1γ2γ3ϕ

)
− mϕ = 0.
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21. ψ(x) = exp
[
−1
2
γ4γ0 ln(x0 + x4)

]
ϕ(ω), ω = ln(x0 + x4)− x3

a3
, a3 > 0;

i

[(
γ0 + γ4 − 1

a3
γ3

)
ϕ′ +

1
2
(γ0 + γ4)ϕ

]
− mϕ = 0.

22. ψ(x) = exp
[
1
2
γ4γ0 ln(x0 − x4)

]
ϕ(ω), ω = ln(x0 − x4) +

x3

a3
, a3 > 0;

i

[(
γ0 − γ4 +

1
a3

γ3

)
ϕ′ +

1
2
(γ0 − γ4)ϕ

]
− mϕ = 0.

23. ψ(x) = exp
[
1
2
(γ0 + γ4)γ3(x0 + x4)

]
ϕ(ω), ω = x1 − 1

b
x3 +

1
2b
(x0 + x4)2, b �= 0;

iγ1ϕ
′ − mϕ = 0.

24. ψ(x) = exp
[
1
2
(γ0 + γ4)

γ1x1 + (x2 − x3)γ2

x0 + x4

]
ϕ(ω), ω = x0 + x4;

i

{
(γ0 + γ4)ϕ′ +

1
ω
(γ0 + γ4)

[
1− 1

2
γ2γ3

]
ϕ

}
− mϕ = 0.

25. ψ(x) = exp
[
1
2
(γ0 + γ4)γ3

x3 − bx1

x0 + x4

]
ϕ(ω), ω = x0 + x4, b �= 0;

i

[
(γ0 + γ4)ϕ′ +

1
2ω

(γ0 + γ4)(1 + bγ1γ3)ϕ
]
− mϕ = 0.

26. ψ(x) = exp
[
1
2ε

(γ2γ1 + ε(γ0 + γ4)γ3)
x3

x0 + x4

]
ϕ(ω), ω = x0 + x4, ε = ±1;

i

[
(γ0 + γ4)ϕ′ +

1
2εω

(ε(γ0 + γ4)− γ1γ2γ3)ϕ

]
− mϕ = 0.

27. ψ(x) = exp
[
−1
2
(γ0 + γ4)γ3x2

]
ϕ(ω), ω = x0 + x4;

i

[
(γ0 + γ4)ϕ′ +

1
2
(γ0 + γ4)γ2γ3ϕ

]
− mϕ = 0.

28. ψ(x) = exp
[
1
2
γ2γ1

(
x0 − x4 − x2

3

x0 + x4

)
+

1
2
(γ0 + γ4)γ3

x3

x0 + x4

]
ϕ(ω), ω = x0 + x4;

i

[
(γ0 + γ4)ϕ′ +

1
2

(
1
ω
(γ0 + γ4) + γ0 − γ4

)
ϕ

]
− mϕ = 0.

29. ψ(x) = exp
[
1
2
γ2γ1

(
x4 − x0 +

x2
3

x0 + x4

)
+

1
2
(γ0 + γ4)γ3

x3

x0 + x4

]
ϕ(ω), ω = x0 + x4;

i

[
(γ0 + γ4)ϕ′ +

1
2

(
1
ω
(γ0 + γ4)− γ0 + γ4

)
ϕ

]
− mϕ = 0.
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30. ψ(x) = exp
[
1
2
γ2γ1(x4 − x0)

]
ϕ(ω), ω = x0 + x4;

i

[
(γ0 + γ4)ϕ′ +

1
2
γ2γ1(γ4 − γ0)ϕ

]
− mϕ = 0.

31. ψ(x) = exp
[
1
2
γ2γ1(x0 − x4)

]
ϕ(ω), ω = x0 + x4;

i

[
(γ0 + γ4)ϕ′ +

1
2
γ2γ1(γ0 − γ4)ϕ

]
− mϕ = 0.

32. ψ(x) = exp
[
1
2δ

(γ0 + γ4)
(
(δγ2 − γ1)

x2

x0 + x4
− x3

2
γ1

)]
ϕ(ω), ω = x0 + x4, δ > 0;

i(γ0 + γ4)
[
ϕ′ − 1

2δω
(γ1(γ2 + ωγ3)− δ)ϕ

]
− mϕ = 0.

33. ψ(x) = exp
[
1
2
(γ0 + γ4)

(
x2

x0 + x4
γ2 − x3γ1

)]
ϕ(ω), ω = x0 + x4;

i(γ0 + γ4)
[
ϕ′ +

1
2

(
1
ω
− γ1γ3

)
ϕ

]
− mϕ = 0.

34. ψ(x) = exp
[
1
2
(γ0 + γ4)

(
µx1 − x3

1 + µ(x0 + x4)
γ1 +

x2γ2

x0 + x4

)]
ϕ(ω), ω = x0 + x4, µ > 0;

i(γ0 + γ4)
{

ϕ′ +
1
2

[
1

µω + 1
(µ − γ1γ3) +

1
ω

]
ϕ

}
− mϕ = 0.

35. ψ(x) = exp
[
1
2
γ2γ1

(
2

3α2
(x0 + x4)3 − 2

α
x3(x0 + x4) + x0 − x4

)
+

+
1
2α

(γ0 + γ4)γ3(x0 + x4)
]

ϕ(ω), ω = αx3 − 1
2
(x0 + x4)2, α �= 0;

i

{
αγ3ϕ

′ +
[(

ω

α2
+

1
2

)
γ0 +

(
ω

α2
− 1

2

)
γ4

]
γ2γ1ϕ

}
− mϕ = 0.

36. dsψ(x) = exp
[
1
2
γ2γ1

(
− 2
3α2

(x0 + x4)3 +
2
α

x3(x0 + x4)− x0 + x4

)
+

+
1
2α

(γ0 + γ4)γ3(x0 + x4)
]

ϕ(ω), ω = αx3 − 1
2
(x0 + x4)2, α �= 0;

i

{
αγ3ϕ

′ +
[(

ω

α2
− 1

2

)
γ0 +

(
ω

α2
+

1
2

)
γ4

]
γ2γ1ϕ

}
− mϕ = 0.

Let us note that the ansatzes (1)–(36) are obtained with the help of four-dimensional non-
Abelian subalgebras of the Lie algebra of the group P (1, 4). The basis elements of these subal-
gebras commute if they belong to the Lie algebra of the group SO(1, 4).
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Using the subgroup structure of the extended generalized Poincaré group P̃ (1, 4), symme-
try reduction of the multidimensional Born–Infeld equation to differential equations with
fewer independent variables is made. Some classes of exact solutions of the equation under
investigation are constructed.

The Born–Infeld equation in spaces of various dimensions has many applications (see, for
example, [1–8]).
The symmetry properties of the multidimensional Born–Infeld equation were studied in [9–

11]. In these works, multiparameter families of exact solutions were constructed using special
ansatzes.
Let us consider the equation

✷u (1− uνu
ν) + uµuνuµν = 0, (1)

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµ ≡ ∂u
∂xµ , uµν ≡ ∂2u

∂xµ∂xν , uµ = gµνuν , gµν =
(1,−1,−1,−1)δµν , µ, ν = 0, 1, 2, 3, ✷ is the d’Alembert operator.
The symmetry group of equation (1) is the group P̃ (1, 4) [9–11].
On the basis of the subgroup structure of the group P̃ (1, 4) and the invariants of its sub-

groups [12], the symmetry reduction of the investigated equation to differential equations with
fewer independent variables was done. In many cases the reduced equations are linear ODEs.
Taking into account solutions of the reduced equations, we found multiparameter families of ex-
act solutions of the equation under consideration. Below we only present ansatzes which reduce
equation (1) to ordinary differential equations, and we list the ODEs obtained as well as some
exact solutions of the Born–Infeld equation

1. u2 = −x2
2ϕ

2(ω) + x2
0, ω =

x3

x2
,(

ϕ2 − ω2 − 1)ϕϕ′′ − (
ϕ2 − ω2 − 1)ϕ′2 − 2ϕ′2 − 2ωϕϕ′ = 1;

2. u2 = − (
x2

1 + x2
2

)
ϕ2(ω) + x2

0, ω =
x3(

x2
1 + x2

2

)1/2
;

(
ϕ2−ω2−1) ϕϕ′′ +

((
3ϕ2+1

) (
ω2+1

) − ϕ
)
ϕ′2 − 3ω (

ϕ2+1
)
ϕϕ′ + ϕ4 = 1;

3. u = −x
α+1

α
2 (ϕ(ω))

α+1
α + x0, ω =

x3

x2
, α �= 0;

ϕ′′ = 0; u = x0 − (c1x2 + c2x3)
α+1

α ;

4. u = −ϕ(ω)− 2 lnx2 + x0, ω =
x3

x2
;

2ϕ′′ + ϕ′2 = 0; u = 2c1e
− x3

2x2 − 2 lnx2 + x0 − c2;
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5. u = −ϕ(ω) + x0 − ln
(
x2

1 + x2
2

)
+ 2α arctg

x2

x1
, ω =

x3(
x2

1 + x2
2

)1/2
, α ≥ 0;

4
(
α2ω2 + α2 + 1

)
ϕ′′ − ω

(
ω2 + 1

)
ϕ′3 + 2ϕ′2 = 0;

6. u = −ϕ(ω) + x0 + 2arctg
x2

x1
, ω =

x3(
x2

1 + x2
2

)1/2
;

4
(
ω2 + 1

)
ϕ′′ − ω

(
ω2 + 1

)
ϕ′3 + 4ωϕ′ = 0;

7. u2 = x2
0ϕ

2(ω)− x2
3, ω =

(
x2

1 + x2
2

)1/2

x0
;

ω
(
ϕ2 + ω2 − 1)ϕϕ′′ +

(
ω2 − 1) ϕϕ′3 − ω

(
2ϕ2 + ω2 − 1) ϕ2+

+
(
ϕ2 + ω (2ω − 1))ϕϕ′ − ω

(
ϕ2 − 1) = 0;

8. u2 = − (
x2

1 + x2
2

)
ϕ2(ω) + x2

0 − x2
3, ω = ln

(x0 − u)2

x2
1 + x2

2

− 2c arctg x2

x1
, c > 0;

4
(
c2ϕ4 − (

c2−1)ϕ2 − 1) ϕϕ′′ − 8 (
c2+1

)
ϕ3ϕ′3 +

(
ϕ4 + 8c2ϕ2 − 4) ϕ′4−

− (
6ϕ4 + 4ϕ2 − 10)ϕϕ′ + ϕ2

(
ϕ4 + ϕ2 − 2) = 0;

9. u2 = − (
x2

1 + x2
2

)
ϕ2(ω) + x2

0 − x2
3,

ω = (1 + α) ln
(
x2

0 − x2
3 − u2

) − 2α ln (x0 − u)− 2β arctg x2

x1
, α �= 0, β ≥ 0;

4
(
α2 +

(
β2−α2+1

)
ϕ2 − β2ϕ4

)
ϕ2ϕ′′ + 8

(
α2+1

) (
β2ϕ2+α2+α−2) ϕ′3−

−4 ((
2β2 − α2 + 1

)
ϕ2 + 3α2 − 2α − 6) ϕϕ′2+

+2
(
ϕ2 − α − 6)ϕ2ϕ′ − ϕ3

(
ϕ4 + ϕ2 − 2) = 0;

10. u2 = − (
x2

1 + x2
2

)
ϕ2(ω) + x2

0 − x2
3, ω = ln

(
x2

0 − x2
3 − u2

) − 2α arctg x2

x1
, α > 0;

4
(
α2 + 1− α2ϕ2

)
ϕ4ϕ′′ + 8

(
α2ϕ2 − 2)ϕ′3 − 4 ((

2α2 + 1
)
ϕ2 − 6)ϕϕ′2+

+2
(
ϕ2 − 6) ϕ2ϕ′ − ϕ3

(
ϕ4 + ϕ2 − 2) = 0;

11. u2 = − (
x2

1 + x2
2

)
ϕ2(ω) + x2

0 − x2
3, ω = 2arctg

x2

x1
− ln (

x2
1 + x2

2

)
;

4ϕ
(
α2

(
ϕ2 − 1) − 1)ϕ′′ − 8 (

α2 + 1
)
ϕϕ′3 + 4

(
3ϕ2 + 2

(
α2 + 1

))
ϕ′2−

−2 (
3ϕ2 + 2

)
ϕϕ′ + ϕ2

(
ϕ2 + 1

)
= 2.

The ansatzes (1)–(11) can be written in the following form: h(u) = f(x)ϕ(ω)+g(x), where h(u),
f(x), g(x) are given functions, ϕ(ω) is an unknown function. ω = ω(x, u) are one-dimensional
invariants of subgroups of the group P̃ (1, 4).

12. x2ω = x3ϕ(ω), ω =
x3

(x0 − u)
,

ϕ′′ = 0, u = x0 + c1x2 + c2x3;

13. x3ω =
(
x2

1 + x2
2

)1/2
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2

u
;

ω
(
ϕ2 + ω2 + 1

)
ϕ′′ +

(
ω2 + 1

)
ϕ′3 − 2ωϕϕ′2 +

(
ϕ2 + 1

)
ϕ′ = 0;
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14. x3ω =
(
x2

1 + x2
2

)1/2
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2

x0 − u
;

ωϕ′′ + ϕ′3 + ϕ′ = 0,

x3

x0 − u
= ln

(
2
√

x2
1 + x2

2

x0 − u
+ 2

√
x2

1 + x2
2

(x0 − u)2
− 1

)
+ c;

15.
x3(

x3 (2x0ω − x3)− x2
1ω

2
)1/2

= ϕ(ω), ω =
x3

x0 − u
,

(
ϕ2ϕ2 − 1) ϕϕ′′ +

(
4− 3ω2ϕ2

)
ϕ′2 + 2ωϕϕ3ϕ′ + ϕ4 = 0;

16. ω
(x3

ω

(
2x0 − x3

ω

)
− x2

1 − x2
2

)1/2
= x3ϕ(ω), ω =

x3

x0 − u
;(

ω2 − ϕ2
)
ϕ2ϕ′′ +

(
ω2 − 3ϕ2

)
ϕ′2 + 4ωϕϕ′ − 2ϕ2 = 0;

17.
(
x2

0 − x2
1 − x2

2

)1/2
ω = x3ϕ(ω), ω =

x3

u
,(

ϕ2 − ω2 − 1)ϕ′′ϕ+ 2
(
ω2 + 1

)
ϕ′2 − 4ωϕϕ′ + 2ϕ2 − 2 = 0;

18. ln
x3

ω
+

x1ω

x3
= ϕ(ω), ω =

x3

x0 − u
;

ϕ′′ = 0;
c1x3 − x1

x0 − u
− ln (x0 − u) + c2 = 0;

19. lnx2
3ω − x2

3

ω
= ϕ(ω)− 2x0, ω =

x2
3

x0 − u
;

4ω (ω + 1)ϕ′′ − 2ωϕ′2 + 2 (ω + 1)ϕ′ = −1;

20.
x3

ωx2 − x1
= ϕ(ω), ω = x0 − u;

ϕ = 0; u = x0 − x1 + x3

x2
;

21. ln
x2

3

ω
− x2

1ω

x2
3

− x2
3

ω
= ϕ(ω)− 2x0, ω =

x2
3

x0 − u
;

ω (ω + 4)ϕ′′ − 4ωϕ′2 + 2 (2ω + 1)ϕ′ = −3;

22.
x2

3

(ω + 1)
(
ω (2x0 − ω)− x2

1

) − ωx2
2

= ϕ(ω), ω = x0 − u;

(ω (ω + 1))2
(
ϕϕ′′ − 2ϕ′2)+ 4ω (ω + 1) (2ω + 1)ϕϕ′ + 2ω (ω + 1)ϕ′−

−2 (
7ω2 + 7ω + 2

)
ϕ2 + 6 (2ω + 1)ϕ = 0;

23. ln
x2

3

ω
−

(
x2

1 + x2
2

)
ω

x2
3

− x2
3

ω
= ϕ(ω)− 2x0, ω =

x2
3

x0 − u
;

ω (ω + 4)ϕ′′ − 6ωϕ′2 + 2 (3ω + 1)ϕ′ = −5;
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24. x3ω =
(
x2

1 + x2
2

)1/2
ϕ(ω)− (

x2
1 + x2

2

)1/2 arctg
x2

x1
, ω =

(
x2

1 + x2
2

)1/2

x0 − u
;

ω
(
ω2 + 1

)
ϕ′′ + ω2ϕ′3 +

(
ω2 + 2

)
ϕ′ = 0;

x3

x0 − u
+ arctg

x2

x1
= i


ln

√
x2

1 + x2
2√

x2
1 + x2

2 + (x0 − u)2 + x0 − u
+

√
x2

1 + x2
2 + (x0 − u)2

x0 − u
+ c


;

25.
(
2x0ω

(
x2

1 + x2
2

)1/2 − x2
3ω

2 − x2
1 − x2

2

)1/2
=

(
x2

1 + x2
2

)1/2
ϕ(ω), ω =

(
x2

1 + x2
2

)1/2

x0 − u
;

ω
(
ϕ3−2ϕ2+ω2

)
ϕ′′− (

ϕϕ′)3+ω3ϕ′2− (
ϕ2−2ω2

)
ϕϕ′−5ωϕ2 = 0;

26. x3ω +
√

x2
1 + x2

2 ln

√
x2

1 + x2
2

ω
=

(
x2

1 + x2
2

)1/2
ϕ(ω)− α

(
x2

1 + x2
2

)1/2 arctg
x2

x1
,

ω =

(
x2

1 + x2
2

)1/2

x0 − u
, α ≥ 0;

ω
(
ω2 + α2

)
ϕ′′ + ω2ϕ′3 +

(
ω2 + 2α2

)
ϕ′ = 0;

x3

x0 − u
+ ln (x0 − u) + αarctg

x2

x1
=

= i


α2 ln

√
x2

1 + x2
2√

x2
1 + x2

2 + α2 (x0 − u)2 + α2 (x0 − u)
+

√
x2

1 + x2
2 + α2 (x0 − u)2

x0 − u
+ c


 ;

27. 3 ln
(
ω

(
x2

1 + x2
2

)1/2
)
− 2 ln

(
12x0 −

(
ω

(
x2

1 + x2
2

)1/2 + 4x3

)1/2 ×

×
(
6 + 2x3 − ω

(
x2

1 + x2
2

)1/2
))

= ϕ(ω), ω =
(x0 − u)2 − 4x3(

x2
1 + x2

2

)1/2
;

144
((

ω2 + 16
)
eϕ − ω2

)
ωϕ′′ + ω4

(
ω2 + 16

)
ϕ′3−

−24ω (
3

(
ω2 + 16

)
eϕ + 2ω2

)
ϕ′2 + 144

((
40 + ω2

)
eϕ − ω2

)
ϕ′ = 0;

28. ln
(
ω

(
x2

1 + x2
2

)) − ω
(
x2

1 + x2
2

) − x2
3

ω
(
x2

1 + x2
2

) = ϕ(ω)− 2α arctg x2

x1
− 2x0,

ω =
x0 − u

x2
1 + x2

2

, α ≥ 0;

ω2
(
4ω

(
1− α2ω

)
+ 1

)
ϕ′′ + 2ω5ϕ′3 − 2ω3ϕ′2 − 2 (

α2ω2 − 2ω + 1) ϕ′ω − 2α2ω + 3 = 0;

29. ω
(
x2

1 + x2
2

)
+

x2
3

ω
(
x2

1 + x2
2

) = ϕ(ω) + 2 arctg
x2

x1
+ 2x0, ω =

x0 − u

x2
1 + x2

2

,

ω2
(
1− 4ω2

)
ϕ′′ + 2ω5ϕ′3 − 2ω3ϕ′2 − 2ω (

ω2 + 1
)
ϕ′ − 2ω + 1 = 0;

30. ln
(
(ω + α)

(
ω (2x0 − ω)− x2

1

) − x2
2ω

) − 2 ln(
βx2

ω + α
+

x1

ω
− x3

)
= ϕ(ω),

ω = x0 − u, α > 0, β ≥ 0;
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ω4(ω + α)4ϕ′′ + ω4(ω + α)4ϕ′2 − 4ω3(ω + α)3(2ω + α)ϕ′ + 2ω(ω + α)β2ω2 + (ω + α)2+

+
(
ω(ω + α)2

)
eϕϕ′ − 2eϕ

(
β2ω2(7ω + 3α) + 3(2ω + α)

(
ω + α2

)2+

+(4ω + α)(ω + α)2ω2
)
= 0;

31. ln
(
ω (2x0 − ω)− x2

1 − x2
2

) − 2 ln (x3ω − x1) = ϕ(ω), ω = x0 − u;

ω2ϕ′′ + ω2ϕ′2 + 2ω
(
eϕ

(
ω2 + 1

) − 1) ϕ′ − 2 (
ω2 + 2

)
eϕ = 4;

32. ln
(

ω (2x0 − ω)− x2
1 −

ω

ω + 1
x2

2

)
− 2 ln

(
αx2

ω + 1
+

x1

ω
− x3

)
= ϕ(ω),

ω = x0 − u, α > 0;

ω4 (ω + 1)3
(
ϕ′′ + ϕ′2)+ 2 (ω + 1)ω (

eϕ
(
ω2 +

(
ω2 + 1

)3
)
− 2ω2 (ω + 1)2 − ω3

)
ϕ′+

+2eϕ
(
(ω + 1)2

(
ω4 − 3ω3 − 2ω2 − 4ω − 4) − 2α2 (2ω + 1)ω2

)
+

+2 (3ω + 2) (ω + 1)2 ω2 = 0.

The ansatzes (12)–(32) can be written in the following form: h(x, ω) = f(x)ϕ(ω) + g(x),
where h(x, ω), f(x), g(x) are given functions, ϕ(ω) is an unknown function. ω = ω(x, u) are
one-dimensional invariants of subgroups of the group P̃ (1, 4).

33. 2 ln (x0 − u) = ϕ(ω) + ln
(
x2

1 + x2
2

)
+ 2c arctg

x2

x1
, ω =

x3(
x2

1 + x2
2

)1/2
;

4
(
c2

(
ω2 + 1

)
+ 1

)
ϕ′′ − ω

(
ω2 + 1

)
ϕ′3 + 2

(
3ω2 + 2

)
ϕ′2 − 12ωϕ′ + 8

(
c2 + 1

)
= 0;

34.
x0(

x2
1 + x2

2 + u2
)1/2

= ϕ(ω), ω =
x3

x0
;

(
ϕ2 − ω2 − 1)ϕ2ϕ′′ + 2ωϕ′3 − 4ϕϕ′2 − 2ωϕ4ϕ′ + 2ϕ7 = 0;

35.
(u − x0)

α−1

(u+ x0)
α+1 = ϕ(ω), ω =

x3(
x2

0 − u2
)1/2

, α > 0;

(
α2 − 1− ω2

)
ϕ2ϕ′′ + ω

(
1− ω2

)
ϕ′3 +

(
4α2 − 8 + (

4α2 + 6
)
ω2

)
ϕϕ′2−

−2 (
α2 − 2α+ 7)ωϕ′ϕ2 − 8 (

α2 − 1)ϕ3 = 0;

36. 2α ln (x0−u) = ϕ(ω) + (1+α) ln
(
x2

1+x2
2

) − 2β arctg x2

x1
,

ω =
x3√

x2
1 + x2

2

, β ≥ 0, α2 + β2 �= 0;

4α
(
(α+ 1)2 + β2

(
ω2 + 1

))
ϕ′′ − αω

(
ω2 + 1

)
ϕ′3+

+2
(
3α(α+1)ω2 + α2 − β2 − 1)ϕ′2 + 4

(
2β

(
α+1−β2

) − 3α(α+1)2)ωϕ′+

+4α(α+ 1)
(
2(α+ 1)2 + 2β2 + 1

)
+ 2

(
β2 − α2 + 1

)
= 0;

37.
x3√

x2
0 − x2

1 − u2
= ϕ(ω), ω = 2γ ln (x0 − u)− (1 + γ) ln

(
x2

0 − x2
1 − u2

)
, γ �= 0;

2
(
γ2ϕ2 + (γ + 1)(3γ + 1)

)
ϕ′′ − 4(γ + 1) (γ2 + γ − 2)ϕ′3+

+2
(
γ2 + γ − 2)ϕϕ′2 +

(
(γ + 6)ϕ2 − 3γ − 1) ϕ′ − ϕ3 + ϕ = 0;
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38.
x3√

x2
0 − x2

1 − x2
2 − u2

= ϕ(ω),

ω = 2α ln (x0 − u)− (1 + α) ln
(
x2

0 − x2
1 − x2

2 − u2
)
, α �= 0;

4
(
α2ϕ2 + (α+ 1)(3α+ 1)

)
ϕ′′ − 8(α+ 1) (α2 + α − 3)ϕ′3+

+4
(
2α2 − 6α − 9)ϕϕ′2 + 2

(
(2α+ 9)ϕ2 − 2α − 4) ϕ′ − 3 (

ϕ3 − ϕ
)
= 0;

39.
x3

(x0 − u)2 − 4x1

= ϕ(ω),

ω = 3 ln
(
(x0 − u)2 − 4x1

)
− 2 ln

(
6 (x0 + u)− 6x1 (x0 − u) + (x0 − u)3

)
;

144
((
16ϕ2 + 1

)
eω − 1) ϕ′′ − 2592eωϕ′3 + 432eωϕϕ′2 + 9

((
16ϕ2 + 1

)
eω + 2

)
ϕ′ − 8ϕ = 0;

40. (x0 − u)2 = x2ϕ(ω) + 4x1, ω =
x3

x2
;

(
ϕ2 + 16ω2 + 16

)
ϕ′′ = 0;

u = x0 − (4x1 + c1x2 + c2x3)
1/2 , u = x0 − 2

√
x1 + i

(
x2

2 + x2
3

)1/2;

41.
(

x2
1 + x2

2

x2
3 + u

)1/2

= ϕ(ω), ω = c arctg
x2

x1
− arctg u

x3
, 0 < c ≤ 1;

(
ϕ2 + 1

) (
ϕ2 + c2

)
ϕϕ′′ − (

ϕ2 + c2 (ϕ+ 2)
)
ϕ′2 + ϕ2

(
ϕ4 − 1) = 0;

42.
(

x2
1 + x2

2

x2
3 + u

)1/2

= ϕ(ω), ω = 2α arctg
x2

x1
+ 2β arctg

u

x3
− ln (

x2
1 + x2

2

)
, α > 0, β ≥ 0;

4ϕ
(
ϕ4 +

(
α2 + β2 + 1

)
ϕ2 + α2

)
ϕ′′ − 4 (

ϕ2
(
α2 + β2 + 1

)
+ 2α+ 1

)
ϕ′2−

−4ϕϕ′ + ϕ2
(
ϕ4 − 1) = 0;

43.

(
x2

0 − x2
1 − x2

2 − x2
3 − u2

)1/2

x0 − u
= ϕ(ω), ω =

x1

x0 − u
+ ln (x0 − u) ;

ϕ
(
ϕ2 − 1) ϕ′′ +

(
3ϕ2 − 1) ϕ′2 + 5ϕϕ′ + 3ϕ2 = 0;

44. (x0 − u)2 =
(
x2

1 + x2
2

)1/2
ϕ(ω) + 4x3, ω = 4c arctg

x2

x1
+ ln

(
x2

1 + x2
2

)
, c > 0;

16
(
c2ϕ2 + 4

(
4c2 + 1

))
ϕ′′ + 8

(
4c2 + 1

)
ϕ′3 + 12ϕϕ′2 + 2

(
32 + 3ϕ2

)
ϕ′ + ϕ3 + 16ϕ = 0;

45.
x1 + x2 + x2

3

x0 − u
= ϕ(ω), ω = x0 + u+ ln (x0 − u) ;

ϕ (4 + ϕ)ϕ′′ − ϕ′3 − 2 (4 + ϕ)ϕ′2 − 4ϕϕ′ + 6ϕ = 0.

The ansatzes (33)–(45) can be written in the following form: h(x, u) = f(x)ϕ(ω) + g(x),
where h(x, u), f(x), g(x) are given functions, ϕ(ω) is an unknown function, ω = ω(x, u) are
one-dimensional invariants of subgroups of the group P̃ (1, 4).
Let us note that the equation (1) was also studied with the help of the subgroup structure

of the group P (1, 4) as well as invariants of its nonconjugate subgroups. Some of the results we
obtained were published in [13, 14].
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Nonlinear Integrable Models with Higher

d’Alembertian Operator in Any Dimension

Kazuyuki FUJII

Department of Mathematical Sciences, Yokohama City University, Yokohama, 236-0027 Japan

We consider a nonlinear CP1-model on Minkowski space of any dimension. To solve its
equations of motion is in general not easy, so we study not the full equations but subequations.
It is well known that they have rich solutions and an infinite number of conserved currents.

We extend the subequations and show that extended ones also have rich solutions and
an infinite number of conserved currents.

1 Introduction

Nonlinear sigma models play an important role in field theory. They are very interesting objects
(toy models) to study not only at the classical but also the quantum level, [1, 2].

TheCP1-model in (1+1)-dimensions is particularly well understood (Belavin–Polyakov et al).
The one in (1 + 2)-dimensions is also relatively well studied. But the CP1-model in any higher
dimensions has not been studied sufficiently because of difficulties arising from higher dimen-
sionality.

We consider the CP1-model in (1+n)-dimensions. But it is not easy to solve its equations of
motion directly, so we change our strategy. We decompose the full equations into subequations
(those determine a submodel in the terminology of [3]). By the way these equations have a long
history since [4, 5]. Smirnov and Sobolev have constructed (maybe) general solutions for them.
At the same time we can construct an infinite number of conserved currents for them. In this
sense the submodel is integrable. The construction by Smirnov and Sobolev (S–S construction
in our terminology) is clear and suggestive. Getting a hint from S–S construction we extend the
submodel stated above, [9]. For our extended submodel we can construct

(A) (maybe) general solutions,
(B) an infinite number of conserved currents

similarly to the case of submodel. That is, our extended system is also integrable.
In this talk I will discuss (A) and (B) in some detail.

2 CP1-Models in Any Dimension and Submodels

Let M1+n be a (1 + n)-dimensional Minkowski space and η = (ηµν) = diag(1,−1, . . . ,−1) its
metric. For a function

u : M1+n → C (2.1)

an action A(u) is defined as

A(u) ≡
∫

d1+nx
∂µu ∂µū

(1 + |u|2)2 . (2.2)
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This action is invariant under the transformation

u → 1
u

. (2.3)

Therefore u can be lifted from C to CP1, [6]. The equations of motion of (2.2) read
(
1 + |u|2) ∂µ∂µu − 2ū∂µu∂µu = 0. (2.4)

We want to solve (2.4) completely, but it is not easy. When n = 1 many solutions were con-
structed by Belavin and Polyakov, [1]. For n ≥ 2 much is not known about the construction of
solutions as far as we know.

Here changing the way of thinking, we try to solve not the full equations (2.4) but

∂µ∂µu = 0 and ∂µu∂µu = 0. (2.5)

Of course if u is a solution of (2.5), then u satisfies (2.4). We call (2.5) subequations of (2.4) (or
submodel of CP1-model in the terminology of [3]). (2.5) is much milder than (2.4).

Now our aim in the following is
(A) to write down all solutions of (2.5),
(B) to write down all conserved currents of (2.5).

Here a conserved current is a vector (Vµ)µ=0,...,n satisfying

∂µVµ(u, ū) = 0. (2.6)

3 Construction of Solutions and Conserved Currents

(A) has a long history [4, 5]. Now we make a short review of Smirnov–Sobolev’s construction
(S–S construction as abbreviated). For u let a0(u), a1(u), . . . , an(u) and b(u) be functions given
and we set

δ ≡
n∑

µ=0

aµ(u)xµ − b(u) (3.1)

and

aµ(u)aµ(u) ≡ a2
0(u)−

n∑
j=1

a2
j (u) = 0. (3.2)

Putting δ = 0, we solve as

δ = 0 ⇒ u = u(x0, x1, . . . , xn) (3.3)

by the inverse function theorem. Then

Proposition 3.1 ([4, 5]). u is a solution of (2.5).

Next we turn to (B). In [3, 6, 7] an infinite number of conserved currents was constructed
by the representation theory of Lie algebras (su(2) or su(1, 1)). But their results are extended
further.

Let f be a function of C2-class on C. For f̃(xµ) ≡ f(u(xµ), ū(xµ)) we set

Vµ(f̃) ≡ ∂µu
∂f

∂u
− ∂µū

∂f

∂ū
. (3.4)



118 K. Fujii

Then

Proposition 3.2 ([9]). Vµ(f̃) is a conserved current of (2.5).

From this proposition we find that (2.5) has uncountably many conserved currents (all C2-
class functions on C).

Remark 3.1. (A) and (B) seem at first sight unrelated. But the existence of an infinite num-
ber of conserved currents implies the infinite number of symmetries, therefore they give a strict
restriction on ansatz of construction of solutions. As a consequence we have only Smirnov–
Sobolev’s construction. This is our story (conjecture). We want to prove this at any cost.

4 New Models with Higher Order Derivatives

Let us extend the results in Section 2 and Section 3. For that we look over the S–S construction
again.

δ ≡
n∑

µ=0

aµ(u)xµ − b(u), (4.1)

a2
0(u)−

n∑
j=1

a2
j (u) = 0. (4.2)

Here we try to change the power in (4.2) from 2 to an arbitrary integer p (p ≥ 2)

ap
0(u)−

n∑
j=1

ap
j (u) = 0. (4.3)

Under this condition we solve (4.1) as

δ = 0 ⇒ u = u(x0, x1, . . . , xn). (4.4)

We call this an extended S–S construction.

Problem. What are differential equations which u in (4.4) satisfies?

We are considering the converse of Section 2 and Section 3. That is, first of all a “solution” is
given and next we look for a system of equations which u satisfies. But it is not easy to extend
subequations (2.5) in this fashin. Trying to transform (2.5) in an equivalent manner we reach

Lemma 4.1. (2.5) is equivalent to

✷2u ≡ ∂µ∂µu = 0 and ✷2(u2) = 0. (4.5)

This form is very clear and suggestive. We can extend (4.5) to obtain

Definition 4.1. ✷p(uk) ≡

 ∂p

∂xp
0

−
n∑

j=1

∂p

∂xp
j


 (uk) = 0 for 1 ≤ k ≤ p. (4.6)

Next let Fn be a Bell polynomial (see [9, 11] for details) and we set Fn, µ as

Fn, µ ≡: Fn

(
∂µu

∂

∂u
, ∂2

µu
∂

∂u
, · · · , ∂n

µu
∂

∂u

)
: (4.7)
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Here : : is the normal ordering (moving differentials to right end). Let F̄n, µ be the complex
conjugate of Fn, µ (u → ū). For f any Cp-class function on C we set

Vp, µ(f̃) ≡
p−1∑
k=0

(−1)k : Fp−1−k, µF̄k, µ : (f). (4.8)

For examples when p = 2 and 3

V2, µ(f̃) ≡ F1, µ(f)− F̄1, µ(f) = ∂µu
∂f

∂u
− ∂µū

∂f

∂ū
, (4.9)

V3, µ(f̃) ≡ F2, µ(f)− : F1, µF̄1, µ : (f) + F̄2, µ(f)

= ∂2
µu

∂f

∂u
+ (∂µu)2

∂2f

∂u2
− ∂µu∂µū

∂2f

∂u∂ū
+ ∂2

µū
∂f

∂ū
+ (∂µū)2

∂2f

∂ū2
.

(4.10)

Under the preparations mentioned above

Theorem 4.1 ([9, 10]). We have the following:
(A) u in (4.4) is a solution of (4.6),
(B) Vp, µ(f̃) in (4.8) is a conserved current of (4.6).

We could extend the results corresponding to p = 2 in Section 3 to ones corresponding to
any p in a complete manner.

Remark 4.1. Our extended S–S construction may give general solutions. And moreover the
statement in the comment in Section 3 may hold even in this case.
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In this paper, nonlocal symmetries are considered for some integrable equations including the
first equation of the AKNS hierarchy, the so-called breaking soliton equation, the Boussinesq
equation and the Toda equation. Besides, using invariant transformations of corresponding
spectral problems, more nonlocal symmetries can be produced from one seed symmetry.

1 Introduction

Symmetries and conservation laws for differential equations are the central themes of perpetual
interest in mathematical physics. During past thirty years, the study of symmetries has been
connected with the development of soliton theory and, in fact, it constitutes an indispensable
and important part of soliton theory.

Let us begin with the celebrated Korteweg de Vries equation

ut + 6uux + uxxx = 0, (1)

where the subscripts represent derivatives. A symmetry of the KdV equation (1) is defined as a
solution of its linearized equation

σt + 6(uσ)x + σxxx = 0. (2)

It is well known that x-translation and t-translation invariance of (1) leads to the following
symmetries: ux, ut of the KdV equation (1). In order to find more generalized symmetries, the
concepts of recursion operators or strong symmetries, and hereditary symmetries were introduced
by Olver and Fuchssteiner and used to find these symmetries [1, 2]. Furthermore, Galilean
invariance of the KdV equation (1) leads to symmetry tux − 1

6 , which may be viewed as the
origin of active research on the time-dependent symmetries and the corresponding Lie algebraic
structures for nonlinear equations; and these time-dependent symmetries are connected with
nonisospectral problems (see, e.g. [3–6]). Apart from the symmetries mentioned above, there
exist so-called nonlocal symmetries expressed by spectral functions, e.g., σ = (φ2)x is a symmetry
of the KdV equation (1), where φ is a spectral function of Lax pair

φxx + uφ = λφ, (3)

φt = uxφ − (2u + 4λ)φx. (4)

To search for nonlocal symmetries is an interesting topic. On one hand, these nonlocal symme-
tries enlarge class of symmetries. Besides, nonlocal symmetries are connected with integrable
models. Such an example is the nonlocal symmetry σ = (φ2)x generates well-known sinh-Gordon
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equation and Liouville equation [7]. Further more examples can be found in [8–10]. A natu-
ral problem arises now: how to find nonlocal symmetries? An effective method to find nonlocal
symmetries seems to find inverse of the corresponding recursion operators (see [11]). However, to
find inverse of recursion operators is a difficult problem by itself. Recently one of authors (Lou)
re-obtained the nonlocal symmetry σ = (φ2)x from the conformal invariance of the Schwartz
form of the KdV equation (1) [12]. It is an interesting result. As explained below, this nonlocal
symmetry is basic one of the KdV equation, from which all the known nonlocal symmetries
can be obtained. In fact, we know from [12] that dn

dλn (φ2)x is also a symmetry and inverse
recursion operator of the KdV equation (1) appears naturally when dn

dλn (φ2)x is rewritten as a
single multiplication form. Secondly, the other two nonlocal seed symmetries ∂xφ2∂−1

x φ−2 and
∂xφ2∂−1

x φ−2∂−1
x φ−2 are easily obtained from (φ2)x by considering the fact that Lax pair (3), (4)

of the KdV equation is invariant under transformation φ −→ φ∂−1
x φ−2 and (3), (4) are linear

differential equations with respect to φ. That means all the known nonlocal symmetries of the
KdV equation in literature can be obtained from one seed symmetry (φ2)x.

In this paper, we intend to search for nonlocal seed symmetries of some integrable models. It
is noticed that recently there have been active research on nonlinearization of spectral problems
and generation of finite dimensional integrable systems (see, e.g. [13]). In literature, there are
two cases to be considered: Bargmann and Neumann constraints. For the KdV equation, it
is obvious that Bargmann constraint is equivalent to symmetry constraint ux = (φ2)x. With
this observation in mind, we are going to derive nonlocal symmetries along this line. Besides,
using invariance of spectral problem, more nonlocal symmetries can be produced from one seed
symmetry.

2 The AKNS case

The AKNS hierarchy is(
q
r

)
t

= LnK0 = Ln

( −iq
ir

)
, (5)

where

L =

( −D + 2qD−1r 2qD−1q

−2rD−1r D − 2rD−1q

)

with D = ∂
∂x , D−1 =

∫ x

−∞
dx. In what follows, we only consider n = 2 case for the sake of

convenience in calculation. In this case, (5) becomes

(
q
r

)
t

= i

(
−qxx + 2q2r

rxx − 2r2q

)
, i =

√−1. (6)

Its Lax pair is [14](
φ1x

φ2x

)
=

( −iλ q
r iλ

) (
φ1

φ2

)
, (7)

(
φ1

φ2

)
t

=

(
2iλ2 + iqr −2qλ − iqx

−2rλ + irx −2iλ2 − iqr

) (
φ1

φ2

)
. (8)



122 X.-B. Hu and S.-Y. Lou

It is known that the Bargmann constraint is [15]

(
q
r

)
= c0

(
φ2

1

−φ2
2

)

and K0 =
( −iq

ir

)
is a symmetry of (6). Thus σ =

(
φ2

1

φ2
2

)
is possible to become a symmetry

of (6). Indeed, a direct calculation shows that σ =
(

φ2
1

φ2
2

)
is a symmetry (see also [16]). In

order to obtain more seed symmetries, we now consider the invariance property of (7) and (8).
To this end, we have

Proposition 1. Lax pair (7) and (8) is invariant under transformation

φ1 −→ F (t)φ1 + (α − 1)
1
φ2

+ φ1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)
,

φ2 −→ F (t)φ2 + α
1
φ1

+ φ2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)
,

where α is an arbitrary constant and F (t) is a function of t defined by

F (t) = −
∫ t [

α
iqx + 2λq

φ2
1

+ (1 − α)
irx − 2λr

φ2
2

]
x=x0

dt.

Proof: direct calculation.

Proposition 2. Suppose that

(
φ

(i)
1

φ
(i)
2

)
(i = 1, 2) is a solution of (7) and (8). Then

(
φ

(1)
1 φ

(2)
1

φ
(1)
2 φ

(2)
2

)

is a symmetry of (6).

Using Proposition 1 and 2, we know that




F (t)φ2
1 + (α − 1)

φ1

φ2
+ φ2

1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)

F (t)φ2
2 + α

φ2

φ1
+ φ2

2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)



and




[
F (t)φ1 + (α − 1)

1
φ2

+ φ1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)]2

[
F (t)φ2 + α

1
φ1

+ φ2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)]2




are symmetries of (6). Furthermore, in [17], the inverse of recursion operator L was obtained.
Thus more symmetries can be obtained from seed symmetries and inverse recursion operator L−1.
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3 The breaking soliton equation

The breaking soliton equation under consideration is

uxt = 4uxuxy + 2uyuxx − uxxxy (9)

which was first introduced by Calogero and Degasperis [18]. Set v = ux, then (9) can be
written as

vt = 4vvy + 2(∂−1
x vy)vx − vxxy. (10)

Its bi-Hamiltonian structure and the Lax pair equations with non-isospectral problem have been
discussed in [19]. In [10], one of authors (Lou) found a nonlocal symmetry of (9)

σ = 2φxφ(1 + ∂−1
x φ−3φy) + φ−1φy

with

−φxx + vφ = 0, (11)

φt = −vyφ + 2φx∂−1
x vy. (12)

It is easily verified that Lax pair (11), (12) is invariant under the transformation φ −→ φ∂−1
x

1
φ2 .

Besides, we have

Proposition 3. Suppose φ1 and φ2 are two solutions of (11), (12). Then

σ(ε, δ) = 2(εφ1 + δφ2)x(εφ1 + δφ2)
(
1 + ∂−1

x (εφ1 + δφ2)−3(εφ1 + δφ2)y

)
+ (εφ1 + δφ2)−1(εφ1 + δφ2)y

and ∂m+n

∂εm∂δn σ(ε, δ) are symmetries of (10) (here ε, δ are arbitrary constants).

Using these results, many nonlocal symmetries can be obtained.

4 The Boussinesq equation

The Boussinesq equation under consideration is [20]

utt +
(
u2

)
xx

+
1
3
uxxxx = 0. (13)

The corresponding Lax pair is

φxxx +
3
2
uφx +

(
3
4
ux − 3

4
∂−1

x ut

)
φ = 0, (14)

φt = −φxx − uφ (15)

and its adjoint version is

φ∗
xxx +

3
2
uφ∗

x +
(

3
4
ux +

3
4
∂−1

x ut

)
φ∗ = 0, (16)

φ∗
t = φ∗

xx + uφ∗. (17)
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Just as the KP case [12, 21], it is easily verified that (φφ∗)x is a symmetry of (13). In
the following, we want to give more symmetries of (13) by considering invariance property
of (14), (15) and (16), (17). To this end, we obtain

Proposition 4. Suppose φ1 and φ2 are two linearly independent spectral functions of (14), (15)
(or (16), (17)) corresponding to u. Then

Φ = ψ1(t)φ1 − ψ2(t)φ2 + φ1

∫ x

x0

φ2

W 2(φ1, φ2)
dx − φ2

∫ x

x0

φ1

W 2(φ1, φ2)
dx

is also a spectral function of (14), (15) (or (16), (17)) corresponding to u, where

W (φ1, φ2) ≡ φ1xφ2 − φ1φ2x, (18)

ψ1(t) =
∫ t [

φ2x

W 2(φ1, φ2)

]
x=x0

dt, (19)

ψ2(t) =
∫ t [

φ1x

W 2(φ1, φ2)

]
x=x0

dt. (20)

Proof: direct calculation.

From Proposition 4, we know

σ =
[(

c0φ1 + c1φ2 + c2ψ1(t)φ1 − c2ψ2(t)φ2 + c2φ1

∫ x

x0

φ2

W 2(φ1, φ2)
dx

−c2φ2

∫ x

x0

φ1

W 2(φ1, φ2)
dx

)
(c3φ

∗
1 + c4φ

∗
2 + c5ψ

∗
1(t)φ∗

1 − c5ψ
∗
2(t)φ∗

2

+c5φ
∗
1

∫ x

x∗
0

φ∗
2

W 2(φ∗
1, φ

∗
2)

dx − c5φ
∗
2

∫ x

x∗
0

φ∗
1

W 2(φ∗
1, φ

∗
2)

dx

)]
x

(21)

is also a symmetry of (13), where φi and φ∗
i (i = 1, 2) are spectral functions of (14), (15) and

(16), (17) respectively, ψi(t) (i = 1, 2) is defined by (19), (20) and

ψ∗
1(t) =

∫ t [
φ∗

2x

W 2(φ∗
1, φ

∗
2)

]
x=x∗

0

dt, (22)

ψ∗
2(t) =

∫ t [
φ∗

1x

W 2(φ∗
1, φ

∗
2)

]
x=x∗

0

dt. (23)

5 The Toda equation

The Toda equation under consideration is [22]

d2

dt2
ln v(n) = v(n − 1) − 2v(n) + v(n + 1) (24)

or equivalently

dv(n)
dt

= v(n)∂−1
t [v(n − 1) − 2v(n) + v(n + 1)] (25)
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which may be rewritten in a coupled form
dp(n)

dt
= v(n) − v(n + 1), (26)

dv(n)
dt

= v(n)(p(n − 1) − p(n)). (27)

It is known that (25) or (26), (27) has a Lax pair

yn+1 + p(n)yn + v(n)yn−1 = λyn, (28)

ynt = v(n)yn−1 − 1
2
λyn (29)

and its adjoint version is

y∗n−1 + p(n)y∗n + v(n + 1)y∗n+1 = λy∗n, (30)

−y∗nt = v(n + 1)y∗n+1 −
1
2
λy∗n. (31)

Here the adjoint operator of a difference operator is defined by(
a(n)ek∂n

)∗
= e−k∂na(n).

A symmetry of the Toda equation (25) is defined as a solution of its linearized equation
dσ(n)

dt
= σ(n)∂−1

t [v(n− 1) − 2v(n) + v(n + 1)] + v(n)∂−1
t [σ(n− 1) − 2σ(n) + σ(n + 1)].(32)

Just as the two-dimensional Toda equation [23], it is easily verified that σ(n) = (yny∗n−1)t

is a symmetry of the Toda equation (25). To obtain more seed symmetries,we now consider
invariance property of (28), (29) and (30), (31). We obtain

Proposition 5. Suppose yn is a spectral function of (28), (29) and lim
n→−∞ p(n) = 0. Then

ȳn = yn

n∑
k=−∞

k−1∏
i=−∞

v(i)

ykyk−1

is also a spectral function of (28), (29).

Proof: direct calculation.
Similarly, we have

Proposition 6. Suppose y∗n is a spectral function of (30), (31) and lim
n→∞ p(n) = 0. Then

ȳ∗n = y∗n
∞∑

k=n

∞∏
i=k+2

v(i)

y∗ky
∗
k+1

is also a spectral function of (30), (31).

From Proposition 5 and 6, we know



c1yn + c2yn

n∑
k=−∞

k−1∏
i=−∞

v(i)

ykyk−1





c3y

∗
n−1 + c4y

∗
n−1

∞∑
k=n−1

∞∏
i=k+2

v(i)

y∗ky
∗
k+1







t

is also a symmetry of (25), where yn and y∗n are spectral functions of (28), (29) and (30), (31)
respectively and ci is an arbitrary constant (i = 1, 2, 3, 4).
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6 Summary

In this paper, nonlocal symmetries are considered for four integrable equations as examples
which include the first equation of the AKNS hierarchy, the so-called breaking soliton equation,
the Boussinesq equation and the Toda equation. Besides, using invariance properties of corre-
sponding spectral problems under suitable transformations, more nonlocal symmetries can be
produced from one seed symmetry.
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Oscillation of Solutions of Ordinary Differential

Equations Systems Generated by Finite-Dimensional

Group Algebra

Lyudmyla V. KHOMCHENKO

Institute of Mathematics of the National Academy of Sciences of Ukraine,
3 Tereshchenkivs’ka Str., Kyiv, Ukraine

The class of nonlinear second order systems having oscillation solutions has been described.
Let us take note that periodic solution is particular case of oscillation solution. The algorithm
of construction of a reducible transformation transforming initial system to system generated
by finite-dimensional group algebra has been developed. It is important that initial systems
can be essentially nonlinear. The class of relaxation oscillations has been reduced to the
considered case.

Among the variety of second order systems is of interest to select systems in which periodic
or “similar” to it change of system state almost periodic, recurrent or oscillatory can take place.

Consider a nonlinear autooscillatory system of differential equations with one degree of free-
dom {

ẋ = f1(x, y),
ẏ = f2(x, y),

(1)

where (x, y) ∈ R2, the overdot in (1) means derivative “d/dt” with respect to t ∈ [0,+∞),
functions fi(x, y), i = 1, 2 are arbitrary analytical functions in some open domain D of plane
(x, y) that satisfy Lipschitz condition in any bounded closed region that is subset of D.

The mathematical model of autooscillatory system is essentially nonlinear. Restriction of
amplitude of autooscillations takes place in autooscillatory system due to its nonlinearity. The
form of them can be diverse including nonusual. Among similar class of nonlinear systems, the
relaxation systems, are of special class{

εẋ = f1(x, y),
ẏ = f2(x, y),

0 < ε � 1,

where oscillations are very far from harmonic. The construction of approximative analytical
expressions for them cannot be obtained within the limits of classical methods of perturbation
theory and requires special methods. This problem was solved for indicated class of systems.

Suppose that system (1) has integral in the form of curve

F (x, y) = C, 0 ≤ C ≤ C∗, (2)

that satisfies the following conditions:

1. Curve (2) is sectionally smooth;

2. The curve surrounding a system’s state of equilibrium (x0, y0) is closed;

3. Curve (2) restricts some simply connected domain D∗ that is subset of determination
region of system (1) D∗ ⊆ D;
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4. Curve (2) does not have points of self-intersection that means that for given implicit
function F (x, y) = C the following condition takes place:

∆ =
(
∂2F (x, y)

∂x2

)
(0,0)

·
(
∂2F (x, y)

∂y2

)
(0,0)

−
(
∂2F (x, y)
∂x∂y

)2

(0,0)

≥ 0. (3)

Theorem 1. If an autooscillatory nonlinear system with one power of freedom (1) has an
integral (2) in the form of sectionally smooth closed curve for which the conditions 1–4 are
satisfied then system (1) has a restricted and oscillatory solution

u =
m∑

i=1

Ai

∑
j = 2p

p = 0, 1, . . . , [ i
2
]

Cj
i · (−1)

j
2 · cosi−j ϕ · sinj ϕ,

v =
m∑

i=1

Ai

∑
j = 2p + 1

p = 0, 1, . . . , [ i−1
2

]

Cj
i · (−1)

j−1
2 · cosi−j ϕ · sinj ϕ.

And, vice versa, a restricted and oscillatory solution of system (1) corresponds to a phase
trajectory in the form of sectionally smooth closed curve F (x, y) = C that does not have the
points of self-intersection.

Represent system (1) in complex plane by means of the change of variables



x =
1
2
(w + w),

y = − i

2
(w − w),

(4)

where w = u+ iv, w = u− iv.
In view of special properties of the change the system (1) may be rewriten as

{
u̇ = f1(u, v),
v̇ = f2(u, v),

(5)

where u+ iv = w and integral (2) in complex variables shall respectively have the form of

F (u, v) = C, u+ iv = w, (6)

where sectionally smooth closed curve (6) will restrict respective one-connected domain Dw of
complex plane w.

Theorem 2 (approximative transformation of nonlinear system). Suppose that au-
tooscillatory nonlinear system (5) where functions fi(u, v), i = 1, 2 are analytical in some do-
main D of complex plane w has an integral (6) in the form of sectionally smooth closed curve
that satisfies conditions 1–4.

By the method of trigonometric interpolation we construct the power function mapping unit
circle |W | = 1 on curve the (6) to some fixed value of parameter C

w =
m∑

n=1

AnW
n, w = u+ iv, W = U + iV, m → ∞. (7)
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The inverse function

W = U + iV = G(w) =
√
c

m∑
n=1

Bnw
n (8)

transforms integral (6) to the canonical form

WW = C, U2 + V 2 = C. (9)

Then transformation (8) reduces system (5) to a system generated by finite-dimensional group
algebra so(2)

{
U̇ = −α(U, V )V,
V̇ = α(U, V )U.

(10)

Remark 1. The system (10) has an oscillation solution
{

U = ρ cosϕ(t),
V = ρ sinϕ(t),

(11)

where the functions ϕ(t) and α(U, V ) satisfy differential equation for phase ϕ(t) and amplitude ρ
of oscillations

dϕ

dt
= α(ρ, ϕ). (12)

Thus we determine a transformation of coordinates in form of power series for receiving phase
trajectory of system (1) in the form of a family of concentric circles with centre in the origin.
But a representative point moves along one of phase trajectory with variable angular velocity
dϕ
dt = var. Remark that in particular case with α = 1 the point moves on the circle uniformly.
In this case we have a harmonic solution{

U = A cos(t+ φ),
V = A sin(t+ φ),

where A is the amplitude of oscillations and φ is the phase of oscillations.

Remark 2. The solution (11) is periodic if function ϕ(t) is periodic or ϕ(t) = t.

The Riemannian theorem, the theorem of conformity of domain boundaries at one-to-one
conformal mapping of domains and Christoffel–Schwarz integral [5] realizing mapping of unit
circle |W | ≤ 1 on internal region of polygon are theoretical base for transformation (7). The
constants of integral will be unit circle points which correspond to vertices of a polygon when
mapping.

For numerical solution we use of stated problem Filchakov method of trigonometric inter-
polation of conformal mapping of domains. This method allows to obtain with help of simple
formulas any given accuracy of construction of function mapping unit circle on internal region
of any previously given simply connected and one-sheet domain Dw restricted by curve (6).

It is of great importance that the method of trigonometric interpolation does not give any
restrictions on the manner of setting of contour what means that curve (6) can be given analy-
tically, graphically or tabular, only by a discrete series of points.

Remark 3. Taking into consideration that in power series (8) the coefficients are imaginary

Bn = B(1)
n + iB(2)

n , w = u+ iv,
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and using the Newton binomial formula it is possible to determine real and imaginary parts for
the transformation W = G(w) :

U =
√
c

m∑
n=1

B(1)
n

∑
k = 2l

l = 0, 1, . . . ,
[

n
2

]
Ck

n(−1)
k
2 un−kvk −√

c
m∑

n=1

B(2)
n

∑
k = 2l + 1

l = 0, 1, . . . ,
[

n−1
2

]
Ck

n(−1)
k−1
2 un−kvk.

V =
√
c

m∑
n=1

B(1)
n

∑
k = 2l + 1

l = 0, 1, . . . ,
[

n−1
2

]
Ck

n(−1)
k−1
2 un−kvk +

√
c

m∑
n=1

B(2)
n

∑
k = 2l

l = 0, 1, . . . ,
[

n
2

]
Ck

n(−1)
k
2 un−kvk.

Similar problem for analysis of autonomous second order systems that are closed to nonlinear
conservative is solved in [4]. The main result of this paper is a considerable extension of the
class of studied systems was without essential restrictions for the functions f1(x, y), f2(x, y).
Moreover there is a possibility of generalization of theory in case n > 2.
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The symmetries for a quasilinear system of first order partial differential equations are de-
termined. The transformation to a system of exterior differential equations is used. Is shown
that the use of this method allows to simplify a problem of defining equations determination.

1 Introduction

Most calculations of symmetries of differential equations are done with the classical L.V. Ovsyan-
nikov method [1]. In 1965 K.P. Surovikhin published a paper [2], in which the differential forms
were applied for searching symmetries. In the K.P. Surovikhin paper the system of hyperbolic
type equations was considered, and the canonization method for finding symmetries of a exterior
differential equations system was applied. In 1971 F.B. Estabrook and B.K. Harrison published
a paper [3] in which the Lie derivatives were used for finding symmetries of the exterior differen-
tial equations system. This method is easier and universal compared to a canonization method.
This method has also certain advantages compared to the L.V. Ovsyannikov method.
However, as it was noted by B.K. Harrison [4], this method was not used widely in the

literature. The author also developed a method for finding the symmetries of exterior differential
equations with use of the Lie derivatives [5] (the author did not know about the F.B. Estabrook
and B.K. Harrison method). In the present paper this method is applied to finding symmetries
of quasilinear partial differential equations of the first order. The advantages of this method on
a comparison with the L.V. Ovsyannikov method are considered.

2 System of exterior differential equations

A quasilinear system of the first order partial differential equations is considered as a submainfold
(surface) Σ in 1-jets space J1(π) of a bundle π : E −→ M local cuts [6]. This submainfold is
determined by the system of equations

F k
(
xi, uj , pj

i

)
= 0, (1)

where xi ∈ M ⊂ Rn, uj ∈ U ⊂ Rm, pj
i ∈ J1(π), E =M ×U . Thus in the space J1(π) there is a

Cartan distribution C, defined by Cartan 1-forms

Ωj = duj −
n∑

i=1

pj
idx

i. (2)
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The surface Σ is integral variety Cartan’s distribution. Therefore together with (1) should be
fulfilled

Ωj = 0. (3)

Thus, a cut u : M −→ E is a solution of the system (1) if the relations (1), (3) are fulfilled.
We shall designate system of relations (1), (3) as CΣ.
For the quasilinear system of equations (1), we have

F k = ckji(x, u)p
j
i + ck0(x, u), (4)

where ckji(x, u), c
k
0(x, u) are continuous functions.

We can obtained now a system of exterior differential equations. For this purpose we shall
multiply each equation of the system (1) and the base volume M

ωk
F = F kdx1 ∧ . . . ∧ dxn. (5)

From Cartan 1-forms we can obtain the n-forms

Ωj
i = Ω

j ∧ (dx1 ∧ . . . ∧ dxn)i = duj ∧ (dx1 ∧ . . . ∧ dxn)i + pj
i (−1)idx1 ∧ . . . ∧ dxn, (6)

where (dx1 ∧ . . . ∧ dxn)i = dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

The system of exterior differential equations Λ(Σ) is obtained by the following method

ωk = ωk
F − (−1)ickjiΩj

i = 0. (7)

After substitution (5), (6) we have

ωk = −(−1)ickji(x, u)duj ∧ (dx1 ∧ . . . ∧ dxn)i + ck0(x, u)dx
1 ∧ . . . ∧ dxn. (8)

Let us note, that the system Λ(Σ) on the space E is determined.
Thus initial system of equations CΣ, defined as the surface Σ with Cartan distribution C,

appropriated by the system of the exterior differential equations Λ(CΣ)

Ωj = 0, ωk = 0. (9)

From Ωj = 0 and ωk = 0 it follows that F k = 0. Hence the systems CΣ and Λ(CΣ) are
equivalent and any integrated variety CΣ is an integrated variety for Λ(CΣ) and vice versa.

3 About symmetries for CΣ and Λ(CΣ)

Let us consider now a problem of symmetries for CΣ and Λ(CΣ).
According to [1] and [6], the classical infinitesimal symmetry of the equations CΣ is Lie vector

field X, such that

X(Ωk) = λjΩj , (10)

X(F k) = αjF j . (11)

Here λj , αj are some functions, and X(Ωk) is determined by the Lie derivative

X(Ωk) = d(X�Ωk) +X�d(Ωk),
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where � is an interior product. The Lie vector field X belongs to a space, tangent to J1(π), and
X is a lift of a vector field X, tangent to a space of a bundle E

X = X +X(1), (12)

where

X = ξi(x, u)
∂

∂xi
+ φj(x, u)

∂

∂uj
, X(1) = ζj

i (x, u, p)
∂

∂pj
i

, (13)

ξi, φj , ζj
i are some functions. We shall designate the Lie algebra of vector fields X as sym(Σ).

Theorem. For point infinitesimal symmetries of systems CΣ and Λ(CΣ) the relation is fulfilled

sym(Σ) = cosym(Σ).

Proof. The vector field X of a point symmetry is uniquely determined by the Lie vector field
X. Therefore it is enough to show that any symmetry of a system CΣ is a symmetry of a system
Λ(CΣ) and vice versa.
Let at first X is infinitesimal symmetry CΣ, i.e.,

X(F k) |CΣ= (X +X(1))(F k) |CΣ= 0. (14)

Let us show, that

X(ωk) |Λ(CΣ)= X(ωk) |Λ(Σ)= 0. (15)

Taking into account (6) and (10), we have

X(Ωk
i ) |Λ(CΣ)= [λ

jΩj ∧ (dx1 ∧ . . . ∧ dxn)i + γlΩk ∧ (dx1 ∧ . . . ∧ dxn)l] |Λ(CΣ)= 0, (16)

where γ is some function. Taking into account (5) and (11), we have

X(ωk
F ) = X(F k)(dx1 ∧ . . . ∧ dxn) + F kX(dx1 ∧ . . . ∧ dxn)

= αjF j(dx1 ∧ . . . ∧ dxn) + βF k(dx1 ∧ . . . ∧ dxn) = (αjωj
F + βωk

F ),

and, thus

X(ωk
F ) = µjωj

F ,

where µj , β are some functions. Hence, taking into account (7) and (17)

X(ωk) |Λ(CΣ)= [X(ω
k
F )− (−1)iX(ckjiΩj

i )] |Λ(CΣ)= µjωj
F |Λ(CΣ)= 0.

As the forms ωk are defined in coordinates of space E, then X(1)(ωk) = 0. Therefore

X(ωk) |Λ(CΣ)= 0.

We can write the latter equality as

X(ωk) = ρk
jω

j + σk
jΩ

j ,

where ρk
j , σ

k
j are some functions. As the forms ω

j and vector field X are defined on a space of
a bundle E, then, σk

j ≡ 0 and, therefore, (16) is fulfilled.
Let now X be an infinitesimal symmetry of Λ(Σ), i.e., (16) is fulfilled. Let us define the

vector field X = X +X(1) so, that it is a Lie field (saves the Cartan distribution). Let us show
that (15) also is fulfilled.
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Taking into account (17) we have

X(ωk) |Λ(Σ)= X(ωk) |Λ(CΣ)= X(ωk) |CΣ=

= X(ωk) |CΣ= [X(ωk
F )− (−1)iX(ckjiΩj

i )] |CΣ= [X(ωk
F )] |CΣ= 0

and we can write

X(ωk
F ) = µjωj

F .

From here follows, that

X(F k) = αjF j

and consequently (15) is fulfilled. The theorem is proved.
So the problem of searching infinitesimal symmetries for the given class of equations system

CΣ is equivalent to a problem of searching infinitesimal symmetries for the system Λ(CΣ), to
be exact systems Λ(Σ). Thus infinitesimal symmetries are vector fields, tangents to base of
bundle E, and not to a space of a bundle J1(π). As it is shown below, such lowering of a vector
field space dimensionality reduces to some decreasing of difficulty in construction of the defining
equations system.

4 Example

As example, let us consider a system of two equations

∂uk

∂x1
+ ckj

(
x1, x2, u1, u2

) ∂uj

∂x2
+ ck0

(
x1, x2, u1, u2

)
= 0, (17)

where i, j, k = 1, 2.
The system of the exterior differential equations Λ(Σ) will look like

ωk = duk ∧ dx2 − ckjdu
j ∧ dx1 + ck0dx

1 ∧ dx2 = 0. (18)

Infinitesimal symmetry of a system Λ(Σ) will be a vector field

X = ξ1
(
x1, x2, u1, u2

) ∂

∂x1
+ ξ2

(
x1, x2, u1, u2

) ∂

∂x2

+ φ1
(
x1, x2, u1, u2

) ∂

∂u1
+ φ2

(
x1, x2, u1, u2

) ∂

∂u2
.

The defining equations for cosym(Σ) are obtained from a condition (16). We have

X(ωk) = dφk ∧ dx2 + duk ∧ dξ2 − ckj
(
dφj ∧ dx1 + duj ∧ dξ1

)
−X�d(ckj )duj ∧ dx1 + ck0

(
dξ1 ∧ dx2 + dx1 ∧ dξ2

)
+X�d(ck0)dx1 ∧ dx2.

(19)

The system of defining equations for functions ξi, φj is obtained by a substitution (20) to (16).
The decomposition is carried on under the forms: du1 ∧ du2, du1 ∧ dx1, du2 ∧ dx1, dx1 ∧ dx2.
We have after decomposition from the first equation of the system (19)

∂ξ2

∂u2
− c11

∂ξ1

∂u2
+ c12

∂ξ1

∂u1
= 0,
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c12
∂φ2

∂u1
− c21

∂φ1

∂u2
− ∂ξ2

∂x1
+ c11

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ ξi ∂c

1
1

∂xi
+ φj ∂c

1
1

∂uj

+
[(
c11

)2 + c12c
2
1

] ∂ξ1

∂x2
+ c10

(
c11
∂ξ1

∂u1
+ c21

∂ξ1

∂u2
− ∂ξ2

∂u1

)
= 0,

c12

(
∂φ2

∂u2
− ∂φ1

∂u1

)
− (

c22 − c11
) ∂φ1

∂u2
+ c12

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ c12

(
c11 + c22

) ∂ξ1

∂x2

+ξi ∂c
1
2

∂xi
+ φj ∂c

1
2

∂uj
++c10

(
c12
∂ξ1

∂u1
+ c22

∂ξ1

∂u2
− ∂ξ2

∂u2

)
= 0,

∂φ1

∂x1
+ c1j

∂φj

∂x2
+ ξi ∂c

1
0

∂xi
+ φj ∂c

1
0

∂uj
+ c10

(
∂ξ1

∂x1
+

∂ξ2

∂x2
− c10

∂ξ1

∂u1
− c20

∂ξ1

∂u2

)
= 0.

From the second equation we have

∂ξ2

∂u1
− c21

∂ξ1

∂u2
+ c22

∂ξ1

∂u1
= 0,

c21

(
∂φ2

∂u2
− ∂φ1

∂u1

)
− (

c11 − c22
) ∂φ2

∂u1
+ c21

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ c21

(
c11 + c22

) ∂ξ1

∂x2

+ξi ∂c
2
1

∂xi
+ φj ∂c

2
1

∂uj
+ c20

(
c11
∂ξ1

∂u1
+ c21

∂ξ1

∂u2
− ∂ξ2

∂u1

)
= 0,

−c12
∂φ2

∂u1
+ c21

∂φ1

∂u2
− ∂ξ2

∂x1
+ c22

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ ξi ∂c

2
2

∂xi
+ φj ∂c

2
2

∂uj

+
[(
c22

)2 + c12c
2
1

] ∂ξ1

∂x2
+ c20

(
c12
∂ξ1

∂u1
+ c22

∂ξ1

∂u2
− ∂ξ2

∂u2

)
= 0,

∂φ2

∂x1
+ c2j

∂φj

∂x2
+ ξi ∂c

2
0

∂xi
+ φj ∂c

2
0

∂uj
+ c20

(
∂ξ1

∂x1
+

∂ξ2

∂x2
− c10

∂ξ1

∂u1
− c20

∂ξ1

∂u2

)
= 0.

Thus we have obtained a system of defining equations for determination of symmetries of the
system (19). The system of defining equations is over-determined. The number Nd of the
defining system equations is determined by expression Nd = mNc − Nl. Here m = 2 is the
number of the initial system equations, Nc is number of decomposition conditions, Nl is number
of linearly dependent equations for the defining equations system. For the considered system
Nc = 4 and Nl = 0 (all equations of a defining system are linearly independent). Therefore we
have Nd = 8.
If the system of defining equations obtained by L.V. Ovsjannikov’s technique [2], then the

number of decomposition conditions Nc = 6 (decomposition under p1
1, p

2
1,

(
p1
1

)2,
(
p2
1

)2, p1
1p

2
1 and

under absolute terms). Therefore 2Nc = 12. Thus the general number of the equations will be
also eight, as Nl = 4 (four equations will linearly depend on other equations).

5 About number of decomposition conditions

In more common case the number of decomposition conditions Nc for the exterior differential
equations system corresponding quasilinear first order system is determined by expression

Nc = Cm
m+n −m,
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where m and n are numbers of dependent and independent variables, Cm
m+n is the number of

combinations from n+m elements under n,

Cn
m+n =

(n+m)!
n!m!

.

Thus, the transformation to a system of the exterior differential equations (for a considered
class of the equations) allows to lower the number of decomposition conditions for searching
of symmetries and to eliminate from consideration linearly dependent equations of a defining
system. In some cases it reduces complexity at deriving of the defining equations system.

Acknowledgments

The author expresses thanks to Professors K.G. Garaev and V.G. Pavlov for attention to work.
Author also expresses thanks to Professor K.B. Harrison for discussions on the differential forms
use during the Third International Conference “Symmetry in Nonlinear Mathematical Physics”.

References
[1] Ovsyannikov L.V., The Group Analysis of the Differential Equations, Moscow, Nauka, 1978.

[2] Surovikhin K.P., The Cartan exterior forms and finding of group supposed given system of equations,Moscow
University Bulletin, Mathematics and Mechanics, 1965, N 6, 70–81.

[3] Harrison B.K. and Estabrook F.B., Geometric approach to invariance groups and solution of partial differ-
ential systems, J. Math. Phys., 1971, V.12, N 4, 653–666.

[4] Harrison B.K., Differential form symmetry analisis of two equations cited by Fushchych, Proc. Second
International Conference “Symmetry in Nonlinear Mathematical Physics”, Kyiv, 1997, V.1, 21–33.

[5] Kusyumov A.N., Defining equations for infinitesimal symmetryes of one-class exterior differential equations
systems, Kazan State Technical University Bulletin, 1999, N 1, 27–30.

[6] Vinogradov A.M. and Krasil’shchik I.S., Symmetry and Conservation Laws of the Mathematical Physics
Equations, Moscow, Factorial, 1997.



Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 137–140.

Construction of Invariants

for a System of Differential Equations

in the (n + 2m)-Dimensional Space

Anna KUZMENKO

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine
E-mail: kuz@imath.kiev.ua

In this paper an algorithm of construction of infinitesimal operator and invariants for
(n + 2m)-dimensional space is represented.

Let us consider the system of differential equations of the following form:

dx

dt
= −λy + X(x, y, z1, . . . , zn),

dy

dt
= λx + Y (x, y, z1, . . . , zn),

dzj

dt
=

n∑
i=1

rjizi + Zj(x, y, z1, . . . , zn), j = 1, . . . , n,

(1)

where x, y ∈ R
m. Hence, the system of differential equations (1) is in (n + 2m)-dimensional

space.
V.I. Zubov [1] suggested the following theorem:

Theorem. A necessary and sufficient condition for the family (1) to have a family of limited
solutions in a neighborhood of point (0, . . . , 0, zo

1, . . . , z
o
n), is the existence of m holomorphic

integrals of (1) the form:

c2s = x2
s + y2

s + Ψs(x, y, z1, . . . , zn).

By substitution ys = ρs cosϕs, xs = ρs sinϕs, s = 1, . . . ,m we transform (1) to the form:

dρs

dt
= Rs,

dϕs

dt
= λs + Θs, s = 1, . . . ,m,

dzj

dt
=

n∑
i=1

rjizi + Pj(ρ1 . . . , ρm, ϕ1, . . . , ϕm, z1, . . . , zn), j = 1, . . . , n,

(2)

where

Rs = cosϕsXs + sinϕsYs, Θs =
cosϕsYs − sinϕsXs

ρs
,

Pj(ρ1 . . . , ρm, ϕ1, . . . , ϕm, z1, . . . , zn)

= Zj(ρ1 cosϕ1, . . . , ρm cosϕm, ρ1 sinϕ1, . . . , ρm sinϕm, z1, . . . , zn).



138 A. Kuzmenko

We will seek a solution in the following form of rows:

ρs = cs +
∞∑

k=2

r(k)
s (ϕ1, . . . , ϕm, c1, . . . , cm),

zj =
∞∑

k=2

z(k)
s (ϕ1, . . . , ϕm, c1, . . . , cm).

By making an appropriate substitution into (2) and stating the coefficients at equal degrees
as equal, we receive functions r

(k)
s , z

(k)
j . If all such functions are periodical with respect to

ϕ1, . . . , ϕm and at sufficiently small ‖cs‖, we obtain the following family of solutions:

ρs = cs + Fs(z1, . . . , zn, ϕ1, . . . , ϕm, c1, . . . , cm), s = 1, . . . ,m.

However, in order to find ρs, an infinite number of differential equation needs to be solved.
To solve this problem, we will use invariants with respect to transformations of SO(2). If

we obtain the whole system of invariants, their number will define the number of equations,
which have to be solved in order to find a solution to the original problem. In a particular case,
when (1) is in the form:

dxs

dt
= −λsys + Xs(xs, ys, z1, . . . , zn),

dys

dt
= λsxs + Ys(xs, ys, z1, . . . , zn), s = 1, . . . ,m,

dzj

dt
=

n∑
i=1

rjizi + Zj(x1, . . . , xm, y1, . . . , ym, z1, . . . , zn), j = 1, . . . , n

the quantity of invariants for each pair of imaginary numbers is obtained in [2, 3].
Let us build an infinitesimal operator for finding invariants of (1).
To do this, we will consider one pair of imaginary numbers and corresponding equations:

dxs

dt
= −λsys + Xs(x1, . . . , xm, y1, . . . , ym, z1, . . . , zn),

dys

dt
= λsxs + Ys(x1, . . . , xm, y1, . . . , ym, z1, . . . , zn), s = 1, . . . ,m.

(3)

If Xs and Ys are viewed as polynomials of the variables z1, . . . , zn, let us consider Xs and Ys

at random monomial z1, . . . , zn. Suppose that

Xs =
∑

i1+i2+...+i2m={l}
ci1...i2mx

i1
1 . . . xim

m yi1
1 . . . yim

m ,

Ys =
∑

i1+i2+...+i2m={l}
bi1...i2mx

i1
1 . . . xim

m yi1
1 . . . yim

m .

For building an infinitesimal operator, we use the same method, with is used in case m = 1 [3].
The right part of the system of equations is written in a matrix form Gsl. Then, after a
transformation at the SO(2) (a rotation by δ = (δ1, . . . , δm)), the variables will change

(
xs

ys

)
= ∆s

(
x̄s

ȳs

)
,
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where

∆s =
(

cos δs − sin δs

sin δs cos δs

)
.

Accordingly, the matrix Gsl will also change. The new matrix will be in the form:

Ḡsl(δ) = ∆−1
s GslDs(δ).

Respectively, each element of Ḡsl is a linear transformation of the elements of Gsl

ḡ
(ij)
sl = B(δ)gsl.

In δ = 0, we seek the differential ḡ(ij)
sl

dḡ
(ij)
sl =

∂B(δ)
∂δ

Gsl |δ=0 dδ = k
(ij)
sl dδ.

Therefore, the infitesimal operator of the SO(2) group for the right part of (3) with homo-
geneous polynomials of degree l, may be written in the following way:

Us =
∂

∂δ
+

∑
i,j

k
(ij)
sl

∂

∂g
(ij)
sl

,

where
∑
i,j

k
(ij)
sl

∂

∂g
(ij)
sl

is a linear transformation of the elements k
(ij)
sl

∂

∂g
(ij)
sl

.

If the right hand part represents a sum of homogeneous spaces Ls = L⊗p1 +L⊗p2 + · · ·+L⊗ps ,
then the infinitesimal operator we seek will be expressed as a sum of infinitesimal operators (as
shown in [3]) from respective spaces L⊗l

Us =
∂

∂δ
+

ps∑
l=p1

∑
i,j

k
(ij)
sl

∂

∂g
(ij)
sl

, s = 1, . . .m. (4)

Now we assume that all previous conditions, valid for the pair of imaginary solutions, are
preserved. Let us consider a general infinitesimal operator for the whole system. Then, for each
pair of imaginary solutions iλ, s = 1, . . . ,m, the infinitesimal operator will be obtained using
the same method and will have the form (4). Thus, the general infinitesimal operator will look:

U =
m∑

s=1

Us. (5)

Theorem. Let the right hand side of (1) be fixed with respect to the variables z1, . . . , zn. We will
consider a part of the system, which is a system of degree 2m. Then the invariants of the SO(2)
group in the space of coefficients are solutions for the differential equation Uf = 0, where U is
expressed in (5).

Example. Consider the system

dx1

dt
= −y1 + a11x1 + a12y1 + a13x2 + a14y2,

dy1

dt
= x1 + a21x1 + a22y1 + a23x2 + a24y2,

dx2

dt
= −y2 + a31x1 + a32y1 + a33x2 + a34y2,

dy2

dt
= x2 + a41x1 + a42y1 + a43x2 + a44y2.
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By substitution

xi =
1
2

(w̄i + wi), yi =
i

2
(w̄ − w)

we transform the system to the form
dw1

dt
=

1
2
w̄1(a11 + ia12 + ia21 − a22) +

1
2
w1(a11 − i12 + ia21 + a22)

+
1
2
w̄2(a13 + ia14 + ia23 − a24) +

1
2
w2(a13 − ia14 + ia23 + a24),

dw2

dt
=

1
2
w̄1(a31 + ia32 + ia41 − a42) +

1
2
w1(a31 − i32 + ia41 + a42)

+
1
2
w̄2(a33 + ia34 + ia43 − a44) +

1
2
w2(a33 − ia34 + ia43 + a44).

After substitution

wj = w′
j exp iϕj , j = 1, 2

we receive the following form:
dw1

dt
=

1
2
w̄1e

−2iϕ1z11 +
1
2
w1z12 +

1
2
w̄2e

−i(ϕ1+ϕ2)z13 +
1
2
w2e

i(ϕ2−ϕ1)z14,

dw2

dt
=

1
2
w̄1e

−i(ϕ1+ϕ2)z21 +
1
2
w1e

i(ϕ1−ϕ2)z22 +
1
2
w̄2e

−2iϕ2z23 +
1
2
w2z24.

Find differentials
dz11 = −2ie−2iϕ1z11dϕ1, dz13 = −iz13e

−i(ϕ1+ϕ2)(dϕ1 + dϕ2),

dz14 = iei(ϕ2−ϕ1)z14(dϕ2 − dϕ1), dz21 = −ie−i(ϕ1+ϕ2)z21(dϕ1 + dϕ2),

dz22 = iei(ϕ1−ϕ2)z22(dϕ2 − dϕ2), dz23 = −2ie−2iϕ2z23dϕ2.

Build infitesimal operator

U =
∂

∂ϕ
− 2ie−2iϕ1z11

∂

∂z11
− ie−i(ϕ1+ϕ2)z13

∂

∂z13
+ iei(ϕ2−ϕ1)z14

∂

∂z14

−ie−i(ϕ1+ϕ2)z21
∂

∂z21
+ iei(ϕ1−ϕ2)z22

∂

∂z22
+ dz23 = −2ie−2iϕ2z23

∂

∂z23
.

The invariants

z12, z24, z14z22, z11z̄11, z23z̄23, z13z̄21

are solutions of equations Uz = 0.
Hence, for the existence of family of limited solutions in a neighborhood of point (0, 0, 0, 0),

we have only 6 conditions.
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Equation Revisited

V. LAHNO and A. ONYSHCHENKO

Pedagogical Institute, 2 Ostrogradskogo Street, 314000 Poltava, Ukraine

The group classification of linear hyperbolic partial differential equation is carried out with
the use of the new approach to solving group classification problems suggested recently by
Zhdanov and Lahno (J. Phys. A: Math. Gen., V.32, 7405 (1999)).

1. Consider a partial differential equation of the hyperbolic type

utx +A(t, x)ut +B(t, x)ux + C(t, x)u = 0, (1)

where u = u(t, x), ut = ∂u
∂t , ux = ∂u

∂x , utx = ∂2u
∂t∂x . Group classification of equations (1) admitting

non-trivial (finite-parameter) symmetry group has been performed by L.V. Ovsjannikov [1, 2].
His classification scheme is based on using the Laplace invariants

h = At +AB − c, k = Bx +AB − C.

The results obtained can be formulated as follows.

Theorem 1 (Ovsjannikov [1, 2]). Equation (1) admits a Lie algebra of the dimension higher
than 1 if and only if the functions

p =
k

h
, q =

∂x∂y(lnh)
h

are constant. If p and q are constant, then equation (1) is equivalent either to the Euler–Poisson
equation (q �= 0)

utx − 2ut

q(t+ x)
− 2pux

q(t+ x)
+

4pu
q2(t+ x)2

= 0 (2)

or to equation (q = 0)

utx + tut + pxux + ptxu = 0 (3)

and its symmetry algebra is a three-dimensional Lie algebra L3.

What is more, Ovsjannikov has proved that the basis of the Lie algebra L3 is formed by the
operators

∂t − ∂x, t∂t + x∂x, t2∂t − x2∂x +
2
q
(pt− x)u∂u

for equation (2), and by the operators

t∂t − x∂x, ∂t − xu∂u, ∂x − ptu∂u

for equation (3).
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In this paper we perform group classification of equation (1) by using an alternative approach
suggested in [3].

2. Using the infinitesimal Lie method we obtain that equation (1) is invariant under infinite-
dimensional transformation group, which is generated by the operator

X∞ = ω(t, x)∂u, ωtx +Aωt +Bωx + Cω = 0,

and under the one-parameter transformation group, whose infinitesimal operators reads as

X = f(t)∂t + g(x)∂x + h(t, x)u∂u, (4)

where

ht +Bḟ + fBt + gBx = 0,
hx +Ag′ + gAx + fAt = 0,

htx + Cḟ + fCt + Cg′ + gCx +Aht +Bhx = 0.

(5)

In (5) the following notations are used, ḟ = df
dt , g

′ = dg
dx .

Furthermore, as the direct calculations show, the equivalence group of the equation (1) is a
superposition of the following transformations:

(a) τ = α(t), ξ = β(x), v = θ(t, x)u+ ρ(t, x),
(b) τ = α(x), ξ = β(t), v = θ(t, x)u+ ρ(t, x),

(6)

where α and β are arbitrary smooth functions, θ �= 0 and θ, ρ satisfy the condition

θtρx + ρtθx − θρtx + ρθtx − 2ρθ−1θtθx − Cθρ = 0.

In order to perform group classification of equation (1), we start with studying realizations of
real Lie algebras within the class of operators (4) up to the equivalence relation determined by
transformations (6). As a next step, we select those realizations, that form bases of invariance
algebras of equations (1).

Remark 1. We use the known classification of non-isomorphic real Lie algebras (see, for
example, [4, 5]).

Remark 2. Equation

utx = 0 (7)

is invariant under infinite-dimensional transformation group, which is generated by the operator

X∞ = f(t)∂t + g(x)∂x + λu∂u,

where f and g are arbitrary smooth functions and λ = const. What is more, its general solution
reads as

u = ϕ(t) + ψ(x)

with arbitrary smooth functions ϕ, ψ. Furthermore, the equation

utx +B(x)ux = 0, B �= 0, (8)

has the following general solution:

u =
∫

ϕ(x)e−tB(x)dx+ ψ(t),

where ϕ, ψ are arbitrary smooth functions.
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Therefore, we consider only equations of the form (1), which are inequivalent to (7) and (8).
It is well-known, that a linear partial differential equation of the form (1) is invariant under

the operator u∂u and this operator satisfies the following commutation relation:

[X,u∂u] = 0,

where X has the form (4).
Consequently, the function h(t, x) in operator (3) is determined up to a constant summand.
The list of non-isomorphic two-dimensional real Lie algebras is exhausted by the following

two algebras:

A2.1 = 〈e1, e2〉, [e2, e2] = 0;
A2.2 = 〈e1, e2〉, [e2, e2] = e2.

If these algebras are maximal invariance algebras of equation (1), then one of their basis
operators must coincide with the operator u∂u. Consequently, we have to consider realizations
of the algebra A2.1 only.

Proposition 1. Let the algebra A2.1 be invariance algebra of equation (1). The set of inequiv-
alent realizations of this algebra is exhausted by the following two realizations:

A2.1 = 〈u∂u, ∂t〉;
A2.2 = 〈u∂u, ∂t + ∂x〉.

The corresponding invariant equations can be taken in the following form:

A1
2.1 : utx +B(x)ux + u = 0; (9)

A2
2.2 : utx +B(z)ux + C(z)u = 0, z = t− x, C �= 0. (10)

Proof. First of all we note that the operator u∂u is invariant under action of the changes of
variables (6). Choose e1 = u∂u as the first basis operator of the Let in the algebra A2.1 and let
the second basis operator e2 have the general form (4).
If f · g �= 0 in the operator e2, then making the change of variables (6), where α, β, θ, ρ are

solutions of the system of differental equations

α̇f = 1, β′g = 1, fθt + gθx + hθ = 0, θ �= 0, fρt + gρx = 0,

reduces this operator to the operator

e′2 = ∂τ + ∂ξ.

If f �= 0, g = 0 in the operator e2, then performing the change of variables (6), where β = β(x),
ρ = ρ(x) and functions α, θ are solutions of system of differential equations

α̇f = 1, fθt + hθ = 0, θ �= 0,
reduces this operator to become

e′2 = ∂τ .

If f = 0, g �= 0 in the operator e2, then making another change of variables (6) (t → x,
x → t) reduces this case to the previous one.
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If, finally, f = g = 0 in the operator e2, then h �= 0 and
e2 = h(t, x)u∂u, h �= const.

Thus, we obtain three inequivalent realizations of the algebra A2.1 within the class of opera-
tors (3):

A1
2.1 = 〈u∂u, ∂t〉,

A2
2.1 = 〈u∂u, ∂t + ∂x〉,

A3
2.1 = 〈u∂u, h(t, x)u∂u〉, h �= const.

The direct verification of conditions (5) for the obtained realizations yields the following
results:

• Invariant equations for the first and second realizations have the form:

A1
2.1 : utx +A(x)ut +B(x)ux + C(x)u = 0, C �= 0; (11)

A2
2.1 : utx +A(z)ut +B(z)ux + C(z)u = 0, z = t− x. (12)

• If the realization A3
2.1 is invariance algebra of an equation of the form (1), then h = const.

Furthermore, it is not difficult to verify that the realization A1
2.1 is invariant with respect to

the change of variables

τ = t+ λ, λ = const, ξ = β(x), v = θ(x)u+ ρ(x), θ �= 0. (13)

If in (13) β, θ and ρ are solutions of the system of differential equations

θx = θA, β′ = C − θ−1∂xB, Bθ−1θxρ−Bρx − Cρ = 0,

then this change of variables reduces equation (11) to equation of the form (9).
Using analogous reasonings, it is not difficult to show that equation (12) is equivalent to (10).
Proposition 1 is proved.
Thus obtained classification of equations (1), which are invariant under two-dimensional Lie

algebras, permits realizing further group classification of equation (1) by the method suggested
in [3].
The system of determining equations (5) for equation (9) reads as

ht +Bḟ + gBx = 0, hx = 0, ḟ + g′ = 0. (14)

The second and third equations from (14) imply that h = h(t), f = λ1t + λ2, g = −λ1x + λ3,
where λ1, λ2, λ3 = const.
Consequently, extension of the symmetry of equation (9) is only possible, if the function B

in first equation (14) within the equivalence relation has the form

B = mx, m = const, m �= 0,
which means that equation (9) reads as

utx +mxux + u = 0, m = const. (15)

Its invariance algebra is the four-dimensional Lie algebra

〈u∂u, ∂t, t∂t − x∂x, ∂x −mtu∂u〉.
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Analogously, we verify that extension of symmetry of equation (10) is only possible, if it has
the form

utx +
m

z
ux +

k

z2
u = 0, m, k = const, k �= 0, z = t− x. (16)

The invariance algebra of equation (16) is the four-dimensional Lie algebra

〈u∂u, ∂t + ∂x, t∂t + x∂x +
1
2
mu∂u, t

2∂t + x2∂x +mtu∂u〉.

Cosequently, the following assertion holds true:

Proposition 2. Equation (1) admits a Lie algebra of infinitesimal operators (4), whose dimen-
sion is higher than two, if it is either equivalent to equation (15) or to (16), its invariance algebra
being necessarily four-dimensional.

It is straightforward to verify that the results obtained in Proposition 2 are equivalent to
results obtained by Ovsjannikov.
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We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups within
the class of first-order differential operators in arbitrary finite dimensions. It is established
that there are only two distinct realizations of the Lie algebra of the group O(3) which are
inequivalent within the action of a diffeomorphism group. Using this result we describe a
special subclass of realizations of the Euclid algebra which are called covariant.

1. In the present paper we study realizations of the Lie algebra of the Euclid group E(3)
(which will be called in the sequel the Euclid algebra e(3)) within the class of Lie vector fields
on the space V = X ⊗ U of independent and dependent variables. In the case under study X
is the three-dimensional Euclid space having the coordinates x = (x1, x2, x3); U is the space of
real-valued scalar functions u(x) = (u1(x), u2(x), . . . , un(x)), and Lie vector fields are first-order
differential operators of the form

Q = ξa(x, u)∂xa + ηi(x, u)∂ui , (1)

where ξa, ηi (a = 1, 2, 3; i = 1, . . . , n) are some sufficiently smooth real-valued functions defined
on the space V , ∂xa = ∂

∂xa
, ∂ui = ∂

∂ui
. Hereafter, we use the summation convention for the

repeated indices.
We say that the operators Pa, Jb (a, b = 1, 2, 3) belonging to class (1) form a basis of the

realization of the Euclid algebra e(3) if (a) they are linearly independent, and (b) they satisfy
the following commutation relations:

[Pa, Pb] = 0, (2)

[Ja, Pb] = εabcPc, (3)

[Ja, Jb] = εabcJc, (4)

where

εabc =




1, (abc) = cycle (123),
−1, (abc) = cycle (213),

0, in the remaining cases.

The realization of the Euclid algebra e(3) within the class of Lie vector fields (1) is called
covariant if coefficients of the basis elements

Pa = ξ
(1)
ab (x, u)∂xb

+ η
(1)
ai (x, u)∂ui (a, b = 1, 2, 3; i = 1, . . . , n) (5)
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satisfy the following condition:

rank

∥∥∥∥∥∥∥∥

ξ
(1)
11 ξ

(1)
12 ξ

(1)
13 η

(1)
11 . . . η

(1)
1n

ξ
(1)
21 ξ

(1)
22 ξ

(1)
23 η

(1)
21 . . . η

(1)
2n

ξ
(1)
31 ξ

(1)
32 ξ

(1)
33 η

(1)
31 . . . η

(1)
3n

∥∥∥∥∥∥∥∥
= 3. (6)

It is easy to check that the relations (2)–(4) are invariant with respect to an arbitrary invert-
ible transformation of variables x, u

ya = fa(x, u), a = 1, 2, 3; vi = gi(x, u) i = 1, . . . , n, (7)

where fa, gi are sufficiently smooth functions defined on the space V . That is why we can intro-
duce on the set of realizations of the Euclid algebra e(3) the following relation: two realizations
of the algebra e(3) are called equivalent if they are transformed one into another by means of
an invertible transformation (7). As invertible transformations of the form (7) form a group
(called diffeomorphism group), this relation is the equivalence relation. It divides the set of all
realizations of the Euclid algebra into equivalence classes A1, . . . , Ar. Consequently, to describe
all possible realizations of e(3) it suffices to construct one representative of each equivalence
class Aj , j = 1, . . . , r.

2. As it follows from commutation relations (2)–(4) of the algebra e(3), the latter is the
semi-direct sum of the commutative ideal t3 = 〈P1, P2, P3〉 and of the simple algebra so(3) =
〈J1, J2, J3〉. That is why we start investigation of covariant realizations of the algebra e(3) by
studying realizations of the translation generators Pa (a = 1, 2, 3) within the class of opera-
tors (1). To this end we will make use of the following lemma.

Lemma 1. Let the operators Pa (a = 1, 2, 3) of the form (5) satisfy relation (6). Then there
exists a transformation of the form (7) reducing the operators Pa to become P ′

a = ∂ya, a = 1, 2, 3.

Proof. In view of (6) Pa �= 0 for all a = 1, 2, 3. It is well-known [1] that a non-zero operator

P1 = ξ
(1)
1b (x, u)∂xb

+ η
(1)
1i (x, u)∂ui

can be always reduced to the form P ′
1 = ∂y1 by transformation (7). If we denote by P ′

2, P
′
3 the

operators P2, P3 written in the new variables y, v, then owing to commutation relations (2) they
commute with the operator P ′

1 = ∂y1 . Hence, we conclude that their coefficients are independent
of y1.

Furthermore, due to the condition (6) at least one of the coefficients ξ′(1)22 , ξ′(1)23 , η′(1)21 , . . ., η′(1)2n

of the operator P ′
2 is not equal to zero.

Summing up, we conclude that the operator P ′
2 is of the form

P ′
2 = ξ

′(1)
2b (y2, y3, v)∂yb

+ η
′(1)
2i (y2, y3, v)∂vi ,

not all the functions ξ
′(1)
22 , ξ′(1)23 , η′(1)21 , . . . , η

′(1)
2n being identically equal to zero.

Making a transformation

z1 = y1 + F (y2, y3, v), z2 = G(y2, y3, v),
z3 = ω0(y2, y3, v), ωi = ωi(y2, y3, v), i = 1, . . . , n,

(8)

where the functions F , G are particular solutions of differential equations

ξ
′(1)
22 (y2, y3, v)Fy2 + ξ

′(1)
23 (y2, y3, v)Fy2 + η

′(1)
2i (y2, y3, v)Fui + ξ

′(1)
21 (y2, y3, v) = 0,

ξ
′(1)
22 (y2, y3, v)Gy2 + ξ

′(1)
23 (y2, y3, v)Gy3 + η

′(1)
2i (y2, y3, v)Gui = 1
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and ω0, ω1, . . . , ωn are functionally-independent first integrals of the Euler–Lagrange system

dy2

ξ
′(1)
22

=
dy3

ξ
′(1)
23

=
dv1

η
′(1)
21

= · · · = dvn

η
′(1)
2n

,

which has exactly n+1 functionally-independent integrals, we reduce the operator P ′
2 to the form

P ′′
2 = ∂z2 . It is easy to check that transformation (8) does not alter the form of the operator P ′

1.
Being rewritten in the new variables z, ω it reads as P ′′

1 = ∂z1 .
As the right-hand sides of (8) are functionally-independent by construction, transformation

(8) is invertible. Consequently, operators Pa are equivalent to operators P ′′
a , where P ′′

1 = ∂z1 ,
P ′′

2 = ∂z2 and

P ′′
3 = ξ

′′(1)
3b (z3, ω)∂zb

+ η
′′(1)
3i (z, ω)∂ωi �= 0

(coefficients of the above operator are independent of z1, z2 because of the fact that it commutes
with the operators P ′′

1 , P ′′
2 ). And what is more, due to (6) at least one of the coefficients

ξ
′′(1)
33 , η

′′(1)
31 , . . . , η

′′(1)
3n of the operator P ′′

3 is not identically equal to zero.
It is not difficult to verify that there exists the invertible transformation

Z1 = z1 + F (z3, ω), Z2 = z2 + G(z3, ω),
Z3 = H(z3, ω), Wi = Ωi(z3, ω), i = 1, . . . , n,

which reduces the operators P ′′
a , a = 1, 2, 3 to the form P ′′′

a = ∂za , a = 1, 2, 3.
Lemma is proved.
Due to Lemma 1 the operators Pa can be reduced to the form Pa = ∂xa by means of a

properly chosen transformation (7). Inserting the operators

Pa = ∂xa , Ja = ξab(x, u)∂xb
+ ηai(x, u)∂ui , a, b = 1, 2, 3; i = 1, . . . , n,

into commutation relations (3) and equating the coefficients of the linearly-independent opera-
tors ∂xa , ∂ui (a = 1, 2, 3; i = 1, . . . , n) we arrive at the system of partial differential equations
for the functions ξab(x, u), ηai(x, u)

ξacxb
= −εabc, ηaixb

= 0, a, b, c = 1, 2, 3, i = 1, . . . , n.

Integrating the above system we conclude that the operators Ja have the form

Ja = −εabcxb∂xc + jab(u)∂xb
+ η̃ai(u)∂ui , a, b = 1, 2, 3, i = 1, . . . , n, (9)

where jab, η̃ab are arbitrary smooth functions.
Inserting (9) into the commutation relations (4) and equating the coefficients of ∂ui (i =

1, . . . , n) show that the operators Ja = η̃ai∂ui , (a = 1, 2, 3) have to fulfill (4) with Ja → Ja.

Lemma 2. Let first-order differential operators

Ja = ηai(u)∂ui , a = 1, 2, 3, i = 1, . . . , n, (10)

satisfy commutation relations (4) of the Lie algebra so(3). Then either all of them are equal to
zero, i.e.

Ja = 0, a = 1, 2, 3, (11)

or there exists a transformation

vi = Fi(u), i = 1, . . . , n,
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reducing these operators to one of the following forms:

1. J1 = − sinu1tanu2∂u1 − cosu1∂u2 ,

J2 = − cosu1tanu2∂u1 + sinu1∂u2 ,

J3 = ∂u1 ;
(12)

2. J1 = − sinu1tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = − cosu1tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = ∂u1 .

(13)

The proof of Lemma 2 requires long cumbersome calculations which are omitted here.
Notice that the set of inequivalent realizations of the Lie algebra so(3) within the class of

first-order differential operators (10) is exhausted by the realizations given in (12), (13).
Hence, taking into account Lemma 2 we conclude that any covariant realization of the algebra

e(3) is equivalent to the following one:

Pa = ∂xa , Ja = −εabcxb∂xc + jab(u)∂xb
+ Ja, a, b, c = 1, 2, 3, (14)

operators Ja being given by one of formulae (11)–(13).
Making a transformation

ya = xa + Fa(u), vi = ui, a = 1, 2, 3, i = 1, . . . , n,

we reduce operators Ja from (14) to become

J1 = −y2∂y3 + y3∂y2 + A∂y1 + B∂y2 + C∂y3 + J1,

J2 = −y3∂y1 + y1∂y3 + F∂y2 + G∂y3 + J2,

J3 = −y1∂y2 + y2∂y1 + H∂y3 + J3,

(15)

where A, B, C, F , G, H are arbitrary smooth functions of v1, . . . , vn.
Substituting the operators (15) into (4) and equating the coefficients of linearly-independent

operators ∂y1 , ∂y2 , ∂y3 , ∂vi (i = 1, . . . , n) result in the following system of partial differential
equations:

J2A = −C, J3C − J1H = G, J3F = −B,

J1G− J2C = H −A− F, J3A = B, J3B = F −A−H,

J1F − J2B = G, A− F −H = 0, J2H − J3G = C.

(16)

Analyzing system (16) we arrive at the following assertion.

Theorem 1. Any covariant realizations of the algebra e(3) within the class of first-order differ-
ential operators is equivalent to one of the following realizations:

1. Pa = ∂xa , Ja = −εabcxb∂xc , a, b, c = 1, 2, 3;
2. Pa = ∂xa , a = 1, 2, 3,

J1 = −x2∂x3 + x3∂x2 + f∂x1 − fu2 sinu1∂x2 − sinu1tanu2∂u1 − cosu1∂u2 ,

J2 = −x3∂x1 + x1∂x3 + f∂x2 − fu2 cosu2∂x3 − cosu1tanu2∂u1 + sinu1∂u2 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 ;
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3. Pa = ∂xa , a = 1, 2, 3,
J1 = −x2∂x3 + x3∂x2 + g∂x1 − (sinu1gu2 + cosu1 secu2gu3)∂x3

− sinu1tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = −x3∂x1 + x1∂x3 + g∂x2 − (cosu1gu2 − sinu1 secu2gu3)∂x3

− cosu1tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 .

Here f = f(u2, . . . , un) is given by the formula

f = α sinu2 + β

(
sinu2 ln

sinu2 + 1
cosu2

− 1
)
,

α, β are arbitrary smooth functions of u3, . . . , un and g = g(u2, . . . , un) is a solution of the
following linear partial differential equation:

cos2 u2gu2u2 + gu3u3 − sinu2 cosu2gu2 + 2 cos2 u2g = 0.

3. Summarizing the results obtained in the previous section yields the following structure of
realizations of the Lie algebra so(3) by Lie vector fields in n variables.

1. If n = 1, then there are no non-zero realizations.
2. As there is no realization of so(3) by real non-zero 2 × 2 matrices, the only non-zero

realizations is given by (12).
3. In the case n = 3 there are two more inequivalent realizations (12) and (13).
4. Provided n > 3, there is no new realizations of so(3) and, furthermore. any realization

can be reduced to a linear one.
Notice that a complete description of covariant realizations of the conformal algebra c(n,m)

in the space of n+m independent and one dependent variables was obtained in [2, 3]. Some new
realizations of the Galilei algebra g(1, 3) were suggested in [4]. Yehorchenko [5], and Fushchych,
Tsyfra and Boyko [6] have constructed new (nonlinear) realizations of the Poincaré algebras
p(1, 2) and p(1, 3) correspondingly. Complete description of realizations of the Galilei algebra
g2(1, 1) in the space of two dependent and two independent variables was obtained in [7, 8].
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We obtained a complete description of inequivalent realizations of the Euclidean algebra in
the class of Lie vector fields with three independent and n dependent variables. In particular,
principally new nonlinear realizations of the above algebra are constructed. We also construct
functional bases of differential invariants for one realization of the Euclidean algebra and one
realization of the extended Euclidean algebra.

As is well known, the problem of classifying linear and nonlinear partial differential equations
(PDEs) admitting some Lie transformation group G is closely connected to that of describing
inequivalent realizations of its Lie algebra AG in the class of differential operators of the first
order or Lie vector fields (LVFs) [1–3]. Having realizations of the Lie algebra AG, we can to
construct all PDEs admitting the group G by means of the Lie infinitesimal method [1, 2].
Fushchych and Yehorchenko found the complette set of first- and second-order differential in-
variants for the standard realizations of the Poincaré group P (1, n), Euclidean group E(n) [4]
and for nonlinear realization of P (1, n) [10, 11].

Rideau, Winternitz [5] and Zhdanov, Fushchych [6] have done complete description of in-
equivalent realizations of the Galilean group and its natural extensions in the class of LVFs with
two independent and two dependent variables. Results are used in constructing of the general
evolution equation of the second order

Ψt + F (t, x,Ψ,Ψ∗,Ψx,Ψ∗
x,Ψxx,Ψ∗

xx) = 0,

invariant under the Galilean, Galilean-similitude, and Schrödinger groups. All second-order
PDEs, invariant under the Poincaré group, extended Poincaré group and conformal group in a
two-dimensional space are constructed in [7, 8].

In this paper we study realizations of the Lie algebra AE(3) of the Euclidean group E(3) on
the space X ⊗ U of complex variables x = (x1, x2, x3) and u = (u1, . . . , un).

1. Consider a problem of constructing realizations of the Lie algebra AE(3) in the class of
Lie vector fields (LVF realizations) of the form

Qa = ξab(x, u)∂xb
+ ηaj(x, u)∂uj , (1)

Here ξab, ηaj are some sufficiently smooth complex functions on the space X ⊗ U . We use the
notation ∂xb

= ∂
∂xb

, ∂uj =
∂

∂uj
and we sum over repeated indices (a, b = 1, 2, 3, j = 1, 2, . . . , n).

Definition 1. We say that operators Pa, Jb (a, b, c = 1, 2, 3) of the form (1) compose a realiza-
tion of the Euclidean algebra AE(3) in the class of Lie vector fields if

• they are linearly independent,

• they satisfy the following commutation relations:
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[Pa, Pb] = 0, [Pa, Jb] = iεabcPc, (2)

[Ja, Jb] = iεabcJc. (3)

In the above formulae [Q1, Q2] ≡ Q1Q2 − Q2Q1 is the commutator; a, b, c = 1, 2, 3; εabc is
third order antisymmetic tensor with ε123 = 1; i is imaginary unit: i2 = −1.

Let us note that linearly independent differential operators Jb satisfying commutation rela-
tions (3), compose a realization of the Lie algebra AO(3) of the rotations group.

Algebra AE(3) is a semi-direct sum of the Lie algebra of the rotation group O(3) and the
commutative ideal I = 〈P1, P2, P3〉.

Here we study LVF realizations of the Euclidean algebra AE(3), where translation generators
Pa are of the form

Pa = i∂xa , a = 1, 2, 3. (4)

Precisely these LVF realizations of the Euclidean algebra AE(3) are important in different
problems of theoretical and mathematical physics (see, e.g., [9]).

Therefore, the problem of studying all LVF realizations of the Euclidean algebra AE(3)
is reduced to solving of relations (2) and (3) within the class of linear first-order differential
operators, where Pa are of the form (4) and Jb are of the form (1). It is known [2] that
commutation relations do not change after an arbitrary nondegenerate change of variables x, u

x̃α = fα(x, u), α = 1, 2, 3, (5)

ũβ = gβ(x, u), β = 1, . . . , n, (6)

where fα, gβ are sufficiently smooth complex functions defined on the space X ⊗ U . Invert-
ible transformations (5), (6) form a transformation group (a group of diffeomorphisms) and
determine a natural equivalence relations of LVF realizations of the algebra AE(3). Two real-
izations of the Euclidean algebra are called equivalent if the corresponding basis operators can
be transformed one into another by a change of variables (5) and (6).

Let Pa, Jb (a, b = 1, 2, 3) be differential operator of the form (4) and (1) respectively. From
the commutation relations (2) we find that

Ja = −iεabcxb∂xc + ζab(u)∂xb
+Aa, a = 1, 2, 3, (7)

where Aa are operators of the form

Aa = η̃aj(u)∂uj , (8)

which are satisfing the commutation relations

[Aa, Ab] = iεabcAc, a, b, c = 1, 2, 3. (9)

In (7), (8) ζab and η̃aj are some smooth functions.
Therefore, we begin the classification of LVF realizations of Euclidean algebra from con-

struction of inequivalent realizations of the Lie algebra of the rotation group in the class of
operators (8).

Theorem 1. Let differential operators Aa (a = 1, 2, 3) of the form (8) satisfy commutation
relations (9). Then there exist changes of variables (6), reducing these operators to one of the
following triplets of operators:

Aa = 0, a = 1, 2, 3; (10)
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A1 = sinu1∂u1 , A2 = cosu1∂u1 , A3 = i∂u1 ; (11)

A1 = − sinu1 cothu2∂u1 + cosu1∂u2 + ε
sinu1

sinhu2
∂u3 ,

A2 = − cosu1 cothu2∂u1 − sinu1∂u2 + ε
cosu1

sinhu2
∂u3 ,

A3 = i∂u1 , ε = 0, 1;

(12)

A1 = sinu1∂u1 + cosu1∂u2 ,

A2 = cosu1∂u1 − sinu1∂u2 ,

A3 = i∂u1 ;
(13)

A1 = sinu1∂u1 + u2 cosu1∂u2 + u2 sinu1∂u3 ,

A2 = cosu1∂u1 − u2 sinu1∂u2 + u2 cosu1∂u3 ,

A3 = i∂u1 .

(14)

It follows from the theorem 1 and definition of LVF realization of Euclidean algebra that the
following statement is valid

Corollary. The algebra AO(3) possesses five nonequivalent LVF realizations presented by for-
mulae (11)–(14).

2. Now, using the results of Theorem 1, we shall construct inequivalent LVF realizations of
the Euclidean algebra where Pa (a = 1, 2, 3) are of the form (4) and Jb (b = 1, 2, 3) are of the
form (7). We will call these realizations of the Lie algebra AE(3) covariant realizations.

Theorem 2. Any covariant LVF realization of the Euclidean algebra AE(3) is equivalent to
one of the following realizations:

1. Pa = i∂xa , Ja = −iεabcxb∂xc , a, b, c,= 1, 2, 3; (15)

2. Pa = i∂xa , a = 1, 2, 3,
J1 = i(x3∂x2 − x2∂x3) + sinu1∂u1 ,

J2 = i(x1∂x3 − x3∂x1) + cosu1∂u1 ,

J3 = i(x2∂x1 − x1∂x2) + i∂u1 ;

(16)

3. Pa = i∂xa , a = 1, 2, 3,

J1 = i(x3∂x2 − x2∂x3) + f∂x1 − i sinu1
∂f

∂u2
∂x3 − sinu1 cothu2∂u1 + cosu1∂u2 ,

J2 = i(x1∂x3 − x3∂x1) + f∂x2 − i cosu1
∂f

∂u2
∂x3 − cosu1 cothu2∂u1 − sinu1∂u2 ,

J3 = i(x2∂x1 − x1∂x2) + i∂u1 ;

(17)

4. Pa = i∂xa , a = 1, 2, 3,

J1 = i(x3∂x2 − x2∂x3) + g∂x1 − i

(
sinu1

∂g

∂u2
− cosu1

sinhu2

∂g

∂u3

)
∂x3

− sinu1 cothu2∂u1 + cosu1∂u2 +
sinu1

sinhu2
∂u3 ,

(18)
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J2 = i(x1∂x3 − x3∂x1) + g∂x2 − i

(
cosu1

∂g

∂u2
+

sinu1

sinhu2

∂g

∂u3

)
∂x3

− cosu1 cothu2∂u1 − sinu1∂u2 +
cosu1

sinhu2
∂u3 ,

J3 = i(x2∂x1 − x1∂x2) + i∂u1 ;

5. Pa = i∂xa , a = 1, 2, 3,

J1 = i(x3∂x2 − x2∂x3) + h∂x1 − i sinu1
∂h

∂u2
∂x3 + sinu1∂u1 + cosu1∂u2 ,

J2 = i(x1∂x3 − x3∂x1) + h∂x2 − i cosu1
∂h

∂u2
∂x3 + cosu1∂u1 − sinu1∂u2 ,

J3 = i(x2∂x1 − x1∂x2) + i∂u1 ;

(19)

6. Pa = i∂xa , a = 1, 2, 3,

J1 = i(x3∂x2 − x2∂x3) + r∂x1 − iu2

(
cosu1

∂r

∂u2
+ sinu1

∂r

∂u3

)
∂x3

+ sinu1∂u1 + u2 cosu1∂u2 + u2 sinu1∂u3 ,

J2 = i(x1∂x3 − x3∂x1) + r∂x2 − iu2

(
sinu1

∂r

∂u2
− cosu1

∂r

∂u3

)
∂x3

+ cosu1∂u1 − u2 sinu1∂u2 + u2 cosu1∂u3 ,

J3 = i(x2∂x1 − x1∂x2) + i∂u1 .

(20)

Here f = f(u2, . . . , un) and h = h(u2, . . . , un) are given by the formulae

f = f1 coshu2 + f2

(
coshu2 ln

∣∣∣tanh u2

2

∣∣∣ − 1
)
,

and

h = h1e−u2 + h2e2u2

respectively, where f1, f2, h1, h2 are arbitrary function of u3, . . . , un; g = g(u2, . . . , un) is a
solution of differential equation

sinh−2 u2gu3u3 + gu2u2 + cothu2gu2 − 2g = 0

and r = r(u2, . . . , un) is a solution of the equation

u2
2 (ru3u3 + ru2u2)− 2r = 0.

3. Now, we use the obtained realizations to construct PDEs, invariant under the Euclidean
group.

Let Xa (a = 1, 2, . . . , 6) be basis operators of Lie algebra AE(3) of the Euclidean group in
the space of X ⊗ U . A differential equation

F (x, u, u
1
) = 0,

where u
1
is a set of the first derivatives of u, is invariant under group E(3) if the function F

satisfies the following relations [1, 2]

pr(1)XaF
∣∣∣
F=0

= 0, a = 1, 2, . . . , 6. (21)

Here pr(1)Xa are first prolongations of the operators Xa.
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Solving the system (21) we obtain the complete set of elementary differential invariants

Ir(x, u, u
1
), r = 1, 2, . . . , 4n− 3,

and the invariant equation has the form

Φ(I1, I2, . . . , I4n−3) = 0. (22)

Hence to describe the general form of PDEs admitting Euclidean group, we must find a
complete set of elementary differential invariants.

Let the basis operators of Lie algebra of Euclidean group be of the form (16). The prolonga-
tions of translation operators are equal to the Pa of (4) and prolongations of rotation operators
read

pr(1)J1 = i(x3∂x2 − x2∂x3) + sinu1∂u1 + u1
1 cosu

1∂u1
1
+ (u1

2 cosu
1 + iu1

3)∂u1
2

+ (u1
3 cosu

1 − iu1
2)∂u1

3
+ i(uk

3∂uk
2
− uk

2∂uk
3
),

(23)

pr(1)J2 = i(x1∂x3 − x3∂x1) + cosu1∂u1 − (u1
1 sinu

1 + iu1
3)∂u1

1

− u1
2 sinu

1∂u1
2
+ (iu1

1 − u1
3 sinu

1)∂u1
3
+ i(uk

1∂uk
3
− uk

3∂uk
1
),

(24)

pr(1)J3 = i{(x2∂x1− x1∂x2)+ ∂u1+ u1
2∂u1

1
− u1

1∂u1
2
+ uk

2∂uk
1
− uk

1∂uk
2
}, k = 2, 3, . . . , n. (25)

Here and below we use the notation

ua = ua, ua
b =

∂ua

∂xb
, ∂ua

b
=

∂

∂ua
b

.

Functions Ir are invariant under operators Pa = i∂xa , (a = 1, 2, 3), consequently they do not
depend on x explictly.

Next, solving the system (21) for operator (23)–(25) we obtain the following elementary
invariants:

I1 =
i
(
u1

1 sinu
1 + u1

2 cosu
1
) − u1

3(
uk

1

)2 +
(
uk

2

)2 +
(
uk

3

)2 , Ik
2 =

i
(
uk

1 sinu
1 + uk

2 cosu
1
) − uk

3√(
uk

1

)2 +
(
uk

2

)2 +
(
uk

3

)2
,

Ik
3 =

uk
3

(
u1

2 sinu
1 − u1

1 cosu
1
)
+ u1

3

(
uk

1 cosu
1 − uk

2 sinu
1
)
+ i

(
u1

1u
k
2 − uk

1u
1
2

)
(
uk

1

)2 +
(
uk

2

)2 +
(
uk

3

)2 ,

Ik
4 = uk, Ik

5 =
(
uk

1

)2
+

(
uk

2

)2
+

(
uk

3

)2
, k = 2, 3, . . . , n.

The general form of the first order differential equation admitting the Euclidean group is given
by (22).

4. The results of Theorem 2 can also be used for construction of inequivalent realization of
the Lie algebra of the extended Euclidean group Ẽ(3).

Definition 2. We say that operators Pa, Jb, D (a, b = 1, 2, 3) of the form (1) compose a
realization of the extended Euclidean algebra AẼ(3) in the class of Lie vector f ields if

• they are linearly independent,
• they satisfy the commutation relations (2), (3) and the following ones
[Pa, D] = Pa, [Jb, D] = 0.

It is not difficult to make sure that operators (16) and the dilatation operator

D = i(x1∂x1 + x2∂x2 + x3∂x3) + ε∂v, (26)

where ε = 0 or ε = 1, compose realization of algebra AẼ(3).
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Let us consider the problem of construction of the general form of PDEs, admitting this
realization of the extended Euclidean group.

The prolongation of operators Pa and Jb (a, b = 1, 2, 3) are of the form (4) and (23)–(25)
respectively. Prolongation of operators D reads

D = i(x1∂x1 + x2∂x2 + x3∂x3) + ε∂v − i
(
uj

1∂uj
1
+ uj

2∂uj
2
+ uj

3∂uj
3

)
, j = 1, . . . , n.

Obviously, differential invariants of algebra AẼ(3) are invariant with respect to the correspon-
ding algebra AE(3), hence, they are functions of I1, Ik

2 , I
k
3 , I

k
4 , I

k
5 .

Taking into account all the above, instead of the operator D we can consider an operator

D′ = ε
∂

∂Ik
4

+ iI1
∂

∂I1
− 2iI5

∂

∂I5
.

Solving system (21), corresponding to above operator we construct the following differential
invariant of extended Euclidean group

Ik
4 + iε ln I1, Ik

2 , Ik
3 , (I1)2Ik

5 , k = 2, 3, . . . , n.

The general form of invariant equations reads

Φ
(
Ik
4 + iε ln I1, Ik

2 , I
k
3 , (I1)

2Ik
5

)
= 0.

Also we use results of Theorem 1 to construct inequivalent LVF realizations of the Lie algebra
of the Poincaré group P (1, 3).
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The Integrability of Some Underdetermined Systems
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The problem of integrability of special nonholonomic systems with single-functional arbi-
trariness of solutions is studied. The algorithm and exact formulas are obtained. As an
example the problem of “Integrating Wheel” motion is considered, and symmetry algebra
for flat control system of n-th order are calculated.

1 Introduction

Mathematical models of various problems of science may be described by the systems of ordinary
differential equations

Fj(t, x, ẋ, . . . , x(n)) = 0, j = 1, r, x ⊂ X, dimX = m, m > r, (1)

which contain more unknown functions (m) than equations (r). Similar systems are considered,
for example, in geometry problems [1], problems of mathematical physics [2], nonholonomic
mechanics [3], control theory [4]. Following [5], we will define such systems as “underdetermined
systems”.
In the present paper we will consider only underdetermined systems of the form

dξi

du
− f i(u)

dτ

du
= 0, (or ωi = dξi − f i(u)dτ = 0),

τ = τ(u), ξi = ξi(u), i = 1, n
(2)

containing n equations and (n+ 1) unknown functions.
The aim of this research is to get exact formulas for the general solution of system (2). It

is well known that sets of solutions of ordinary differential equations of n-th order are defined
by n arbitrary constants. On the contrary the general solution of underdetermined systems
may depends on arbitrary functions (not only constants). Let us consider a well-known example
[3, 6, 7]. The motion of mechanical system with coordinates (x, y, z) is described by equation

dy

dt
− z

dx

dt
= 0, (3)

or in terms of differential forms

ω = dy − zdx = 0, (∂z, ∂x + z∂y). (4)

The integrability conditions for this system are not fulfilled:

dω ∧ ω = −dz ∧ dx ∧ dy �= 0. (5)

Therefore there does not exist any two-dimensional solutions of the form Φ(x, y, z) = C. After
H. Hertz such systems are known as “nonholonomic systems” [8]. But there exist one-dimensional
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solutions admitted by equation (3). For example, in [7] we can find a solution {x = t2, y = t4,
z = 2t2}. It is easy to construct the solution {x = cos t, y = t cos t− sin t, z = t}. The question
is: Can we construct a formula, which includes all one-dimensional solutions? We may find the
positive answer in Pars’ book [6]. His solution for (4) is

y = f(x), z = f ′(x). (6)

But this solution is only guess and we do not know what can we do in a more difficult situation.
The algorithm for the general case is given by M. Gromov in his book [1]. Let us illustrate his
algorithm for solving of the system


dξ1

du
= −u2 dτ

du
,

dξ2

du
= u

dτ

du
.

(7)

Following Gromov, rewrite system (7) in the form

Bx′ = 0, (8)

where

B =
( −u2 −1 0

u 0 −1
)
, x =


 τ

ξ1

ξ2


 (9)

and take the solution in the form:

Bx = σ, σ =
(

σ1

σ2

)
, (10)

where σi(u) are arbitrary functions. Let us differentiate (10) taking into account (8). We obtain

B′x = σ′. (11)

System (10), (11) is algebraic with respect to (τ, ξ1, ξ2)


−u2τ − ξ1 = σ1,

uτ − ξ2 = σ2,

−2uτ = dσ1

du
,

τ =
dσ2

du
,

(12)

and has nontrivial solutions iff the condition

dσ1

du
+ 2u

dσ2

du
= 0. (13)

takes place. Equation (13) is also underdetermined but it contains only 2 unknown functions.
Proceeding in the similar way and making in (13) the substitution

σ1 + 2uσ2 = h, (14)
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where h = h(u) is an arbitrary function we have

σ2 =
h′(u)
2

, (15)

and accordingly, from (14)

σ1 = h− uh′(u). (16)

At the last step we substitute (σ1, σ2) in (12) and finally obtain the solution in the form


τ =
h′′

2
,

ξ1 = −u2h
′′

2
+ uh′ − h,

ξ2 = u
h′′

2
− h′

2
.

(17)

Thus the Gromov anzats reduces underdetermined system also to underdetermined system with
dimension is less than of the initial system. Therefore for solving system (2) we have to input
consecutively (n−1) times n, (n−1), . . . , 1 new functions. But the role of these new functions is
intermediate while the solution of initial problem may be defined by only one arbitrary function.
Our goal is to exclude these intermediate calculations. With respect to this at first we have to
calculate the number of arbitrary functions defining the general solution and then to get exact
formulas.

2 General solution

In the general case we use the definition of “width of solution” which was introduced by E. Cartan
in [9]. We will consider only nonholonomic systems (2), so (n+1)-dimensional integral manifolds
are absent.

Φ(τ, ξi) = C. (18)

At the following step we have to obtain for system (2) Cartan’s characteristics (si). Direct
calculations give

s = n, s1 = 1. (19)

Therefore, the general solution of system (2) depends on one arbitrary function σ(u).
The next step is based on the following. The general solutions of simple cases show that the fi-

nal formulas are linearly dependent on σ(u) and its derivatives up to n-th order (σ′, σ′′, . . . , σ(n)).
Hence we can try to find the general solution of (2) in the form

τ =
n∑

k=0

Akσ
(k),

(
σ(k) = Ukσ

)
,

ξi =
n∑

k=0

Bi
kσ

(k), U =
d

du
,

(20)

with undefined coefficients (Ai, Bi
k). The substitution (20) into (2) leads us (after decomposition

by σ(k)) to the system

Bi
n = f iAn, (21)
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UBi
k +Bi

k−1 = f iUAk + f iAk−1, k = 1, n, (22)

UBi
0 = f iUA0. (23)

The substitution (21) into (22) gives us

Bi
n−1 = f iAn−1 −AnUf

i,

Bi
n−2 = f iAn−2 −An−1Uf

i +AnU
2f i + UAnUf

i,

Bi
n−3 = f iAn−3 −An−2Uf

i + U
(
An−1Uf

i
) − U2

(
AnUf

i
)
,

(24)

and we may assume that

Bi
n−k = f iAn−k +

k−1∑
m=0

(−1)m+1Um
(
An−k+m+1Uf

i
)
, (25)

or, redefining the subscript (n− k −→ k),

Bi
k = f iAk +

n−k−1∑
m=0

(−1)m+1Um
(
Am+k+1Uf

i
)
, k = 1, n− 1. (26)

In fact, we get identity via substitution (Bi
k) into (22). From (26) with respect to k = 0 we have

Bi
0 = f iA0 +

n−1∑
m=0

(−1)m+1Um
(
Am+1Uf

i
)
. (27)

The substitution (27) into (23) gives us Ai:

n∑
m=0

(−1)mUm
(
AmUf i

)
= 0. (28)

Let us make the following transformations at (28):
1) rewrite according to Leibnitz formula (see, for example, [10]) the expression

Um(AmUf i) =
m∑

s=0

(
m

s

)
(Um−sAm)Um+1f i; (29)

2) define

Ds =
n∑

m=s

(−1)m
(
m

s

)
Um−sAm. (30)

Then (28) takes the form

n∑
s=0

DsU
s+1f i = 0, i = 1, n. (31)

This system is linear algebraic one with respect to (n+1) unknown variables Ds. The existence
of solutions of the latter system is connected with the rank of functional n× (n+ 1) matrix

W (u) = ai
j , ai

j =
dj+1f i

duj+1
. (32)
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The determinant of square matrix Ŵ (u) (which isW (u) without last column) is a Wronskian for
functions df i

du (see, for example, [11]). If rank of the matrix W (u) is equal to n, then system (31)
has a solution. We may get Dn(u) as arbitrary function.

Dn(u) = h(u). (33)

The remaining coefficients are defined from the system

n−1∑
s=0

DsU
s+1f i = (−1)Un+1f ih(u). (34)

In the particular case Un+1f i = 0 (∀ i) we have Ds = 0, s = 0, n− 1. It is easy to show that
function h(u) is not essential, because of for any h(u) the substitution σ̂ = hσ leave only one
arbitrary function in general solution. Therefore we may assume without loss of generality that

Dn(u) = h(u) = (−1)n. (35)

In this case we have from (28) An = 1, and from (21) Bi
n = f i. By inverting formula (34) we

can calculate the coefficients Ai

Ai =
n−1∑
m=i

(−1)m
(
m

i

)
Um−iDm, (36)

and according to (26) we can obtain Bk
i . As a result we may formulate the following theorem:

Theorem 1. If Wronskian of functions ϕi = df i

du in system (2) is not equal to zero (W (ϕi) �= 0),
then the general solution of system (2) is given by the formulas



τ = σ(n) +
n−1∑
k=0

Akσ
(k),

ξi = f iσ(n) +
n−1∑
k=0

Bi
kσ

(k),

(37)

where σ = σ(u) is an arbitrary function and for calculating coefficients (Ai, Bi
k) one needs to

follow the following algorithm:
1) solve the linear system

n−1∑
s=0

(U s+1f i)Ds = (−1)n+1Un+1f i (38)

with respect to Ds;
2) calculate Ai from (36);
3) calculate Bi

k from recursion relations (21), (22) or from formulas (26).

In an important particular case Un+1f i = 0 (∀ i) (system (38) is homogeneous) the latter
formulas simplify to

An = 1, Ai = 0, Bn = f i, Bi
k = (−U)n−kf i, k = 0, n− 1. (39)
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Figure 1. “Integrating Wheel”

3 Examples

Example 1 [3, p.28]. Let us consider the motion of a nonholonomic system (“Integrating
Wheel”) on the plane OXY (see Fig. 1).
During the rotation of wheel around its axis the coordinates x and y are bounded by following

equations

ẋ = Rϕ̇ sinβ, ẏ = Rϕ̇ cosβ, (40)

where ϕ̇ is angular velocity, R is radius, β is angle of orientation of the wheel on the plane.
Denoting by

ξ1 =
x

R
, ξ2 =

y

R
, τ = ϕ, β = u, (41)

we get the system



dξ1

du
= sinu

dτ

du
,

dξ2

du
= cosu

dτ

du
.

(42)

According to Theorem 1 the result will be following. System (38) has the form(
cosu sinu
− sinu − cosu

) (
D0

D1

)
=

(
cosu
− sinu

)
, (43)

and its solution is

D0 = 1, D1 = 0. (44)

By formulas (36) one can obtain

A1 = −D1 = 0, A0 = D0 − UD1 = 1. (45)

Finally, by using (26) we have

B1
1 = − cosu, B1

0 = 0, B2
1 = sinu, B2

0 = 0, (46)
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and the general solution takes the form


τ = σuu + σ,

ξ1 = sinuσuu − cosuσu,

ξ2 = cosuσuu + sinuσu,

(47)

where σ = σ(u) is arbitrary function from C3.

Example 2. Let us calculate the symmetry algebra of a control system

x(n) = u, x(n) =
dnx

dtn
. (48)

Rewrite system (48) in Cauchy form

ẋ1 = x2, ẋ2 = x3, . . . , ẋn = u, (49)

where x1 = x, x2 = ẋ, . . ., xn = x(n−1). Now with system (49) we can associate the differential
operator

X0 = X̂0 + u∂xn , X̂0 = ∂t + xi+1∂xi , i = 1, n− 1. (50)

The symmetry operator is

X = τ(t, x, u)∂t + ξj(t, x, u)∂xj + ϕ(t, x, u)∂u, j = 1, n. (51)

Symmetry conditions give us the following determining equations

Xf j + f jX0τ −X0ξ
j = 0, (52)

f jUτ − Uξj = 0, j = 1, n. (53)

The last equation is the same as (2). From (53) we have

ξi
u − xi+1τu = 0, (54)

ξn
u − uτu = 0. (55)

According to Theorem 1 the solution of (55) has the form

τ = σu, ξn = uσu − σ, (56)

where σ = σ(t, x, u) is arbitrary function. Now for (54) we have

ξi = xi+1σu + gi, (57)

where gi = gi(t, x). Omitting the intermediate calculations, we can formulate the general result
as following.

Theorem 2. The maximal invariance algebra for control flat system (49) is infinite-dimensional
and its infinitesimal operator is

X = − ∂

∂xn

(
X̂n−2

0 g
)
∂t +

(
−xi+1 ∂

∂xn

(
X̂n−2

0 g
)
+ X̂i−1

0 g

)
∂xi

+
(
X̂n−1

0 g
)
∂xn +

(
X2

0 X̂
n−2
0

)
g∂u, i = 1, n− 1.

(58)

where g = g(t, x1, . . . , xn−1).

Important details and other examples the reader may find in [12].
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4 Conclusion

The calculation of the general solution of system (2) according to Theorem 1 consists of only
regular actions (solving of linear system and differentiation), so these procedures are easy realized
in the analytical system REDUCE. Besides, exact formulas are very useful in supervising of
control systems (see the details in [12]).
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The Group Classification

of Nonlinear Wave Equations Invariant

under Two-Dimensional Lie Algebras

Olena MAGDA

Pedagogical Institute, Ostrogradskogo Street 2, Poltava, Ukraine

The group classification of the one class of the nonlinear wave equations which are invariant
under one- and two-dimensional Lie algebras is obtained.

The problem of group classification of differential equations is one of the central problems
of the modern symmetry analysis of the differential equations. In this raper we consider the
problem of the group classification of the equations of form

utt = uxx + F (t, x, u, ux), (1)

where u = u(t, x), F is an arbitrary nonlinear differentiable function of its variables. In (1)
Fux �= 0 is an arbitrary nonlinear smooth function, which depends on variables u or ux. Also we
denoted ux = ∂u

∂x , uxx = ∂2u
∂x2 , Fux = ∂F

∂ux
, ut = ∂u

∂t , utt = ∂2u
∂t2

.
We note that the problem of group classification of nonlinear hyperbolic equations was studied

in the works [1–5]. We describe the equations of the form (1), which are invariant under one-
and two-dimensional Lie algebras.

At first we give a form of an infinitesimal operator of the symmetry group of the equation (1),
and the group of equivalence transformation of this equation.

Theorem 1. The infinitesimal operator of the symmetry group of the equation (1) has following
form:

X = (λt + λ1)∂t + (λx + λ2)∂x + (h(x)u + r(t, x))∂u, (2)

where λ, λ1, λ2 are the arbitrary real constants, h(x), r(t, x) are the arbitrary functions, which
satisfy the following condition:

rtt − d2h

dx2
− rxx + (h− 2λ)F − (λt + λ1)Ft − (λx + λ2)Fx

−(hu + r)Fu − 2ux
dh

dx
− ux(h− λ)Fux − dh

dx
uFux − rxFux = 0.

(3)

The proof of the theorem is done by the Lie method [6]. Then by the way of direct calculations
it is not difficult to show, that the group of the equvalence of the equation (1) is determined by
the transformation:

t̄ = γt + γ1, x̄ = εγx + γ2, v = ρ(x)u + θ(t, x), (4)

γ �= 0, ρ �= 0, ε = ±1.
The first step of the group classification is the study of nonequivalent realizations of one-

dimensional Lie algebra in class of operators (2).
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Theorem 2. There are transformations (4) which reduce operator (2) to one of the following
operators:

1) X = λ(t∂t + x∂x), λ �= 0, λ = const;

2) X = ∂t + β∂x, β > 0;

3) X = ∂x;

4) X = ∂t;

5) X = ∂t + h(x)u∂u, h(x) �= 0;

6) X = h(x)u∂u, h(x) �= 0;

7) X = r(t, x)∂u.

Proof. We distinguish two cases.
Case 1. λ �= 0.

X = γ[λt + λ1]∂t̄ + (λx + λ2)εγ∂x̄ + [θt(λt + λ1) + (λx + λ2)(ρ′u + θx) + (hu + r)ρ]∂v. (5)

Check that operator (5) which by means of transformations (4) one be reduced to

X = λt̄∂t̄ + λx̄∂x̄. (6)

According to (5) and (6) we have

γ(λt + λ1) = λ(γt + γ1),

εγ(λx + λ2) = λ(εγx + γ1),

θt(λt + λ2) + (λx + λ2)θx + rρ = 0,

(λx + λ2)ρ′ + hρ = 0.

(7)

We have γ1 = λ1γλ
−1, γ2 = λ2εγλ

−1, ρ, θ are solutions of the system (7).
With the help of trasformations (4) the operator (2) reduces to form

X = λ(t∂t + x∂x).

Case 2. λ = 0 is treated the same way.
In accordance with Theorem 2 there are seven nonequivalent one-dimensional algebras:

A1
1 = 〈t∂t + x∂x〉 ;

A2
1 = 〈∂t + β∂x〉 , β > 0;

A3
1 = 〈∂x〉 ;

A4
1 = 〈∂t〉 ;

A5
1 = 〈∂t + h(x)u∂u〉 , h(x) �= 0;

A6
1 = 〈h(x)u∂u〉 , h(x) �= 0;

A7
1 = 〈r(t, x)∂u〉 .
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Below we give the list of corresponding values of function F in the equation (1), when those
one-dimensional algebras will be the algebras of invariance.

1) A1
1 : F = u2

xG(u, ω1, ω2), ω1 = tx−1, ω2 = xux;

2) A2
1 : F = G(ω, u, ux), ω = x− βt;

3) A3
1 : F = G(t, u, ux);

4) A4
1 : F = G(x, u, ux);

5) A5
1 : F = h−1h′′ − 2h′h−1ux ln |u|+ (h′h−1)2u ln2 |u|+ uG(x, ω1, ω2),

ω1 = ue−ht, ω2 = u−1ux − h−1h′ ln |u|;
6) A6

1 : F = h−1h′′ − 2h′h−1ux ln |u|+ (h′h−1)2u ln2 |u|+ uG(t, x, ω),

ω = u−1ux − h′h−1 ln |u|;
7) A7

1 : F = r−1(rtt − rxx)u + G(t, x, ω), ω = rxu− rux.

There are two real one- and two-dimensional Lie algebras:

1) A2.1 = A1 ⊕A1 = 〈e1, e2〉 , [e1, e2] = 0;

2) A2.2 = 〈e1, e2〉 , [e1, e2] = e2.

Studying their realizations in the class of the operators (2), on the base of the results of the
Theorem 2 we can put one of the basis operators of one- and two-dimensional Lie algebras equal
to one of operators, which are given in Theorem 2.

After the next steps, we have 19 realizations of the algebra A2.1 and 15 realizations A2.2,
which are the algebras of invariance of equation (1). We give the realizations of the algebra A2.1

and the corresponding values of the functions F in the equation (1).

A1
2.1 = 〈ku∂u, t∂t + x∂x〉 , k �= 0,

F = u−1u2
xG(ω, v), ω = tx−1, v = xu−1ux;

A2
2.1 = 〈r(ζ)∂u, t∂t + x∂x〉 , ζ = tx−1,

if r = const, F = u2
xG(ω, v), ω = ζ, v = xux,

if rζ �= 0, F = x−1ux(ζ2 − 1)rζζ(ζrζ)−1 + x−2G(ζ, ω), ω = ζrζu + rxux;

A3
2.1 = 〈∂t + β∂x, ku∂u〉 , β > 0, k �= 0,

F = uG(v, ω), v = x− βt, ω = u−1ux;

A4
2.1 = 〈∂t + β∂x, r(ζ)∂u〉 , ζ = x− βt, β > 0,

F = r−1rζζ(1 − β2)u + G(ζ, ω), ω = rζu + rux;

A5
2.1 = 〈∂t + β∂x, ∂t + ku∂u〉 , k �= 0,

F = uG(v, ω), v = βu + kζ, ω = u−1ux, ζ = x− βt;

A6
2.1 = 〈∂t, ∂x〉 ,

F = G(u, ux);
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A7
2.1 = 〈∂x, ku∂u〉 , k �= 0,

F = uG(t, u−1ux);

A8
2.1 = 〈∂x, r(t)∂u〉 , r �= 0,

F = r−1r̈u + G(t, ux), r̈ =
d2r

dt2
;

A9
2.1 = 〈∂x, ∂t + λu∂u〉 , λ �= 0,

F = uG(e−λtu, e−λtux);

A10
2.1 = 〈h(x)u∂u, ∂t〉 ,

F = −2
h′ux

h
ln |u|+ (h′)2

h2
u ln2 |u|+ h′′

h
+ uG(x, ω), ω =

ux

u
− h′

h
ln |u|,

A11
2.1 = 〈∂u, ∂t〉 ,

F = g(x, ux);

A12
2.1 = 〈f(x)u∂u, ∂t + ku∂u〉 , k �= 0,

F = f−1f ′′u ln |u| − u−1u2
x + uG(x, v), v = kf−1f ′t + u−1ux − f−1f ′ ln |u|;

A13
2.1 =

〈
eλt∂u, ∂t + λ∂u

〉
, λ �= 0,

F = λ2u + uxG(x, ω), ω = uxe
−λt;

A14
2.1 = 〈f(x)u∂u, ∂t + h(x)u∂u〉 , h′ �= 0,

F = −ω2 + G(x, V ), V = AT + x, A = hf ′f−1 − h′, A �= 0,

ω = u−1ux − f ′f−1 ln |u|, h′′ = hf−1f ′′,
f ′

f
�= h′

h
,

h′′

h
=

f ′′

f
;

A15
2.1 =

〈
eh(x)t∂u, ∂t + f(x)u∂u

〉
, f ′ �= 0,

F = f2 + 2f ′f−1 − 2(f ′f−1)2 + 2f ′f−1ω ln |u|+ (f ′f−1)2 ln2 |v|
+ [f−1f ′′ − 2f ′f−1 + 2(f ′f−1)2] ln |v|+ G(x,w), w = ωv + f−1f ′v ln |v|,
v = ue−f(x)t, ω = u−1ux + f−1f ′ ln |u|;

A16
2.1 = 〈λxu∂u, ku∂u〉 , λ, k �= 0,

F = −u−1u2
x + uG(t, x);

A17
2.1 = 〈f(x)u∂u, h(x)u∂u〉 , h′ �= 0, f ′ �= 0,

F = −u−1u2
x + uG(t, x), f ′′f−1 = h′′h−1;

A18
2.1 = 〈ϕ(t)

ϕ̇(t)
∂u,

1
√

ϕ̇(t)
∂u〉, ϕ̇ �= 0,

F =
1
4
ϕ̇−2[3(ϕ̈)2 − 2ϕ̇ϕ̈]u + G(t, x, ϕ̇−1/2ux);
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A19
2.1 = 〈λ(t∂t + x∂x, r(ζ)∂u〉 , ζ = tx−1,

1) r = k = const, r �= 0, k �= 0, F = G(ζ, xux),

2) rζ �= 0, F = ζ−1r−1
ζ v−1[(1− ζ2)rζζ − 2ζrζ ] + G̃(ζ, ω), v = xux,

ω = ζrζu + rv.

On base of the results of the Theorem 2 we proved the following theorem.

Theorem 3. In the class of operators (2) there are no realizations of the algebras so(3) and
sl(2, R).

From this theorem we have the following results:

• in class of operators (2) there are no realizations of real semi-simple Lie algebras;

• there are not such equations (1) which have algebras of invariance, which isomorphic by
real semi-simple algebras, or contain those algebras as subalgebras.

Thus, we must study of existence of realizations of only real solvable Lie algebras in the class
of operators (2) for the complete group classification equation (1).

The author is gratefull to R.Z. Zhdanov and V.I. Lahno for formulation of the problem and
for the help in the research.
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The authors use the procedure developed in [9] to develop a Hamiltonian structure into the
variational problem given by the integral of the squared curvature on the spatial curves.
The solutions of that problem are the elasticae or nonlinear splines. The symmetry of the
problem under rigid motions is then used to reduce the Euler–Lagrange equations to a first-
order dynamical system.

1 Introduction

Elasticae, or nonlinear spline curves, are the extremal curves of the second order variational
problem given by the functional

∫
κ2ds (cf. [2, 4, 5]), where κ is the geodesic curvature of the

path, and ds is the arc-length element. This is one of the simplest examples of a general type
of variational problems called parameter-invariant problems (see [6]), as the action integral is
invariant under arbitrary changes of parameter. As all the problems in this class, our problem
is singular, that is, its Hessian vanishes. As a consequence, the standard Hamiltonian formalism
(momenta, Hamilton equations) cannot be directly applied. Hence it is not clear how to reduce
the order of the equations by using Noether invariants attached to the symmetries of the problem.

In [9], the authors devised a general procedure called parameter elimination, in order to pass
from parameter-invariant Lagrangian to a nonparametric version of it. Roughly speaking, the
parameter elimination consists in taking the parameter “time” apart and using one of the “spa-
tial” coordinates as the new parameter. So, the Lagrangian projects onto a “deparametrized”
Lagrangian, whose extremals, parametrized arbitrarily, are the extremals of the original prob-
lem. Furthermore, the projected Lagrangian gives rise in some cases (which can be suitably
characterized) to a regular problem, and hence Hamiltonian formalism can be applied.

In this paper this general procedure is applied to the particular case of the nonlinear splines in
the 3-dimensional space, thus introducing a natural Hamiltonian formulation to the problem.
Within this setting, the Noether invariants associated to the rigid motions of the space are found
(the rigid motions – translations and rotations – are symmetries of the variational problem, as
both the curvature and the arc-length are invariant under isometries). This invariants are then
used to reduce the order of the equations of extremals, from a fourth order system to a nonlinear
system of the form



dy′

dx
= F (y′, z′),

dz′

dx
= G(y′, z′),

where y′ = dy/dx and z′ = dz/dx.
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The term nonlinear splines is used to distinguish the extremal curves of the squared curvature
functional of the “usual” linear splines (or just splines), or piecewise cubic polynomials. The lat-
ter are the extremals of the linear approximation to the variational problem under consideration.
Of course, we are just interested in the exact extremals, not in the approximations.

2 Hamiltonian formulation for elasticae

In the standard coordinates of R
3, the expression of the nonlinear splines Lagrangian is (see [12]):

L =
(ẏz̈ − ÿż)2 + (ẋz̈ − ẍż)2 + (ẋÿ − ẍẏ)2

(ẋ2 + ẏ2 + ż2)5/2
.

The variational problem defined by this Lagrangian is not regular. In fact, as a simple compu-
tation shows, we have det

(
∂2L/∂ẍi∂ẍj

) ≡ 0. Hence, Hamiltonian formalism cannot be applied.
Nevertheless, this variational problem is parameter-invariant (see [6]); i.e.,∫ b

a
L (
j2t (σ ◦ u))dt =

∫ β

α
L (
j2u(σ)

)
du,

for every orientation-preserving diffeomorphism u: [a, b] → [α, β]. This fact can easily be checked,
either geometrically, or making use of the Zermelo conditions (see [6]).

Using the procedure described in [9], we pass from the Lagrangian L given above to the
deparametrized version L̄. Roughly speaking, this is done by eliminating the variable t, using x
as the new independent variable, and passing from the “dots” (which represent derivatives with
respect to t), to the “primes” (standing for derivatives with respect to x). The following relations
are used:

y′ =
ẏ

ẋ
, z′ =

ż

ẋ
, y′′ =

ẋÿ − ẏẍ
ẋ3

, z′′ =
ẋz̈ − żẍ
ẋ3

. (1)

It is important to notice that the process is applied to the Lagrangian density Ldt to convert it
into a density L̄dx modulo a contact form dx− ẋdt.

The following are some of the main results given in [9] (here L stands for a generic second-
order Lagrangian):

(i) L̄ is regular if and only if the Hessian matrix of L has rank 2.
(ii) The extremals of Ldt are the extremals of L̄dx, endowed with an arbitrary parametri-

zation.
In the case of the squared curvature functional, the rank of the Hessian matrix is 2, so the

non-parametric Lagrangian, which can be easily computed by using the formulas (1),

L̄ =
(y′z′′ − y′′z′)2 + y′′2 + z′′2

(1 + y′2 + z′2)5/2
, (2)

is regular, and we can apply the Hamiltonian formalism to it.

2.1 Hamilton equations for elasticae

Using the standard Hamiltonian formalism for second order problems (see, [1, 3, 4, 7, 11]) we
can write the Jacobi–Ostrogradski momenta associated to the non-parametric Lagrangian L̄,

p = v−5
[
−2

(
z′2 + 1

)
y′′′ + 2y′z′z′′′

]
+ v−7

[
5y′

(
z′2 + 1

)
y′′2

+ 2z′
(
−2y′2 + 3z′2 + 3

)
y′′z′′ − y′

(
y′2 + 6z′2 + 1

)
z′′2

]
,
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q = v−5
[
2y′z′y′′′ − 2

(
y′2 + 1

)
z′′′

]
+ v−7

[
−z′

(
6y′2 + z′2 + 1

)
y′′2

+ 2y′
(
3y′2 − 2z′2 + 3

)
y′′z′′ + 5z′

(
y′2 + 1

)
z′′2

]
,

p′ = v−5
[
2

(
z′2 + 1

)
y′′ − 2y′z′z′′

]
,

q′ = v−5
[
−2y′z′y′′ + 2

(
y′2 + 1

)
z′′

]
,

v =
(
1 + y′2 + z′2

)1/2
,

and also the Hamiltonian H = py′ + qz′ +
(
v3/4

) [
(p′y′ + q′z′)2 + (p′)2 + (q′)2

]
, the Poincaré–

Cartan form

Θ̄ = L̄dx+ p(dy − y′ dx) + q(dz − z′ dx) + p′(dy′ − y′′ dx) + q′(dz′ − z′′ dx)
= −H dx+ p dy + q dz + p′ dy′ + q′ dz′,

(3)

and, finally, the Hamilton equations:

dy
dx

= y′,
dz
dx

= z′,
dp
dx

= 0,
dq
dx

= 0,

dy′

dx
=

1
2
v3

[(
y′2 + 1

)
p′ + y′z′q′

]
,

dz′

dx
=

1
2
v3

[
y′z′p′ +

(
z′2 + 1

)
q′

]
,

dp′

dx
= −p− 1

4
v

[
y′

(
5y′2 + 2z′2 + 5

)
(p′)2 + 2z′

(
4y′2 + z′2 + 1

)
p′q′ + 3y′

(
z′2 + 1

)
(q′)2

]
,

dq′

dx
= −q − 1

4
v

[
3z′

(
y′2 + 1

)
(p′)2 + 2y′

(
y′2 + 4z′2 + 1

)
p′q′ + z′

(
2y′2 + 5z′2 + 5

)
(q′)2

]
.

(4)

Our aim shall be to reduce this system to a first-order ordinary differential system in the
variables y′, z′. Also note that p′ = q′ = 0 if and only if the spline curve is a geodesic; i.e.,
y = α1x+ β1, z = α2x+ β2, αi, βi ∈ R, i = 1, 2.

3 Generalized symmetries and reduction to first order

It is straightforward to see that the variational problem defined by the squared curvature func-
tional is invariant under isometries, as the curvature and arc-length element are themselves
invariant under isometries. Thus, the infinitesimal generators of the rigid motions of R

3 are
infinitesimal symmetries of Ldt, that is, if X ∈ X(R3) is the infinitesimal generator of a rigid
motion, LX(2)

(Ldt) = 0, where X(r) is the prolongation of the vector field (0, X) ∈ X(R×R
3) to

Jr(R,R3) by means of infinitesimal contact transformations (cf. [8, 9]). For infinitesimal symme-
tries, Noether’s Theorem (see [7]) states that the function fX = iX(3)

Θ(Ldt): J2r−1(R,M) → R

is constant along each extremal of the variational problem defined by Ldt. The function fX is
called the Noether invariant associated to X.

Nevertheless, as it was stated in [9], if (0, X) ∈ X(R×R
3) is an infinitesimal symmetry of Ldt,

it does not need to be X ∈ X(R×R
2) an infinitesimal symmetry of L̄dt (in fact, it can even be

not projectable onto R
2). But it is a generalized infinitesimal symmetry of L̄dt, i.e., LX[2]

(L̄dt)
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is a contact form, that is, it vanishes on every 2-jet of curve on M (cf. [10, Definition 5.25]).
Here, X[r] denotes the prolongation of X ∈ X(R3) to X(Jr(R,R2)) by means of infinitesimal
contact transformations.

It can be shown that if X ∈ X(R × M) is a generalized infinitesimal symmetry of L̄dx,
then fX is constant on the extremals of L̄dx; i.e., generalized symmetries also produce Noether
invariants.

Now we shall use the (generalized) symmetries of the deparametrized squared curvature
Lagrangian to reduce (by means of the associated Noether invariants) the order of the Hamilton
equations for the nonlinear splines on R

3. More precisely, in the general case we shall reduce
the equations (4) to a system of the form:

dz′

dy′
= F

(
y′, z′

)
,

dy′

dx
= G

(
y′, z′

)
.

Hence the problem is reduced to two ordinary differential equations in the plane as we can first
solve z′ in terms of y′ from the first equation above and then substitute the obtained expression
for z′ into the second equation thus leading us to an equation of the form dy′/dx = Ḡ(µ, x, y′),
where µ is a constant.

As we have already said, the infinitesimal generators of the isometries of R
3 are infinitesimal

symmetries of the Lagrangian density Ldt, and hence infinitesimal generalized symmetries of
L̄dx. The isometries of R

3 are generated by the translations along the three axes, and the
rotations around these axes. The infinitesimal generators of the translations are ∂/∂x, ∂/∂y
and ∂/∂z, which are their own prolongations by infinitesimal contact transformations. As the
Poincaré–Cartan form has the expression given in (3), the Noether invariants associated to the
translations are H = −Θ̄(∂/∂x), p = Θ̄(∂/∂y) and q = Θ̄(∂/∂z). The infinitesimal generators
of the three rotations are

X = z
∂

∂y
− y ∂

∂z
, Y = −z ∂

∂x
+ x

∂

∂z
, Z = −y ∂

∂x
+ x

∂

∂y
.

We obtain their prolongations X[3], Y[3], Z[3] ∈ X(J3(R,R2)) by imposing that X[3], Y[3] and Z[3]

project onto X, Y and Z respectively, and leave invariant the differential system spanned by
the contact forms dy − y′ dx, dz − z′ dx, dy′ − y′′ dx, dz′ − z′′ dx, dy′′ − y′′′ dx and dz′′ − z′′′ dx:

X[3] = X + z′
∂

∂y′
− y′ ∂

∂z′
+ z′′

∂

∂y′′
− y′′ ∂

∂z′′
+ z′′′

∂

∂y′′′
− y′′′ ∂

∂z′′′
,

Y[3] = Y + y′z′
∂

∂y′
+

(
z′2 + 1

) ∂

∂z′
+

(
y′z′′ + 2y′′z′

) ∂

∂y′′
+ 3z′z′′

∂

∂z′′

+
(
y′z′′′ + 3y′′z′′ + 3y′′′z′

) ∂

∂y′′′
+

(
4z′z′′′ + 3z′′2

) ∂

∂z′′′
,

Z[3] = Z + (y′2 + 1)
∂

∂y′
+ y′z′

∂

∂z′
+ 3y′y′′

∂

∂y′′
+

(
2y′z′′ + y′′z′

) ∂

∂z′′

+
(
4y′y′′′ + 3y′′2

) ∂

∂y′′′
+

(
y′′′z′ + 3y′′z′′′ + 3y′z′′′

) ∂

∂z′′′
.

The associated Noether invariants are:
Cx = pz − qy + p′z′ − q′y′,
Cy = Hz + qx+ y′z′p′ +

(
z′2 + 1

)
q′,

Cz = Hy + px+
(
y′2 + 1

)
p′ + y′z′q′.
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3.1 The level H = 0

The Hamiltonian H has a unique critical point at the point y′ = z′ = p = q = p′ = q′ = 0,
which is non-degenerate of signature (4, 2) as follows from Morse’s lemma taking into account
that H = py′ + qz′ + P 2 +Q2, where

P =
1
2
v3/2

((
y′2 + 1

)1/2
p′ + y′z′

(
y′2 + 1

)−1/2
q′

)
,

Q =
1
2
v5/2

(
y′2 + 1

)−1/2
q′.

If the Hamiltonian vanishes, then we can substitute the expressions of Cy and Cz into the
third and fourth Hamilton equations (4) to obtain the following system of first-order ordinary
differential equations:

dy′

dx
=

1
2
v3(Cz − px), dz′

dx
=

1
2
v3(Cy − qx).

3.2 H �= 0

If H is not zero, we use the formulas of Cy and Cz to eliminate y and z, and the third and
fourth Hamilton equations (4) to eliminate p′ and q′. Substitution in the expressions of H and
Cx then yields, after defining C as

2C = Cx − pCy − qCz

H
,

the following system of ordinary differential equations of the first order:

Cv3 =
( q
H

+ z′
) dy′

dx
−

( p
H

+ y′
) dz′

dx
, (5)

(H − py′ − qz′)v5 =
(
z′2 + 1

) (
dy′

dx

)2

− 2y′z′
dy′

dx
dz′

dx
+

(
y′2 + 1

) (
dz′

dx

)2

. (6)

3.2.1 The case C = 0

If C vanishes, then the equation (5) is just

(Hz′ + q)
dy′

dx
− (Hy′ + p)

dz′

dx
= 0,

or, equivalently,
(

dy′/dx
dz′/dx

)⊥
=

(
dz′/dx
−dy′/dx

)
⊥

(
H

(
y′

z′

)
+

(
p
q

))
.

Hence, for every x there exists a λ(x) ∈ R such that

dy′

dx
= λ

(
Hy′ + p

)
,

dz′

dx
= λ

(
Hz′ + q

)
.

Solving this pair of differential equations, we obtain

y′(x) = Kye
HΛ − p

H
, z′(x) = Kze

HΛ − q

H
,
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where Λ(x) =
∫
λ(x)dx and Ky,Kz ∈ R. Substitution in equation (6) then yields

(
H − (pKy + qKz)eHΛ − p2 + q2

H

)((
K2

y +K2
z

)
e2HΛ − pKy + qKz

H
eHΛ +

H2 + p2 + q2

H2

)5/2

= (Λ′)2
(
H2(K2

y +K2
z ) + (qKy − pKz)2

)
e2HΛ,

which is a first-order ordinary differential equation on Λ.

3.2.2 The general case

Let us now assume that H �= 0 and C �= 0. From there, and (5), we know that p + Hy′ and
q+Hz′ do not vanish simultaneously. Let us suppose that p+Hy′ �= 0. Then, from equation (5)
we can write the derivative of z′ in terms of the derivative of y′ as

dz′

dx
=
q +Hz′

p+Hy′
dy′

dx
− CHv3

p+Hy′
, (7)

and then we can write this equation as a differential equation for z′(y′):

dz′

dy′
=
q +Hz′

p+Hy′
− CHv3

(dy′/dx)(p+Hy′)
. (8)

Substitution of (7) in (6) then yields
(

dy′

dx

)2 [
(pz′ − qy′)2 + (Hz′ + q)2 + (hy′ + p)2

]
+ 2

dy′

dx
CHv3

[
y′(pz′ − qy′) − (Hz′ + q)

]

+C2H2v6(y′2 + 1) − (H − py′ − qz′)(Hy′ + p)v5 = 0,

whose solutions are

dy′

dx
=
v3 (y′(pz′ − qy′) − (Hz′ + q)) ± ∆1/2

A
, (9)

where

∆ = −C2H2v8(Hy′ + p)2 + v5(Hy′ + p)(H − py′ − qz′)A,
A = (qy′ − pz′)2 + (Hy′ + p)2 + (Hz′ + q)2.

We have thus reduced the Hamilton equations to a pair of first-order ordinary differential equa-
tions, (8) and (9). Also note that for C �= 0 and H �= 0, the above system is non-singular
where it is defined so that the singularities of the system can only arise in the particular cases
previously studied.

We remark that in order to find out where the solutions of (9) are defined, we have to study
the behaviour of the discriminant ∆. It is clear that where H − py′ − qz′ < 0 the discriminant
is negative and hence no solution is defined in that region. On the half-plane H − py′ − qz′ > 0,
∆ is positive if and only if

(H − py′ − qz′)2 (
(qy′ − pz′)2 + (Hy′ + p)2 + (Hz′ + q)2

)2
> C4H4

(
1 + y′2 + z′2

)3
.

The analysis of the sign of this expression has turned too long to be stated here, and we leave
it for a future work.
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for a Non-linear d’Alembert Equation
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E-mail: appmath@imath.kiev.ua

New class of exact solutions of multidimensional complex nonlinear d’Alembert equation is
constructed. These solutions in principle can not be obtained within the frame work of the
traditional Lie approach.

In paper [1] the symmetry reduction of multidimensional complex non-linear d’Alembert
equation was carried out

✷u = F (|u|)u (1)

to ordinary differential equations. In (1) ✷ = ∂2/∂x2
0 − ∆ is the d’Alembert operator, u =

u(x0, x1, x2, x3) is a complex twice continuously differentiable function, F (|u|) is a continuous
arbitrary function.

Amongst the obtained reduced equations there appear not only ordinary differential equa-
tions, but also purely algebraical ones.

For example, if we take the Ansatz

u(x) = exp (−i(σx1 + γx2 + σx2(x0 + x3)))ϕ(x0 + x3),

where σ, γ are real constants, so that |γ|+ |σ| �= 0.
Substituting this Ansatz into (1), we obtain(

σ2 + γ2 + 2γσω + σω2
)
ϕ = F (|ϕ|)ϕ.

Hence, we find that |ϕ| is given implicitly:

F (|ϕ|) = σ2 + γ2 + 2γσω + σω2.

So, this procedure gives a class of solutions of equation (1) with the only real function
Φ(x0 + x3):

ϕ = F−1
(
σ2 + γ2 + 2γσω + σω2

)
exp(iΦ(x0 + x3)).

Our aim is to describe all possible Ansätze of the type:

u(x) = exp(ia(x))ϕ(ω(x)), (2)

which reduce equation (1) to algebraic one.
The full solution of this task is given by the following theorem.

Theorem. Ansatz (2) reduces equation (1) to algebraic one if and only if

1) Aµ(ω)xµ + B(ω) = 0, Aµ(ω)Aµ(ω) = 0, axµωxµ = 0,

✷a = 0, axµaxµ = −w2
1(ω), a(x) =

w1(ω)(
−ȦνȦν

)Ȧµxµ + w2(ω),
(3)
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where ν = 0, 1, 2, 3; Aµ(ω), B(ω), w1(ω), w2(ω) are arbitrary functions; the point above the
symbol means derivative by ω; by the repeated indexes ment summing up (raising and low-
ering of the index is carried out with the help of the metrical tensor of the Minkowski space
gµν = diag (1,−1,−1,−1)).

2) ω(x) = w0 (θµxµ) ,

a(x) = w1 (θµxµ) aνx
ν + w2 (θµxµ) bνx

ν + w3 (θµxµ) ,

where w0, w1, w2, w3 are arbitrary functions of their arguments; θµ, aµ, bµ are arbitrary real
parameters, which satisfy the following orthogonal relations

aµaµ = bµbµ = −1, aµbµ = aµθµ = bµθµ = θµθµ = 0.

We omit the proof, which bases on the results of papers [2–3].
The result of substituting Ansatz (2), where a(x), ω(x) are given by formulas (3), into

equation (1) will give the following algebraic equation:

w2
1(ω)ϕ = F (|ϕ|)ϕ.

Hence, we obtain the following class of solutions of the complex non-linear d’Alembert equa-
tion (1)

u(x) = ρ(ω) exp{ia(x)},
where a(x), ω(x) are given by the formulas (3), and ρ(ω) > 0 is determined in implicit way:

F (ρ(ω)) = w2
1(ω).

Let us mention that the obtained class of solutions is non-Lie and thus can not be derived
with the help of the method of symmetry reduction.

Consider the example, where the exact solution of d’Alembert equation with the cubical
non-linearity

✷u = λ|u|2u (4)

is constructed in explicit way. Substituting A0 = 1, A1 = ω, A2 =
√
1− ω2, A3 = B = 0 into (3)

we obtain that

ω =
(
x2

1 + x2
2

)−1
(

x0x1 ± x2

√
x2

1 + x2
2 − x2

0

)
.

Hence, we find

a(x) = iw1(ω)x3 + iw2(ω).

So, we obtain the following class of solutions

u(x) =
1√
λ

w1(ω) exp{iw1(ω)x3 + iw2(ω)}

of the equation (4). We emphasize that this solution has singularity at the point λ = 0, so it
can not be obtained by the methods of the perturbation theory by a small parameter λ.
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On SO(3)-Partially Invariant Solutions

of the Euler Equations

Halyna V. POPOVYCH
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SO(3)-partially invariant solutions having minimal defect are constructed for the Euler equa-
tions describing flows of an ideal incompressible fluid.

The concept of partially invariant solutions was introduced by Ovsiannikov [1] as a generalization
of invariant solutions, which is possible for systems of partial differential equations (PDEs). The
algorithm for finding partially invariant solutions is very difficult to apply. For this reason it is
used more rarely than the classical Lie algorithm for constructing invariant solutions.

The Euler equations (EEs) describing flows of an ideal incompressible fluid have the following
form:

�ut + (�u · �∇)�u + �∇p = �0, div �u = 0. (1)

It is well known [2, 3] that the maximal Lie invariance algebra of EEs is the infinite dimensional
algebra A(E), generated by the following basis elements:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),

Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,

R(�m) = R(�m(t)) = ma(t)∂a + ma
t (t)∂ua −ma

tt(t)xa∂p,

Z(χ) = Z(χ(t)) = χ(t)∂p.

(2)

In the following �u = {ua(t, �x)} denotes the velocity of the fluid, p = p(t, �x) denotes the pressure,
�x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, �∇ = {∂a}, � = �∇ · �∇ is the Laplacian, ma = ma(t)
and χ = χ(t) are arbitrary smooth functions of t (for example, from C∞((t0, t1),R)). The
fluid density is set equal to unity. Summation over repeated indices is implied, and we have
a, b = 1, 2, 3. Subscripts of functions denote differentiation with respect to the corresponding
variables.

Let us note that the algebra so(3) generated by the operators Jab is a subalgebra of A(E).
Invariant solutions of (1) have been already constructed. For example, in [4, 5] EEs are

reduced to partial differential equations in two and three independent variables by means of the
Lie algorithm. In this paper we obtain SO(3)-partially invariant solutions of the minimal defect
that is equal to 1 for the given representation of so(3).

A complete set of functionally independent invariants of the group SO(3) in the space of the
variables (t, �x, �u, p) is exhausted by the functions t, |�x|, �x · �u, |�u|, p, so SO(3)-partially invariant
solution of the minimal defect has the form

uR= v(t, R),

uθ = w(t, R) sinψ(t, R, θ, ϕ),

uϕ= w(t, R) cosψ(t, R, θ, ϕ),

p = p(t, R).

(3)
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Hereafter for convenience the spherical coordinates are used:

R = |�x|, ϕ = arctan
x2

x1
, θ = arccos

x3

|�x| ,

uR =
�x · �u
|�x| , uϕ =

(�e3 × �x) · �u
|(�e3 × �x)| , uθ =

((�e3 × �x) × �x) · �u
|((�e3 × �x) × �x)| , �e3 := (0, 0, 1).

Substituting (3) into EEs (1), we obtain the system of PDEs for the functions v, w, ψ, p :

vt + vvR −R−1w2 + pr = 0,

wt + vwR + R−1vw = 0,

w(ψt + vψR + R−1wψθ sinψ + R−1w cosψ(sin θ)−1(ψϕ − cos θ)) = 0,

Rvr + 2v + wψθ cosψ − (sin θ)−1w sinψ(ψϕ − cos θ) = 0.

(4)

It follows from (4) if w = 0 that v = ηR−2, p = ηtR
−1 − 1

2η
2R−4 + χ, where η and χ are

arbitrary smooth functions of t. The corresponding solution of EEs

uR =
η

R2
, uθ = uϕ = 0, p =

ηt

R
− η2

2R4
+ χ (5)

is invariant with respect to SO(3). Note that flow (5) is a solution of the Navier-Stokes equations
too, and it is the unique SO(3)-partially invariant solutions of the minimal defect for the Navier-
Stokes equations.

Below w 	= 0. Then two last equations of (4) form an overdetermined system in the function ψ.
This system can be rewritten as follows

ψθ + Rw−1 sinψ(ψt + vψR) = −G cosψ,

ψϕ + Rw−1 cosψ(ψt + vψR) sin θ = G sinψ sin θ + cos θ,
(6)

where G = G(t, R) := w−1(RvR + 2v). The Frobenius theorem gives the compatibility condition
of (6):

Gt + vGR = R−1w(1 + G2). (7)

If condition (7) holds, system (6) can be integrated implicitely. Namely, its general solution has
the form

F (Ω1,Ω2,Ω3) = 0, (8)

where F is an arbitrary function of Ω1, Ω2, and Ω3,

Ω1 =
sin θ sinψ −G cos θ√

1 + G2
, Ω2 = ϕ + arctan

cosψ
cos θ sinψ + G sin θ

, Ω3 = h(t, r),

h = h(t, R) is a fixed solution of the equation ht + vhR = 0 such that (ht, hR) 	= (0, 0). Equa-
tion (8) can be solved with respect to ψ in a number of cases, for example, if either FΩ1 = 0 or
FΩ2 = 0.

Equation (7) and two first equations of (4) form the “reduced” system for the invariant
functions v, w, and p. It can be represented as the union of the system

R2ftR + ffRR − (fR)2 = g, f := R2v

R2gt + fgR = 0, g := (Rw)2,
(9)
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for the functions v and w (this system can be also considered a system for the functions f and g)
and the equation

pR = −vt − vvR −R−1w2 (10)

which is one for the function p if v and w are known. Therefore, to construct solutions for EEs,
we are to carry out the following chain of actions: 1) to solve the system (9); 2) to integrate (10)
with respect to p; 3) to find the function ψ from (8).

Theorem. The maximal Lie invariance algebra of (9) is the algebra

A = 〈 ∂t, D
R = R∂R + v∂v + w∂w, D

t = t∂t − v∂v − w∂w 〉.
A complete set of A-inequivalent one-dimensional subalgebras of A is exhausted by four

algebras. Let us enumerate these algebras and the corresponding ansatzes for the functions v
and w as well as the reduced systems arising after substituting the ansatzes into (9).

1. 〈 ∂t 〉 : v = R−2ϕ1(ω), w = R−1ϕ2(ω), ω = R, ϕ2 	= 0;

ϕ1ϕ1
ωω − (ϕ1

ω)2 = (ϕ2)2, ϕ1ϕ2
ω = 0.

2. 〈DR 〉 : v = Rϕ1(ω), w = R/ϕ2(ω), ω = t, ϕ1ϕ2 	= 0;

3ϕ1
ω = 3(ϕ1)2 + (ϕ2)−2, ϕ2

ω = 2ϕ1ϕ2.

3. 〈 ∂t + DR 〉 : v = Rϕ1(ω), w = Rϕ2(ω), ω = lnR− t, ϕ1
ωϕ

2
ω 	= 0;

(ϕ1 − 1)ϕ1
ωω − (ϕ1

ω)2 − ϕ1
ω(ϕ1 + 3) − 3(ϕ1)2 = (ϕ2)2,

(ϕ1 − 1)ϕ2
ω + 2ϕ1ϕ2 = 0.

4. 〈Dt + κDR 〉 : v = Rt−1ϕ1(ω), w = Rt−1ϕ2(ω), ω = lnR− κ ln |t|, ϕ1ϕ2 	= 0;

(ϕ1 − κ)ϕ1
ωω − (ϕ1

ω)2 − ϕ1
ω(ϕ1 + 3κ + 1) − 3(ϕ1)2 − 3ϕ1 = (ϕ2)2,

(ϕ1 − κ)ϕ2
ω + (2ϕ1 − 1)ϕ2 = 0.

Two first reduced systems can be integrated completely. As a result we obtain the following
expressions for the functions v, w, and p :

1. v =
C3

2R2

(
eC2R + C2

1e
−C2R

)
, w =

C1C2C3

R
, C1, C2, C3 = const, C1C2C3 	= 0,

=⇒ p = − C2
3

8R4

(
e2C2R + 2C2

1 + C4
1e

−2C2R
)
− C2

1C
2
2C

2
3

2R2
+ χ(t),

G =
1

2C1

(
eC2R − C2

1e
−C2R

)
, h = t−

∫
dR

v(R)
.

2. v =
℘t

2℘
R, w =

3C
2℘

R, =⇒ p = C2
( 1
℘2

− ℘
)
R2 + χ(t), G =

℘t

C
, h =

R2

℘
.

Here C = const, C 	= 0, ℘ = ℘(Ct, 0, 1) is the Weierstrass function, χ is an arbitrary smooth
function of t.

System (9) has solutions for which f and g are polynomial with respect to R. Thus, if
deg(f,R) = 1 and, therefore, deg(g,R) � 2, then f = C2tR, g = C2R2−C4t2, where C = const,
C 	= 0, i.e.

v =
C2t

R
, w =

C

R

√
R2 − C2t2 =⇒ p = χ(t), G =

Ct√
R2 − C2t2

, h =
√

R2 − C2t2.



On SO(3)-Partially Invariant Solutions of the Euler Equations 183

The solution of system (9), given above, is invariant with respect to the algebra 〈Dt + DR 〉.
If deg(f,R) = 3 and, therefore, deg(g,R) � 4, we have two families of solutions:

a) f = −R3

t
+ C2

1 (t3 + C2)R, g = 3C2
1 t

2R2 − C4
1 (t3 + C2)2, C1, C2 = const, C1 	= 0, i.e.

v = −R

t
+ C2

1

t3 + C2

R
, w =

C1

R

√
3t2R2 − C2

1 (t3 + C2)2, =⇒ p = −R2

t2
+ χ(t),

G =
−3R2 + C2

1 t(t
3 + C2)2

C1t
√

3t2R2 − C2
1 (t3 + C2)2

, h =
√

3t2R2 − C2
1 (t3 + C2)2.

b) f =
℘t

2℘
R3 + (C1 cosα + C2 sinα)R, g =

(
3C0

2℘
R2 − C1 sinα + C2 cosα

)2

− C2
1 − C2

2 ,

v =
f

R2
, w =

√
g

R
=⇒ p = C2

0

( 1
℘2

− ℘
)
R2 + χ(t), G =

fR√
g
, h =

√
g.

Here C0, C1, C2 = const, C0 	= 0, ℘ = ℘(C0t, 0, 1) is the Weierstrass function, α =
∫

3C0℘
−1dt,

χ is an arbitrary smooth function of t. The last solution is a generalization of the invariant
solution with respect to the algebra 〈DR 〉.

The solutions given above exhaust all the solutions of system (9), for which f and g are
polynomial with respect to R.
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The definition of Q-conditional symmetry for one PDE is correctly generalized to a special
case of systems of PDEs and involutive families of operators. The notion of equivalence of
Q-conditional symmetries under a group of local transformation is introduced. Using this no-
tion, all possible single Q-conditional symmetry operators are classified for the n-dimensional
(n � 2) linear heat equation and for the Euler equations describing the motion of an incom-
pressible ideal fluid.

The concept of Q-conditional symmetry called also nonclassical symmetry was introduced by
Bluman and Cole in 1969. This year is the year of the 30th anniversary of appearance of their
pioneering paper [1]. Although the concept of Q-conditional symmetry exists for a long time
and has various applications many problem of its theory are not solved so far.

Before 1986 the nonclassical symmetry was only mentioned in few papers, e.g., in [2]. The
intensive application of Q-conditional symmetries to finding exact solutions of partial differential
equations (PDEs) and the parallel search for their foundations was begun after publication of
the papers of Olver and Rosenau in 1986 and 1987 [3, 4] as well as the paper of Fushchych and
Tsyfra in 1987 [5].

The first correct definition of a Q-conditional symmetry operator for one PDE was given
in [5]. Later it was generalized to involutive families of operators [6–8]. We stress that it can be
directly extended only to some special cases of Q-conditional invariance for systems of PDEs.
For all the other cases this definition must be essentially modified and is much more complicated.

In this paper we correctly generalize the definition of Q-conditional symmetry [6–8] to a
special case of systems of PDEs and involutive families of operators. Further, we introduce the
notion of equivalence of Q-conditional symmetries under a group of local transformation. Using
this notion, we can, first, classify all the possible Q-conditional symmetries and, correspondingly,
all the possible reductions of systems of PDEs [7, 8] and, secondly, essentially simplify the
procedure of finding Q-conditional symmetries in some cases when the Lie symmetry group is
sufficiently wide.

Consider a system of k PDEs of the order r for m unknown functions u = (u1, . . . , um)
depending on n independent variables x = (x1, . . . , xn) of the form

L(x, u(r)(x)) = 0, L = (L1, . . . , Lk). (1)

Here the order of a system is the order of the major partial derivative appearing in the system.
The symbol u(r) denotes for the set of partial derivatives of the functions u of the orders from 0
to r. Within the local approach system (1) is treated as a system of algebraic equations in the
jet space J (r) of the order r.

Consider also an involutive family Q of l differential operators

Qs = ξsi(x, u)∂xi + ηsa(x, u)∂ua , where l � n, rank ||ξsi(x, u)|| = l. (2)
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The requirement of involution means for the family Q that the commutator of any pair of
operators from Q belongs to the span of Q over the ring of smooth functions of the variables x
and u, i.e.

∀ s, p ∃ ζsps′ = ζsps′(x, u): [Qs, Qp] = ζsps′Qs′ . (3)

Here and below the indices a and b run from 1 to m, the indices i and j run from 1 to n, the
indices s and p run from 1 to l, and the indices µ and ν run from 1 to n − l. The sumation is
imposed over the repeated indices. Subscripts of functions denote differentiation with respect
to the corresponding variables.

If operators (2) form an involutive family, then the family Q̃ of differential operators

Q̃s = λspQp, where λsp = λsp(x, u), det ||λsp|| �= 0, (4)

is also involutive. And family (4) is called equivalent to family (2) [6–8].

Notation: Q̃ = {Q̃s} ∼ Q = {Qs}.
By the Frobenius theorem, condition (3) is sufficient for the system of PDEs

Qs[ua] := ηsa(x, u)− ξsi(x, u)
∂ua

∂xi
= 0 (5)

to be compatible.
Denote the manifold defined by the system of algebraic equations L = 0 in J (r) by L and the

manifold corresponding to the set of all the differential consequences of the system of PDEs (5)
in J (r) by M:

L = {(x, u(r)) ∈ J (r) |L(x, u(r)) = 0},
M= {(x, u(r)) ∈ J (r) |Dα1

1 . . . Dαn
n Qs[ua] = 0, αi ∈ N ∪ {0}, |α|: = α1 + · · ·+ αn < r},

where Di = ∂xi +
∑
α
ua

α,i∂ua
α

is the operator of total differentiation with respect to the vari-

able xi, ua
α and ua

α,i denote the variables in J (r), corresponding to derivatives ∂|α|u
∂x

α1
1 ...∂xαn

n
and

∂|α|+1u

∂x
α1
1 ...∂x

αi−1
i−1 ∂x

αi+1
i ∂x

αi+1
i+1 ...∂xαn

n

.

Let the system L|M = 0 do not includes equations which are differential consequences of
other its equations. Moreover, let all the differential consequences of the system L|M = 0, the
orders of which (as equations) are less than or equal to its order, vanish on L ∩M.

Definition 1. System of smaller PDEs (1) is called Q-conditional invariant with respect to
involutive family of differential operators (2) if the relation(

Qs
(r)L

)∣∣∣
M∩L

= 0 (6)

holds true. Here the symbol Qs
(r) denotes the rth prolongation of the operator Qs:

Qs
(r) = Qs +

∑
|α|�r

ηsaα∂ua
α
, ηsaα = Dα1

1 . . . Dαn
n (ηsa − ξsiua

i ) + ξsiua
α,i.

Denote the set of involutive families of l operators of Q-conditional symmetry of system (1)
as B(L, l):

B(L, l) =
{
Q = {Q1, . . . , Ql}

∣∣∣∣ the system L = 0 is Q-conditionally
invariant with respect to Q

}
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Lemma [6–8]. Let system of PDEs (1) be Q-conditionally invariant with respect to involutive
family of operators (2). Then, it is Q-conditionally invariant with respect to an arbitrary family
of the form (4), i.e.

Q ∈ B(L, l), Q̃ ∼ Q =⇒ Q̃ ∈ B(L, l).

An important consequence of the lemma is that we can study Q-conditionally invariance up
to equivalence relation (4) which is defined on the set of involutive families of l operators as well
as in B(L, l). Then it is possible for an arbitrary family of operators (2) to choose the functions
λsp(x, u) and, if it is necessary, to change enumeration of the variables x1, . . . , xn in such a
way that operators (4) take the following form: Q̂s = ∂xs + ξ̂s,l+ν∂xl+ν

+ η̂sa∂ua . Operators Q̂s

generate a commutative Lie algebra.
Let A(L) and G(L) denote the maximal Lie invariance algebra of system (1) and its max-

imal local symmetry correspondingly. Now we strengthen the equivalence relation in B(L, l),
given by formula (4), by means of generalizing equivalence of l-dimensional subalgebras of the
algebra A(L) under the adjoint representation of the group G(L) in A(L).

We use the following lemma for this generalization.

Lemma. Let g be an arbitrary local transformation from G(L). Then the adjoint action of g in
the set of differential operators generate a one-to-one mapping from B(L, l) into itself.

Let Q = {Qs} and Q̃ = {Q̃s} be involutive families of differential operators.

Definition. The families Q and Q̃ are called equivalent with respect to a group G of local trans-
formations if there exists a local transformation g from G for which the families Q and Ad(g)Q̃
are equivalent.

Notation: Q ∼ Q̃ mod G.

Definition. The families Q and Q̃ are called equivalent with respect to a Lie algebra A of diffe-
rential operators if they are equivalent with respect to the one-parametric group generated by an
operator from A.

Notation: Q ∼ Q̃ mod A.

Therefore,

Q ∼ Q̃ mod G
def⇐⇒ ∃ g∈G: Q ∼ Ad(g)Q̃. (7)

Q ∼ Q̃ mod A
def⇐⇒ ∃V ∈A: Q ∼ Q̃ mod {eεV , ε∈U(0, δ) ⊂ R} (8)

Lemma. Formulas (7) and (8) define equivalence relations in the set of involutive families of
l differential operators. Moreover, if G is a subgroup of G(L) and A is a subalgebra of A(L)
then formulas (7) and (8) define equivalence relations in B(L, l).

Comsider two examples.

Example 1. Investigate Q-conditional invariance of the linear n-dimensional heat equation

ut = uaa, where u = u(t, &x), t = x0, &x = (x1, . . . , xn), (9)

with respect to a single operator (l = 1).
It is just the problem with n = 1 for which Bluman and Cole introduced the concept of

nonclassical symmetry. In the one-dimensional case the problem was completely solved in [9].
That is why we pay our attention to the multidimensional problem.
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Lie symmetry of equation (9) is well known. In the one-dimensional case it was investigated by
Lie. The maximal Lie invariance algebra A(LHE) of (9) is generated by the following operators:

∂t = ∂/∂t, ∂a = ∂/∂xa, D = 2t∂t + xa∂a, Ga = t∂a − 1
2xau∂u, I = u∂u,

Jab = xa∂b − xb∂a (a < b), Π = 4t2 + 4txa∂a − (xaxa + 2t)u∂u, f(t, &x)∂u,
(10)

where f = f(t, &x) is an arbitrary solution of (9).

Theorem 1. For any operator Q of Q-conditional symmetry of equation (9) one of three
following conditions holds:

1. Q ∼ Q̃0, where Q̃0∈A(LHE);

2. Q ∼ Q̃1 = ∂n + gng
−1u∂u mod ASO(n) + A∞(LHE), where g = g(t, xn) (gn �= 0) is a

solution of the one-dimensional heat equation, that is, gt = gnn;

3. Q ∼ Q̃2 = J12 + ϕ(θ)u∂u mod AG(1, n) + A∞(LHE), where ϕ = ϕ(θ) is a solution of the
equation ϕθθ + 2ϕϕθ = 0, ϕθ �= 0, θ is the polar angle in the plane OX1X2.

Here A∞(LHE) = 〈f(t, &x)∂u|f = f(t, &x):ft = faa〉, AG(1, n) = 〈∂t, ∂a, Ga, Jab〉, ASO(n) = 〈Jab〉.
It follows from Theorem 1 that there exist only three classes of the possible reductions on

one independent variable for the linear multidimensional heat equation.
The first class is formed by Lie reductions.
The second class involves reductions which are similar to separation of variables in the Carte-

sian coordinates:

u = g(t, xn)v(ω0, . . . , ωn−1), where ω0 = t, ωi = xi; (9) =⇒ v0 = vii.

The third class is formed by reductions which are similar to separation of variables in the
cylindrical coordinates:

u = exp(
∫
ϕ(θ)dθ)v(ω0, . . . , ωn−1), where ω0 = t, ω1 = r, ωs = xs+1, s = 2, n− 1;

(9) =⇒ v0 = v11 + ω−1
1 v1 − λω−2

1 v + vss.

Here λ = −ϕθ−ϕ2 = const, (r, θ) are the polar coordinates in the plane OX1X2. As the equation
ϕθθ + 2ϕϕθ = 0 has four essentially different (under translations with respect to θ) families of
solutions with ϕθ �= 0, there are four inequivalent cases for the third class of reductions (κ �= 0):

a) ϕ = −κ tanκθ : u = v(ω0, . . . , ωn−1) cosκθ, λ = κ
2;

b) ϕ = κ tanhκθ : u = v(ω0, . . . , ωn−1) coshκθ, λ = −κ
2;

c) ϕ = κ cothκθ : u = v(ω0, . . . , ωn−1) sinhκθ, λ = −κ
2;

d) ϕ = θ−1 : u = v(ω0, . . . , ωn−1)θ, λ = 0.

Example 2. Consider the Euler equations

&ut + (&u · ∇)&u+∇p = &0, div &u = 0 (11)

describing the motion of an incompressible ideal fluid. In the following &u = {ua(t, &x)} denotes the
velocity of the fluid, p = p(t, &x) denotes the pressure, n = 3, &x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa,
&∇ = {∂a}, � = &∇ · &∇ is the Laplacian. The fluid density is set equal to unity.
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Lie symmetry of system (11) was investigated by Buchnev [10, 11]. The maximal Lie invari-
ance algebra A(E) of (11) is infinite dimensional and generated by the following operators:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),

Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,

R(&m) = ma(t)∂a +ma
t (t)∂ua −ma

tt(t)xa∂p, Z(χ) = χ(t)∂p,

(12)

where ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (for example, from
C∞((t0, t1),R)). Let us investigate Q-conditional symmetry of (11) with respect to alone differ-
ential operator Q = ξ0(t, &x, &u, p)∂t + ξa(t, &x, &u, p)∂a + ηa(t, &x, &u, p)∂ua + η0(t, &x, &u, p)∂p.

Theorem 2. Any operator Q of Q-conditional symmetry of the Euler equations (11) either is
equivalent to a Lie symmetry operator of (11) or is equivalent (modA(E)) to the operator

Q̃ = ∂3 + ζ
(
t, x3, u

3
)
∂u3 + χ(t)x3∂p, (13)

where ζu3 �= 0, ζ3 + ζζu3 = 0, ζt +
(
u3ζ + χx3

)
ζu3 + (ζ)2 + χ = 0.

It follows from Theorem 2 that there exist two classes of the possible reductions w.r.t. inde-
pendent variable for the Euler equations, namely, the Lie reductions and the reductions corre-
sponding to operators of form (13).

Lie reductions of the Euler equations (11) are investigated in [12–14].
An ansatz constructed with the operator Q̃ has the following form:

u1 = v1, u2 = v2, u3 = x3v
3 + ψ

(
t, v3

)
, p = q + 1

2χ(t)x
2
3,

where va = va(t, x1, x2), q = q(t, x1, x2), ψ = ψ(t, v3) is a solution of the equation

ψt −
((
v3

)2 + χ
)
ψv3 + v3ψ = 0.

Substituting this ansatz into (11), we obtain the corresponding reduced system (i, j = 1, 2):

vi
t + vjvi

j + qi = 0, v3
t + vjv3

j +
(
v3

)2 + χ = 0, vj
j + v3 = 0.

The analogous problem for the Navier–Stokes equations

&ut + (&u · ∇)&u+∇p− ν�&u = &0, div &u = 0 (ν �= 0) (14)

describing the motion of an incompressible viscous fluid was solved by Ludlow, Clarkson, and
Bassom in [15]. Their result can be reformulated as follows.

Theorem 3. Any (real) operator Q of Q-conditional symmetry of the Navier–Stokes equa-
tions (14) is equivalent to a Lie symmetry operator of (14).

Therefore, all the possible reductions of the Navier–Stokes equations w.r.t. independent
variable are exhausted by the Lie reductions. Lie symmetry of system (14) was studied by
Danilov [16, 17]. The maximal Lie invariance algebra of the Navier-Stokes equations (14 is
similar to one of the Euler equations (see (12)):

A(NS) = 〈∂t, Jab, D
t + 1

2D
x, R(&m(t)), Z(ζ(t))〉.

The Lie reductions of the Navier–Stokes equations were completely described in [18].
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Lie Submodels of Rank 1 for MHD Equations
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The MHD equations describing flows of a viscous homogeneous incompressible fluid of finite
electrical conductivity are reduced by means of Lie symmetries to partial differential equa-
tions in three independent variables. Symmetry properties of the reduced systems are inves-
tigated.

1. Introduction. The MHD equations (the MHDEs) describing flows of a viscous homogeneous
incompressible fluid of finite electrical conductivity have the following form:

�ut + (�u · �∇)�u−��u+ �∇p+ �H × rot �H = �0, div �u = 0,
�Ht − rot(�u× �H)− νm� �H = �0, div �H = 0.

(1)

System (1) is very complicated and construction of its new exact solutions is a difficult problem.
In [1, 2] the MHDEs (1) are reduced to ordinary differential equations and to partial differential
equations in two independent variables. Following [3], in this paper we reduce the MHDEs
(1) to partial differential equations in three independent variables by means of one-dimensional
subalgebras of the maximal Lie invariance algebra of the MHDEs.
In (1) and below, �u = {ua(t, �x)} denotes the velocity field of a fluid, p = p(t, �x) denotes

the pressure, �H = {Ha(t, �x)} denotes the magnetic intensity, νm is the coefficient of magnetic
viscosity, �x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, �∇ = {∂a},� = �∇·�∇ is the Laplacian. The kinematic
coefficient of viscosity and fluid density are set equal to unity, permeability is done (4π)−1.
Subscripts of functions denote differentiation with respect to the corresponding variables.
The maximal Lie invariance algebra of the MHDEs (1) is an infinite-dimensional algebra

A(MHD) with the basis elements (see [4])

∂t, D = t∂t + 1
2xa∂a − 1

2u
a∂ua − 1

2H
a∂Ha − p∂p,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua +Ha∂Hb −Hb∂Ha , a<b,

R(�m) = ma∂a +ma
t ∂ua −ma

ttxa∂p, Z(χ) = χ∂p,

(2)

where ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (for example, from
C∞((t0, t1),R)). Summation is understood over repeated indices. The indices a, b take val-
ues 1, 2, 3 and i, j takes respectivily values 1, 2. The algebra A(MHD) is isomorphic to the
maximal Lie invariance algebra A(NS) of the Navier–Stokes equations [5, 6, 7].
In addition to continuous transformations generated by operators (2), the MHDEs admit

discrete transformations Ib of the form

t̃ = t, xb = −xb, x̃a = xa,

p̃ = p, ũb = −ub, H̃b = −Hb, ũa = ua, H̃a = Ha, a �= b,
where b is fixed.

2. Inequivalent one-dimensional subalgebras of A(MHD). A complete set of A(MHD)-
inequivalent one-dimensional subalgebras of A(MHD) is exhausted by the following algebras:

1. A1
1(κ) = 〈D + κJ12〉, where κ ≥ 0.
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2. A1
2(κ) = 〈∂t + κJ12〉, where κ∈{0; 1}.

3. A1
3(η, χ) = 〈J12+R(0, 0, η(t))+Z(χ(t))〉 with smooth functions η and χ. Algebras A1

3(η, χ)
and A1

3(η̃, χ̃) are equivalent if ∃ ε, δ∈R, ∃ ε1, ε2∈{−1; 1}, ∃λ∈C∞((t0, t1),R):

η̃(t̃) = ε1e−εη(t), χ̃(t̃) = ε2e2ε(χ(t) + λtt(t)η(t)− λ(t)ηtt(t)), (3)

where t̃ = te−2ε + δ.

4. A1
4(�m, χ) = 〈R(�m(t)) + Z(χ(t))〉 with smooth functions �m and χ: (�m, χ) �≡ (�0, 0). Al-

gebras A1
4(�m, χ) and A

1
4( �̃m, χ̃) are equivalent if ∃ ε, δ∈R, ∃ ε1∈{−1; 1}, ∃C �= 0, ∃B∈O(3),

∃�l∈C∞((t0, t1),R3):

�̃m(t̃) = Ce−εB�m(t), χ̃(t̃) = Cε1e2ε(χ(t) +�ltt(t) · �m(t)− �mtt(t) ·�l(t)), (4)

where t̃ = te−2ε + δ.

3. Lie ansatzes of codimension one for the MHD field. Using of the algebras A1
1 − A1

4

(in the case when additional restrictions for parameters are satisfied), we can construct ansatzes
of codimension one for the MHD field. Let us list these ansatzes.

1. �u = |t|−1/2O(τ)�v + 1
2 t

−1�x+ κt−1�e3 × �x,
�H = |t|−1/2O(τ)�G,

p = |t|−1q + 1
8 t

−2|�x|2 + 1
2κt−2r2,

(5)

where �y = |t|−1/2OT (τ)�x, τ = κ ln |t|. Here and below
va = va(y1, y2, y3), Ga = Ga(y1, y2, y3), q = q(y1, y2, y3),

O(τ) =



cos τ − sin τ 0
sin τ cos τ 0
0 0 1


 , r = (x2

1 + x
2
2)

1/2, �e3 = (0, 0, 1).

2. �u = O(τ)�v + κ�e3 × �x, �H = O(τ)�G, p = q + 1
2κr2, (6)

where �y = OT (τ)�x, τ = κt.

3. u1 = x1r
−1v1 − x2r

−2v2, u2 = x2r
−1v1 + x1r

−2v2,

u3 = v3 + η(t)r−2v2 + ηt(t) arctanx2/x1,

H1 = x1r
−1G1 − x2r

−2G2, H2 = x2r
−1G1 + x1r

−2G2, H3 = G3 + η(t)r−2G2,

p = q − 1
2ηtt(t)(η(t))−1x2

3 + χ(t) arctanx2/x1,

(7)

where y1 = r, y2 = x3 − η(t) arctanx2/x1, y3 := τ = t.

Notion. The expression for the pressure p from ansatz (7) is indeterminate in the points
t ∈ (t0, t1) where η(t) = 0. If there are such points t, we will consider ansatz (7) on the intervals
(tn0 , t

n
1 ) that are contained in the interval (t0, t1) and that satisfy one of the conditions:

a) η(t) �= 0 ∀ t ∈ (tn0 , tn1 );
b) η(t) = 0 ∀ t ∈ (tn0 , tn1 ).

In the latter case we consider ηtt/η := 0.
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With the algebra A1
4(�m, χ), an ansatz can be constructed only for such t wherefore �m(t) �= �0.

If this condition is satisfied, it follows from (4) that the algebra A1
4(�m, χ) is equivalent to the

algebra A1
5(�m, 0). An ansatz constructed with the algebra A

1
4(�m, 0) has the following form:

4. �u = vi�ni + v3|�m|−2 �m+ (�m · �x)|�m|−2 �mt − yi|�m|−1�ni
t,

�H = Gi�ni +G3|�m|−2 �m,

p = |�m|q − 1
2 | �H|2 − |�m|−2(�mtt · �x)(�m · �x) + 1

2(�mtt · �m)|�m|−4(�m · �x)2−
− 3

2 |�m|−4((�mt · �ni)yi)
2 + (1

4 |�m|tt|�m|−2 − 3
8(|�m|t)2|�m|−3)yiyi,

(8)

where yi = �ni · �x, y3 = τ :=
∫ |�m|dt, �ni are smooth vector-functions such that

�ni · �m = �n1 · �n2 = �n1
t · �n2 = 0, |�ni| = |�m|1/2. (9)

Notion. There exist vector-functions �ni which satisfy conditions (9). They can be constructed in
the following way [3]: let us fix smooth vector-functions �ki = �ki(t) such that �ki · �m = �k1 ·�k2 = 0,
|�ki| = |�m|1/2, and set

�n1 = �k1 cosψ(t)− �k2 sinψ(t), �n2 = �k1 sinψ(t) + �k2 cosψ(t). (10)

Then �n1
t · �n2 = �k1

t · �k2 − ψt = 0 if ψ =
∫
(�k1

t · �k2)dt.

4. Reduced systems in three independent variables. Substituting ansatzes (5) and (6)
into the MHDEs (1), we obtain reduced systems of PDEs with the same general form

(�v · ∇)�v −��v +∇q + �G× rot �G+ γ1�e3 × �v = �0,
(�v · ∇)�G− (�G · ∇)�v − νm��G+ γ2

�G = �0,

div�v = 3
2γ2, div �G = 0.

(11)

Hereafter the functions va, Ga, and q are differentiated with respect to the variables y1, y2, and
y3. The constants γa take the values

1. γ1 = 2κ sign t, γ2 = − sign t;
2. γ1 = 2κ, γ2 = 0.

For ansatzes (7) and (8) the reduced equations have the form

3. M1 + q1 + y−3
1 ((G3)2 − (v3)2 − 2ηv3

2)− v1
1y

−1
1 + v1y−2

1 = 0,

M2 + (1 + η2y−2
1 )q2 + 2ηy−3

1 (G1G3 − v1v3 + v3
1 − ηv1

2−
−2v3y−1

1 )− y−1
1 v2

1 + 2ηty
−2
1 v3 − ηttη

−1y2 − ηχy−2
1 = 0,

M3 − ηq2 + v3
1y

−1
1 + 2ηy−1

1 v1
2 + χ = 0,

N 1 + νm(−2ηy−3
1 G3

2 + y
−2
1 G1 − y−1

1 G1
1) = 0,

N 2 + νm(−2η2y−3
1 G1

2 + 2ηy
−3
1 G3

1 − y−1
1 G2

1 − 4ηG3y−4
1 ) = 0,

N 3 + 2y−1
1 (v3G1 − v1G3) + 2νmηy−1

1 G1
2 + νmG

3y−1
1 = 0,

vi
i + v

1y−1
1 = 0, Gi

i +G
1y−1

1 = 0,

(12)

where Ma = va
τ + v

jva
j −GjGa

j − va
11 − (1 + η2y−2

1 )va
22,

N a = Ga
t + v

iGa
i −Giva

i − νmGa
11 − νm(1 + η2y−2

1 )Ga
22.
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4. vi
τ + v

jvi
j −GjGi

j − vi
jj + qi + 2β

iα−3v3 = 0,

v3
τ + v

jv3
j −GjG3

j − v3
jj = 0,

Gi
τ + v

jGi
j −Gjvi

j − νmGi
jj + ατα

−1Gi = 0,

G3
τ + v

jG3
j −Gjv3

j − νmG3
jj − 2βjGj − 2ατα

−1G3 = 0,

vi
i = 0, Gi

i = 0,

(13)

where α = α(τ) = |�m|, βi = βi(τ) = (�mτ · �ni).

5. Symmetry of reduced systems. Let us study symmetry properties of systems (11), (12),
and (13). All results of this subsection are obtained by means of the standard Lie algorithm
[9, 8].

Symmetry properties of the systems (11). The maximal Lie invariance algebra of sys-
tem (11) is the algebra

a) 〈∂a, ∂q, J
1
12〉 if γ1 �= 0;

b) 〈∂a, ∂q, J
1
ab〉 if γ1 = 0, γ2 �= 0;

c) 〈∂a, ∂q, J
1
ab, D

1
1〉 if γ1 = γ2 = 0.

Here J1
ab = ya∂yb

− yb∂ya + va∂vb − vb∂va +Ga∂Gb −Gb∂Ga ,

D1
1 = ya∂ya − va∂va −Ga∂Ga − 2q∂q .

Note. All Lie symmetry operators of (11) are induced by operators from A(MHD): The op-
erators J1

ab and D
1
1 are induced by Jab and D. The operators ca∂a (ca = const) and ∂q are

induced by either

R(|t|1/2(c1 cos τ − c2 sin τ, c1 sin τ + c2 cos τ, c3)), Z(|t|−1),

where τ = κ ln |t|, for ansatz (5) or
R(c1 cosκt− c2 sinκt, c1 sinκt+ c2 cosκt, c3), Z(1)

for ansatz (6), respectively. Therefore, Lie reduction of system (11) gives only solutions that can
be obtained by reducing the MHDEs with two- and three-dimensional subalgebras of A(MHD).

Symmetry properties of the systems (12). Let Amax be the maximal Lie invariance algebra
of system (12). Studying symmetry properties of (12), one has to consider the following cases:
A. η, χ ≡ 0. Then

Amax = 〈∂τ , D
1
2, R1(ζ(τ)), Z1(λ(τ))〉,

where D1
2 = 2τ∂τ + yi∂yi − vi∂vi − 2v3∂v3 −Gi∂Gi − 2G3∂G3 − 2q∂q,

R1(ζ(τ)) = ζ∂2 + ζτ∂v2 − ζττy2∂q, Z1(λ(τ)) = λ(τ)∂q.

Here and below ζ = ζ(τ) and λ = λ(τ) are arbitrary smooth functions of τ = t.
B. η ≡ 0, χ �≡ 0. In this case an extension of Amax exists for χ = (C1τ + C2)−1, where

C1, C2 = const. Let C1 �= 0. We can make C2 vanish by means of equivalence transformation (3),
i.e., χ = Cτ−1, where C = const. Then

Amax = 〈D1
2, R1(ζ(τ)), Z1(λ(τ))〉.

If C1 = 0, χ = C = const and Amax = 〈∂τ , R1(ζ(τ)), Z1(λ(τ))〉.
For other values of χ, i.e., when χττχ �= χτχτ , Amax = 〈R1(ζ(τ)), Z1(λ(τ))〉.
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C. η �= 0. Using equivalence transformation (3) we always can make χ = 0. In this case an
extension of Amax exists for η = ±|C1τ + C2|1/2, where C1, C2 = const. Let C1 �= 0. We can
annihilate C2 by means of equivalence transformation (3), i.e., η = C|τ |1/2, where C = const.
Then

Amax = 〈D1
2, R2(|τ |1/2), R2(|τ |1/2 ln |τ |), Z1(λ(τ))〉,

where R2(ζ(τ)) = ζ∂y2 + ζτ∂v2 . If C1 = 0, i.e., η = C = const,

Amax = 〈∂τ , ∂y2 , τ∂y2 + ∂v2 , Z1(λ(τ))〉.
For other values of η, i.e., when (η2)ττ �= 0,

Amax = 〈R2(η(τ)), R2(η(τ)
∫
(η(τ))−2dτ), Z1(λ(τ))〉.

Note. In all cases considered above the Lie symmetry operators of (12) are induced by oper-
ators from A(MHD): The operators ∂τ , D1

2, and Z
1(λ(τ)) are induced by ∂t, D, and Z(λ(t)),

respectively. The operator R(0, 0, ζ(t)) induces the operator R1(ζ(τ)) for η ≡ 0 and the operator
R2(ζ(τ)) (if ζττη − ζηττ = 0) for η �= 0. Therefore, the Lie reduction of system (12) gives only
the solutions that can be obtained by reducing the MHDEs with two- and three-dimensional
subalgebras of A(MHD).

Symmetry properties of the systems (13). Let us introduce the notations

S1 = ∂v3 − 2βiα−3yi∂q, S2 = (α)2∂G3 , Z̃(λ(τ)) = λ∂q,

R̃(ψ̄(τ)) = ψi∂yi + ψ
i
τ∂vi − ψi

ττyi∂q, ψ̄ = (ψ1, ψ2),

D̃ = τ∂τ + 1
2yi∂yi − 1

2v
i∂vi − 1

2G
i∂Gi − q∂q, Ĩ = v3∂v3 +G3∂G3 ,

J̃12 = y1∂y2 − y2∂y1 + v
1∂v2 − v2∂v1 +G1∂G2 −G2∂G1 .

For arbitrary values of the parameter-functions α and βi, the system (13) is invariant under the
algebra

Aall = 〈R̃(ψ̄), S1, S2, Z̃(λ)〉.
Extensions of the maximal Lie invariance algebra of system (13) exist in the following cases (for
each extension we write down its basis operators):

1. βi = 0, ατ = 0, νm = 1: D̃, ∂τ , J̃12, I, G
3∂v3 + v3∂G3 .

2. βi = 0, ατ = 0, νm �= 1: D̃, ∂τ , J̃12, I.

3. βi = 0, α = a2|τ + a0|a1 , a1a2 �= 0: D̃ + a0∂τ , J̃12, I.

4. βi = 0, α = a2e
a1τ , a1a2 �= 0: ∂τ , J̃12, I.

5. βi = 0, αατατττ + (ατ )2αττ − 2α(αττ )2 �= 0: J̃12, I.

6. βi �= 0, βi
τ = 0, ατ = 0: D̃ − 3

2I, ∂τ .

7. β1 = ρ cos θ, β2 = ρ sin θ, α = a2|τ + a0|a1 , where

ρ = b1|τ + a0|a1/2−1, θ = b2 ln |τ + a0|+ b3, and (a1b1, b2) �= (0, 0):

D̃ + a0∂τ − b2J̃12 + 1
2(a1 − 1)I.

8. β1 = ρ cos θ, β2 = ρ sin θ, α = a2e
a1τ , where

ρ = b1e3a1τ/2, θ = b2τ + b3, and (a1b1, b2) �= (0, 0):

∂τ − b2J̃12 + 3
2a1I.



Lie Submodels of Rank 1 for MHD Equations 195

Note. The vector-functions �ni from Ansatz 4 are determined up to the transformation

�n1 −→ �n1 cos δ − �n2 sin δ, �n2 −→ �n1 sin δ + �n2 cos δ,

where δ = const. Therefore, δ can be chosen such that b3 = 0.

Note. The operators R(ψ̄(t)) + C1S
1, Z̃(λ(τ)) from Aall are induced by the operators R(�l(t)),

Z(χ(t)), respectively. Here

χ(t) = λ(τ(t)), �l(t) = ψi(τ(t))�ni(t) + ϕ(t)�m(t),

where 2ψi(τ(t))(�ni
t(t) · �m(t)) + ϕ(t)|�m(t)|2 = C1.

The operator S2 is not induced by operators from A(MHD). Therefore, Lie reduction of sys-
tem (13) can give solutions that can not be obtained by reducing the MHDEs with two- and
three-dimensional subalgebras of A(MHD).

Consider inducing the operators from extension of Aall. The operators I and G3∂v3 + v3∂G3

are not induced by operators from A(MHD).
The operator J̃12 belongs to the maximal Lie invariance algebra of the system (13) if βi = 0.

In this case �m = |�m|�e, where �e = const and |�e| = 1. Then, the operator J̃12 is induced by
e1J23 + e2J31 + e3J12.
For �m = eσt(c2 cos θ, c2 sin θ, c1) with c1, c2, σ,κ, δ = const and θ = κt+δ , where c21+c

2
2 = 1,

the operator ∂t + κJ12 induces the operator ∂τ − c1κJ̃12 + σI if the following vector-functions
�ni are chosen:

�n1 = �k1 cos c1θ + �k2 sin c1θ, �n2 = −�k1 sin c1θ + �k2 cos c1θ, (14)

where �k1 = (− sin θ, cos θ, 0) and �k2 = (c1 cos θ, c1 sin θ,−c2).
For �m = |t+ δ̃|σ+1/2(c2 cos θ, c2 sin θ, c1) with θ = κ ln |t+ δ̃|+ δ and c1, c2, σ,κ, δ, δ̃ = const,

where c21 + c
2
2 = 1, the operator D + δ̃∂t + κJ12 induces the operator D̃ + δ̃∂τ − c1κJ̃12 + σI, if

the vector-functions �ni are chosen in form (14).
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We consider scalar (1 + 1)-dimensional evolution equation of order n ≥ 2, which possesses
time-independent formal symmetry (i.e. it is integrable in the sense of symmetry approach),
shared by all local generalized time-independent symmetries of this equation. We show that
if such equation possesses the nontrivial canonical conserved density ρm, m ∈ {−1, 1, 2, . . .},
then it has no polynomial in time local generalized symmetries (except time-independent
ones) of order higher than n+m+1. Some generalizations of this result and related results are
also presented. Using them, we have found all local generalized time-dependent symmetries
of Harry Dym and mKdV equations.

Introduction

The scalar (1+ 1)-dimensional evolution equation, having the time-independent formal symme-
try, is either linearizable or integrable via inverse scattering transform (see e.g. [1, 2, 3, 4] for
the survey of known results and [5] for the generalization to (2 + 1) dimensions).

It is natural to ask whether such equation may have local generalized time-dependent sym-
metries, different from time-independent ones, forming the integrable hierarchy of the equation
considered, and how to find all of them (cf. Ch. V of [4]). To the best of our knowledge, there
were no attempts to find general answer to this question, although long ago all local generalized
symmetries of KdV [6, 7] and Burgers [6] equations were found.

In this paper we present the results, enabling one to answer this question for a large class of
evolution equations. In particular, we prove that if ρ−1 = (∂F/∂un)−1/n �∈ ImD, but ∇F (ρ−1) ∈
ImD, then the equation ut = F (x, u, . . . , un), n ≥ 2, has no local generalized time-dependent
symmetries of order higher than n (see Section 1 and Theorem 1 in Section 2 for details).

Next, for the majority of nonlinear evolution equations one can prove the polynomiality in time
of all their local generalized symmetries, using scaling or other arguments, so it is interesting to
consider the conditions of existence of polynomial in time symmetries, especially for the equations
with ρ−1 ∈ ImD. To this end one can apply our Theorem 2, stating that if canonical conserved
density ρm �∈ ImD for some m ∈ N, then the equation ut = F (x, u, . . . , un), n ≥ 2, possessing
time-independent formal symmetry, has no polynomial in time local generalized symmetries
(except time-independent ones) of order higher than the number pF = pF(m), given by (20).

Finally, on the basis of Theorems 1 and 2 we suggest the scheme of finding all local generalized
time-dependent symmetries of a given integrable evolution equation and apply it to Harry Dym
and modified KdV equations. We also discuss in brief the generalization of our results to the
systems of evolution equations.
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1 Basic definitions and known results

We consider the scalar (1 + 1)-dimensional evolution equation

∂u/∂t = F (x, u, u1, . . . , un), n ≥ 2, ∂F/∂un �= 0, (1)

where ul = ∂lu/∂xl, l = 0, 1, 2, . . ., u0 ≡ u, and the local generalized symmetries of this equation,
i.e. the right hand sides G of evolution equations

∂u/∂τ = G(x, t, u, u1, . . . , uk), (2)

compatible with equation (1) (following [3, 6] we identify the symmetries with their character-
istics).

For any function H = H(x, t, u, u1, . . . , uq) the greatest number m such that ∂H/∂um �= 0 is
called its order and is denoted as m = ordH. For H = H(x, t) we assume that ordH = 0. We
shall call the function f of x, t, u, u1, . . . local [4], if it has finite order.

We shall denote by S(k)
F the space of local generalized symmetries of order not higher than

k of Eq.(1). Let also SF =
∞⋃

j=0
S

(j)
F , ΘF = {H(x, t)|H(x, t) ∈ SF }, SF,k = S

(k)
F /S

(k−1)
F for

k = 1, 2, . . ., SF,0 = S(0)
F /ΘF .

Finally, let AnnF be the set of all local time-independent generalized symmetries of Eq.(1).
In what follows we shall always consider time-dependent local generalized symmetries of Eq.(1)
as the elements of quotient space SF /AnnF . In other words, we shall consider time-dependent
symmetries modulo time-independent ones (i.e. up to the addition of linear combinations of
time-independent symmetries).
SF is Lie algebra with respect to the so-called Lie bracket [2, 4]

{h, r} = r∗(h)− h∗(r) = ∇h(r)−∇r(h),

where for any sufficiently smooth function f of x, t, u, u1, . . . , us we have introduced the notation

f∗ =
s∑

i=0

∂h/∂uiD
i, ∇f =

∞∑
i=0

Di(f)∂/∂ui.

Here D = ∂/∂x +
∞∑
i=0
ui+1∂/∂ui is the total derivative with respect to x. We shall denote by

ImD the image of the space of local functions under the action of the operator D.
G is symmetry of Eq.(1) if and only if [4]

∂G/∂t = −{F,G}. (3)

Let us note without proof (cf. Lemma 5.21 from [4]) that for any G ∈ SF , ordG = k ≥ n0,
we have

∂G/∂uk = ck(t)Φk/n, (4)

where ck(t) is a function of t, Φ = ∂F/∂un,

n0 =

{
max(1− j, 0), if F is such that ∂F/∂un−i = φi(x), i = 0, . . . , j,
2 otherwise.

(5)

In what follows we shall assume without loss of generality that any symmetry G ∈ SF,k,
k ≥ n0 vanishes, provided the relevant function ck(t) is identically equal to zero.
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We make also a blanket assumption that all the functions that appear below in this paper
(the function F , symmetries G, etc.) are locally analytical functions of their arguments.

For any local functions P,Q the relation R = {P,Q} implies [2]

R∗ = ∇P (Q∗)−∇Q(P∗) + [Q∗, P∗], (6)

[∇P ,∇Q] = ∇R. (7)

Here ∇P (Q∗) ≡
∞∑

i,j=0
Dj(P ) ∂2Q

∂uj∂ui
Di and likewise for ∇Q(P∗); [·, ·] stands for the usual commu-

tator of linear differential operators.
For P = G, Q = F , using Eq.(3), we obtain

∂G∗/∂t ≡ (∂G/∂t)∗ = ∇G(F∗)−∇F (G∗) + [F∗, G∗]. (8)

Now let us remind some facts concerning the formal series in powers of D (see e.g. [1, 3, 5] for
more information; in contrast with these references we let the coefficients of the series depend
explicitly on time, but this obviously doesn’t alter the results, listed below), i.e. the expressions
of the form

H =
m∑

j=−∞
hj(x, t, u, u1, . . .)Dj . (9)

The greatest integer m such that hm �= 0 is called the degree of formal series H and is denoted by
degH. For any formal series H of degree m �= 0 there exists unique [5] (up to the multiplication
by m-th root of unity) formal series H1/m of degree 1 (or −1 for m < 0) such that (H1/m)m = H.
The fractional powers of H are defined as Hl/m = (H1/m)l for all integer l.

Let us also define [3] the residue of the formal series H as the coefficient at D−1, i.e. resH =
h−1, and the logarithmic residue as res lnH = hm−1/hm.

The formal series R is called the formal symmetry (of infinite rank) of Eq.(1), if it satisfies
the relation (cf. [3])

∂R/∂t+∇F (R)− [F∗,R] = 0. (10)

Finally, let us introduce the important notion of master symmetry [8] for the particular case
of local functions: the local function B(x, u, u1, . . .) is called (time-independent local) master
symmetry of Eq.(1), if for any P ∈ AnnF we have {B,P} ∈ AnnF . If in addition {B,F} �= 0, we
shall call B strong master symmetry. Like for the time-dependent symmetries, we shall always
consider master symmetries up to the addition of the terms, being the linear combinations of
time-independent symmetries.

2 The no-go theorem

By Theorem 1 from [10] for any symmetry G of Eq.(1) of order k > n+ n0 − 2 we have

G∗ =
k∑

j=k−n+1

cj(t)F
j/n
∗ +

(
1
n
ċk(t)D−1(Φ−1/n)− k

n
ck(t)D−1(∇F (Φ−1/n))

)
F

k−n+1
n∗ + N, (11)

where cj(t) are some functions of t and N is some formal series, degN < k − n+ 1.
Analyzing the terms, standing underD−1, we conclude that if Φ−1/n �∈ ImD, while∇F (Φ−1/n)

∈ ImD, then G∗ (and hence G itself) becomes nonlocal, and nonlocal terms vanish only if
ċk(t) = 0.
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Lemma 1 If G ∈ SF,k, k ≥ n0, and there exists a linear differential operator L =
q∑

j=0
aj∂

j/∂tj,

aj ∈ C, such that L(ck(t)) = 0, then L(G) = 0.

Proof of the lemma. Let us assume that the statement of the lemma is wrong, i.e. L(G) =
G̃ �= 0. It is obvious that G̃ ∈ S(k−1)

F (G̃ ∈ ΘF for k = 0) and that the determining equations (3)
for G̃ contain neither ck(t) nor its time derivatives. Since by assumption G ∈ SF,k, G must
vanish if ck(t) vanishes. On the other hand, this is impossible, because G̃ is independent of ck(t)
and its derivatives and G̃ �= 0. This contradiction may be avoided only if G̃ = 0, what proves
the lemma.

Using Lemma 1 with L = ∂/∂t, we conclude from the above that if Φ−1/n �∈ ImD and
∇F (Φ−1/n) ∈ ImD, then all the elements of SF,q for q > n+ n0 − 2 are time-independent, and
hence, since we consider time-dependent symmetries modulo time-independent ones, Eq.(1) has
no local time-dependent generalized symmetries of order higher than n+ n0 − 2.

Finally, from the definition (5) of n0 it is clear that for n0 = 0, 1 Φ−1/n = φ̃(x) ∈ ImD and
hence the case Φ−1/n �∈ ImD is possible only for n0 = 2. Thus, we have proved

Theorem 1 If (∂F/∂un)−1/n �∈ ImD, while ∇F ((∂F/∂un)−1/n) ∈ ImD, then Eq.(1) has no
local time-dependent generalized symmetries of order higher than n.

Let B be strong master symmetry of Eq.(1) and ordB > n. Then Q = B+t{B,F} obviously
is time-dependent symmetry of Eq.(1) of order higher than n, what contradicts to Theorem 1.
This contradiction proves the following

Corollary 1 If the conditions of Theorem 1 hold for Eq.(1), then it has no local time-indepen-
dent strong master symmetries of order higher than n.

As an example, let us consider Harry Dym equation

ut = u3u3.

It is straightforward to check that we have (∂F/∂u3)−1/3 = u−1 �∈ ImD, but ∇F (u−1) ∈ ImD.
Hence, the equation in question has no time-dependent symmetries of order higher than 3. Fur-
ther computation of symmetries of orders 0, . . . , 3 shows that, apart from the infinite hierarchy
of time-independent symmetries, Harry Dym equation has only two local time-dependent gen-
eralized symmetries: u+3tu3u3 and xu1 +3tu3u3, and both of them are equivalent to Lie point
symmetries.

3 Structure of linear in time symmetries

Consider polynomial in time t symmetries of Eq.(1) from the space SF,q. Using Lemma 1 with
L = ∂s/∂ts, one may easily check that in order to possess polynomial in time symmetry from SF,q

Eq.(1) must possess (at least one) linear in t symmetry Q = K+tH ∈ SF,q, ∂K/∂t = ∂H/∂t = 0,
H ∈ SF,q. It is obvious that

{F,H} = 0. (12)

Since Q ∈ SF,q, it is clear that k ≡ ordK ≤ q. The substitution of G = Q and P = F into (3)
and (8) yields

{F,K} = −H, (13)

∇K(F∗)−∇F (K∗) + [F∗,K∗] = H∗. (14)
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Since for arbitrary F and K ord{F,K} ≤ k + n− 1, Eq.(13) implies that k + n− 1 ≥ q and
hence k ≥ q − n+ 1.

Plugging the symmetry Q into (11) and setting t = 0, we immediately obtain the following
representation for K∗, provided q > n+ n0 − 2:

K∗ =
k∑

j=q−n+1

κjF
j/n
∗ +

(
γ

n
D−1(Φ−1/n)− δk,q

k

n
κkD

−1(∇F (Φ−1/n))
)
F

q−n+1
n∗ + N, (15)

where κj ∈ C, γ = Φ−q/n∂H/∂uq ∈ C, γ �= 0; N is some formal series with time-independent
coefficients, degN < q − n+ 1; δk,q = 1 if k = q and 0 otherwise.

Let us mention that if k = q, κk �= 0, we may consider the symmetry Q′ = Q − (κq/γ)H =
tH +K ′ ∈ SF,q instead of Q, and for Q′ we have ordK ′ < q. Thus, we can always assume that
ordK < q and hence κkδk,q = 0.

4 Polynomial in time symmetries of evolution equation
having formal symmetry

From now on we shall consider the evolution equation (1), possessing a time-independent
(∂L/∂t = 0) formal symmetry L of nonzero degree p. By definition, L satisfies the equation

[∇F − F∗,L] = 0. (16)

It is clear that for any integer q cLq/p, c = const also is formal symmetry of Eq.(1) [3].
Therefore, without loss of generality we may assume in what follows that deg L = 1 and
L = (∂F/∂un)1/nD + · · · [3].

It is known [2] that there exists at most one (up to the addition of linear combination of local
generalized time-independent symmetries Z = Z(x, u, u1, . . .) of Eq.(1), satisfying [∇Z −Z∗,L] =
0) such local generalized time-independent symmetry Y of Eq.(1) that1

[∇Y − Y∗,L] �= 0.

Let us choose Y to be of minimal possible order r, adding to it, if necessary, the appropriate
linear combination of the symmetries Z ∈ AnnF , which satisfy the condition [∇Z − Z∗,L] = 0.

From now on we shall assume (it is clear that this does not lead to the loss of generality)
that for any local generalized time-independent symmetry P = P (x, u, u1, . . .) ∈ SF /S

(r)
F

[∇P − P∗,L] = 0. (17)

Finally, let us assume that (∂F/∂un)−1/n ∈ ImD, i.e. the necessary condition of existence of
time-dependent symmetries of order higher than n, given in Theorem 1, is satisfied.

Now let us consider again the symmetry Q = K+ tH ∈ SF,q, ordQ = q > max(r, n+n0 −2).
Using Jacobi identity, Eq.(17) for P = H, Eqs. (13), (16), and Eqs.(6), (7) for P = F , Q = K,
we obtain that for all integer s

[∇F − F∗, [Ls,∇K −K∗]] = −[∇K −K∗, [∇F − F∗,Ls]]− [Ls, [∇K −K∗,∇F − F∗]] =
−[Ls, [∇K −K∗,∇F − F∗]] = [Ls,∇H −H∗] = 0.

1If, e.g., as in the majority of cases, all time-independent symmetries are generated by hereditary recursion
operator R from one seed symmetry, leaving R invariant, the symmetry Y with such property does not exist.
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Hence, by Lemma 8 from [2] [Ls,∇K − K∗] =
ks∑

j=−∞
cj,sLj , cj,s ∈ C. Straightforward but

lengthy check, which we omit here, shows that in fact ks = s+ q − n, and thus

[Ls,∇K −K∗] =
s+q−n∑
j=−∞

cj,sLj , cj,s ∈ C, cs+q−n,s �= 0. (18)

Since res∇G(Ls) = 0 for s ≤ −2 and res Lj = 0 for j < −1, Eq.(18) for s ≤ −2 yields

res [Ls,K∗] = −
s+q−n∑
j=−∞

cj,sres Lj = −
s+q−n∑
j=−1

cj,sres Lj . (19)

But the residue of the commutator of two formal series always lies in ImD [3]. On the other
hand, ρj = res Lj , j = −1, 1, 2, 3, . . . (and ρ0 = res ln L) are nothing but the so-called canonical
conserved densities for Eq.(1) [3], and hence ∇F (ρj) ∈ ImD. The density ρj is called nontrivial,
if ρj �∈ ImD, and trivial otherwise.

If the density ρs+q−n is nontrivial, while ρj , j = −1, 1, . . . , s+q−n−1 are trivial, then Eq.(19)
contains a contradiction. Namely, its l.h.s. lies in ImD, while the nonzero term cs+q−n,sρs+q−n

on its r.h.s. does not belong to ImD.
Since the density ρ−1 = (∂F/∂un)−1/n is trivial by assumption, let us restrict ourselves to the

case s+ q − n ≥ 1. This inequality is compatible with the condition s ≤ −2 for the non-empty
range of values of s if and only if q > n+2. Therefore, the range of values of s, for which Eq.(19)
may contain the contradiction, is n− q + 1, . . . ,−2.

Thus, if for q > max(n + 2, r) at least one of the densities ρ1, . . . , ρq−n−2 is nontrivial, then
Eq.(18) (and hence Eq.(13) with H ∈ SF,q as well) has no local time-independent solutions K.

Let

pF =

{
m+ n+ 1, if (17) is satisfied for all P ∈ AnnF ,

max(r,m+ n+ 1) otherwise,
(20)

where m ∈ N is the smallest number such that ρm �∈ ImD, while for j = −1, 1, . . ., m−1, j �= 0,
ρj ∈ ImD (ρ−1 ∈ ImD by assumption).

It is clear from the above that Eq.(1) has no polynomial in time symmetries from SF /S
(pF)

F

(except time-independent ones), and we obtain (cf. Theorem 1 and Corollary 1)

Theorem 2 If Eq.(1) has time-independent formal symmetry L, deg L �= 0, of infinite rank,
and for some m ∈ N ρm �∈ ImD, while for j = −1, 1, . . ., m− 1, j �= 0, ρj ∈ ImD, then Eq.(1)

has no polynomial in time2 local generalized symmetries from SF /S
(pF)

F .

Corollary 2 If the conditions of Theorem 2 hold for Eq.(1), then it has no local time-indepen-
dent strong master symmetries of order higher than pF.

Let us mention that provided one can prove that all the symmetries from SF /S
(pF)

F are poly-
nomial in time, Theorem 2, exactly like Theorem 1, implies the absence of any time-dependent
local generalized symmetries of order higher than pF of Eq.(1).

It is also important to stress that the application of Theorem 2 does not require the check of
triviality of the density ρ0, as shows the well known example of Burgers equation

ut = u2 + uu1.
2Of course, except time-independent ones.
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This equation has time-independent formal symmetry of degree 1 and local generalized polyno-
mial in time symmetries of all orders [6], and its canonical densities ρ−1, ρ1, ρ2, . . . are trivial,
while ρ0 is nontrivial.

Let us mention without proof that our results may be partially generalized to the case of
systems of evolution equations of the form (1), where u is s-component vector, provided s × s
matrix Φ = ∂F/∂un is nondegenerate (detΦ �= 0), may be diagonalized by means of some
similarity transformation Φ → Φ′ = ΩΦΩ−1 and has s distinct eigenvalues λi. We shall call the
systems (1) with such properties nondegenerate weakly diagonalizable. For such systems we have
the following analogs of Theorems 1 and 2:

Theorem 3 If for all eigenvalues λi of Φ we have λ−1/n
i �∈ ImD, but ∇F (λ−1/n

i ) ∈ ImD,
then nondegenerate weakly diagonalizable system (1) has no local time-dependent generalized
symmetries of order higher than n.

Theorem 4 If nondegenerate weakly diagonalizable system (1) has time-independent formal
symmetry L = ηDq + · · · of infinite rank, with det η �= 0 and q = deg L �= 0, (17) is satisfied for
all time-independent symmetries P of (1), and3 for some m ∈ N ρl

m �∈ ImD for all l = 1, . . . , s,
while for j = −1, 1, . . ., m− 1, j �= 0, ρa

j ∈ ImD for all a = 1, . . . , s, then (1) has no polynomial

in time local generalized symmetries (except time-independent ones) from SF /S
(m+n+1)
F .

The modification of Corollaries 1 and 2 for the case of nondegenerate weakly diagonalizable
systems is obvious, so we leave it to the reader.

Let us note that the requirements of Theorem 4 may be relaxed. Namely, if there exist
nontrivial densities ρa

j with j < m, j �= 0, but only for j = m all the densities ρl
m, l = 1, . . . , s,

are nontrivial, and the nontrivial densities ρa
j with j < m, j �= 0, are linearly independent of ρa

m

with the same value of index a, then the statement of Theorem 4 remains true.
Thus, Theorems 1 – 4 reveal interesting duality between time-dependent symmetries and

canonical conserved densities of integrable evolution equations, which is completely different from
the one coming e.g. from the famous Noether’s theorem. Namely, as one can conclude from Theo-
rems 1 – 4, the nontriviality of these densities (except ρ0) turns out to be an obstacle to existence
of polynomial in time (or even any time-dependent) local generalized symmetries of sufficiently
high order of such equations, provided they possess time-independent formal symmetry. This
result appears to be rather unexpected in view of the well known fact that the existence of canon-
ical conserved densities is the necessary condition of existence of high order time-independent
symmetries of the evolution equations, see e.g. [1]. However, the apparent contradiction between
these two results vanishes, if we consider nonlocal symmetries. Indeed, integrable evolution sys-
tems usually possess the infinite number of nonlocal polynomial in time symmetries, which form
the so-called hereditary algebra, see e.g. [9], and the nonlocal variables that these symmetries
depend on turn out to be nothing but the integrals of nontrivial conserved densities.

5 Applications

It is well known that the straightforward finding of all time-dependent local generalized sym-
metries of a given integrable evolution equation, and especially the proof of completeness of the
obtained set of symmetries, is a highly nontrivial task (see e.g. [7] for the case of KdV equa-
tion), in contrast with time-independent symmetries, all of which usually can be obtained by
the repeated application of the recursion operator to one seed symmetry.

3See [3] for the definition of densities ρl
k.
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Fortunately, our results allow to suggest a very simple and efficient way to find all local
generalized time-dependent symmetries of a given integrable evolution equation.

First of all, one should find the smallest m ∈ {−1, 1, 2, . . .} such that the canonical conserved
density ρm is nontrivial. If m �= −1, then one should evaluate the number pF and check

the polynomiality in time of all local generalized symmetries from the space SF /S
(pF)

F , using
scaling arguments or e.g. the results of [11]. If m = −1 or the polynomiality really takes
place, then by Theorem 1 or 2 there exist no time-dependent symmetries (of course, modulo the
infinite hierarchy of time-independent ones) of order higher than n or pF respectively. Finally,
all time-dependent symmetries of orders 0, . . . , n or 0, . . . , pF can be found by straightforward
computation, using e.g. computer algebra.

The similar scheme, this time based on Theorems 3 and 4, works for integrable nondegenerate
weakly diagonalizable systems of evolution equations as well, provided all P ∈ AnnF satisfy (17)
(for m = −1 this is not required).

Our method fails, if ρj are trivial for all j = −1, 1, 2, . . . or it is impossible (for m �= −1) to

prove that all the elements of the space SF /S
(pF)

F are polynomial in time. However, such situ-
ations are typical for linearizable equations, while for genuinely nonlinear integrable equations
one usually encounters no difficulties in the application of the above scheme.

Let us consider for instance the modified Korteweg-de Vries (mKdV) equation

ut = u3 + u2u1.

It has the recursion operator (see e.g. [4]) R = D2 +(2/3)u2− (2/3)u1D
−1u and L = R1/2 is the

formal symmetry of degree 1, which satisfies (17) for all P ∈ AnnmKdV, since the operator R is
hereditary. The density ρ1 = u2 is nontrivial, while ρ−1 = 1 ∈ ImD, so we have pmKdV = 5. All
local time-dependent generalized symmetries of mKdV equation are polynomial in time [11], so
by Theorem 2 it has no local generalized time-dependent symmetries of order greater than 5.
The computation of symmetries of orders 0, . . . , 5 shows that the only generalized symmetry of
mKdV equation, that doesn’t belong to the infinite hierarchy of time-independent symmetries,
is the dilatation xu1 + u+ 3t(u3 + u2u1), which is equivalent to Lie point symmetry.
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Symmetry properties of the one-dimensional Fokker–Planck equations with arbitrary coeffi-
cients of drift and diffusion are investigated. It is proved that the group symmetry of these
equations can be one-, two-, four- or six-parametric and corresponding criteria are obtained.
The changes of the variables reducing Fokker–Planck equations to the heat and Schrödinger
equations with certain potential are determined.

1 Introduction

Fokker–Planck equation (FPE) is a basic equation in the theory of continuous Markovian pro-
cesses. In an one-dimensional case FPE has the form [1, 2]

L =
∂u

∂t
+

∂

∂x
[A(t, x)u] − 1

2
∂2

∂x2
[B(t, x)u] = 0, (1)

where u = u(t, x) is the probability density, A(t, x) and B(t, x) are differentiable functions
meaning coefficients of drift and diffusion correspondingly.

We investigated symmetry properties of the equation (1) under the infinitesimal basis oper-
ators [3–5]

X = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2)

The symmetry operators are defined from the invariance condition

X̂
2
L

∣∣∣
L=0

= 0, (3)

where X̂
2

is the second prolongation of the operator X, which is constructed according to the

formulae [3–5]. From the condition of invariance (3), equating coefficients by a function u and
its derivatives ux, utt, utx, uxx (ut can be expressed from equation (1)) to zero it is possible to
determine the following system of equations on functions ξ0, ξ1, η:

ξ0 = ξ0(t), ξ1 = ξ1(t, x), η = χ(t, x)u, 2ξ1
xB − ξ0

t B − ξ1Bx − ξ0Bt = 0,

ξ0
t (A−Bx)ξ1

t + ξ0(At −Btx) + ξ1(Ax −Bxx) − ξ1
x(A−Bx) +

1
2
Bξ1

xx = Bχx,

χt + ξ0
t

(
Ax − 1

2
Bxx

)
+ ξ0

(
Atx − 1

2
Btxx

)

+ξ1

(
Axx − 1

2
Bxxx

)
+ χx(A−Bx) − 1

2
Bχxx = 0.

(4)

Here lower indexes t, x mean differentiation on corresponding variables. Let us also introduce
the following notations ∂

∂t = ∂t, ∂
∂x = ∂x, ∂

∂u = ∂u.
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2 Criterion of invariance FPE under four-
and six-parametrical group of symmetry

In [6] following Theorem was proved:

Theorem 1. If there is a symmetry operator (2) Q �= u∂u for FPE (1) then there exists a
transformation of a form

t̃ = T (t), x̃ = X(t, x), u = v(t, x)ũ,

which reduces it to equation (1) with coefficients of drift and diffusion Ã = A(x̃), B̃ = B(x̃).
And, if ξ0 �≡ 0 then

t̃ = T (t), x̃ = ω, u = v(t, x)ũ, (5)

where T (t) =
∫

dt

ξ0(t)
, and the functions ω = ω(t, x), v(t, x) satisfy the equations:

ξ0ωt + ξ1ωx = 0, ξ0vt + ξ1vx = χv, (6)

where ω �= const is further meant as any fixed solution of the equation (6).

The consequence of this theorem is

Theorem 2. The dimension of an invariance algebra of FPE (1) can be equal to 1, 2, 4, 6.

Proof. If dimension of algebra more than 1 then equation (1) is reduced to the equation with
Ã = Ã(x̃), B̃ = B̃(x̃), but classification of such equations is known: dimension of their invariance
algebra is either 2 or 4 or 6 [7].

In work [8] it is shown that any diffusion process with coefficient of drift A(t, x) and diffusion
B(t, x) can be reduced to a process with appropriate coefficienct Ã(t, x) = A(t, x)/B(t, x) and
B̃(t, x) = 1 through random replacement of time τ(t). Using result of the theorem 1 we carry
out symmetry classification of FPE for the coefficient B(t, x) = 1 and any A(t, x) just as it was
made in [7] for a case A = A(x) (homogeneous process). So puting in the equations (4) B = 1
it is easy to show that

ξ0 = τ(t), ξ1 =
1
2
xτ ′ + ϕ(t),

3
2
τ ′M + τMt + (

1
2
τ ′x + ϕ)Mx =

1
2
τ ′x + ϕ′′,

χ =
1
2
τ ′xA(t, x) − 1

4
x2τ ′′ − ϕ′x + ϕA(t, x) + τ

x∫
x0

∂A(t, ξ)
∂t

dξ + θ(t),

(7)

where M = At + 1
2Axx + AAx, x0 and θ(t) are arbitrary point and function correspondently.

Let us find a condition on M under wich there existes at least two the linearly independent
solutions τ(t) of the equations (7). In this case from the Theorem 2 it is followed that there
exists either 3 or 5 operators of symmetry (besides trivial u∂u). Let’s assume that Mxx �= 0.
After differentiating twice on x both parts (7) we have:

5
2
τ ′Mxx + τMtxx +

(
1
2
τ ′x + ϕ

)
Mxxx = 0. (8)
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Now if we assume that Mxxx = 0, i.e. Mxx = F (t), then the following condition takes place:

5
2
τ ′F + τF ′ = 0. (9)

For this equation there is only one linearly independent solution, therefore Mxxx �= 0. Then
from (8):

−ϕ(t) =
5Mxx + xMxxx

2Mxxx
τ ′ +

Mtxx

Mxxx
τ = h(t, x)τ ′ + r(t, x)τ.

So if (τ1, ϕ1), (τ2, ϕ2) are linearly independent then τ1, τ2 are linearly independent, and also
hxτ

′ + rxτ = 0. Thus

hxτ
′
1 + rxτ1 = 0, hxτ

′
1 + rxτ1 = 0.

As Wronskian
∣∣∣∣τ

′
1 τ1
τ ′2 τ2

∣∣∣∣ �= 0, then from this system it is followed that hx ≡ 0, rx ≡ 0, i.e.

5Mxx + xMxxx

2Mxxx
= h(t),

Mxxt

Mxxx
= r(t). (10)

From conditions (10) it is easy to deduce that

M = λ(x−H(t))−3 + F (t)x + G(t), (11)

where λ = const �= 0, H, F , G are arbitrary functions. Now notice that if Mxx = 0, M has
form (11) with λ = 0. Thus the condition (11) is necessary for the invariance algebra to have
dimension either 4 or 6. Substituting (11) in (8) and equating zero factors at x−H, (x−H)−4

and 1 we obtain the following conditions:

2τ ′F + τF ′ =
1
2
τ ′′′, λ

(
τH ′ − 1

2
τ ′H − ϕ

)
= 0,

3
2
τ ′(FH + G) + τ(F ′H + G′) + F

(
1
2
τ ′H + ϕ

)
=

1
2
τ ′′′H + ϕ′′′.

(12)

1) Let λ �= 0. Then expressing from the second equation ϕ(t) = τH ′− 1
2τ

′H and substituting
it in the third equation we have

3
2
τ ′(FH + G−H ′′) + τ(FH + G−H ′′)′ = 0.

Condition of existence of at least 2 independent solutions τ1, τ2 results in the equation FH +
G − H ′′ = 0. In this case the number of the fundamental solutions of system (12) is three.
Really, there are three linear independent solutions τ1, τ2, τ3 of the first equation (12). From
the second equation (12) ϕi is expressed through τi, i = 1, 2, 3.

2) If λ = 0 the system of the equations (12) has 5 linearly independent solution (τi, ϕi),
i = 1, 5.

So the following theorem is proved.

Theorem 3. 1) The class FPE (1) with B = 1 admitting four-dimentional algebra of invariance
is described by the condition

At +
1
2
Axx + AAx = λ(x−H(t))−3 + F (t)x + G(t), (13)



One-Dimensional Fokker–Planck Equation Invariant under 207

where λ = const �= 0, G satisfies the condition

G = H ′′ − FH, (14)

F (t), H(t) are arbitrary functions.
2) The class FPE (1) with B = 1 admitting six-dimensional invariance algebra invariance is

described by condition (13) in which λ = 0, F , G are arbitrary functions.

Remark. In particular, if the coefficient A(t, x) satisfies the Burgers equation then FPE (1) is
reduced to the heat equation (see [9]).

3 Transformation of the Fokker–Planck equations
to homogeneous equations

1) It turns out that FPE (1) (B = 1), (13) at λ = 0 is reduced to the heat equation [9]. We
find the appropriate transformation (5), (6). Let τ be any solution of system (12) and τ > 0
(evidently that it is always possible to choose a solution τ(t) > 0 on some interval). From the

formulae (6), (7) it is easy to prove that ω(t, x) = τ1/2x−
t∫

t0

ϕ(ξ)τ−3/2(ξ)dt, where t0 is arbitrary

fixed point. Let us consider the transformation:

t̃ =
1
2

∫
dt

τ
,

x̃ = ω(t, x) = τ−1/2x−
t∫

t0

ϕ(ξ)τ−3/2(ξ)dξ,

u(t, x) = v(t, x)ũ(t̃, x̃).

(15)

Having substitued into (1), (13) the replacement variable (15) we come to the equation:

ũt̃ = −2τ
(
vt

v
+ Ax + A

vx

v
− 1

2
vxx

v

)
ũ

−2
(
−1

2
τ1/2τ ′x− ϕτ−1/2 + Aτ1/2 − vx

v
τ1/2

)
ũx̃ + ũx̃x̃.

(16)

Equating zero factor at ũx̃, we shall get:

v = exp


−1

4
τ−1τ ′x2 − τ1ϕx +

x∫
x0

A(t, ξ)dξ + h(t)


 , (17)

where h(t) is an arbitrary function, x0 is some fixed point. Substituting (17) into the expression
vt
v + Ax + Avx

v − 1
2

vxx
v (factor at ũ in (16)) and equating its to zero we get:

h′(t) =
1
2

[
τ−2ϕ2 − 1

2
τ−1τ1 −Ax(t, x0) −A2(t, x0)

]
, (18)

1
2
τ−1τ ′′ − 1

4
τ2(τ ′)2 = F, τ−1ϕ′ − 1

2
τ2τ ′ϕ = G. (19)



208 S. Spichak and V. Stognii

It is easy to prove that if (τ �= 0, ϕ) is some solution of system (19) then it satisfies to system (12)
(λ = 0, M = 0). Then we have the transformation (15), where funcitons v(t, x), τ(t), ϕ(t) can
be found from (17)–(19), resulting FPE (1), (13) (λ = 0) to the heat equation

ũt̃ = ũx̃x̃. (20)

Let us notice, that the system (19) is reduced to following:

2y′ + y2 = 4F, y =
τ ′

τ
, ϕ = τ1/2

t∫
t0

τ1/2Gdt. (21)

2) We consider now FPE (1), (13) with λ �= 0. As in the case of 1) the transformation (15)
reduces this equation to the equation (16). The conditions for (16) to be FPE are the following:

Ã = Ã(ω) = −τ−1/2τ ′x− 2ϕτ−1/2 + 2Aτ1/2 − 2τ1/2 vx

v
,

Ãω = 2τ
(
vt

v
+ Ax + A

vx

v
− 1

2
vxx

v

)
,

(22)

where ω is given in (15). The first condition is equivalent to the equation

∂t̃Ã =
[
τ∂t +

(
1
2
τ ′x + ϕ

)
∂x

](
−τ−1/2τ ′x− 2ϕτ1/2 + 2Aτ1/2 − 2τ1/2 vx

v

)
= 0. (23)

Omitting intermediate calculations we give the general solution v(t, x) of equation (23):

v(t, x) = exp




x∫
x0

A(t, ξ)dξ − 1
4
τ−1τ ′x2 − τ−1ϕx + k(ω)


 , (24)

where k(ω) is an arbitrary function, x0 is some fixed point. Substituting (24) into the first
equation (22) one can prove that Ã = −k′(ω)

(
k′(ω) = dk(ω)

dω

)
. Let us substitute Ã(ω) = −k′(ω),

v(t, x) (24) in the second equation (22). Under chosen conditions

τ1/2

t∫
t0

ϕτ−3/2dt = H,
1
2
τ−1τ ′′ − 1

4
τ−2τ ′2 = F, τ−1ϕ′ − 1

2
τ−2τ ′ϕ = G, (25)

k′′ − k′2 = λω−2, (26)

the second equaiton (22) is satisfied. It is possible to choose the condition (25) because, as it
is easy to prove, any solution τ �= 0, ϕ of the given system is a particular solution of th system
equations (12), (14) that it is enough for construction of the transformation (15). System (25)
(taking into account (14)) is equivalent to:

2y′ + y2 = 4F, y =
τ ′

τ
, ϕ = τ3/2(τ−1/2H)′. (27)

Thus we have proved

Theorem 4. FP equation (1), (13), (14) with λ �= 0, invariant under four-parameter algebra
of invariance, through transformations

t̃ = T (t), x̃ = τ−1/2x− τ−1/2H(t), u = v(t, x)ũ(t̃, x̃),



One-Dimensional Fokker–Planck Equation Invariant under 209

where T =
1
2

∫
dt

τ(t)
, v(t, x) has the form (24), τ �= 0 is any solution of the first equation (27),

k(ω) is a solution of the equation (26), is reduced to the equation

ũt̃ = 2k′′(ω)ũ + 2k′(ω)ũω + ũωω.

Remark. Making the replacement in last equation

t̄ = t̃, x̄ = ω, ũ = exp(k(ω))ū,

and taking into account the condition (26), we can reduce this equation to the following
Schrödinger equation:

ūt̄ = ūx̄x̄ +
λ

x̄2
ū.

Thus in the case FPE with four-parametrical group of symmetry there exists an “initial”
equation, to which they are reduced; though it is not FPE as it is in the case of the six-
parametrical group.
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The periodic soliton resonances and recurrent wave solutions to the Davey–Stewartson equa-
tion are presented. The solutions that described the interaction between a y-periodic soliton
and a line soliton are analyzed to show the existence of the soliton resonances. The various
recurrent solutions (The growing-and-decaying mode, breather and rational growing-and-
decaying mode solutions) are presented. The y-periodic soliton and breather solutions can
be constructed as the imbricate series of algebraic soliton solutions and rational growing-
and-decaying mode solutions, respectively.

1 Introduction

It is well known that spin and statistics in quantum mechanics come from symmetries of transfor-
mation. The soliton solutions to some soliton equations show Fermion-like behavior. We could
not obtain the solutions from the initial value problem which forgive the coexistence of com-
pletely same solitons in the wave field to some soliton equations. It is very interesting to know
that what symmetries are hidden in soliton equations related to this problem. Before studying
the symmetries to the soliton equations from the point of view, we will show some propaga-
tion properties of solitons to the Davey–Stewartson (DS) equation which is the two-dimensional
generalization of the nonlinear Schrödinger equation [1].

The higher-dimensional nonlinear wave fields have richer phenomena than one-dimensional
ones since various localized solitons may be considered in higher-dimensional space. The DS
equation has four kinds of soliton solutions: the conventional line, algebraic, periodic and lattice
solitons. The conventional line soliton has an essentially one-dimensional structure. On the other
hand, the algebraic, periodic and lattice solitons have a two-dimensional localized structure.

The solutions to the DS equation have been studied previously in various aspects [2–9]. The
existence of solitons having the structures peculiar to a higher-dimensionality may contribute
to the variety of the dynamics of nonlinear waves. To clarify the dynamics, we must investigate
various interactions between two different kinds of solitons. In the previous papers [10, 11],
the various interactions between two y-periodic solitons, line and periodic and periodic and
algebraic solitons were investigated. And we found the periodic resonant interactions which are
qualitatively different from the interaction between two line solitons. We expect that the periodic
soliton resonances play fundamental role in the nonlinear development of higher-dimensional
wave field as the existence of the periodic soliton resonances may be related to the instability of
the solitons, accompanied by their decay and merging.

The governing equations for the description of the long time evolution of unstable wave train
have been studied by many authors. The extension to the two-dimensional case was examined
by Zakharov [12], Benny and Roskes [13] and Davey and Stewartson [1]. The time evolution of
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the solution of the 1D-NLS equation with periodic boundary condition and with a Benjamin–
Feir unstable initial condition was studied numerically by Lake et al. [15]. They found that
a modulated unstable wave train achieves a state of maximum modulation and returns to an
unmodulated initial state, which is well known as the Fermi–Pasta–Ulam (FPU) recurrence.
One of the important feature of the solutions of the NLS equations in one- and two-dimensions
is the recurrence of the unstable wavetrain to its initial state.

The purposes of this study are (i) to review periodic soliton solutions and recurrent solutions
and (ii) to show that these solutions can be constructed by imbricate series of rational soliton
solutions or rational growing-and-decaying mode solutions.

2 Periodic soliton resonances

The Davey–Stewartson equation may be written as

{
iut + puxx + uyy + r|u|2u− 2uv = 0,
pvxx − vyy − pr(|u|2)xx = 0,

(1)

where p = ±1, r is constant, eq. (1) with p = 1 and p = −1 are called the DS I and DS II
equations, respectively. In this section, we study the resonant interactions between y-periodic
soliton and line soliton mutually parallel propagating to the x-direction of the DS I equation
with r > 0. The solution that describes the interaction between a y-periodic soliton and a line
soliton is written as [11]

u = u0e
i(kx+ly−ωt) g

f
, v = −2p(log f)xx (p = 1) (2)

with

f = 1 − 1
α2

exp(ξ1) cos η +
M

4α4
exp(2ξ1)

+ exp(ξ2)
{

1 − N

α2
exp(ξ1) cos η +

MN2

4α4
exp(2ξ1)

}
,

(3)

g = 1 − 1
α2

exp(ξ1 + iφ) cos η +
M

4α4
exp 2(ξ1 + iφ)

+ exp(ξ2 + iψ)
{

1 − N

α2
exp(ξ1 + iφ) cos η +

MN2

4α4
exp 2(ξ1 + iφ)

}
,

(4)

where

ξ1 = αx− ΩP t + σ1, ξ2 = βx− ΩLt + σ2, η = δy − γt + κ,

sin2 φ

2
=

α2 + δ2

2ru2
0

, sin2 ψ

2
=

β2

2ru2
0

,

ΩP = 2kα− (α2 − δ2) cot
φ

2
, ΩL = β

(
2k − β cot

ψ

2

)
, γ = 2lδ,

M = 1
/[

1 − (α2 + δ2)2

2δ2ru2
0

]
, N =

2ru2
0 sin φ

2 sin ψ
2 cos φ−ψ

2 − αβ

2ru2
0 sin φ

2 sin ψ
2 cos φ+ψ

2 − αβ
.

(5)
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We can investigate the phase shifts after the collision between y-periodic soliton and line soliton
by using the solution. The condition |N | = ∞, corresponds to the phase shift in the propagation
direction becomes infinite for the case αβ > 0. This means that the period of the intermediate
state, where the periodic soliton propagates together with the line soliton, persist infinitely. This
is thought as a resonance between the y-periodic soliton and the line soliton. By equating the
denominator of N to zero, this condition is given by

2ru2
0 sin

φ

2
sin

ψ

2
cos

φ + ψ

2
− αβ = 0. (6)

The condition N = 0 corresponds to the phase shift in the propagating direction becomes
negative infinity for αβ > 0. This means that two solitons can interact infinitely apart each
other. This is thought as extremely repulsive or long range interaction between the y-periodic
soliton and the line soliton. The explicit expression of the condition is obtained by equating the
numerator of N with zero as

2ru2
0 sin

φ

2
sin

ψ

2
cos

φ− ψ

2
− αβ = 0. (7)

We can also show the existence of periodic soliton resonances in the interactions of periodic
soliton-periodic soliton and periodic soliton-algebraic soliton [10, 11].

3 Recurrent solutions

One of the important feature of the solution to the DS equation is the recurrence of the unstable
wavetrain to its initial state. Three kinds of recurrent solutions, growing-and-decaying mode,
breather and rational growing-and-decaying mode solutions are shown in this section, which can
be constructed from the two-soliton solution [15]. The two-soliton solution may be written as [3]

u = u0e
i(kx+ly−ωt) g

f
, v = −2p(log f)xx, (8)

with

f = 1 + eη1 + eη2 + Deη1+η2 , g = 1 + eη1+iφ1 + eη2+iφ2 + Deη1+η2+i(φ1+φ2),

where

ηj = Kjx + Ljy − Ωjt + η0
j , sin2 φj

2
=

pK2
j − L2

j

2ru2
0

,

Ωj = 2pkKj + 2lLj − (pK2
j + L2

j ) cot
φj

2
(j = 1, 2).

(9)

(i) growing-and-decaying mode solution. Taking wave numbers and frequencies pure
imaginary and complex, respectively,

K1 = K∗
2 = iβ, L1 = L∗

2 = iδ, Ω1 = Ω∗
2 = Ω + iγ,

φ1 = φ2 = φ : real, η0
1 = η0

2
∗
, eη0

1 = eη0∗
2 = −(1/2)e−σ̃+iθ,

we have the following dispersion relation and D

sin2 φ

2
=

δ2 − pβ2

2ru2
0

, Ω = − (
δ2 + pβ2

)
cot

φ

2
,

γ = 2pkβ + 2lδ, D =
2

1 + cosφ
> 1.
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Then, the solution is given by

u = u0e
i(kx+ly−ωt+φ)

[√
D cosh(Ωt + σ − iφ) − cos(βx + δy − γt + θ)

]

×
[√

D cosh(Ωt + σ) − cos(βx + δy − γt + θ)
]−1

,

(10)

v = 2pβ2

√
D cosh(Ωt + σ) cos(βx + δy − γt + θ) − 1[√
D cosh(Ωt + σ) − cos(βx + δy − γt + θ)

]2 , (11)

where σ = σ̃ + log 2√
D

. The existence condition for the non-singular solution is given by D > 1,
which is satisfied for δ2 − pβ2 > 0. This solution grows exponentially at the initial stage and
the growth rate is given by Ω, which is in agreement with the growth rate of the Benjamin–
Feir instability. Therefore, we can regard as this growing-and-decaying mode solution as one
described the nonlinear evolution of the unstable mode.

(ii) Breather solution. To obtain analytical expression for the breathing wave solution,
we set K1 = K2 = a, L1 = L2 = b and φ1 = −φ2 = iΦ in eq. (9), where a and b are real. Then,
frequencies Ω1 and Ω2 are complex and are complex conjugate with each other and the solution
is given by,

u = u0e
i(kx+ly−ωt)

√
D cosh ξ − cosh Φ cos(γt + θ) + i sinh Φ sin(γt + θ)√

D cosh ξ − cos(γt + θ)
, (12)

v = −2pa2D
1 − 1√

D
cosh ξ cos(γt + θ)[√

D cosh ξ − cos(γt + θ)
]2 , (13)

where

ξ = ax + by − Ωt + σ, sinh2 Φ
2

=
b2 − pa2

2ru2
0

> 0,

Ω = 2(pka + lb), γ =
(
b2 + pa2

) √
2ru2

0

b2 − pa2
+ 1, D = 1 +

b2 − pa2

2ru2
0

,

(14)

where σ and θ are arbitrary phase constants.
(iii) Rational growing-and-decaying mode solution. We consider the long wave limit

of the growing-and-decaying mode solution. Putting K1 = K∗
2 = iεc, L1 = L∗

2 = iεd, η0
1 = η0∗

2 =
ε(iθ̃′ − σ̃′) + iπ, and taking the limit as ε → 0, we have

u = u0e
i(kx+ly−ωt)

{
1 − 4α(α± iη)

α2 + η2 + ξ2

}
, (15)

v = −4pc2
α2 + η2 − ξ2

(α2 + η2 + ξ2)2
, (16)

where

ξ = cx + dy − γt + θ′, η = Ωt + σ′,

Ω = ± (
d2 + pc2

)√
2ru2

0

d2 − pc2
, γ = 2pkc + 2ld, α2 =

d2 − pc2

2ru2
0

.
(17)
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4 Periodic soliton and recurrent solutions as imbricate series
of rational solutions

Zaitsev has succeeded in obtaining a periodic soliton solution by the imbricate series of algebraic
soliton solutions for the Kadomtsev–Petviashvili (KP) equation with positive dispersion [16]. It
is known that the lattice soliton solution to the KP equation with positive dispersion that have
doubly periodic array of the localized structure in the x-y plane was constructed as doubly
imbricate series of algebraic soliton solutions, which was expressed by using Weierstrass’s ℘
function or the Riemann theta functions [17]. In this section, we show that the y-periodic
soliton and breather solutions can be constructed as the imbricate series of algebraic soliton
solutions and rational growing-and-decaying mode solutions, respectively.

(i) Y -periodic soliton solution as imbricate series of algebraic soliton solutions.
It is interesting to note that the algebraic soliton solutions is given as the following form:

u = u0eiζ

[
1 +

2iB

ξ + i
√
η2 + A2

] [
1 +

2iB

ξ − i
√

η2 + A2

]
, (18)

v = 2p

[
1

(ξ + i
√
η2 + A2)2

+
1

(ξ − i
√
η2 + A2)2

]
. (19)

where

ζ = kx + ly − ωt, ξ = x−
(

2pk − p−R2

B

)
t + ξ0, η = R(y − 2lt) + η0,

B =

√
p + R2

2ru2
0

, A2 = 4B2

/(
2B2 − p−R2

ru2
0

)
,

(20)

The y-periodic soliton solution can be obtained from two-soliton solution of Satsuma and
Ablowitz as follows:

u = u0eiζ(1 − tan2 φ

2
) cos2 φ

2

[
1 − 2

tan φ
2

1 − tan2 φ
2

×
1√
D

tan φ
2 cos(δy − γt + θ) − i sinh(αx− Ωt + σ)

cosh(αx− Ωt + σ) − 1√
D

cos(δy − γt + θ)

]
,

(21)

v = −2pα2
1 − 1√

D
cosh(αx− Ωt + σ) cos(δy − γt + θ)[

cosh(αx− Ωt + σ) − 1√
D

cos(δy − γt + θ)
]2 , (22)

where

D =
[
1 − (δ2 + pα2)2

2ru2
0δ

2

]−1

> 1, sin2 φ

2
=

δ2 + pα2

2ru2
0

,

Ω = 2pkα− (pα2 − δ2) cot
φ

2
, γ = 2lδ.

(23)
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On the basis of eqs. (18) and (19), we assume the form of the y-periodic soliton solution as
follows:

u = û0eiζ

[
1 +

∑
m

ib
ξ′ + iν(η) + imπ

] [
1 +

∑
m

ib
ξ′ − iν(η) + imπ

]
, (24)

v =
pα2

2

∑
m

[
1

(ξ′ + iν(η) + imπ)2
+

1
(ξ′ − iν(η) + imπ)2

]
, (25)

where the summation
∑
m

means lim
N→∞

N∑
m=−N

, ν(η) is a function of η to be determined afterward.

The function
√

η2 + A is deformed to ν(η) by nonlinear effects. Equations (24) and (25) are
rewritten as follows

u = û0eiζ(1 − b2)
[
1 − 2b

1 − b2
b cos 2ν(η) + i sinh 2ξ′

cosh 2ξ′ − cos 2ν(η)

]
, (26)

v = −2pα2 1 − cos 2ν(η) cosh 2ξ′

[cosh 2ξ′ − cos 2ν(η)]2
. (27)

Comparing these eqs. (26) and (27) with eqs. (21) and (22), respectively, we find

û0 = u0 cos2 φ

2
, b = − tan

φ

2
, ξ′ =

1
2

(αx− Ωt + σ′),

ν(η) = 1
2 cos−1

[
1√
D

cos(δy − γt + θ)
]
.

(28)

The substitution of eq.(28) into eqs.(24) and (25) gives the y-periodic soliton solution as an
imbricate series of algebraic solitons. Taking the limφ → 0 (α → 0, δ → 0 but δ/α = R is
finite), we have

ξ′ =
α

2
ξ, ν(η) =

α

2

√
η2 + A2, b = αB. (29)

This means that the solutions (21) and (22) are simple summations of algebraic soliton solutions
for very small φ.

Recently, the lattice soliton solution to the DS equation was constructed as doubly imbricate
series of algebraic soliton solutions which was expressed by using Weierstrass’s ℘ function or the
Riemann theta functions [18].

(ii) Breather solution as imbricate series of rational growing-and-decaying mode
solutions. At first, we have to note that the rational growing-and-decaying mode solution is
rewritten as following form,

u = u0eiζ

[
1 ∓ 2iα

η + i
√
ξ2 + α2

] [
1 ∓ 2iα

η − i
√
ξ2 + α2

]
, (30)

v = −2pc2
[{

1

(η + i
√
ξ2 + α2)2

+
1

(η − i
√
ξ2 + α2)2

}

+
2α

(η + i
√
ξ2 + α2)2

2α

(η − i
√
ξ2 + α2)2

]
.

(31)
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On the basis of eqs. (30) and (31), we assume the form of the breather solution as follows,

u = ū0eiζ

{
1 + ib

∑
m

1
η′ + iν(ξ) + mπ

} {
1 + ib

∑
m

1
η′ − iν(ξ) + mπ

}
, (32)

v = 4Aα2

[∑
m

1
(η′ + iν(ξ) + mπ)2

+
∑
m

1
(η′ − iν(ξ) + mπ)2

+4α2

{∑
m

1
(η′ + iν(ξ) + mπ)2

}{∑
m

1
(η′ − iν(ξ) + mπ)2

}]
,

(33)

Equations (32) and (33) are rewritten as follows,

u = ū0(1 − b2)eiζ

[
1 − 2b

1 − b2
b cos 2η′ − i sin 2η′

cosh 2ν(ξ) − cos 2η′

]
, (34)

v = 16Aα2

[
4α2 + 1 − cos 2ν(ξ) cos 2η′

(cosh 2ν(ξ) − cos 2η′)2

]
. (35)

Comparing these eqs. (34) and (35) with eqs. (12) and (13), respectively, we find

η′ =
1
2
η =

1
2

(Ωt + σ), b =
[

2ru2
0

b2 − pa2
+ 1

]− 1
2

= tanh
Ψ
2
, A = − pa2ru2

0

b2 − pa2
,

ū0 =
u0

1 − b2
, ν(ξ) =

1
2

ln
(√

D cosh ξ +
√
D cosh2 ξ − 1

)
,

(36)

where

D = 1 +
b2 − pa2

2ru2
0

. (37)

Substituting eq. (36) into eqs. (32) and (33), we have the imbricate series constructing breather
solution.

5 Conclusion

The DS equation has four kinds of soliton solutions and three kinds of recurrent wave solutions.
We have investigated the interaction between y-periodic soliton and line soliton. There are two-
types of singular interactions, namely the resonant interaction and the long range interaction.
In the long range interaction, the line soliton receives a small transverse disturbance of the same
wave number as approaching y-periodic soliton. The disturbance on the line soliton develops into
the same y-periodic soliton as approaching soliton. The line soliton emits the y-periodic soliton
forward and changes into the messenger line soliton. Then, we observe that the same y-periodic
solitons coexist in the wave field when the messenger line soliton is propagating between them.
It was also shown that the periodic soliton solutions and the recurrent wave solutions can be
constructed as imbricate series of algebraic soliton solutions and rational growing-and-decaying
mode solutions, respectively. If we can regard the y-periodic soliton as a sequence of infinite
algebraic solitons, we see that same algebraic soliton can not coexist, but infinite algebraic
solitons can coexist in the wave field, which is a kind of condensation. We would like to go on
to investigate on the symmetries related to these phenomena.
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We consider different types of symmetries of partial differential equations. Using symmetry
operators we construct corresponding ansatzes, reducing initial equations to the system with
fewer independent variables.

It is well known that invariance of system of partial differential equations with respect to
a Lie group of point transformations of independent and dependent variables is a sufficient
condition of reduction of the system under study to a system of equations with fewer number of
independent variables with help of a corresponding ansatz. This property is sucessfully exploited
in constructing of exact solutions for many linear and nonlinear equations of mathematical
physics [1]. By using the results of [2] we construct an ansatz for �D, �B, �E, �H, which reduces
the nonlinear Maxwell equations

∂ �D

∂t
= rot �H,

∂ �B

∂t
= −rot �E,

div �D = 0, div �B = 0,
(1)

�D =M(I1, I2) �E +N(I1, I2) �B, �H =M(I1, I2) �B −N(I1, I2) �E, (2)

where M,N ∈ C1(R2, R1), to the system of ordinary differential equations.
The ansatz invariant with respect to the 3-dimensional subalgebra 〈−J01 − J13, J03, P2〉 of

the Poincaré algebra has the form

E1 =
1
2

(
1
ξ
+ ξ

)
Ẽ1 +

1
2

(
1
ξ
− ξ

)
B̃2 − x1

ξ
Ẽ3 +

x2
1

2ξ

(
B̃2 − Ẽ1

)
,

E2 =
1
2

(
1
ξ
+ ξ

)
Ẽ2 − 12

(
1
ξ
− ξ

)
B̃1 +

x1

ξ
B̃3 +

x2
1

2ξ

(
Ẽ2 − B̃1

)
,

E3 = Ẽ3 − x1

(
B̃2 − Ẽ1

)
,

(3)

B1 =
1
2

(
1
ξ
+ ξ

)
B̃1 − 12

(
1
ξ
− ξ

)
Ẽ2 − x1

ξ
B̃3 − x2

1

2ξ

(
Ẽ2 + B̃1

)
,

B2 =
1
2

(
1
ξ
+ ξ

)
B̃2 +

1
2

(
1
ξ
− ξ

)
Ẽ1 − x1

ξ
Ẽ3 +

x2
1

2ξ

(
B̃2 − Ẽ1

)
,

B3 = B̃3 − x1

(
Ẽ2 + B̃1

)
,

(4)
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D1 =
1
2

(
1
ξ
+ ξ

)
D̃1 +

1
2

(
1
ξ
− ξ

)
H̃2 − x1

ξ
D̃3 +

x2
1

2ξ

(
H̃2 − D̃1

)
,

D2 =
1
2

(
1
ξ
+ ξ

)
D̃2 − 12

(
1
ξ
− ξ

)
H̃1 +

x1

ξ
H̃3 +

x2
1

2ξ

(
D̃2 − H̃1

)
,

D3 = D̃3 − x1

(
H̃2 − D̃1

)
,

(5)

H1 =
1
2

(
1
ξ
+ ξ

)
H̃1 − 12

(
1
ξ
− ξ

)
D̃2 − x1

ξ
H̃3 − x2

1

2ξ

(
D̃2 + H̃1

)
,

H2 =
1
2

(
1
ξ
+ ξ

)
H̃2 +

1
2

(
1
ξ
− ξ

)
D̃1 − x1

ξ
D̃3 +

x2
1

2ξ

(
H̃2 − D̃1

)
,

H3 = H̃3 − x1

(
D̃2 + H̃1

)
,

(6)

where Ẽa, B̃a, D̃a, H̃a are unknown functions of the variable ω = x2
0 − x2

1 − x2
3, ξ = x0 − x3.

Substituting (3)–(6) in (1) we obtain the reduced system(
B̃′

1 + Ẽ
′
2

)
ω + B̃′

1 − Ẽ′
2 + B̃1 + Ẽ2 = 0,(

B̃′
2 − Ẽ′

1

)
ω + B̃′

2 + Ẽ
′
1 + 2

(
B̃2 − Ẽ1

)
= 0,

B̃′
3 = 0, B̃3 = 0,

(7)

(
H̃ ′

1 + D̃
′
2

)
ω − H̃ ′

1 + D̃
′
2 + 2

(
H̃1 + D̃2

)
= 0,(

H̃ ′
2 − D̃′

1

)
ω −

(
H̃ ′

2 + D̃
′
1

)
+ H̃2 − D̃1 = 0,

D̃′
3 = 0, D̃3 = 0,

(8)

�̃
D =M�̃E +N �̃B, �̃

H =M �̃B −N �̃E, (9)

where M , N are functions of I1 =
�̃
E2 − �̃B2, I2 =

�̃
B
�̃
E, “′” designates differentiation.

To construct invariant solutions it is necessary to the integrate nonlinear system of differential
equations (7)–(9). We obtained a partial solution of the system, when N = 0, M = M(I1) in
the form

Ẽ1 = C1

(
ω−1/2 − ω−3/2

)
, Ẽ2 = C1

(
ω−1/2 + ω−3/2

)
, Ẽ3 = 0, (10)

B̃1 = −C1

(
ω−1/2 − ω−3/2

)
, B̃2 = C1

(
ω−1/2 + ω−3/2

)
, B̃3 = 0, (11)

D̃1 = mC1

(
ω−1/2 − ω−3/2

)
, D̃2 = mC1

(
ω−1/2 + ω−3/2

)
, D̃3 = 0, (12)

H̃1 = −mC1

(
ω−1/2 − ω−3/2

)
, H̃2 = mC1

(
ω−1/2 + ω−3/2

)
, H̃3 = 0, (13)

where m =M(0).
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Substituting the solution in (3)–(6), we obtain an exact solution of the nonlinear Maxwell
equations

E1 =
2C1x3(

x2
0 − x2

1 − x2
3

)3/2
, E2 =

2C1x0(
x2

0 − x2
1 − x2

3

)3/2
, E3 = − 2C1x1(

x2
0 − x2

1 − x2
3

)3/2
,

B1 = − 2C1x3(
x2

0 − x2
1 − x2

3

)3/2
, B2 =

2C1x0(
x2

0 − x2
1 − x2

3

)3/2
, B3 =

2C1x1(
x2

0 − x2
1 − x2

3

)3/2
,

D1 =
2C1mx3(

x2
0 − x2

1 − x2
3

)3/2
, D2 =

2C1mx0(
x2

0 − x2
1 − x2

3

)3/2
, D3 = − 2C1mx1(

x2
0 − x2

1 − x2
3

)3/2
,

H1 = − 2C1mx3(
x2

0 − x2
1 − x2

3

)3/2
, H2 =

2C1mx0(
x2

0 − x2
1 − x2

3

)3/2
, H3 =

2C1mx1(
x2

0 − x2
1 − x2

3

)3/2
.

In analogous way we construct solutions invariant under the following subalgebras of Poincaré
algebra: 〈J03, P1, P2〉, 〈J12+αP0, P1, P2〉, 〈J03+αJ12, P1, P2〉, 〈P0−J01−J13, P0+P3, P2〉, where
α = const.
The existence of the operator of the classical symmetry is not a necessary condition for

reduction of partial differential equations, as it is shown in [3, 4, 5]. It was proved in [6] that the
conditional symmetry under involutive set of operators is the necessary and sufficient condition
for reduction of partial differential equations by means of a corresponding ansatz.
Operators of nonpoint symmetry can be used to reduction of differential equations too. For

simplicity we consider a second order equation of the form

F (x1, x2, u, ux1 , ux2 , ux1x1 , ux1x2 , ux2x2) = 0. (14)

We search for a solution of (14) as a solution of system

∂u

∂x1
= v1(x1, x2, u),

∂u

∂x2
= v2(x1, x2, u). (15)

Denote u ≡ x3 and consider v1, v2 as a functions of variables x1, x2, x3; v1, v2 ∈ C1
(
R3, R1

)
.

Then the compability condition of the system (15) takes the form

v1
2 + v

1
3v

2 = v2
1 + v

2
3v

1. (16)

Any solution of (15) satisfies (14), if the following equality holds

F
(
x1, x2, x3, v

1
1 + v

1
3v

1, v1
2 + v

1
3v

2, v2
2 + v

2
3v

2
)
= 0. (17)

Thus the problem of construction of an ansatz of type (15) is reduced to the problem of finding
of operators of classical and conditional symmetry of the system (16), (17).
Let us consider the infinitesimal operator of one–parametrical group of transfomations of

independent and dependent variables

Q = ξ1(x1, x2, u)∂x1 + ξ
2(x1, x2, u)∂x2 + η(x1, x2, u)∂u (18)

and first prolongation of Q

Q
1
= Q+

(
η1 + ηuu1 − u1

(
ξ11 + ξ

1
uu1

) − u2

(
ξ21 + ξ

2
uu1

))
∂u1

+
(
η2 + ηuu2 − u1

(
ξ12 + ξ

1
uu2

) − u2

(
ξ22 + ξ

2
uu2

))
∂u2 ,

(19)
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where lower indices designate differentiation of ξp, η (p = 1, 2) with respect to the corresponding
variables. We associate the operator Q′

Q′ = ξ1(x1, x2, x3)∂x1 + ξ
2(x1, x2, x3)∂x2 + ξ

3(x1, x2, x3)∂x3

+
(
ξ31 + ξ

3
3v

1 − v1
(
ξ11 + ξ

1
3v

1
) − v2

(
ξ21 + ξ

2
3v

1
))
∂v1

+
(
ξ32 + ξ

3
3v

2 − v1
(
ξ12 + ξ

1
3v

2
) − v2

(
ξ22 + ξ

2
3v

2
))
∂v2 ,

η(x1, x2, x3) = ξ3(x1, x2, x3)

(20)

with operator Q.

Theorem. Let equation (14) be invariant with respect to one-parameter group generator Q (18).
Then the operator Q′ belongs to the invariance algebra of system (16), (17).

Proof. Acting by the operator Q
1

′ on the manifold (16), we obtain

ξ312 + ξ
3
32v

1 − v1
(
ξ112 + ξ

1
32v

1
) − v2

(
ξ212 + ξ

2
32v

1
)
+ v1

2

(
ξ33 − ξ11 − ξ23v2 − 2v1ξ13

)
−v2

2

(
ξ21 + ξ

2
3v

1
) − ξ12v1

1 − ξ22v1
2 − v1

3ξ
3
2 + v

2
(
ξ313 + ξ

3
33v

1 − v1
(
ξ113 + ξ

1
33v

1
)

−v2
(
ξ213 + ξ

2
33v

1
)
+ v1

3

(
ξ33 − ξ11 − 2v1ξ13 − ξ23v2

) − v2
3

(
ξ21 + ξ

2
3v

1
)

−v1
1ξ

1
3 − v1

2ξ
2
3 − v1

3ξ
3
3

)
+

(
ξ32 + ξ

3
3v

2 − v1
(
ξ12 + ξ

1
3v

2
) − v2

(
ξ22 + ξ

2
3v

2
))
v1
3

= ξ321 + ξ
3
31v

2 − v1
(
ξ121 + ξ

1
31v

2
) − v2

(
ξ221 + ξ

2
31v

2
)
+ v2

1

(
ξ33 − ξ22 − ξ13v1 − 2v2ξ23

)
−v1

1

(
ξ12 + ξ

1
3v

2
) − ξ11v2

1 − ξ21v2
2 − v2

3ξ
3
1 + v

1
(
ξ323 + ξ

3
33v

2 − v1
(
ξ123 + ξ

1
33v

2
)

−v2
(
ξ223 + ξ

2
33v

2
)
+ v2

3

(
ξ33 − ξ22 − 2v2ξ23 − ξ13v1

) − v1
3

(
ξ12 + ξ

1
3v

2
) − v2

1ξ
1
3

−v2
2ξ

2
3 − v2

3ξ
3
3

)
+

(
ξ31 + ξ

3
3v

1 − v1
(
ξ11 + ξ

1
3v

1
) − v2

(
ξ21 + ξ

2
3v

1
))
v2
3.

It is easy to verify, that this equality is fulfilled identically on the manifold (16). Thus we obtain

Q
1

′ (v1
2 + v

1
3v

2 − v2
1 − v2

3v
1
) ∣∣∣

v1
2+v1

3v2=v2
1+v2

3v1
≡ 0. (21)

It is necessary to prove that the equation (17) admits operator Q′ to prove the theorem. One
property of coordinates of prolonged operators Q

2
, Q

1

′ is used for this purpose, where

Q
2
= Q

1
+ εu11∂u11 + ε

u12∂u12 + ε
u22∂u22 , (22)

εuab = ηab + ubηau + uaηbu + uaubηuu + uabηu − uc (ξcab + ubξ
c
au)

− uauc (ξcbu + ubξ
c
uu)− uac (ξcb + ubξ

c
u)− ucb (ξca + uaξ

c
u)− uabucξ

c
u,

(23)

a, b, c = 1, 2, we mean summation over the index c.
Making the substitution u = x3, u1 = v1, u2 = v2, u11 = v1

1 + v
1
3v

1, u12 = v1
2 + v

1
3v

2,
u22 = v2

2 + v
2
3v

2 in (23), we obtain coefficients ε′u12 , ε′u22 associated with εu11 , εu12 , εu22 . Then
the following equalities

ε′u11 = Q
1

′ (v1
1 + v

1
3v

1
)
, ε′u12 = Q

1

′ (v1
2 + v

1
3v

2
)
, ε′u22 = Q

1

′ (v2
2 + v

2
3v

2
)

(24)

are fulfilled. The correctness of (24) is verified by direct calculations. Thus, derivatives u11, u12,
u22 are transformed in the same way as the combinations v1

1 + v
1
3v

1, v1
2 + v

1
3v

2, v2
2 + v

2
3v

2 under
the group transformations. From this it follows that the system (16), (17) is invariant under the
group G′

1 provided G1 is the invariance group of equation (14).
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Thus, we conclude that the group of transformations admissible by equation (14) is not wider
than the symmetry group of the system (16), (17). In the general case the symmetry group of
system (16), (17) contains the invariance group of (14) as a subgroup. There is a possibility of
expansion of this group by studying the symmetry properties of the system, as it is shown in
[7, 8]. To obtain new solutions it is necessary to use the symmetry operators of system (16),
(17), which are not prolongated operators of point symmetry of equation (14), as well as the
operators of conditional symmetry of the system. By using this approach we constructed ansatzes
reducing nonlinear equations to the system of ordinary differential equations. Integrating the
reduced system we obtained new solutions of nonlinear heat and wave equations.
The method of conditional symmetry is generalised to the Lie–Bäcklund operators (see for

example [9])

X = η(x, u, . . . , u
r
)∂u. (25)

Let us consider differential equations

U(x, u, u
1
, . . . , u

k
) = 0, (26)

where u ∈ Ck
(
Rn, R1

)
, x ∈ Rn.

Definition. Equation (26) is conditionaly invariant with respect to operator (25), if the follo-
wing condition is satisfied

X
k
U

∣∣∣
[η=0]∞

=M, (27)

where M �= 0, M
∣∣∣
[U=0]r

= 0, [η = 0]∞ is a set of all differential consequences of the equation

η = 0, [U = 0]r is a set of all differential consequences of r-th order of the equation U = 0.

The corresponding ansatz, which is a solution of the equation

η(x, u, . . . , u
r
) = 0,

reduces equation (26) to the system of equations with smaller number of independent variables.
Using this property we can construct exact solutions of partial differential equations.
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Recent results concerning the application of Lie transformation group methods to structural
mechanics are presented. Focus is placed on the point Lie symmetries and conservation laws
inherent to the Bernoulli–Euler and Timoshenko beam theories as well as to the Marguerre-
von Kármán equations describing the large deflection of thin elastic shallow shells within the
framework of the nonlinear Donnell–Mushtari–Vlasov theory.

1 Introduction

The present paper is concerned with the invariance properties (point Lie symmetries) of three
classes of self-adjoint partial differential equations arising in structural mechanics – the dynamic
beam equations of Bernouli–Euler and Timoshenko type governing vibration of beams on a
variable elastic foundation and dynamic stability of fluid conveying pipes, and Marguerre-von
Kármán equations describing the large deflection of thin isotropic elastic shallow shells subjected
to an external transverse load and a nonuniform heating.

Once the invariance properties of a given differential equation are established, several impor-
tant applications are available. First, it is possible to obtain classes of group-invariant solutions.
For a self-adjoint equation another application of its symmetries arises since it is the Euler–
Lagrange equation of a certain functional. If a symmetry group of such an equation turned
out to be its variational symmetry as well, that is a symmetry of the associated functional,
then Noether’s theorem guarantees the existence of a conservation law for the solutions of this
equation. Needless to recall the fundamental role of the conserved quantities and conservation
laws (or the corresponding balance laws) for the natural sciences, however it is worthy to point
out that the available conservation (balance) laws should not be overlooked in the examination
of discontinuous solutions (acceleration waves, shock waves, etc.) or in the numerical analysis
(when constructing finite difference schemes or verifying numerical results, for instance) of any
system of differential equations of physical interest. It should be remarked also that the path-
independent integrals (such as the well known J-, L- and M -integrals) related to the conservation
laws are basic tools in fracture analysis of solids and structures.

Throughout this paper: Greek (Latin) indices have the range 1, 2 (1, 2, 3), unless explicitly
stated otherwise, and the usual summation convention over a repeated index is employed. The
k-th order partial derivatives of a dependent variable, say w, that is ∂kw/∂xα1∂xα2 . . . ∂xαk

(k, α1, α2, . . . , αk = 1, 2, . . .), are denoted either by wα1α2...αk
or wxα1xα2 ...xαk , where x1, x2, . . .

are the independent variables. A similar notation is used for the partial derivatives of any
other function, say f , of the independent variables but, in this case, the indices indicating the
differentiation are preceded by a coma. Dα (α = 1, 2, . . .) denote the total derivative operators.
For the basic notions and statements used in the group analysis of differential equations and
variational problems see [1] or [2].
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2 Symmetries and conservation laws of beam equations

Bernoulli–Euler beams. Consider the class of self-adjoint partial differential equations

γw1111 + χαβwαβ + κ(x)w = 0, (1)

in two independent variables x = (x1, x2) and one dependent variable w(x), where γ = const �= 0,
χαβ are arbitrary constants, and κ(x) is an arbitrary smooth function. Equations of this special
type are used to study problems concerning dynamics and stability of both elastic beams resting
on elastic foundations and pipes conveying fluid. In these cases, x1 is associated with the spatial
variable along the rod axis, x2 – with the time, and w represents the transversal displacement
field.

In [3] the point Lie symmetries of (1) are examined and the solution of the corresponding
group-classification problem with respect to the arbitrary element {γ, χαβ , κ(x)} is given. Evi-
dently, each equation of form (1) is invariant under the point Lie groups generated by the vector
fields X0 = w∂/∂w and Xu = u (x) ∂/∂w, where u (x) is any smooth solution of the respective
equation. The results of the group-classification are summarized in Table 1 below, where the
equations invariant under larger groups are given through their coefficients together with the
generators of the associated symmetry groups.

Table 1

# Coefficients Generators

1 κ(x) = f(β2x1 − β1x2) β1X1 + β2X2

2
χ22 �= 0, det(χαβ) = 0, κ(x) =

(
β2 + x2

)−2
f(y),

y =
(
β2 + x2

)−1/2 {
β1 + x1 − χx2

} {β1 + 2χβ2}X1

+2β2X2 + X3

3
χ22 = 0, det(χαβ) �= 0, κ(x) =

(
β2 + x2

)−4/3
f(y),

y =
(
β2 + x2

)−1/3 {
β1 + 2x1 − (

χ11/χ12
)
x2

} {β1 + 3(χ11/χ12)β2}X1

+6β2X2 + 2X̃3

4 χ22 �= 0, det(χαβ) = 0, κ(x) = κ0

(
β + x2

)−2
, X1, 2βX2 + X3

5 χ22 = 0, det(χαβ) �= 0, κ(x) = κ0

(
β + x2

)−4/3
X1, 3βX2 + X̃3

6
χ22 �= 0, det(χαβ) = 0,
κ(x) = κ0

(
β + x1 − χx2

)−4
βX1 + X3,
χX1 + X2

7
χ22 = 0, det(χαβ) �= 0,
κ(x) = κ0

(
β + 2x1 − (

χ11/χ12
)
x2

)−4
βX1 + 2X̃3,
(χ11/χ12)X1 + 2X2

8 χ22 det(χαβ) �= 0, κ(x) = const X1, X2

9 χ22 det(χαβ) = 0, κ(x) = const �= 0 X1, X2

10 χ22 �= 0, det(χαβ) = 0, κ(x) = 0 X1, X2, X3

11 χ22 = 0, det(χαβ) �= 0, κ(x) = 0 X1, X2, X̃3

Here f is an arbitrary function, β, β1, β2 are arbitrary real constants, χ = χ12/χ22 and Xα =
∂/∂xα, X3 =

(
x1 + χx2

)
∂/∂x1 + 2x2∂/∂x2, X̃3 =

(
x1 + χx2

)
∂/∂x1 + 3x2∂/∂x2.

It is found [3] that all vector fields quoted under numbers 1, 3, 5, 7, 8, 9 and 11 generate
variational symmetries of the respective equations of form (1), while in case # 2 variational
symmetries are associated with {β1 + 2χβ2}X1 + 2β2X2 + X3 + (1/2)X0, in case # 4 – with X1
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and 2βX2 + X3 + (1/2)X0, in case # 6 – with χX1 + X2 and βX1 + X3 + (1/2)X0, and in case
# 10 – with X1, X2 and X3 + (1/2)X0.

Once the variational symmetries are identified, we derive the corresponding conservation laws.
They are listed in Table 2 in the same order as in Table 1 using the notation:

B1
(1) = −(1/2)

{
γ(2w1w111 − w2

11) + χ11w2
1 − χ22w2

2 + κw2
} − (1/2)(χ2µwwµ),2 ,

B2
(1) = −χ2µw1wµ + (1/2)(χ2µwwµ),1 ,

B1
(2) = −χ1µw2wµ + γ(w2w111 − w11w12) − (1/2)(γw1w11 − χ1µwwµ),2 ,

B2
(2) = −(1/2)

{
γw2

11 + χ22w2
2 − χ11w2

1 + κw2
}

+ (1/2)(γw1w11 − χ1µwwµ),1 ,

Bα
(3) =

{
x1 + χx2

}
Bα

(1) + 2x2Bα
(2) + χαµwwµ + (1/2)γδ1α(ww111 − w1w11),

B̃α
(3) =

{
x1 + (χ11/χ12)x2

}
Bα

(1) + 3x2Bα
(2)

+ (1/2)
{
χαµwwµ + δ1α(χ11ww1 + 2χ12ww2 − γw1w11)

}
.

Table 2

# Conservation laws

1 Dα

{
β1Bα

(1) + β2Bα
(2)

}
= 0

2 Dα

{(
β1 + 2χβ2

)
Bα

(1) + 2β2Bα
(2) + Bα

(3)

}
= 0

3 Dα

{(
β1 + 3χβ2

)
Bα

(1) + 6β2Bα
(2) + 2B̃α

(3)

}
= 0

4 DαBα
(1) = 0, Dα

{
2βBα

(2) + Bα
(3)

}
= 0

5 DαBα
(1) = 0, Dα

{
3βBα

(2) + B̃α
(3)

}
= 0

6 Dα

{
βBα

(1) + Bα
(3)

}
= 0, Dα

{
χBα

(1) + Bα
(2)

}
= 0

7 Dα

{
βBα

(1) + 2B̃α
(3)

}
= 0, Dα

{
(χ11/χ12)Bα

(1) + 2Bα
(2)

}
= 0

8 DαBα
(1) = 0, DαBα

(2) = 0

9 DαBα
(1) = 0, DαBα

(2) = 0

10 DαBα
(1) = 0, DαBα

(2) = 0, DαBα
(3) = 0

11 DαBα
(1) = 0, DαBα

(2) = 0, DαB̃α
(3) = 0

In addition, each equation (1) admits conservation laws of form

Dα{χαµ(uwµ − u,µ w) + δ1αγ(uw111 + u,11 w1 − u,111 w − u,1 w11)} = 0,

u(x) being any solution of the equation considered.
Timoshenko beams. The Timoshenko beam equations

�Jϕtt = EJϕxx + nGA(wx − ϕ), �Awtt = nGA(wxx − ϕx), (2)

describe the motion of beams accounting for the buckling of the beam cross-section. They are
two coupled second order linear partial differential equations in two independent variables – the
time t and the coordinate along the beam axis x, the dependent variables being w(x, t) and
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ϕ(x, t), associated with the transversal displacement of the beam axis and the rotation angle,
respectively. In these equations � is the density of the beam material, E – the modulus of
elasticity, G – the shear modulus, J and A – the moment of inertia and the area of the beam
cross-section, n – a coefficient related to the buckling of the cross-section.

The generator XH of each one-parameter group H, admitted by (2), has the form

XH = C1X1 + C2X2 + C3X3 + XS

(see [4, 5]), where Ci (i = 1, 2, 3) are real constants, (w̃, ϕ̃) is a solution of (2), and

X1 = ∂/∂x, X2 = ∂/∂t, X3 = w∂/∂w + ϕ∂/∂ϕ, XS = w̃(x, t)∂/∂w + ϕ̃(x, t)∂/∂ϕ.

Denoting r∗ = rank (C1, C2, C3w + w̃(x, t), C3ϕ + ϕ̃(x, t)), r∗∗ = rank (C1, C2), where rank(·)
is the rank of the matrix in parentheses, the necessary conditions for existence of solutions to
Timoshenko beam equations invariant under the transformations of H (i.e. H-invariant solu-
tions) are of the form

r∗ ≤ 2, r∗∗ = r∗. (3)

The inequality (3) holds for every choice of Ci, w̃(x, t) and ϕ̃(x, t), because r∗ is either 1 or 0.
There exist only two opportunities to satisfy the equality (3). They are C2

1 +C2
2 > 0, if r∗ = 1 or

C2
1 + C2

2 = 0, if r∗ = 0. The only interesting alternative here is the first one, because if r∗ = 0,
the group H consists of the identity only. Thus, we proved the following.

Proposition 1 [4, 5]. H-invariant solutions of the Timoshenko beam equations exist only if
the group generator XH incorporates at least one of the vector fields X1 or X2 associated with
the translations along the independent variables.

The invariant of the group H with generator XH could be obtained, seeking for solutions to
the equation XH(f) = 0. Examining the cases C1 �= 0 and C1 = 0, we found the most general
form of the H-invariant solutions of (2) to be

w(x, t) = [w(y) + W (x, t)]Σ, ϕ(x, t) = [ϕ(y) + Φ(x, t)]Σ, (4)

where y = C2x − C1t and the functions W (x, t) and Φ(x, t) are solutions of the equations

C1Wx + C2Wt = w̃(x, t)Σ−1, C1Φx + C2Φt = ϕ̃(x, t)Σ−1. (5)

In (4) and (5) we denote Σ = exp(C3x/C1) if C1 �= 0, otherwise Σ = exp(C3t/C2). Equations (5)
are first-order linear partial differential equations, so it is a simple matter to obtain their solutions
once Ci, w̃(x, t) and ϕ̃(x, t) are specified.

The following basic conservation laws of densities At and fluxes Ax, that is

∂At/∂t + ∂Ax/∂x = 0,

are found to hold on the smooth solutions of the Timoshenko beam equations [4, 5].

Table 3
w - translations transversal linear momentum
Xw = ∂

∂ w At
w = ρAwt, Ax

w = nGA(wx − ϕ)
x - translations wave momentum
X1 = ∂

∂ x At
1 = ρAwxwt + ρJϕxϕt, Ax

1 = −E − nGA(wx − ϕ)ϕ
time - translations energy

X2 = ∂
∂ t

At
2 = E = (1/2)

{
EJϕ2

x + nGA(wx − ϕ)2 + ρAw2
t + ρJϕ2

t

}
Ax

2 = −nGA(wx − ϕ)wt − EJϕxϕt

reciprocity relation

XS = w̃ ∂
∂w + ϕ̃ ∂

∂ϕ

Ãt = ρA(ww̃t − wtw̃) + ρJ(ϕϕ̃t − ϕtϕ̃)
Ãx = EJ(ϕxϕ̃ − ϕϕ̃x) + nGA{(wx − ϕ)w̃ − w(w̃x − ϕ̃)}
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3 Marguerre-von Kármán equations

Marguerre-von Kármán (MvK) equations (see e.g. [6, 7, 8]) describe the large deflection of thin
isotropic elastic shallow shells. They can be written in the form [7, 8]:

D∆2W − εαµεβνWαβΦµν = P,

1
Eh

∆2Φ +
1
2
εαµεβνWαβWµν = Q.

(6)

Here, the independent variables are the coordinates x =
(
x1, x2

)
on the shell middle-surface F

supposed to be given by the equation z = f
(
x1, x2

)
,

(
x1, x2

) ∈ Ω ⊂ R2, where
(
x1, x2, z

)
is

a fixed right-handed rectangular Cartesian coordinate system in the 3-dimensional Euclidean
space in which the middle-surface F of the shell is embedded, and f : R2 → R is a smooth
function on a certain domain of interest Ω. The dependent variables are Airy’s stress function Φ,
and W = w + f, where w is the transversal displacement function. In (6): εαβ is the alternating
tensor of F ; E, h and D = Eh3/

[
12

(
1 − ν2

)]
are Young’s modulus, thickness and bending

rigidity of the shell, respectively, ν being Poisson’s ratio; ∆ is the Laplace–Beltrami operator
on F ;

P = Dδαβδµνf,αβµν + p, Q =
1
2
εαµεβνf,αβf,µν + q

(functions p and q appear when the shell is subjected to an external transversal load and nonuni-
form heating). System (6) includes as a special case, with f,αβ = 0, the well-known von Kármán
equations for large deflection of plates.

Actually (6) describe the state of equilibrium of the shell, but introducing, according to
d’Alembert principle, the inertia force −ρw33 = −ρW33 in the right-hand side of the first MvK
equation, w33 being the second derivative of the displacement field with respect to the time
t ≡ x3 and ρ – the mass per unit area of the shell middle-surface, one can extend (6) to describe
the dynamic behaviour of shells. In this case we will speak about the time-dependent MvK
equations, otherwise (6) will be referred to as the time-independent MvK equations. In both
cases, the moment tensor Mαβ , membrane stress tensor Nαβ , and shear-force vector Qα are
given in terms of W and Φ by the expressions

Mαβ = D
{
(1 − ν)δαµδβν + νδαβδµν

} {Wµν − f,µν} ,

Nαβ = εαµεβνΦµν , Qα = Mαµ
,µ + Nαµ {Wµ − f,µ} .

Symmetry groups. The following is known [11] for the symmetry groups of the homoge-
neous time-independent and time-dependent MvK equations.

Proposition 2. The homogeneous time-independent MvK equations admit the group G(S) gen-
erated by the basic vector fields (operators):

Y1 = ∂/∂W, Y2 = ∂/∂x1, Y3 = ∂/∂x2, Y4 = x2∂/∂x1 − x1∂/∂x2, Y5 = x1∂/∂Φ,

Y6 = x2∂/∂Φ, Y7 = ∂/∂Φ, Y8 = x1∂/∂W, Y9 = x2∂/∂W, Y10 = x1∂/∂x1 + x2∂/∂x2.

Proposition 3. The homogeneous time-dependent MvK equations admit the group G(D) gener-
ated by the basic vector fields:

X1 = Y1, X2 = Y2, X3 = Y3, X4 = ∂/∂x3, X5 = x1∂/∂x1 + x2∂/∂x2 + 2x3∂/∂x3,

X6 = Y4, X7 = x1∂/∂W, X8 = x2∂/∂W, X9 = x3∂/∂W, X10 = x1x3∂/∂W,

X11 = x2x3∂/∂W, X12 = x1f(x3)∂/∂Φ, X13 = x2g(x3)∂/∂Φ, X14 = h(x3)∂/∂Φ,

where f , g and h are arbitrary functions depending on the time only.
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As for the symmetries of the nonhomogeneous MvK equations, we proved that:

Proposition 4. A nonhomogeneous time-independent MvK system is invariant under a vector
field Y iff Y = cjYj (j = 1, . . . , 10), where cj are real constants, and

2Pξµ
,µ + ξµP,µ = 0, 2Qξµ

,µ + ξµQ,µ = 0, ξα = Y (xα), (7)

Y being regarded as an operator acting on the functions ζ : Ω → R, Ω ⊂ R2.

Proposition 5. A nonhomogeneous time-dependent MvK system is invariant under a vector
field X iff X = CjXj (j = 1, . . . , 14), where Cj are real constants, and

Pξi
,i + ξiP,i = 0, Qξi

,i + ξiQ,i = 0, ξi = X(xi), (8)

X being regarded as an operator acting on the functions χ : Ω × T → R, Ω ⊂ R2, T ⊂ R.

The above Propositions imply the following group classification results.

Proposition 6. The time-independent MvK equations admit a group G iff G is generated by
a vector field Y = cjYj (j = 1, . . . , 10) and the right-hand sides P and Q are invariants of G
(when c10 = 0) or eigenfunctions (when c10 �= 0) of its generator Y .

Proposition 7. The time-dependent MvK equations admit a group G iff G is generated by a
vector field X = CjXj (j = 1, . . . , 14) and the right-hand sides P and Q are invariants of G
(when C5 = 0) or eigenfunctions (when C5 �= 0) of its generator X.

Conservation laws. Both the time-independent and time-dependent MvK equations con-
stitute self-adjoint systems and are the Euler–Lagrange equations for the functionals

I(S)[W,Φ] =
∫ ∫ ∫

Π dx1dx2 and I(D)[W,Φ] =
∫ ∫ ∫

(T − Π) dx1dx2dx3,

Π =
D

2

{
(∆W )2 − (1 − ν)εαµεβνWαβWµν

}
+

1
2
εαµεβνΦαβWµWν

− 1
2Eh

{
(∆Φ)2 − (1 + ν)εαµεβνΦαβΦµν

}
− PW − QΦ,

T =
ρ

2
(W3)

2 ,

Π and T being the strain and kinetic energies per unit area of the shell middle-surface.
In [10], the variational symmetries of the above functionals with P = Q = 0 are established

and the associated conservation laws admitted by the smooth solutions of the homogeneous MvK
equations are presented (see Appendices A and B). In particular, each such conservation law
for the time-dependent MvK equations is a linear combination of the basic linearly independent
conservation laws

∂Ψ(j)/∂x3 + ∂Pµ
(j)/∂xµ = 0 (j = 1, 2, . . . , 14)

whose densities Ψ(j) and fluxes Pµ
(j) are presented (together with the generators of the respective

symmetries) on the Table 4 below in terms of Qα, Mαβ , Gαβ and Fα,

Gαβ =
1

Eh

{
(1 + ν)δαµδβν − νδαβδµν

}
Φµν − 1

2
εαµεβνwµwν , Fα = Gαν

,ν .
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Table 4

w - translations transversal linear momentum (first MvK equation)

X1 = ∂
∂ w

Pα
(1) = −Qα, Ψ(1) = ρw3

Φ - translations compatibility condition (second MvK equation)

X14 = ∂
∂Φ

Pα
(14) = Fα, Ψ(14) = 0

time - translations energy

X4 = ∂
∂ x3

Pα
(4) = −w3Q

α − Φ3F
α + w3βMαβ + Φ3βGαβ

Ψ(4) = T + Π

x1 &x2- translations wave momentum

X2 = ∂
∂ x1

Pα
(2) = δα1(T − Π) + w1Q

α + Φ1F
α − w1βMαβ − Φ1βGαβ

Ψ(2) = −ρw1w3

X3 = ∂
∂ x2

Pα
(3) = δα2(T − Π) + w2Q

α + Φ2F
α − w2βMαβ − Φ2βGαβ

Ψ(3) = −ρw2w3

rotations moment of the wave momentum

X6 = x2 ∂
∂ x1 −x1 ∂

∂ x2

Pα
(6) = x2Pα

(2) − x1Pα
(3) + ε µ

ν wµMαν + ε µ
ν ΦµGαν

Ψ(6) = x2Ψ(2) − x1Ψ(3)

rigid body rotations angular momentum
X7 = x1 ∂

∂ w Pα
(7) = Mα1 − x1Qα + wεανΦν2, Ψ(7) = ρx1w3

X8 = x2 ∂
∂w

Pα
(8) = Mα2 − x2Qα + wεναΦν1, Ψ(8) = ρx2w3

scaling

X5 = xµ ∂
∂ xµ + 2x3 ∂

∂ x3

Pα
(5) = x1Pα

(2) + x2Pα
(3) − 2x3Pα

(4) − wβMαβ − ΦβGαβ

Ψ(5) = x1Ψ(2) + x2Ψ(3) − 2x3Ψ(4)

Galilean boost center-of-mass theorem

X9 = x3 ∂
∂w

Pα
(9) = −x3Qα, Ψ(9) = ρ (x3w3 − w)

X10 = x1x3 ∂
∂w Pα

(10) = x3Pα
(7), Ψ(10) = x1Ψ(9)

X11 = x2x3 ∂
∂w Pα

(11) = x3Pα
(8), Ψ(11) = x2Ψ(9)

X12 = x1 ∂
∂Φ Pα

(12) = x1Fα − Gα1, Ψ(12) = 0

X13 = x2 ∂
∂Φ

Pα
(13) = x2Fα − Gα2, Ψ(13) = 0

The following statements [6] hold for the nonhomogeneous MvK equations.

Proposition 8. A conservation law of flux Aα
(j) and characteristic Λα

(j) (j = 1, . . . , 9) admitted
by the smooth solutions of the homogeneous time-independent MvK equations takes the form

Aµ
(j),µ + S(j) = 0, S(j) = −Λ1

(j)P − Λ2
(j)Q, (9)

on the smooth solutions of the non-homogeneous time-independent MvK equations;

S(j) = Ãµ
(j),µ,

iff (7) hold, and then (9) can be written as a divergence free expression (i.e. it becomes a proper
conservation law), otherwise it has supply (production) S(j).
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Proposition 9. Each conservation law of density Ψ(i), flux Pα
(i) and characteristic Λα

(i) (i =
1, . . . , 14) admitted by the smooth solutions of the homogeneous time-dependent MvK equations
takes the form

Ψ(i),3 + Pµ
(i),µ + S(i) = 0, S(i) = −Λ1

(i)P − Λ2
(i)Q, (10)

on the smooth solutions of the non-homogeneous time-dependent MvK equations;

S(i) = Ψ̃(i),3 + P̃µ
(i),µ,

iff (8) hold, and hence (10) becomes a proper conservation law, otherwise it has supply (produc-
tion) S(i).
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Kármán equations, in Proc. of IMSE 98 (August 10-13, 1998, Houghton, MI, USA), CRC Publishers (to
appear).

[7] Vassilev V., Symmetry groups and equivalence transformations in the nonlinear Donnell–Mushtari–Vlasov
theory for shallow shells, J. Theor. and Appl. Mech., 1997, V.27, 43–51.

[8] Vassilev V., Application of Lie groups to the theory of shells and rods, Nonlinear Analysis, Proc. of the
Second World Congress of Nonlinear Analysts, 1997, V.30, N 8, 4839–4848.

[9] Djondjorov P. and Vassilev V., Nonlinear waves in the von Kármán plate theory, in Proc. of IMSE 98
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A model describing non-equilibrium processes in relaxing media is considered. Restrictions
arising from the symmetry principles and the second law of thermodynamics are stated.
System of ODE describing a set of travelling wave solutions is obtained via group theory
reduction. Bifurcation analysis of this system reveals the existence of periodic invariant
solutions as well as limiting to them solitary wave solutions. These families play the role of
intermediate asymptotics for a wide set of Cauchy and boundary value problems

1 Introduction

Analysis of experimental studies of multi-component media subjected to shock loading [1] en-
ables one to conclude that some internal state variations are possible at constant values of the
“external” parameters (temperature T , pressure p, mass velocity u, etc.). Phenomena arising
then as an afteraction of relaxing processes might be formally described by introducion of an in-
ternal variable λ, expressing deviation of the system from the state of complete thermodynamic
equilibrium and formally obeying the chemical kinetics equation with unknown affinity A of the
relaxing process. Connection between the “internal” and “external” variables is stated by the
second law of thermodynamics, written in the Gibbs form [2]:

TdS = dE − pρ−2dρ+Adλ. (1)

To describe the long nonlinear waves propagation in such media, the following system may be
proposed [3]:

ρ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
+

∂p

∂xi
= 0,

∂ρ

∂t
+ ui ∂ρ

∂xi
+ ρ

∂ui

∂xi
= 0,

∂p

∂t
+ ui ∂p

∂xi
+M

∂ui

∂xi
= N,

∂λ

∂t
+ uj ∂λ

∂xj
= Q ≡ aA,

(2)

where M , and N are functions connected with internal energy E and affinity of the relaxing
processes A = a−1Q by means of the relations

M = (p− ρ2Eρ)/(ρEp), N = −EλQ/Ep. (3)

Here and henceforth lower indices mean partial derivatives with corresponding to subsequent
variables.
The aim of this work is to show that arbitrainess in the choice of functions E and A may be

reduced to the great extent if we impose restrictions arising from symmetry principles and the
second law of thermodynamics. Another goal is to state the conditions leading to the invariant
autowave solutions appearance as well as to study their attractive features.
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2 Group theory classification of system (2)

Let us study the symmetry of system (2), that contains three unknown functions, linked together
by means of equations (3). We look for infinitesimal operators (IFO), having the following form:

X = ξα ∂

∂xα
+ ηi ∂

∂ui
+ τ

∂

∂p
+ θ

∂

∂ρ
+ γ

∂

∂λ
, (4)

where ξα, ηi, τ , θ, γ depend on xα, ui, p, ρ, λ, α = 0, . . . , n, i = 1, . . . , n (we identify variable x0

with t). The procedure of “splitting” of a PDE system, arising from action of the first extension
of the operator (4) on system (2), is very similar to that described in [4]. It is possible to select
a subsystem defining coordinates ξµ, ηi, τ and θ:

τ = p[m− (2 + n)gt] + f(t), θ = ρ(α− ngt), ξ0 = gt2 + bt+ h,

ξi = (gxi + li)t+ cxi +Σai
jx

j + qi, ηi = gxi + li + ui(c− b− gt) + Σai
ju

j ,
(5)

where g, b, h, li, m, c are arbitrary constants, ai
j = −aj

i , α = 2(b− c) +m, f(t) is an arbitrary
function. Besides, it may be shown that γj

xi = γj
uk = 0. The remaining part of the system,

containing the unknown functions M , N and Q, is presented in the following form:

Ẑ


 M

N
Q


 ≡

(
θ

∂

∂ρ
+ τ

∂

∂p
+ γ

∂

∂λ

) 
 M

N
Q


 =


 τpM

τ0 + (τp − ξ0
0)N + ngM

γ0 + γpN + γλQ− ξ0
0Q


 . (6)

Note that system (6) does not contain the parameters h, li, qi, ai
j . Therefore, for arbitrary

functions M , N and Q system (2) admits operators P̂0, P̂i, Ĵab and Ĝa, i, a, b = 1, . . . , n,
forming the standard representation of the Galilei algebra AG(n) [4]. We did not succeed in
obtaining the general solution of system (6), but knowledge of particular one enables to prove
that symmetry algebra is infinite-dimensional.

Theorem 1. Let E = p/[(ν − 1)ρ] + qλ, ν = (n + 2)/n, Q = ρσν−1ψ(ω), where ψ is arbitrary
function of ω = p/ρν . Then system (2), in addition to AG(n), admits the following operators:

K1 = t2
∂

∂t
+ txi ∂

∂xi
+ (xi − tui)

∂

∂ui
− ntρ

∂

∂ρ

− (2 + n)tp
∂

∂p
+

{∫
ρf(ρ)− 2p
ρσν+1ψ(ω)

dp+ t[2p/ρ− f(ρ)]
}

∂

∂λ
,

D̂ = 2t
∂

∂t
+ xi ∂

∂xi
− ui ∂

∂ui
− (n+ 2)p ∂

∂p
− nρ

∂

∂ρ
− 2p

ρ

∂

∂λ
,

L = Γ(ρ, λ+ p/ρ)
∂

∂λ
,

(7)

where i, a, b = 1, . . . , n. Note that the latter two expressions contain arbitrary functions f(ρ)
and Γ(ρ, λ+ p/ρ).

If to decline the requirement of maximal symmetry existence, then the problem of group
theory classification of system (2) may be effectively solved. The results obtained are presented
in Table 1 where the following notation is used:

D̂1 = t
∂

∂t
− ui ∂

∂ui
+ 2ρ

∂

∂ρ
, D̂2 = xi

∂

∂xi
+ ui ∂

∂ui
− 2ρ ∂

∂ρ
,

D̂3 = ρ
∂

∂ρ
+ p

∂

∂p
, L̂1 = ∂/∂ρ, L̂2 = ∂/∂p, L̂3 = ∂/∂λ.
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It is seen from the analysis of Table 1 that symmetry extension takes place in many cases
including those for which E, Q are arbitrary functions of the invariants of subsequent ISO and
this gives way for effective use of qualitative methods in the relaxing media models investigations.

Table 1
E, Q IFO

E = pρ−1f(ω), Q = λg(ω), ω = pλκ Ẑ1 = λL̂3 − κD̂3, Ẑ2 = D̂2

E = ρ−1[f(ω)− p], Q = e−pg(ω), ω = λ− σ ln ρ, Ẑ1 = D̂1 + D̂2 + L̂2, Ẑ2 = D̂2 − 2σL̂3

E = ρ−1[f(ω)− p], Q = ρνepg(ω), ω = λ/ρσ Ẑ1 = D̂1 + D̂2 − L̂2,

Ẑ2 = D̂2 + 2(σ − ν)L̂2 + 2σλL̂3

E = pρ−1f(ω), ω = λ− τ ln ρ, Q = pµρνg(ω), Ẑ1 = νD̂1 + (ν + 1/2)D̂2 − τL̂3,

Ẑ2 = (µ+ ν)D̂2 + 2νD̂3 − 2µτL3

E = ρξ−1F (ω1, ω2), Q = ρσ−βG(ω1, ω2) Ẑ = 2βD̂1 + (2β + ξ − 1)D̂2 + 2ξD̂3 + 2σλL̂3

ω1 = p/ρξ, ω2 = λ/ρσ

E = ρ−1[F (ω1, ω2)− τ ln ρ], Ẑ = 2βD̂1 + 2σλL̂3 + (2β − 1)D̂2 + 2τL̂2

Q = ρσ−βG(ω1, ω2), ω1 = ρτe−p, ω2 = λρ−σ,

E = ρξ−1F (ω1, ω2), Q = ρ−β(1+ξ)G(ω1, ω2), Ẑ = 2β(1 + ξ)D̂1 + 2ξD̂3 + 2δL̂3+
ω1 = p/ρξ, ω2 = λ− δ ln ρ +[2β(1 + ξ) + (ξ − 1)]D̂2

E = pF (ρ, ω), Q = p−βG(ρ, ω), ω = λ− τ ln p Ẑ = βD̂1 + (β + 1/2)D̂2 + D̂3 + τL̂3

E = F (ρ, ω)− p/ρ, Q = e−pG(ρ, ω), ω = λ− νp Ẑ = D̂1 + D̂2 + L̂2 + νL̂3

E = F (ρ, ω)− p/ρ, Q = G(ρ, ω), ω = λ− νp Ẑ = L̂2 + νL̂3

E = ρτ−1F (λ, ω), Q = p−βG(λ, ω), ω = p/ρτ , Ẑ = 2τβ(D̂1 + D̂2)− (1− τ)D̂2 + 2τD̂3

E = ρτ−1F (λ, ω), Q = G(λ, ω), ω = p/ρτ , Ẑ = (1− τ)D̂2 − 2τD̂3

E = ρ−1[F (λ, ω)− τ(1 + ln ρ)], Ẑ = 2τ(D̂1 + L̂2) + (2τ − 1)D̂2

Q = e−pG(λ, ω), ω = ρτe−p

E = pF (ρ, λ), Q = p−βG(ρ, λ) Z = D̂3 + βD̂1 + (β + 1/2)D̂2

E = ρ−1F (p, λ), Q = ρτG(p, λ) Ẑ = 2τD̂1 + (2τ + 1)D̂2

3 Restrictions imposed by the second law of thermodynamics

Let us consider the governing functions, defining in the following form, widely used in applica-
tions [5]:

E =
p

(σ − 1)ρ − h(λ), Q ≡ aA = a g(λ)φ(p, ρ). (8)

Employing the consequences of the second law of thermodynamics (1), we may obtain some
restrictions on functions g(λ), h(λ) and φ(p, ρ).
Equating partial derivative of the entropy function S with the corresponding terms standing

at the RHS of the formula (1), we obtain:

(Sp)V,λ = T−1 (Ep)V,λ , (9)

(SV )p,λ = T−1[(EV )p,λ + p], (10)
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(Sλ)V,p = T−1[(Eλ)V,p +A], (11)

where V = ρ−1. Comparison of the mixed partial derivatives Sp,V , Sp,λ and SV,λ, calculated
from (9)–(11), gives the following expressions for T and S:

T = V −1/ΓΦ(Ω), Ω = p V σ, (12)

S = S1(λ) + Γ
∫

dΩ
Φ(Ω, λ)

, (13)

where Γ = (σ − 1)−1. Functions Φ(Ω, λ) and S1(λ) are connected with functions defining E
and Q by means of the equation

V −1/ΓΦ(Ω, λ)
(
Ṡ1(λ)− Γ

∫
dΩ

Φ(Ω, λ)
Φλ

)
= g(λ)φ(p, ρ)− ḣ(λ). (14)

Assuming that g(λ) = ḣ(λ)/m, φ(p, ρ) = m+ ρ1/Γθ(Ω) and Φ(Ω, λ) = f(λ)R(Ω) we obtain the
solution

A = g(λ)
{
m+ ρ1/ΓR(Ω)

(
1 + Γ

∫
dΩ

R(Ω)

)}
, E = Γρ1/ΓΩ− h(λ), (15)

where f = C exp [g(λ)], g(λ) = ḣ(λ)/m. Note that at R = C1 exp (Ω/r), r = const function A
describes kinetics of the Ahrrenius type [5].
Assuming that R(Ω) = κ−1Ω, h(λ) = −q (λ− λ0) we obtain the governing equations

A = qκ−1

(
p

ρ
− κ

)
, (16)

E =
p

ρ(σ − 1) + q (λ− λ0) , (17)

at which system (2) admits scaling symmetry group, generated by the operator D̂3. So the sym-
metry requirements together with the restrictions arising from the second law of thermodynamics
completely remove the arbitrariness in the choice of the functions E and A.
If the processes under consideration are not far from the state of complete thermodynamic

equilibrium, which is the case, e.g., when the long nonlinear wave propagation is studied, then
we may substitute the energy balance equation for the the finite-differenc equation

p− p0 = +σκV −2
0 (V − V0) + q(σ − 1)V −1

0 (λ− λ0) = 0, (18)

where p0, V0 and λ0 denote the values of the subsequent parameters in the state of complete
thermodynamic equilibrium. Expressing λ from this equation, differentiating (18) with respect
to temporal variable and next employing (16) with RHS expanded near the equilibrium, it is
possible to express the governing equation merely in terms of “external” variables. Restricting
our consideration to one-dimensional case and going to the Lagrangian representation

tl = t, xl =
∫

ρ dx (19)

we obtain a closed system which is more simple than (2):

∂u

∂tl
+

∂p

∂xl
= �,

∂V

∂tl
− ∂u

∂xl
= 0, τ

[
∂p

∂tl
+

χ

τV 2

∂u

∂xl

]
=

κ

V
− p, (20)
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where � is an external force, V ≡ ρ−1 is the specific volume,

τ−1 = −a (Aλ)V = a(σ − 1)q2/κ, χ/τ = (∂p/∂ρ)λ = κσ, κ = (∂p/∂ρ)A=0 .

(we will drop index “l” in the forthcoming formulae). So, instead of unknown functions, sys-
tem (20) contains three parameters that completely define dynamical features of relaxing media
near the equilibrium [3].

4 On attractive features of invariant solutions of system (20)

A wide employment of the group theory methods in non-linear mathematical physics is justified
to the great extent by the fact that invariant solutions of evolution systems very often play
the role of intermediate asymptotics for sufficiently large class of Cauchy and boundary value
problems. It is shown below that attractive features are inherent to periodic invariant solutions
of system (22) as well as reducible to them solitary wave solutions.
When � = γ = const then ansatz

u = U(ω), V =
R(ω)
x0 − x

, p = (x0 − x)Π(ω), ω = tξ + ln
x0

x0 − x
(21)

leads to an ODE system. Substituting (21) into the second equation of systems (20) we find
that U̇ = ξṘ. Variables R, Π satisfy the following system of ODE:

ξ
[
τ (ξR)2 − χ

]
Ṙ = −R [(1 + τξ)RΠ− κ+ τγξR] ,

ξ
[
τ (ξR)2 − χ

]
Π̇ = ξ [ξR(RΠ− κ) + ξ(Π + γ)] .

(22)

It is easy to see that the singular point A(R1,Π1), where Π1 = −γ > 0, R1 = κ/Π1, corresponds
to the invariant stationary solution of system (20), belonging to the set (21):

u0 = 0, p0 = γ(x− x0), V0 = κ/[γ(x− x0)]. (23)

For this special case we are able to express transition to the Eulerian co-ordinate xe in explicit
form:

xe = (κ/γ) ln [(x0 − xl)/x0] . (24)

So, according to the formula (24), the Lagrangian co-ordinate xl = x0 corresponds to the point
on infinity in the Eulerian reference frame.
We are going to formulate conditions assuring existence of periodic solutions in vicinity of

the singular point A(R1,Π1). For this purpose we rewrite the linear part of system (22) in
co-ordinates x = R−R1, y = Π−Π1:

ξ∆
(

x
y

)′
=

[ −κ, −R2
1σ

κξ2, (ξR1)2 + χξ

] (
x
y

)
+O(|x|, |y|). (25)

Periodic solutions appearance would take place when the eigenvalues of matrix M̂ standing at
the RHS of equation (25) intersect imaginary axis [6], and this is so when the following relations
hold:

ξ = ξcr = −
(
χ+

√
χ2 + 4κR2

1

)
/(2R2

1), 0 < R1 <
√

χ/(τξ2). (26)
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Fig. 1. Perturbations used in numerical experiments (a) and temporal dependence of distances
between the wave packs and the solitary wave invariant solution (b). Numbers near the graphs
show the energies of the initial perturbations with the same marks.

Numerical analysis of system (22) gives such changes of regimes in a vicinity of the singular
point A (R1,Π1). When value of the parameter ξ is a little less than ξcr, then the singular point
is a stable focus. Above this value a stable limiting cycle appears in a soft manner. Its radius
grows with further increase of the parameter ξ until the homoclinic bifurcation takes place.
After that the singular point becomes unstable focus.
We performed numerical simulation of system (20) based on the Godunov numerical sche-

me [7]. The values of the parameters were choosen in accordance with the requirements posed
by (26). In numerical experiments we observed that solutions of the Cauchy problems evolved
in self-similar modes when invariant periodic solutions belonging to set (21) as well as limiting
to them homoclinic solutions were taken as Cauchy data.
Numerical simulations have also shown that wave packs created by sufficiently large class of

perturbations of the initial inhomogeneous state (23) tend to the solution associated with the
homoclinic loop. Whether or not the wave pack would tend to the homoclinic solution depends
on the energy of initial perturbation, more preciesly, on that part of the total energy that is
travelled with the pack moving “downward” i.e. towards the domain with decreasing p.
Using the equation (18), we can express the energy of perturbation in the following form:

Etot =
∫ x

0

{
u2

2
− p0 (V − V0) +

∫ x′

0

[
∂p

∂x
− γ

]
V dx′′

}
dx′.

Numerical simulation shows that energy estimation of the initial perturbation well enough char-
acterizes convergency to the invariant soliton-like solution. For χ = 1.5, τ = 0.07, κ = 10
convergency is observed when Etot is close to 45. Fig. 1a shows variety of perturbation used
whereas Fig. 1b – temporal dependence of minimal distances between the wave packs created by
perturbations and the family of solutions associated with the homoclinic loop. On the left side
of Fig. 2 initial perturbations are shown together with invariant homoclinic solution marked
by the dotted line, whereas on the right side the homoclinic trajectories and the wave packs
created by the subsequent perturbations are shown at large distances from the origin. Case b
corresponds to the initial perturbations having the energy close to 45, cases a and c – to the
initial perturbations having sufficiently different energies.
We also interested in attracting features of periodic invariant solutions. Our experiments

showed that it is impossible to obtain convergency to a periodic invariant solution when Cauchy
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data are chosen among monotonic functions. But if we solve the boundary value problem with
periodically initiated impulses then convergency may be attained. Here again the energy crite-
rion works, besides, perturbations should be separated by proper temporal intervals.We solved
numerically a piston problem taking again as Cauchy data stationary invariant solutions (23),
associated with the critical point A (R1,Π1). It was observed that the convergency takes place
when the energy of a single perturbation created by the piston that works in a pulse regime
is close to 17 and the temporal intervals between the pulses lies near 22. Fig. 3 shows typical
patterns obtained. An invariant periodic solution envelopes succession of wave perturbations,
that are essentialy different from the autowave mode near the origin (Fig. 3a), but approaches
it in the long run (Fig. 3b).
So both autowave invariant solutions and solitary waves play roles of intermediate asymptotics

for sufficiently large classes of solutions of system (20).

Fig. 2. Perturbations of the stationary inhomogeneous solution (23) (left) and wave packs created
by these perturbations (right) on the background of the invariant solitary wave solution indicated
by dotted lines.
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Fig. 3. Wave packs initiated by a piston moving periodically in the pulse regime on the background
of a periodic invariant solution, indicated by the dotted line: patterns near the source (a) and at
large distance from source (b).
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A set of invariant solutions of a modelling system describing long nonlinear waves propagation
in medium with internal structure is considered. Using the well known symmetry reduction
method we perform transition from the initial system of PDE to a third-order dynamical
system. Employing the qualitative theory method as well as direct numerical simulation,
we study forms of multiperiodic, quasiperiodic, chaotic and soliton-like invariant solutions.
Parametric portraits are presented and the structure of a set of parameters corresponding
to the soliton-like solutions is analyzed. Within the method applied it manifests fractal
features.

It is well known, that most of the earth materials possess internal structure. Such are rocks,
soils, layered media and lithosphere itself. Such are a lot of artificial substances – concrete, air-
liquid mixtures, polymers and so on. When studying high-speed high-intense loading afteractions
in structured media the problem of their adequate description arises, since continual approach in
such circumstances is not valid and integro-differential relations must be used [1]. Such relations
are not easy to deal with and, besides, they contain, as a rule, unknown kernels of relaxations [1]
that must be determined in every particular case.

It turns out that knowledge of details of the relaxing mechanisms is almost unnecessary if
the processes to be described are weakly non-equilibrium, which is the case when we restrict
to the consideration of the long waves propagation. Analysis performed within the asymptotic
approach in paper [2] shows that the balance equations for mass and momentum in the long
wave limit do not depend on structure, retaining their classical form. So all the information
about the structure in this approximation should be concentrated in the dynamical equation of
state (DES) which may be obtained using the methods of phenomenological thermodynamics of
non-equilibrium processes. Here we employ the DES, which describes relaxing effects, as well as
purely spatial non-locality [3]. Together with balance equations for mass and momentum taken
in the hydrodynamic approximation, it forms a closed system of the following form:

dρ

dt
+ ρ

∂u

∂x
= 0, ρ

du

dt
+
∂p

∂x
= γρ,

τ

(
dp

dt
− χdρ

dt

)
= κρ− p+ σ

{
∂2p

∂x2
+

1
ρ

∂p

∂x

∂ρ

∂x
− χ

(
∂2ρ

∂x2
− 1
ρ

(
∂ρ

∂x

)2
)}

,

(1)

where p is pressure, ρ is density, u is the mass velocity, d(·)/dt = ∂(·)/∂t+u∂(·)/∂x is substantial
derivative with respect to time, ργ is the mass force, κ is equal to the square of equilibrium
(low-frequency) sound velocity, τ is the time of relaxation, χ is equal to the square of frozen
(high-frequency) sound velocity, σ defines the effective range of non-local effects. System (1)
describes long non-linear waves evolution in structured media. In this work we present some
results concerning the features of a set of travelling wave solutions of this system.
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It is easy to prove that system (1) admits a one-parameter group generated by the operator

X̂ =
∂

∂t
+D

∂

∂x
+ ξ

(
ρ
∂

∂ρ
+ p

∂

∂p

)
. (2)

Using invariants of this operator, obtained with the help of standard technique [4], one is able
to construct the ansatz

u = U(ω) +D, ω = x−Dt,
ρ = exp[ξt+ S(ω)], p = ρZ(ω),

(3)

describing a travelling wave moving with constant velocity D (the meaning of the parameter ξ
will be explained later on). We are going to show that the set (3) contains periodic, quasiperiodic,
multiperiodic, stochastic and soliton-like solutions. The last regime is analyzed in more detail,
in particular, a set of parameter space

(
D2, κ

)
, for which solitary wave solutions do exist is

studied.
Inserting (3) into (1) we obtain an ODE cyclic with respect to the variable S. Functions U ,

Z and W = dU/dω ≡ U̇ satisfy the following dynamical system:

U
dU

dω
= UW, U

dZ

dω
= γU + ξZ +W (Z − U2),

U
dW

dω
=

{
U2

(
γU + ξZ −WU2 + χτW + Z − κ)

+σ
{[

(ξ +W )(2U(γ − UW ) + χW ) + (UW )2
]}} [

σ
(
χ− U2

)]−1
.

(4)

Analysis shows that system (4) possesses only one critical point belonging to the physical
parameter’s range. If γ = ξZ0/D then this point, having the coordinates

U0 = −D, Z0 =
κ

[1− 2σ(ξ/D)2]
, W0 = 0, (5)

defines a stationary solution

u = 0, ρ = ρ0 exp
[
ξx

D

]
, p = Z0ρ,

belonging to the set (3). One immediately concludes from the above formula that ξ defines an
inclination of inhomogeneity of this solution if the rest of the parameters are fixed.

We begin our study of patterns formation from some analytical estimations, enabling to state
the conditions leading to the limiting cycle appearance in vicinity of critical point (5). It is more
convenient to work in the coordinate system X = U +D, Y = Z − Z0, W, having the origin at
the critical point (5), so we rewrite the linear part of system (4) in this reference frame:

U
d

dω


 X
Y
W


 = M̂


 X
Y
W


 + o (|X,Y,W |) , (6)

where

M̂ =


 0 0 −D
γ ξ ∆
A B C


 , A =

κξD(2ξσ − τD2)
Qσ(2σξ2 −D2)

, B =
D2(1 + ξτ)

Q
,

Q = σ(χ−D2), C = Q−1

{
ξσ

(
χ− 2D2

) − 2D2ξσκ

D2 − 2σξ2
+ τD2

(
χ−D2

)}
.
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Fig 1. Bifurcation diagram of system (4) in paramet-
ric space (D2, κ): 1 – stable focus; 2 – 1T-cycle; 3 –
torus; 4 – multiperiodic attractor; 5 – chaotic attrac-
tor; 6 – lose of stability.

Fig 2. Phase portrait (above) and Fourier spectrum
(below) of chaotic solution of system (4) obtained at
κ = 17 and D2 = 32.3.

Let us formulate conditions leading to the appearence of periodic solutions of system (4).
According the Hopf theorem [5], limiting cycle is created when a pair of complex conjugate
eigenvalues of the matrix M̂ crosses the imaginary axis and the third eigenvalue is strictly
negative. This is so if the following relations hold:

α = ξ + C > 0, (7)

Ω2 = AD −B∆ + ξC > 0, (8)

αΩ2 = ξ(AD − Z0B). (9)

The first two of them take on the form of inequalities, imposing some restrictions on the pa-
rameters, while the third one determines the neutral stability curve (NSC) in the plane (κ,D2),
providing that the rest of parameters are fixed. If σ = 0.76, τ = 0.1, χ = 50, ξ = 1.8 then the
NSC looks like a parabola with branches directed from right to left. It is presented on Fig. 1 as
a bold line.

Numerical investigations illustrated by Fig. 1 show that inside the parabola the critical point
A(−D,Z0, 0) is a stable focus. When we cross the neutral stability curve (9) from right to left,
then the stable periodic solution softly appears. The radius of the limiting cycle grows as one
goes away from the curve, until it remains stable. Further evolution of periodic regime depends
strongly on the values of parameter κ. For κ > 20 the amplitude of oscilations grows up as
the parameter D2 decreases, till the domain is attained where the regimes become completely
unstable.

If the κ lies betwen 10 and 20, then scenario of the development of oscilations is as follows:
limiting cycle → finite period doubling cascade → · · · → chaotic attractor → global lose of sta-
bility or falling onto the separated regime existing simultaneously with the main cascade. A typi-
cal phase portrait of the regime arising as a result of period doubling cascade is presented on the
Fig. 2. Fourier spectrum of X-coordinate, shown on the lower part of Fig. 2, looks like a conti-
nious function, so we really deal with the chaotic solutions in this domain of parameters’ values.



242 V.A. Vladimirov and S.I. Skurativsky

Fig 3. Poincaré sections obtained for κ = 17.82 when D2 is decreasing (left) and when D2 is growing up (right).

Fig 4. Phase portrait (above) and Fourier spectrum
(below) of toroidal attractor of system (4), obtained
at κ = 1 and D2 = 24.2.

In order to study a fine structure of the strange attractor the Poincare sections technique
was used [5, 6]. A section plain transversal to the phase traejectories was defined by equation
W = 0. The bifurcation diagrams shown on Fig. 3 were formed in the following way: we took X
coordinates of the points of intersection of the phase trajectories with the plane W = 0 and set
them on the vertical axis, whereas the corresponding values of the bifurcation parameter D2 on
the horizontal one. Complete list of bifurcation diagrams obtained this way is published in [7].
The most interesting features of system (4) seen on Fig. 3 are the phenomenon of hysteresis and
coexistence of different regimes in certain domains of parameters’ values.

When κ < 10, the scenario of the oscillationg regimes development is provided with quasiperi-
odic solutions and spiral attractors of S̆ilnikov type [8]. Creation of spiral attractors takes place
at the point of intersection of NSC with the horizontal axis, where the linearization matrix M̂
has one zero and two pure imaginary eigenvalues. This may be shown explicitely by studying
canonical Poincaré form [5] of system (4):

ṙ = a1ry, ẏ = b1r2, (10)

where a1 = −D3τ
Q , b1 = (ω2+ξ2)σξχ

DQω2 .
A simple analysis shows that system (10) has a center and there arises a stable focus, corre-

sponding to a spiral attractor of system (4), in the domain r > 0 when κ is small and positive.
The spiral attractor transforms into the isolated regime, existing simultaneously with the main
cascade and visible on some of the bifurcation diagrams presented in [7], as the parameter κ suffi-
ciently grows, but in proximity of the horizontal axis it turns into the stable torus when D2 goes
sufficiently far away of the point of NSC intersection with axis. A typical phase portrait of the
toroidal regime is shown on Fig. 4. The corresponding Fourier spectrum, shown below the phase
portrait, evidently contains maxima defining main frequencies of this quasiperiodic regime.

As it was allready mentioned, system (4) possesses selected regimes, coexisting with the
oscillating solutions from the main bifurcation cascade. For certain values of the parameters the
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Fig 5. Phase portrit of the soliton-like solution (left) and coordinate U versus ω (right).

Fig 6. A portrait of subsets of parameter space
(D2, κ), corresponding to different intervals of the
function fΓ

min(κ, D2) values: fΓ
min > 1.2 for white

colour; 0.6 < fΓ
min ≤ 1.2 for light grey; 0.3 <

fΓ
min ≤ 0.6 for grey; 0.01 < fΓ

min ≤ 0.3 for deep grey;
fΓ
min ≤ 0.01 for black colour.

isolated regime forms the homoclinic loop, which may be calculated numerically by means of the
special technique (Fig. 5). Existence of homoclinic loops among the solutions of system (4) is
a very important fact, because these regimes correspond to solitary-wave solutions of the initial
PDE system. Therefore we investigate a set of points of paremeter space

(
D2, κ

)
, for which

trajectories going out of the origin along the one-dimensional unstable invariant manifold W u

return to the origin along the two-dimensional stable invariant manifold W s. In practice, for a
given values of the parameters κ, D2, we define numerically a distance between the origin and
the point

(
XΓ(ω), Y Γ(ω),WΓ(ω)

)
of the phase trajectory Γ

(·;κ,D2
)
:

fΓ
(
κ,D2;ω

)
=

√
[XΓ(ω)]2 + [Y Γ(ω)]2 + [WΓ(ω)]2, (11)

starting from the fixed Cauchy data. Next we determine minimum fΓ
min(κ,D

2) of the func-
tion (11) for that part of the trajectory that lies beyond the point at which the distance gains
its first local maximum, providing that it still lies inside the ball centered at the origin and having
a fixed (sufficiently large) radius. The results are presented on Figs. 6–8. First of them is of the
most rough scale among this series. Here white colour marks values of the parameters κ, D2 for
which fΓ

min > 1.2, light gray corresponds to the cases when 0.9 < fΓ
min < 1.2 and so on (further

explanations are given in the subsequent captions). The black coloured patches correspond to
the case when fΓ

min < 0.03. Fig. 7 presents the enlargement of the rectangle shown in Fig. 6,
whereas Fig. 8 – the enlargement of the rectangle from the Fig. 7. Note, that colours in the last
one are re-scaled so e.g. the black colour corresponds to the points at which fΓ

min < 0.003.

Conclusion

Thus, the modeling system (1), describing media with memory and spatial non-locality pos-
sesses a set of complicated invariant solutions, which are effectively investigated with the help of
qualitative methods as well as numerical simulation. It is stated the existence of tori and spiral
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Fig 7. Enlargement of the part of Fig. 6, lying
inside the rectangle.

Fig 8. Enlargement of the part of Fig. 7, lying in-
side the rectangle: fΓ

min > 0.011 for white colour;
0.007 < fΓ

min ≤ 0.011 for light grey; 0.005 <
fΓ
min ≤ 0.007 for grey; 0.003 < fΓ

min ≤ 0.005 for
deep grey; fΓ

min ≤ 0.003 for black colour.

attractors of S̆ilnikov type appearing at the point of parametric space
(
D2, κ

)
, corresponding to

the doubly degeneracy of the linearized system. The last regime coexists with the main bifur-
cation cascade (including multiperiodic and chaotic oscillations) and causes hysteretic features
of the system. Besides, it gives rise to saddle loops, corresponding to soliton-like solutions of
system (1). Numerical investigations show that there are domains of parameter space

(
D2, κ

)
where the soliton-like solutions are not observed and there are domains where the points

(
D2, κ

)
,

corresponding to the homoclinic loops form dense sets. Within the numerical algorithm applied,
the set of points corresponding to the homoclinic solutions manifests fractal features.

It is worth noting that soliton-like solutions of system (1) do not have the classical bell shape.
They possess, as a rule, many humps and oscillating tails. Compact wave perturbations of this
sort are rather typical to the media with internal structure. One such pulse was created during
the Great Chilean Earthquake as it was shown in paper [9]. Another examples may be seen in
papers dealing with the models of block geophysical media [10].
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The problem of group classiffication for the class of first-order scalar PDEs invariant under
the Euclid algebra E(n) in considered. We found new nonlinear equations of the form
uaua = F (ut) with wide symmetry properties.

In this paper we study group classification of a class of nonlinear first-order multidimensional
equations

ut = Φ(u, uaua). (1)

uaua is a designation for the sum
(

∂u

∂x1

)2

+
(

∂u

∂x2

)2

+ . . .+
(

∂u

∂xn

)2

, ut =
∂u

∂t
.

u is a scalar function of time t and n spatial variables (x1, x2, . . . , xn). The class (1) includes
many well-known equations with wide symmetry properties.

We will not consider cases when n < 3. It will be more convenient to investigate the class (1)
in the form

uaua = F (u, ut). (2)

The function F is assumed to be sufficiently smooth.
Why is it interesting to study symmetries for this particular class of equations? First, it is

the general class of first order PDEs, that includes many physically interesting equations. It is
interesting to find new equations invariant under known symmetry algebras and new symmetry
algebras. Invariant first-order equations can be used for study of conditional symmetry of higher
order PDEs. First order PDEs may also have interesting generalizations.

The class of equations (2) includes such well-known equations with wide symmetries as the
eikonal equation, the Hamilton–Jacobi and the Hamilton equations.

The Hamilton–Jacobi equation

ut + uaua = 0 (3)

is invariant under the Galilei group. Its maximal Lie invariance algebra was studied in [4] and
can be described by the following basis operators:

P0 = ∂t, Pa = ∂a, Pu = ∂u, Jab = xa∂b − xb∂a, G(1)
a = t∂a +

1
2
xa∂u,

D(1) = t∂0 +
1
2
xa∂a, A(1) = t2∂0 + txa∂a +

1
4
xaxa∂u, G(2)

a = u∂a +
xa

2
∂t,
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D(2)
a = u∂u +

1
2
xa∂a, A(2) = u2∂u + uxa∂a +

1
4
x2∂t,

Ka = 2xa

(
D(1) +D(2)

)
+

(
1
4
tu− x2

)
∂a

(
x2 ≡ xaxa

)
.

The equation (3) is also invariant under a discrete transformation u → t, t → u.
Symmetry of the relativistic Hamilton equation

uαuα = 1 (4)

was studied in [1, 5]. Here

uαuα ≡ u2
0 − u2

1 − . . .− u2
n,

u0 ≡ ut.
The maximal Lie invariance group of the equation (4) is the conformal group C(1, n+ 1).
Basis elements for the corresponding Lie algebra can be written as follows:

∂A = igAB
∂

∂xB
, gAB = diag (1,−1, . . . ,−1),

JAB = xA∂B − xB∂A, D = xA∂A, KA = 2xAD − xBxB∂A,

where A,B = 0, 1, 2, . . . , n+ 1; xn+1 ≡ u, summation over the repeated indices is as follows:

xAxA = x2
0 − x2

1 − x2
2 − · · · − x2

n+1.

The eikonal equation

uαuα = 0, (5)

α = 0, 1, . . . , n; is invariant [1, 5] under an infinite-dimensional algebra, defined by operators

X = (bµνxν + aµ)∂µ + η∂u,

where bµν = −bνµ, aµ, η are arbitrary differentiable functions on u;

∂α = igαβ
∂

∂xB
, gαβ = diag (1,−1, . . . ,−1).

The class of equations we consider will be a natural generalization of equations (3)–(5).
We look for a Lie symmetry operator of the equation (2) in the form

X = ξt(t, xa, u)∂t + ξa(t, xb, u)∂xa + η(t, xa, u)∂u. (6)

The general Lie invariance condition is

1
X(uaua − F (u, ut))

∣∣∣
uaua=F (u,ut)

= 0, (7)

where
1
X is the first Lie prolongation for the operator X.

The condition (7) gives the the following determining equations for operators of invarianse
algebra of the equation (2):

ξa
b + ξb

a = 0, b �= a; ξa
a = ξb

b (8)
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(we will designate ξa
a = d(xa, t, u));

2(ηa − ξt
aut − ξa

uF ) + Fut(ξ
a
t + ξa

uut) = 0; (9)

2F (ηu − d− ξt
uut) = ηFu + Fut(ηt + (ηu − ξt

t)ut − ξt
uu

2
t ). (10)

Lower indices always designate corresponding derivatives.
Determining equations (8) are fulfilled for all equations from the class (2). From (8) we get

the following form for coefficients ξa of the operator X (6):

ξa = ca + d̃xa + λabxb + 2kbxbxa − kaxbxb, (11)

where λab = −λba, ca, d̃, ka are functions on u and t.
The following operators are symmetry operators for all equations from the class (2) irrespec-

tive of the form of the function F (u, ut):

Pt = ∂t, Pa = ∂a, Jab = xa∂b − xb∂a, (12)

that form the basis of the Euclid algebra E(n) in the space of n variables x1, . . . , xn, plus the
translation operator by time variable.

Now we look for equations from the class (2) admitting wider symmetry than the algebra (12).
We need to find functions F for which the conditions (9), (10) are fulfilled with some coefficients
being non-zero.

From the determining equation (9) we conclude that there are two options:

I. ηa = ξt
a = ξa

u = ξa
t = 0, (13)

and F = F (u, ut) is determined by the equation (10).

II. F = r(u)u2
t + s(u)ut + q(u). (14)

The class (2) with F having the form (14) includes all well-known equations (3)–(5).
Let us consider the first option in detail. It follows from the conditions (13) that

η = η(t, u), ξt = ξt(t, u), ξa = ξa(x1, . . . , xn).

The equation (10) takes the form

2F (ηu − d− ξt
uut) = ηFu + Fut

(
ηt + ηuut − ξt

tut − ξt
uu

2
t

)
. (15)

As du = 0, we conclude from (15) that d = const, and the expression for the coefficients ξa can
only take the form

ξa = ca + dxa + λabxb,

where λab = −λba, d, ca are constants.
There will be no conformal or projective symmetry operators in this case.
We adduce some new equations with additional symmetry to (12). For example, if we put

ηu = ξt
t , then in the case ξt

u · ηt < 0 we get the function F of the form

F =
(
1 + u2

t

)
exp(λ arctgut), λ = const. (16)

In the case ξt
u · ηt > 0 we get F = (a+ but)2 (a, b are constants) from the class (14).

The equation

uaua =
(
1 + u2

t

)
exp(λ arctgut) (17)
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has three additional symmetry operators of the form

∂u, −u∂t + t∂u − λ

2
xa∂a, u∂u + t∂t + xa∂a.

It is interesting to note that the change u → t, t → u leaves the equation (17) invariant up
to the change of λ. In this aspect this equation is similar to the Hamilton–Jacobi equation (3).

There are other examples of equations of the form

uaua = F (ut)

with additional to (12) symmetry operators:

1. uaua = uk
t .

If k �= 0, k �= 1, k �= 2, we get three additional operators:

t∂t + u∂u + xa∂a, ∂u, kxa∂a + 2t∂t.

2. uaua = exput.

We get two additional symmetry operator

∂u, 2t∂u − xa∂a.

Summary. We studied the problem of the group classification for the equation (2). Determining
equations for the function F were found, and some partial solutions for these equations con-
structed. Further research will be required for description of all nonequivalent equations of the
form (2) that have additional invariance operators compared to space rotations and space and
time translations. Other research opportunities in this respect include investigation of higher
order PDEs invariant under the some algebras, of conditional symmetry of second-order PDEs
with new equations as additional conditions.
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We communicate some recent results on variable separation in the (1+3)-dimensional Fokker–
Planck equations with a constant diagonal diffusion matrix.

The principal object of the study is a problem of separation of variables in the Fokker–Planck
equation (FPE) with a constant diagonal diffusion matrix

ut +∆u+ (Ba(�x)u)xa
= 0, (1)

where �B(�x) = (B1(�x), B2(�x), B3(�x)) is the drift velocity vector. Here u = u(t, �x) and Bi(�x),
i = 1, 2, 3 are smooth real-valued functions. Hereafter, summation over the repeated Latin
indices from 1 to 3 is understood.

FPE (1) is a basic equation in the theory of continuous Markov processes. Therefore, it is
widely used in different fields of physics, chemistry and biology [1], where stochastic methods
are utilized.

We solve the problem of variable separation in FPE (1) into second-order ordinary differ-
ential equations in a sense that we obtain possible forms of the drift coefficients B1(�x), B2(�x),
B3(�x) providing separability of (1). Furthermore, we construct inequivalent coordinate systems
enabling to separate variables in the corresponding FPEs.

Our analysis is based on the direct approach to variable separation in linear PDEs suggested
in [3, 4]. It has been successfully applied to solving variable separation problem the Schrödinger
equations [3, 4, 5] with variable coefficients.

For an alternative (symmetry) approach to separation of variables in FPE, see [2].
We say that FPE (1) is separable in a coordinate system t, ωa = ωa(t, �x), a = 1, 2, 3 if the

separation Ansatz

u(t, �x) = ϕ0(t)
3∏

a=1

ϕa

(
ωa(t, �x), �λ

)
(2)

reduces PDE (1) to four ordinary differential equations for the functions ϕµ, (µ = 0, 1, 2, 3)

ϕ′0 = U0

(
t, ϕ0; �λ

)
, ϕ′′a = Ua

(
ωa, ϕa, ϕ

′
a; �λ

)
. (3)

Here U0, . . . , U3 are some smooth functions of the indicated variables, �λ = (λ1, λ2, λ3) ∈ Λ =
{an open domain in R3} are separation constants (spectral parameters, eigenvalues) and, what
is more,

rank
∥∥∥∥
∂Uµ

∂λa

∥∥∥∥
3 3

µ=0 a=1

= 3. (4)

For more details, see our paper [5].
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Next, we introduce an equivalence relation E on the set of all coordinate systems providing
separability of FPE. We say that two coordinate systems t, ω1, ω2, ω3 and t̃, ω̃1, ω̃2, ω̃3 are
equivalent if the corresponding Ansatzes (2) are transformed one into another by the invertible
transformations of the form

t→ t̃ = f0(t), ωi → ω̃i = fi(ωi), (5)

where f0, . . . , f3 are some smooth functions and i = 1, 2, 3. These equivalent coordinate sys-
tems give rise to the same solution with separated variables, therefore we shall not distinguish
between them. The equivalence relation (5) splits the set of all possible coordinate systems into
equivalence classes. In a sequel, when presenting the lists of coordinate systems enabling us to
separate variables in FPE we will give only one representative for each equivalence class.

Following [5] we choose the reduced equations (3) to be

ϕ′0 = (T0(t)− Ti(t)λi)ϕ0, ϕ′′a = (Fa0(ωa) + Fai(ωa)λi)ϕa, (6)

where T0, Ti, Fa0, Fai are some smooth functions of the indicated variables, a = 1, 2, 3. With
this remark the system of nonlinear PDEs for unknown functions ω1, ω2, ω3 takes the form

∂ωi

∂xa

∂ωj

∂xa
= 0, i �= j, i, j = 1, 2, 3; (7)

3∑
i=1

Fia(ωi)
∂ωi

∂xj

∂ωi

∂xj
= Ta(t), a = 1, 2, 3; (8)

Bj
∂ωa

∂xj
+
∂ωa

∂t
+∆ωa = 0, a = 1, 2, 3; (9)

3∑
i=1

Fi0(ωi)
∂ωi

∂xj

∂ωi

∂xj
+ T0(t) +

∂Ba

∂xa
= 0. (10)

The system of equations (7), (8) has been integrated in [5]. Its general solution �ω = �ω(t, �x)
is given implicitly by the following formulae:

�x = T (t)H(t)�z(�ω) + �w(t). (11)

Here T (t) is the time-dependent 3× 3 orthogonal matrix:

T (t) =



cosα cosβ − sinα sinβ cos γ − cosα sinβ − sinα cosβ cos γ sinα sin γ
sinα cosβ + cosα sinβ cos γ − sinα sinβ + cosα cosβ cos γ − cosα sin γ

sinβ sin γ cosβ sin γ cos γ


, (12)

α, β, γ being arbitrary smooth functions of t; �z = �z(�ω) is given by one of the eleven formulae
1. Cartesian coordinate system,

z1 = ω1, z2 = ω2, z3 = ω3, ω1, ω2, ω3 ∈ R.

2. Cylindrical coordinate system,

z1 = eω1 cosω2, z2 = eω1 sinω2, z3 = ω3, 0 ≤ ω2 < 2π, ω1, ω3 ∈ R.

3. Parabolic cylindrical coordinate system,

z1 = (ω2
1 − ω2

2)/2, z2 = ω1ω2, z3 = ω3, ω1 > 0, ω2, ω3 ∈ R.
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4. Elliptic cylindrical coordinate system,

z1 = a coshω1 cosω2, z2 = a sinhω1 sinω2, z3 = ω3,

ω1 > 0, −π < ω2 ≤ π, ω3 ∈ R, a > 0.

5. Spherical coordinate system,

z1 = ω−1
1 sechω2 cosω3, z2 = ω−1

1 sechω2 sinω3, z3 = ω−1
1 tanhω2,

ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.

6. Prolate spheroidal coordinate system,

z1 = a cschω1 sechω2 cosω3, a > 0, z2 = a cschω1 sechω2 sinω3,

z3 = a cothω1 tanhω2, ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.
(13)

7. Oblate spheroidal coordinate system,

z1 = a cscω1 sechω2 cosω3, a > 0, z2 = a cscω1 sechω2 sinω3,

z3 = a cotω1 tanhω2, 0 < ω1 < π/2, ω2 ∈ R, 0 ≤ ω3 < 2π.

8. Parabolic coordinate system,

z1 = eω1+ω2 cosω3, z2 = eω1+ω2 sinω3, z3 = (e2ω1 − e2ω2)/2,
ω1, ω2 ∈ R, 0 ≤ ω3 ≤ 2π.

9. Paraboloidal coordinate system,

z1 = 2a coshω1 cosω2 sinhω3, a > 0, z2 = 2a sinhω1 sinω2 coshω3,

z3 = a(cosh 2ω1 + cos 2ω2 − cosh 2ω3)/2, ω1, ω3 ∈ R, 0 ≤ ω2 < π.

10. Ellipsoidal coordinate system,

z1 = a
1

sn(ω1, k)
dn(ω2, k

′) sn(ω3, k), a > 0, k2 + k′2 = 1,

z2 = a
dn(ω1, k)
sn(ω1, k)

cn(ω2, k
′) cn(ω3, k), 0 < k, k′ < 1,

z3 = a
cn(ω1, k)
sn(ω1, k)

sn(ω2, k
′) dn(ω3, k),

0 < ω1 < K, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

11. Conical coordinate system,

z1 = ω−1
1 dn(ω2, k

′) sn(ω3, k), k2 + k′2 = 1, 0 < k, k′ < 1,

z2 = ω−1
1 cn(ω2, k

′) cn(ω3, k), z3 = ω−1
1 sn(ω2, k

′) dn(ω3, k),
ω1 > 0, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

H(t) is the 3× 3 diagonal matrix

H(t) =



h1(t) 0 0
0 h2(t) 0
0 0 h3(t)


 , (14)

where
(a) h1(t), h2(t), h3(t) are arbitrary smooth functions for the completely split coordinate system

(case 1 from (13)),
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(b) h1(t) = h2(t), h1(t), h3(t) being arbitrary smooth functions, for the partially split coordi-
nate systems (cases 2–4 from (13)),

(c) h1(t) = h2(t) = h3(t), h1(t) being an arbitrary smooth function, for non-split coordinate
systems (cases 5–11 from (13))

and �w(t) stands for the vector-column whose entries w1(t), w2(t), w3(t) are arbitrary smooth
functions of t.

Note that we have chosen the coordinate systems ω1, ω2, ω3 with the use of the equivalence
relation E (5) in such a way that the relations

∆ωa = 0, a = 1, 2, 3 (15)

hold for all the cases 1–11 in (13). Solving (9) with respect to Bj(�x), i = 1, 2, 3 we get (see,
also [5])

�B(�x) = M(t)(�x− �w) + �̇w. (16)

Here we use the designation

M(t) = Ṫ (t)T −1(t) + T (t)Ḣ(t)H−1(t)T −1(t), (17)

where T (t), H(t) are variable 3×3 matrices defined by formulae (12) and (14), correspondingly,
�w = (w1(t), w2(t), w3(t))T and the dot over a symbol means differentiation with respect to t.

As the functions B1, B2, B3 are independent of t, it follows from (16) that

�B(�x) = M�x+ �v, �v = const, (18)

M = const, (19)

�̇w = M�w + �v. (20)

Taking into account that Ṫ T −1 is antisymmetric and T ḢH−1T −1 is symmetric part of
M (17), correspondingly, we get from (19)

Ṫ (t)T −1(t) = const, (21)

T (t)Ḣ(t)H−1(t)T −1(t) = const. (22)

Relation (21) yields the system of three ordinary differential equations for the functions α(t),
β(t), γ(t)

α̇+ β̇ cos γ = C1,

β̇ cosα sin γ − γ̇ sinα = C2,

β̇ sinα sin γ + γ̇ cosα = C3,

(23)

where C1, C2, C3 are arbitrary real constants. Integrating the above system we obtain the
following form of the matrix T (t):

T (t) = C1T̃ C2, (24)

where C1, C2 are arbitrary constant 3× 3 orthogonal matrices and

T̃ =




− cos s cos bt sin s cos s sin bt
sin bt 0 cos bt

sin s cos bt cos s − sin s sin bt


 (25)

with arbitrary constants b and s.
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The substitution of equality (24) into (22) with subsequent differentiation of the obtained
equation with respect to t yields

C−1
2 T̃ −1 ˙̃T C2L+ L̇+ L C−1

2
˙(T̃ −1)T̃ C2 = 0, (26)

where L = ḢH−1, i.e. li = ḣi/hi, i = 1, 2, 3. From (26) we have

li = const, i = 1, 2, 3;
b (l1 − l2) cosα2 sin γ2 = 0,
b (l1 − l3)(− sinα2 sinβ2 + cosα2 cosβ2 cos γ2) = 0,
b (l2 − l3)(sinα2 cosβ2 + cosα2 sinβ2 cos γ2) = 0,

(27)

where α2, β2, γ2 are the Euler angles for the orthogonal matrix C2. Thus we obtain the following
forms of hi:

hi = ci exp(lit), ci = const, li = const, i = 1, 2, 3. (28)

From (27) we get the possible forms of b, li and C2:

(i) b = 0, l1, l2, l3 are arbitrary constants,
C2 is an arbitrary constant orthogonal matrix;

(ii) b �= 0, l1 = l2 = l3,
C2 is an arbitrary constant orthogonal matrix;

(iii) b �= 0, l1 = l2 �= l3, C2 =



ε1 cos θ −ε1 sin θ 0

0 0 −ε1ε2
ε2 sin θ ε2 cos θ 0


 ,

(29)

where ε1, ε2 = ±1, and θ is arbitrary constant. We do not adduce cases b �= 0, l1 �= l2 = l3 and
b �= 0, l2 �= l1 = l3 because they are equivalent to case (iii).

Finally, we give a list of the drift velocity vectors �B(�x) providing separability of the corre-
sponding FPEs. They have the following form:

�B(�x) = M�x+ �v,

where �v is arbitrary constant vector and M is constant matrix given by one of the following
formulae:

1. M = T L T −1, where L =



l1 0 0
0 l2 0
0 0 l3


, l1, l2, l3 are constants and T is an arbitrary con-

stant 3×3 orthogonal matrix, i.e. M is a real symmetric matrix with eigenvalues l1, l2, l3.

(a) l1, l2, l3 are all distinct. The new coordinates ω1, ω2, ω3 are given implicitly by formula

�x = T H(t)�z(�ω) + �w(t), (30)

where �z(�ω) is given by formula 1 from (13), �w(t) is solution of system of ordinary
differential equations (20) and

H(t) =



c1e

l1t 0 0
0 c2e

l2t 0
0 0 c3e

l3t


 (31)

with arbitrary constants c1, c2, c3.
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(b) l1 = l2 �= l3. The new coordinates ω1, ω2, ω3 are given implicitly by (30), where �z(�ω)
is given by one of the formulae 1–4 from (13) and H(t) is given by (31) with arbitrary
constant c1, c2, c3 satisfying the condition c1 = c2 for the partially split coordinates
2–4 from (13).

(c) l1 = l2 = l3, i.e. M = l1I, where I is unit matrix. The new coordinates ω1, ω2, ω3

are given implicitly by formula (30), where �z(�ω) is given by one of the eleven formu-
lae (13) and H(t) is given by (31) with arbitrary constants c1, c2, c3 satisfying the
condition c1 = c2 for the partially split coordinates 2–4 from (13) and the condition
c1 = c2 = c3 for the non-split coordinates 5–11 from (13).

2. M = b C1




0 cos s 0
− cos s 0 sin s

0 − sin s 0


 C−1

1 + l1I, where I is the unit matrix and C1 is an

arbitrary constant 3 × 3 orthogonal matrix, b, s, l1 are arbitrary constants and b �= 0.
The new coordinates ω1, ω2, ω3 are given implicitly by formula (11), where �z(�ω) is given
by one of the eleven formulae (13), T (t) is given by (24)–(25), �w(t) is solution of system

of ordinary differential equations (20) and H(t) = exp(l1t)



c1 0 0
0 c2 0
0 0 c3


 with arbitrary

constants c1, c2, c3 satisfying the condition c1 = c2 for the partially split coordinates 2–4
from (13) and the condition c1 = c2 = c3 for non-split coordinates 5–11 from (13).

3. M = C1




1
2(l1 + l3 + (l1 − l3) cos 2s) b cos s 1

2(l3 − l1) sin 2s
−b cos s l1 b sin s

1
2(l3 − l1) sin 2s −b sin s 1

2(l1 + l3 − (l1 − l3) cos 2s)


 C−1

1 , where

C1 is an arbitrary constant 3 × 3 orthogonal matrix, b, s, l1, l2 are arbitrary constants,
l1 �= l3 and b �= 0. The new coordinates ω1, ω2, ω3 are given implicitly by formula (11),
where �z(�ω) is given by one of the formulae 1–4 from (13), T (t) is given by (24), (25) and
(iii) from (29), �w(t) is solution of system of ordinary differential equations (20) and

H(t) =



c1e

l1t 0 0
0 c2e

l1t 0
0 0 c3e

l3t




with arbitrary constants c1, c2, c3 satisfying the condition c1 = c2 for the partially split
coordinates 2–4 from (13).
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We prove that the presence of higher conditional symmetry is the necessary and sufficient
condition for reduction of an arbitrary evolution equation in two variables to a system of
ordinary differential equations. Furthermore, we give the sufficient condition for an initial
value problem for an evolution equation to be reducible to a Cauchy problem for a system
of ordinary differential equations, provided it possesses higher conditional symmetry.

1 Introduction

Consider a nonlinear evolution type partial differential equation (PDE) in two independent
variables t, x

ut = F (t, x, u, u1, u2, . . . , un), (1)

where u ∈ Cn(R2,R1), uk = ∂ku/∂xk, 1 ≤ k ≤ n.
As is well known, a possibility of reduction of (1) to a single ordinary differential equation

(ODE) is intimately connected to its Lie symmetry under a group of point transformations (see,
e.g., [1–3]). It has been recently established that a reducibility of any PDE in two variables to a
single ODE is in one-to-one correspondence with its Q-conditional (non-classical) symmetry [4]
(see, also [5–10]). Furthermore, integrability of equations of the form (1) by the method of the
inverse scattering transform is a consequence of its invariance with respect to a non-point group
of infinitesimal transformations

u′ = u+ ε η(t, x, u, u1, . . . , uN ),

u′x = ux + εDx η(t, x, u, u1, . . . , uN ), . . .

generated by the Lie–Bäcklund vector field (LBVF)

Q =
∞∑

k=0

(
Dk

x η
) ∂

∂uk
≡ η ∂

∂u
+ (Dx η)

∂

∂u1

+
(
D2

x η
) ∂

∂u2

+ · · · . (2)

In the above formulae we denote by the symbols Dx the total differentiation operator with
respect to the variable x, i.e.

Dx =
∂

∂x
+

∞∑
k=0

uk+1
∂

∂uk
.

Note that if the function η has the structure

η = η̃(t, x, u)− ξ0(t, x, u)ut − ξ1(t, x, u)ux, (3)
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then LBVF (2) is equivalent to the usual Lie vector field and can be represented in the standard
form [11]:

Q = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η̃(t, x, u)

∂

∂u
.

It was noted by Galaktionov [12] that a number of nonlinear PDEs, that were non-integrable
within the framework of the method of the inverse scattering transform, possessed a remarkable
property, namely, they could be reduced to systems of ordinary differential equations with the
help of appropriate Ansätze. A natural question arises, which symmetry is responsible for this
kind of reduction? Evidently, this symmetry cannot be Q-conditional symmetry since the latter
gives rise to reduction of PDE under study to a single ODE. It has been conjectured in [13, 14]
(see, also [15, 16]) that it is higher conditional symmetry that provides this type of reduction.
This conjecture has been proved in [17]. In the present paper, we show that the property of
reducibility of evolution type equations (1) to several ODEs is in one-to-one correspondence with
their higher conditional symmetry. Next, we give the sufficient condition for the initial value
problem for PDE (1) to be reducible to the Cauchy problem for some system of ODEs.

2 Reduction criterion

Let us first introduce the necessary definitions.

Definition 1. We say that PDE (1) is invariant under the LBVF (2) if the condition

Q(ut − F )
∣∣∣
M
= 0 (4)

holds. In (4) M is a set of all differential consequences of the equation ut − F = 0.
Definition 2. We say that PDE (1) is conditionally-invariant under LBVF (2) if the following
condition

Q(ut − F )
∣∣∣
M∩Lx

= 0 (5)

holds. Here the symbol Lx denotes the set of all differential consequences of the equation η = 0
with respect to the variable x.

Evidently, condition (4) is nothing else than the usual invariance criterion for equation (1)
under LBVF (2) written in a canonical form (see, e.g. [11]). The most of the “soliton equa-
tions” admit infinitely many LBVFs which can be obtained by repeatedly applying the recursion
operator to some initial LBVF.
Clearly, if PDE (1) is invariant under LBVF (2), then it is conditionally-invariant under it;

however, the inverse assertion is not true. This means, in particular, that Definition 2 is a
generalization of the standard definition of invariance of partial differential equation with respect
to LBVF. Provided (2) is a Lie vector field, Definition 2 coincides with the one of Q-conditional
invariance under the Lie vector field.
If we consider the nonlinear PDE

η(t, x, u, u1, . . . , uN ) = 0 (6)

as the N -th order ODE with respect to variable x, then its general integral can be (locally)
represented in the form

u(t, x) = U (t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)) , (7)
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where ϕj(t), (j = 1, . . . N) are arbitrary smooth functions. In a sequel, we call expression (7)
the Ansatz invariant under LBVF (2).

Theorem 1. Let equation (1) with F ∈ CN+1(D), where D is an open domain in Rn+3, be
conditionally-invariant under LBVF (2) with η ∈ C2(D′), where D′ is an open domain in RN+3

and, furthermore, ∂η/∂uN �= 0 on D′. Then Ansatz (7) invariant under LBVF (2) reduces
PDE (1) to a system of N ODEs for the functions ϕj(t), (j = 1, . . . , N)

ϕ̇j = Fj(t, ϕ1, . . . , ϕN ), j = 1, . . . , N. (8)

Suppose now the inverse, namely, that Ansatz (7), where the function U and its derivatives
∂Uk+1/∂ϕj∂x

k, (j = 1, . . . , N , k = 0, . . . , N) exist and are continuous on an open domain D1

in RN+2, reduces (1) to system of ODEs (8) with Fi ∈ C1(D′
1), where D′

1 is an open domain
in RN+2. Then, there exists such LBVF (2) that equation (1) is conditionally-invariant with
respect to it.

The proof of the first part of the theorem (i.e., of the assertion conditional symmetry→ reduction)
is given in our paper [17]. That is why, we give the proof of the second part of the theorem,
namely, we prove the implication reduction → conditional symmetry. As the functions Fj ,
(j = 1, . . . , N) satisfy the conditions of the theorem on existence and uniqueness of a solution of
a Cauchy problem for system of ODEs (8), there exists an open domain T × D2 ⊂ RN+1 such
that for any t0 ∈ T , (C1, . . . , CN ) ∈ D2 there is a solution of (8) such that

ϕj(t0) = Cj , j = 1, . . . , N.

Thus we have the N -parameter family of exact solutions of equation (1)

u(t, x) = u0(t, x; C1, . . . , CN ), (C1, . . . , CN ) ∈ D2. (9)

Consider now the system of equations

u = U (t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)) ,

u1 = Dx U (t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)) , . . . ,

uN−1 = DN−1
x U (t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)) .

Given the conditions of the theorem, we can solve (locally) the above system with respect to
ϕj(t), (j = 1, . . . , N) and get

ϕj(t) = Φj (t, x, u, u1, . . . , uN−1) , j = 1, . . . , N.

Differentiating any of the above equations (say, the first one) with respect to x yields an Nth
order ODE

η̃(t, x, u, u1, . . . , uN ) = 0

such that (7) is its general integral. Consequently, the system of partial differential equations

ut = F (t, x, u, u1, u2, . . . , un), η̃(t, x, u, u1, . . . , uN ) = 0 (10)

has (locally) a solution (9) that depends on N arbitrary constants (C1,. . ., CN ) ∈ D2. Whence,
using the Cartan’s criterion we conclude that over-determined system (10) is in involution. It
has been proved in [17] that system of PDEs (10) is in involution if and only if condition (5)
with

Q =
∞∑

k=0

(
Dk

x η̃
) ∂

∂uk
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holds true. Whence we conclude that (1) is conditionally-invariant with respect to so constructed
LBVF Q, which is the same as what was to be proved.
We will finish this section by giving the two examples of reduction of nonlinear evolution

equations with the use of higher symmetries.

Example 1. Consider the KdV equation

ut = u3 + uu1. (11)

It is a common knowledge (see, e.g., [11]) that the KdV equation (11) possesses infinitely
many higher symmetries within the class of LBVFs (2). In particular, it admits symmetry
operator (2) with

η = u5 +
5
3
uu3 +

10
3
u1u2 +

5
6
u2u1. (12)

Though we have not succeeded in integrating ODE η = 0 and, consequently, have not con-
structed the explicit form of Ansatz (7), it proves to be possible to derive the form of system
of ODEs (8) in the case under consideration. To this end we choose in (7) the functions ϕj(t),
(j = 1, . . . , 5) in the following way:

ϕj(t) =
(
Dj−1u(t, x)

)∣∣
x=x0

, j = 1, 2, . . . , N (13)

with some constant x0. Then the first equation of system (8) is obtained by putting in (11)
x = x0 and using (13). The second equation is obtained by differentiating (11) with respect to x
with subsequent putting x = x0 and using (13) and so on. This procedure will end when we
will take the fifth derivative of (11), since due to invariance of the equation under study under
LBVF (2) with η of the form (12) thus obtained relation turns out to be the identity. So that
the system of ODEs for unknown functions ϕj(t), (j = 1, . . . , 5) reads as

ϕ̇j = Dj−1
x (u3 + uu1)

or

ϕ̇1 = ϕ1ϕ2 + ϕ4,

ϕ̇2 = ϕ2
2 + ϕ1ϕ3 + ϕ5,

ϕ̇3 = −5
6
ϕ2

1ϕ2 −
1
3
ϕ2ϕ3 −

2
3
ϕ1ϕ4,

ϕ̇4 = −5
3
ϕ1ϕ

2
2 −

5
6
ϕ2

1ϕ3 −
1
3
ϕ2

3 − ϕ2ϕ4 −
2
3
ϕ1ϕ5,

ϕ̇5 =
5
9
ϕ3

1ϕ2 −
5
6
ϕ3

2 −
25
9
ϕ1ϕ2ϕ3 +

5
18
ϕ2

1ϕ4 −
5
3
ϕ3ϕ4 −

5
3
ϕ2ϕ5.

(14)

Thus it is possible to use efficiently higher symmetries of solitonic equations in order to study the
dynamics of solitons which is described by the system of ODEs of the form (14). Needless to say,
that the above described method for obtaining systems of ODEs (8) without direct integration
of equation (6) can be applied to any evolution type PDE (1).

Example 2. As the direct check shows, the nonlinear PDE

ut = uu2 −
3
4
u2

1 + k
2u2, k = const, k �= 0 (15)

is conditionally-invariant with respect to LBVF (2) under

η = u5 + 5k2u3 + 4k4u1. (16)
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Note that equation (15) admits no higher symmetries and is non-integrable by the method of
the inverse scattering transform.
Integrating the equation η = 0 yields the Ansatz for u(t, x)

u(t, x) = ϕ1(t) + ϕ2(t) cos(kx) + ϕ3(t) sin(kx) + ϕ4(t) cos(2kx) + ϕ5(t) sin(2kx) (17)

that reduces PDE (15) to the system of five ODEs for unknown functions ϕj(t), (j = 1, . . . , 5)

ϕ̇1 = −3k2(ϕ2
4 + ϕ

2
5)−

3k2

8
(ϕ2

2 + ϕ
2
3) + k

2ϕ2
1,

ϕ̇2 = −3k2(ϕ2ϕ4 + ϕ3ϕ5) + k2ϕ1ϕ2,

ϕ̇3 = −3k2(ϕ2ϕ5 − ϕ3ϕ4) + k2ϕ1ϕ3,

ϕ̇4 =
3k2

8
(ϕ2

1 − ϕ2
2)− 2k2ϕ1ϕ4,

ϕ̇5 = −2k2ϕ1ϕ5 +
3k2

4
ϕ3ϕ5.

(18)

3 Reduction of initial value problems

Consider an initial value problem for an evolution type PDE (1){
ut = F (t, x, u, u1, u2, . . . , un),

(α(x)u1 + β(x)u)|t=0 = γ(x),
(19)

where α(x), β(x), γ(x) are some smooth functions.
There is a technique that enables using Lie (first and higher order) symmetry in order to carry

our the dimensional reduction of problem (19). So there arises a natural question, whether higher
conditional symmetry can be used in this respect. It is natural to expect that, provided PDE (1)
admits higher order conditional symmetry, there exist such functions α(x), β(x), γ(x) that the
initial value problem (19) reduces by virtue of the Ansatz (7) to the Cauchy problem for the
functions ϕj(t), (j = 1, . . . , N). This means that PDE (1) should reduce to a system of ODEs (8)
and the initial condition given in (19) should reduce to algebraic relations prescribing the values
of the functions ϕj(t), (j = 1, . . . , N) under t = 0. Saying it another way, we have to answer
the two fundamental questions:

• Is the above described reduction of the initial value problem (19) possible?

• Which constraints should be imposed on the functions α(x), β(x), γ(x) in order to provide
dimensional reduction of the problem (18)?

The answer to the first question is positive, which is quite predictable in view of the fact that
higher conditional symmetry is a generalization of a usual higher Lie symmetry. What is more,
we will give without proof a simple assertion that provides us with an efficient way of describing
initial conditions enabling dimensional reduction of the initial value problem for an evolution
type PDE that admits higher conditional symmetry. To this end we need the notion of a regular
compatibility to be introduced below.
Consider the following system of two PDEs

η(t, x, u, u1, . . . , uN ) = 0, a(t, x)u1 + b(t, x)u− c(t, x) = 0 (20)
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and suppose that the PDE η = 0 is conditionally invariant with respect to a one-parameter
group having the generator

X = a(t, x)
∂

∂x
− (b(t, x)u− c(t, x)) ∂

∂u
. (21)

Integrating the second PDE from (20) yields the Ansatz for the function u(t, x)

u(t, x) = f(t, x)ϕ(t) + g(t, x)

with some fixed functions f, g and an arbitrary smooth function ϕ. As the equation η = 0
is conditionally invariant with respect to the operator Q, inserting the above Ansatz into the
first PDE from (20) yields an equation of the form F (t, ϕ(t)) = 0. We say that system (20) is
regularly compatible if the solution of the equation F = 0 exists, and furthermore, inserting it
into the Ansatz for u(t, x) yields a non-singular solution of the equation η = 0 considered as
ODE with respect to x.

Theorem 2. Let equation (1) be conditionally invariant with respect to LBVF

Q =
∞∑

k=0

(
Dk

x η
) ∂

∂uk
, η = η(t, x, u, u1, . . . , uN )

and PDE η = 0 be conditionally invariant with respect to operator (21). Furthermore, we suppose
that system (20) is regularly compatible. Then Ansatz (7) invariant under LBVF Q reduces (19)
with α(x) = a(0, x), β(x) = b(0, x), γ(x) = c(0, x) to a Cauchy problem for the functions ϕj(t),
(j = 1, . . . , N).

Since usual and higher Lie symmetries as well as Q-conditional (non-classical) symmetry are
particular cases of higher conditional symmetry, it follows from the above theorem that the
enumerated symmetries can also be applied to reduce the initial value problem (19).
As an illustration to Theorem 2, we give the following two examples.

Example 3. Consider the initial value problem for PDE (15)
 ut = uu2 −

3
4
u2

1 + k
2u2,

(α(x)u1 + β(x)u)|t=0 = γ(x).
(22)

As we have mentioned in the previous section, PDE (15) is conditionally-invariant with respect to
LBVF (2), (16). Using the standard Lie method (see, e.g., [1]–[3]) one can prove that PDE u5+
5k2u3+4k2u1 = 0 is invariant with respect to the group having the infinitesimal generator (21),
where

a(t, x) = C1 cos(kx) + C2 sin(kx) + C3,

b(t, x) = 2k(C1 sin(kx)− C2 cos(kx)) + C0,

c(t, x) = C4 cos(2kx) + C5 sin(2kx) + C6 cos(kx) + C7 sin(kx) + C8,

(23)

C0, C1, . . . , C8 being arbitrary constants.
Ansatz (17) reduces PDE (15) to system of ODEs (18). Next, inserting (17) into the initial

condition from (22) under (23) yields the system of algebraic relations

A!ϕ(0) = !B, (24)

where !ϕ(0) = (ϕ1(0), . . . , ϕ5(0)), !B = (C4, C8, C7, C6, C5) and
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A =




C0 −3k
2 C2

3k
2 C1 0 0

0 k
2C1 −k

2C2 −2kC3 C0

0 −k
2C2 −k

2C1 C0 −2kC3

2kC1 −kC3 C0 −2kC1 −2kC2

−2kC2 C0 kC3 −2kC2 2kC1



.

Note that the determinant of the matrix A equals to zero only in the following three cases,

(1) C0 = 0;

(2) k =
C0

2
(
C2

1 + C
2
2 − C2

3

)−1/2
, C0 �= 0;

(2) k = C0

(
C2

1 + C
2
2 − C2

3

)−1/2
, C0 �= 0.

Provided none of the above relations holds true, the matrix A is non-singular and we can
resolve (24) with respect to !ϕ(0) thus getting the initial Cauchy data for the system of ODEs (18)

!ϕ(0) = A−1 !B.

Example 4. Let us apply the results of the previous example for constructing the (unique)
solution of the following initial value problem:

 ut = uu2 −
1
4

(
3u2

1 + u
2
)
,

u(0, x) = sinx.
(25)

Evidently, the above problem is a particular case of the initial value problem (22), (23) under
k = 1/2, C0 = C1 = C2 = C3 = C4 = 0, C5 = 1, C6 = C7 = C8 = 0. That is why we can use the
Ansatz (17) with k = 1/2 in order to reduce the problem (25). The initial condition reduces to
the following Cauchy data:

ϕ1(0) = ϕ2(0) = ϕ3(0) = ϕ4(0) = 0, ϕ5(0) = 1.

Taking into account this fact we put in (18)

ϕ2(t) ≡ 0, ϕ3(t) ≡ 0, ϕ4(t) ≡ 0,

the remaining functions ϕ1(t), ϕ5(t) satisfying the system of ODEs

ϕ̇1 =
1
4
ϕ2

1 −
3
4
ϕ2

5, ϕ̇5 = −1
2
ϕ1ϕ5

under the following initial conditions

ϕ1(0) = 0, ϕ5(0) = 1.

The above system of ODEs is integrated in a closed form. Imposing the initial Cauchy data
we arrive at the following solution:

ϕ1(t) = −
√
(w(t))2 − (w(t))−1, ϕ5(t) = w(t),

where w(t) is the Jacobi elliptic function

w(t)∫
1

dy√
y4 − y

=
1
2
t.
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Inserting the obtained expressions for the functions ϕj(t) into the Ansatz (17) with k = 1/2
yields the final form of the (unique) solution of the initial value problem (25) for the nonlinear
heat conductivity equation (15)

u(t, x) = −
√
(w(t))2 − (w(t))−1 + w(t) sinx.

4 Some conclusions

Thus it is higher conditional symmetry which is responsible for a phenomena of “anti-reduction”
or “nonlinear separation of variables” in evolution PDEs. It is one of the principal results of the
paper that the one-to-one correspondence reduction to a single ODE ↔ conditional (non-
classical) symmetry is extended to the following one: reduction to a system of ODEs ↔
higher conditional symmetry.
Another important conclusion is that higher conditional symmetries play the same role in the

theory of PDEs admitting “nonlinear separation of variables” as second order Lie symmetries
in the theory of variable separation in linear PDEs (see, e.g., [18, 19]). This intriguing analogy
makes one suspicious that there is a possibility to exploit second-order conditional symmetries
in order to get new coordinate systems providing separability of classical linear equations of
mathematical physics.
Recently, a number of papers devoted to application of higher Lie symmetries to analysis of

boundary problems for PDEs in two dimensions, that admit higher Lie symmetries, have been
published (see the paper [20] and the references therein). We believe that higher conditional
symmetries can also be efficiently applied to reduction of boundary problems.
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The sl(2, R)-Lie algebra is the one of the simplest Lie algebras dealing with particularly
important concepts in quantum physics, i.e. the angular momentum theory. Taken as an
example, we then study some of its specific polynomial deformations leading to quadratic and
cubic nonlinearities appearing inside symmetry algebras of recent interest in conformal field
theory and quantum optics. The determination of their finite-dimensional representations
in terms of differential operators is then discussed and their interest in connection with
multi-boson Hamiltonians is pointed out.

1 Introduction

Already introduced in the proceedings of the second conference [1], the role of the linear sim-
ple sl(2, R)-Lie algebra is very well understood by physicists and mathematicians due mainly
to its interest in connection with the famous angular momentum theory [2, 3] when quantum
aspects of physics are considered. There, I have reported on some new results already published
elsewhere [4–7] obtained in the characterization of irreducible representations of finite dimen-
sions but for the so-called “nonlinear” sl(2, R)-algebras with a particular emphasis on the Higgs
algebra [8, 9] which is frequently mentioned as a cubic deformation of sl(2, R).

Here I also want to insist on another approach of such finite-dimensional irreducible represen-
tations characterizing these “nonlinear” sl(2, R)-algebras by coming on already published [10]
and not yet published [11] results dealing more particularly with differential realizations of the
generators. These polynomial deformations of sl(2, R), in prolongation of well known results
obtained in the linear context by Turbiner [12, 13] or (and) Ushveridze [12, 14] in particular, will
be of special interest for the study of multi-boson Hamiltonians introduced in quantum optical
models [15], for example. In fact, these nonlinear structures can play the role of “spectrum
generating algebras” for such Hamiltonian descriptions and their irreducible representations can
give us a lot of nice and meaningful contexts.

In Section 2, we recall a few interesting relations and information on well known results
but go relatively quickly to Section 3 for characterizing the differential forms of special interest
for the generators of the structures we are visiting. In Section 4, the connection with optical
models is proposed and the discussion of the multi-boson Hamiltonians is considered: it finally
leads to conclusions on constructive developments associated with the Higgs algebra. Some
considerations on supersymmetric properties are also pointed out by taking care of Witten’s
proposal [16] of supersymmetric quantum mechanics when two supercharges enter the game.
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2 A brief survey of the “nonlinear” context

Our ”nonlinear” sl(2, R)-algebras [4] are characterized by the typical commutation relation

[J+, J−] = f(J3) =
N∑

p=0

βp(2J3)2p+1 (1)

instead of the following one

[J+, J−] = 2J3 (2)

referring to the linear context, each of these relations being evidently supplemented by the usual
commutators

[J3, J±] = ±J±. (3)

In the latest context, the raising (J+), lowering (J−) and diagonal (J3) operators act on vectors
belonging to the well known orthogonal basis {| j,m〉} [2, 3] in the following way

J± | j,m〉 =
√
(j ∓m)(j ±m+ 1) | j,m± 1〉, (4)

J3 | j,m〉 = m | j,m〉, (5)

where j refers to the Casimir eigenvalues

C | j,m〉 ≡
(
1
2
(J+J− + J−J+) + J2

3

)
| j,m〉 = j(j + 1) | j,m〉 (6)

and takes the values j = 0, 1
2 , 1,

3
2 , 2, . . . while m, in eq.(5), runs from −j to j giving the dimen-

sions (2j + 1) to the irreducible representations of the linear sl(2, R)-context.
If the relation (1) is substituted to eq.(2), we then get [4, 5] the irreducible representations

characterized by the following relations

J+ | j,m〉 =
√

g(m) | j,m+ c〉, (7)

J− | j,m〉 =
√

g(m− c) | j,m− c〉, (8)

J3 | j,m〉 =
(m

c
+ γ

)
| j,m〉, (9)

where c is a nonnegative and nonvanishing integer, γ is a real scalar parameter while the function
g is γ- and c-dependent [4, 5].

A “nonlinear” typical context is the one corresponding to the (cubic) Higgs algebra [8] given
in (1) by N = 1, p = 0, 1, β0 = 1 and β1 = 8β, β being a real continuous parameter so that we
have

f(J3) = 2J3 + 8βJ3
3 . (10)

All its finite-dimensional irreducible representations can be obtained by exploiting the corre-
sponding actions (7), (8) and (9). In that way, we recover old well known results [8, 9, 17] but
also find new ones in these angular momentum basis developments [4–7].
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3 On polynomial deformations and differential realizations

If we search for finite-dimensional representations, the operators J+, J− and J3 have to act,
for example, on the (n + 1)-dimensional vector spaces P (n) ≡ {1, x, x2, . . . , xn} when differen-
tial realizations are prescribed. Such a point of view has already been adopted in the linear
context [12–14] since the late eighties. More recently Fradkin [18] has proposed a nice way for
discussing such purposes and we have extended his method to the nonlinear context [10].

By coming back on the example of the Higgs algebra characterized by the structure rela-
tions (1) and (3) but with the expression (10), we can realize the generators in the following
way:

J+ = xNF (D), J− = G(D)
dN

dxN
, J0 =

1
N

(D + α), N = 1, 2, 3, . . . , (11)

where α is a constant and

D ≡ x
d

dx

is the dilatation operator which, due to the Heisenberg commutation relation[
d

dx
, x

]
= 1

satisfies
[
D,xN

]
= NxN ,

[
dN

dxN
, D

]
= N

dN

dxN
.

Let us introduce also the Fradkin notations [18]

dN

dxN
xN =

N∏
k=1

(D + k) =
(D +N)!

D!
, xN dN

dxN
=

N−1∏
k=0

(D − k) =
D!

(D −N)!
(12)

and notice that the relations (1), (10) and (11) imply the constraint

F (D −N)G(D −N)
D!

(D −N)!
− F (D)G(D)

(D +N)!
D!

=
2
N
(D + α) +

8β
N3

(D + α)3.

With the simplifying choice G(D) = 1, we get in the cubic context

F (D) = −f
D!

(D +N)!
(D + λ1)(D + λ2)(D + λ3)(D + λ4),

where f = 2βN−4 and where the four λ’s have to satisfy the system

λ1 + λ2 + λ3 + λ4 = 4α+ 2N,

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = N2 + 6αN + 6α2 +
N2

2β
,

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = 2αN2 + 6α2N + 4α3 +
αN2

β
+

N3

2β
.

Nonsingular realizations (look at the definitions (12)) only appear when N = 1, 2, 3, 4 and finite-
dimensional representations are obtained only for the N = 1- and 2-cases. These results are
in perfect agreement with those obtained in previous developments [5, 6] but in the angular
momentum basis rather than, here, in the P (n)-basis. In particular, when N = 2 and α = −n

2
we recover specific families already quoted elsewhere [5–7].
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4 Differential realizations and quantum optical Hamiltonians

Lie algebras being strongly related to (kinematical as well as dynamical) symmetries as ev-
erybody knows, it is interesting to learn about new symmetries from “nonlinear” Lie algebras
dealing with physical models. This is the aim of this section by visiting more particularly quan-
tum optical models subtended by typical multi-photon Hamiltonians already put in evidence
for describing some scattering processes. We refer more particularly to Karassiov–Klimov pro-
posals [15] which, in 2-dimensional flat spaces, considered the superposition of two harmonic
oscillators. By taking care of ω1 = ω2 = ω at the level of their angular frequencies and of a real
coupling constant g, the corresponding Hamiltonian can be written on the form with integers
m and n (0 ≤ m ≤ n):

H = ω
(
a†1a1 + a†2a2

)
+ g

(
a†1

)n
am

2 +
(
a†2

)m
an

1 , (13)

where the characteristics of the two harmonic oscillators are immediately fixed through the
commutation relations

[aj , a
†
k] = δjkI, [aj , ak] = [a†j , a

†
k] = 0, j, k = 1, 2.

An interesting result due to Debergh [5] is that the Higgs algebra can play the role of the
“spectrum generating algebra” for the quantum optical model subtended by the Hamiltonian (13)
iff m = n = 2, the raising and lowering operators being second powers of the linear ones and
the diagonal J3 being half of the linear one. In such a context, the deformation parameter is
fixed by

β = − 2
2j2 + 2j − 1

, j = 0,
1
2
, 1, . . .

and the specific actions of the generators J+, J− and J3 become, in correspondence with
eqs. (7)–(9) when the angular momentum basis is considered:

J+ | j,m〉 = ((j −m)(j +m+ 1)(j −m− 1)(j +m+ 2))
1
2 | j,m+ 2〉,

J− | j,m〉 = ((j +m)(j +m− 1)(j −m+ 1)(j −m+ 2))
1
2 | j,m− 2〉,

J3 | j,m〉 = m

2
| j,m〉.

For the whole set of j-values, we thus have the (c = 2 and γ = 0)-family of representations
pointed out by Debergh [5] and simply related to meaningful physical models. Let us also men-
tion that another interesting result, once again due to Debergh [6], is the twofold degeneracy of all
the energy eigenvalues of the Hamiltonian (13) inside a Schrödinger-type (stationary) equation
with the above characteristics of the Higgs algebra seen as the spectrum generating algebra of
a quantum optical model. These degeneracies have moreover been interpreted as a property of
supersymmetry in quantum mechanics [16] as it can be shown [6] through the construction of
(two) supercharges generating with the Hamiltonian the graded Lie algebra sqm(2).

In order to show such an interesting supersymmetric property, we have also considered [11] the
differential realizations of the generators J± and J3 and their introduction in the Hamiltonian
operator. So, coming back to the (n + 1)-dimensional vector spaces P (n) of polynomials of
degree at most n in the variable x, the Hamiltonian with arbitrary N is found on the form

H(N)
n = ωn+ g

(
dN

dxN
+ xN (D − n)(D − n+ 1) . . . (D − n+N − 1)

)
.
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In our previous N = 2-context this gives

H(2)
n = ωn+ g

((
1 + x4

) d2

dx2
+ 2(1− n)x3 d

dx
+ n(n− 1)x2

)
.

It is easy to see that these Hamiltonians preserve the spaces P (n) and act invariantly on
the subspaces ε(n) ≡ {ea(x)} and O(n) ≡ {oa(x)} of even (ea) and odd (oa) polynomials of
P (n) = ε(n)⊕O(n).

It is remarkable that we get the following properties

H(2)
n ea(x) = Eaea(x) and H(2)

n oa(x) = Eaoa(x)

with positive eigenvalues Ea = λ2
a pointing out immediately the double degeneracies. The

existence of two supercharges Q and Q̄ becomes evident if we require

Qea = 0, Qoa = λaea and Q̄ea = λaoa, Q̄oa = 0.

Specific realizations of such supercharges have been proposed elsewhere [11] as well as some
contexts for different even values of N . Supersymmetry is always present in these applications so
that we have some hope that, as in nuclear physics [19] or in atomic physics [20], supersymmetry
can also reveal its presence in some models of quantum optics.
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We give a classification theorem for irreducible weight representations of the q-deformed
algebra Uq(so2,1) which is a real form of the nonstandard deformation Uq(so3) of the Lie
algebra so(3,C). The algebra Uq(so3) is generated by the elements I1, I2 and I3 satisfying
the relations [I1, I2]q := q1/2I1I2 − q−1/2I2I1 = I3, [I2, I3]q = I1 and [I3, I1]q = I2. The
real form Uq(so2,1) is determined for real q by the ∗-involution I∗1 = −I1 and I∗2 = I2.
Weight representations of Uq(so2,1) are defined as representations T for which the operator
T (I1) can be diagonalized and has a discrete spectrum. A part of the irreducible representa-
tions of Uq(so2,1) turn into irreducible representations of the Lie algebra so2,1 when q → 1.
Representations of the other part have no classical analogue.

1 The algebras Uq(so3) and Uq(so2,1)

The algebra Uq(so3) is obtained by a q-deformation of the standard commutation relations
[I1, I2] = I3, [I2, I3] = I1, [I3, I1] = I2 of the Lie algebra so(3,C) and is defined as the complex
associative algebra (with a unit element) generated by the elements I1, I2, I3 satisfying the
defining relations

[I1, I2]q := q1/2I1I2 − q−1/2I2I1 = I3, (1)

[I2, I3]q := q1/2I2I3 − q−1/2I3I2 = I1, (2)

[I3, I1]q := q1/2I3I1 − q−1/2I1I3 = I2. (3)

A Hopf algebra structure is not known on Uq(so3). However, it can be embedded into the Hopf
algebra Uq(sl3) as a Hopf coideal (see [1]). This embedding is very important for the possible
application in spectroscopy.

It follows from the relations (1)–(3) that for the algebra Uq(so3) the Poincaré–Birkhoff–
Witt theorem is true and this theorem can be formulated as: The elements Ik

3 I
m
2 In

1 , k,m, n =
0, 1, 2, . . ., form a basis of the linear space Uq(so3). This theorem is proved by using the diamond
lemma [2] (or its special case from Subsect. 4.1.5 in [3]).

By (1) the element I3 is not independent: it is determined by the elements I1 and I2. Thus,
the algebra Uq(so3) is generated by I1 and I2, but now instead of quadratic relations (1)–(3) we
must take the relations

I1I
2
2 − (

q + q−1
)
I2I1I2 + I2

2I1 = −I1, I2I
2
1 − (

q + q−1
)
I1I2I1 + I2

1I2 = −I2, (4)

which are obtained if we substitute the expression (1) for I3 into (2) and (3). The equation
I3 = q1/2I1I2 − q−1/2I2I1 and the relations (4) restore the relations (1)–(3).
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Up to now we did not introduce ∗-involutions on Uq(so3) determining real forms of this
algebra. The ∗-involution I1 = −I1, I2 = −I2 determines the real form of Uq(so3) which can be
called a compact real form of Uq(so3). The ∗-involution uniquely determined by the relations

I∗1 = −I1, I∗2 = I2 (5)

gives a noncompact real form of Uq(so3) which is denoted by Uq(so2,1). It is a q-analogue of the
real form so2,1 of the complex Lie algebra so(3,C).

Note that for real q the equations I∗1 = −I1 and I∗2 = I2 do not mean that I∗3 = I3 or
I∗3 = −I3:

I∗3 =
(
q1/2I1I2 − q−1/2I2I1

)∗
= q1/2I∗2I

∗
1 − q−1/2I∗1I

∗
2 = −q1/2I2I1 + q−1/2I1I2 �= ±I3.

However, if |q| = 1 then I∗3 = I3. Really,

I∗3 =
(
q1/2I1I2 − q−1/2I2I1

)∗
= q−1/2I∗2I

∗
1 − q1/2I∗1I

∗
2 = −q−1/2I2I1 + q1/2I1I2 = I3.

In this paper we are interested in irreducible infinite dimensional representations of the al-
gebras Uq(so2,1). Infinite dimensional irreducible representations of Uq(so2,1) are important
for physical applications. For example, irreducible ∗-representations of the so called strange
series (these representations were defined in [4]) are related to a certain type of Schrödinger
equation [5]. Infinite dimensional representations of Uq(so2,1) appear in the theory of quantum
gravity [6].

Infinite dimensional representations of Uq(so2,1) were studied in [4]. However, not all such
representations were found there. Note that ∗-representations of real forms of Uq(so3) different
from Uq(so2,1) were studied in [7] and [8]. Irreducible representations of Uq(so3) (including the
case when q is a root of unity) are studied in [9–11].

2 Definition of weight representations of Uq(so2,1)

From this point we assume that q is not a root of unity.

Definition 1. By a weight representation T of Uq(so2,1) we mean a homomorphism of Uq(so2,1)
into the algebra of linear operators (bounded or unbounded) on a Hilbert space H, defined on
an everywhere dense invariant subspace D, such that the operator T (I1) can be diagonalized,
has a discrete spectrum (with finite multiplicities of spectral points if T is irreducible), and
its eigenvectors belong to D. Two weight representations T and T ′ of Uq(so2,1) on spaces H
and H′, respectively, are called (algebraically) equivalent if there exist everywhere dense invariant
subspaces V ⊂ H and V ′ ⊂ H′ and a one-to-one linear operator A : V → V ′ such that AT (a)v =
T ′(a)Av for all a ∈ Uq(so2,1) and v ∈ V .

Remark. Note that the element I1 ∈ Uq(so2,1) corresponds to the compact part of the group
SO(2, 1). Therefore, as in the classical case, it is natural to demand in the definition of rep-
resentations of Uq(so2,1) that the operator T (I) has a discrete spectrum (with finite multipli-
cities of spectral points for irreducible representations T ). Such representations correspond to
Harish–Chandra modules of Lie algebras. Note that the algebra Uq(so2,1) has irreducible repre-
sentations T for which the operator T (I1) can be diagonalized and has a continuous spectrum
(this follows from the results of Section 4 in [12]). We do not consider such representations in
this paper.
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Since we shall consider only weight representations, below speaking about weight represen-
tations we shall omit the word “weight”.

Definition 2. By a ∗-representation T of Uq(so2,1) we mean a representation of Uq(so2,1) in a
sense of Definition 1 such that the equations T (I1)∗ = −T (I1) and T (I2)∗ = T (I2) are fulfilled
on the domain D.

Definition 1 does not use the ∗-structure of Uq(so2,1). This means that representations of
Definition 1 are in fact representations of Uq(so3).

3 Representations of the principal series

Let us study irreducible infinite dimensional representations of the algebra Uq(so2,1) which were
constructed in [4] and [11].

Let q = eτ and ε be a fixed complex number such that 0 ≤ Re ε < 1 and ε �= ±iπ/2τ . Let Hε

be a complex Hilbert space with the orthonormal basis

|m〉, m = n + ε, n = 0,±1,±2, . . . .

To every complex number a there corresponds the representation Raε of Uq(so2,1) on the Hilbert
space Hε defined by the formulas

Raε(I1)|m〉 = i[m]|m〉, (6)

Raε(I2)|m〉 =
1

qm + q−m
{[a−m]|m + 1〉 − [a + m]|m− 1〉} , (7)

Raε(I3)|m〉 =
iq1/2

qm + q−m

{
qm[a−m]|m + 1〉 + q−m[a + m]|m− 1〉} . (8)

(Everywhere below, under considering representations of Uq(so2,1), we do not give the operator
corresponding to I3 since it can be easily calculated by using formula (3).)

Note that we excluded the cases ε = ±iπ/2τ since for these ε the coefficients in (7) and (8)
are singular.

If ε = −iπ/2τ + σ and qσ = λ, then the representation Raε can be reduced to the following
form:

Raε(I1)|n〉 =
λqn + λ−1q−n

q − q−1
|n〉,

Raε(I2)|n〉 =
−1

λqn − λ−1q−n

(
λqn−a + λ−1q−n+a

q − q−1
|n+1〉 +

λqn+a + λ−1q−n−a

q − q−1
|n−1〉

)
,

where the basis elements |n + ε〉 are denoted by |n〉, n = 0,±1, . . .. In particular, if a = ±iπ/2τ
and qσ = λ, 0 ≤ Reσ < 1, then after rescaling the basis vectors the representation Raε (we
denote it in this case as Q+

λ ) takes the form

Q+
λ (I1)|m〉 =

λqm + λ−1q−m

q − q−1
|m〉, Q+

λ (I2)|m〉 =
1

q − q−1
|m + 1〉 +

1
q − q−1

|m− 1〉.

If a = ±iπ/2τ and qσ = −λ, 0 ≤ Reσ < 1, then we obtain the representation Raε (we denote it
in this case as Q−

λ ) in the form

Q−
λ (I1)|m〉 = −λqm + λ−1q−m

q − q−1
|m〉, Q−

λ (I2) = Q+
λ (I2).
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Since the representations Raε are determined for ε �= ±iπ/2τ , then the representations Q±
λ

are determined for λ �= 1. However, the operators Q±
λ (Ij), j = 1, 2, 3, are well defined also for

λ = ±1 and satisfy the defining relations (1)–(3). Thus, the representations Q±
λ are determined

for all complex values of λ.

Theorem 1. The representation Raε is irreducible if and only if a �≡ ±ε (mod Z) or if ε �≡
±iπ/2τ +1/2 or if (a, ε) does not coincide with one of four couples (±iπ/2τ,±iπ/2τ +1/2). The
representation Q±

λ is irreducible if and only if λ �= ±1,±q1/2.

This theorem follows from Theorem 1 in [4] and the results of Section 7 in [11].
There exist equivalence relations between irreducible representations Raε. They are com-

pletely described in [4].
In the excluded cases of Theorem 1, representations Raε and Q±

λ are reducible. In particular,
the representations Q±

λ , λ = ±1,±q1/2, are reducible (see [11]) and leads to the irreducible
representations which are described as follows.

Let V1 and V2 be the vector spaces with the bases

|m〉′, m = 0, 1, 2, . . . , and |m〉′′, m = 1, 2, 3, . . . ,

respectively. Then the operators Q1,±
1 (I1), Q1,±

1 (I2), Q2,±
1 (I1), Q2,±

1 (I2) given by the formulas

Q1,±
1 (I1)|m〉′ = ±qm + q−m

q − q−1
|m〉′, Q2,±

1 (I1)|m〉′′ = ±qm + q−m

q − q−1
|m〉′′,

Q1,±
1 (I2)|0〉 =

√
2

q − q−1
|1〉′, Q2,±

1 (I2)|1〉′′ =
1

q − q−1
|2〉′′,

Q1,±
1 (I2)|1〉′ =

√
2

q − q−1
|0〉′ +

1
q − q−1

|2〉′, Q2,±
1 (I2)|2〉′ =

1
q − q−1

|1〉′ +
1

q − q−1
|3〉′,

Q1,±
1 (I2)|m〉′ =

1
q − q−1

|m + 1〉′ +
1

q − q−1
|m− 1〉′, m > 1,

Q2,±
1 (I2)|m〉′′ =

1
q − q−1

|m + 1〉′′ +
1

q − q−1
|m− 1〉′′, m > 2,

determine irreducible representations of Uq(so2,1) which are denoted by Q1,±
1 and Q2,±

1 , respec-
tively.

Let W1 and W2 be the vector spaces spanned by the basis vectors

|m +
1
2
〉′, m = 0, 1, 2, . . . , and |m +

1
2
〉′′, m = 0, 1, 2, . . . ,

respectively. Then the operators Q1,±√
q (I1), Q1,±√

q (I2), Q2,±√
q (I1), Q2,±√

q (I2) given by the formulas

Q1,±√
q (I1)|m + 1

2〉′ = ±qm+1/2 + q−m−1/2

q − q−1
|m + 1

2〉′,

Q2,±√
q (I1)|m + 1

2〉′′ = ±qm+1/2 + q−m−1/2

q − q−1
|m + 1

2〉′′

and

Q1,±√
q (I2)|12〉′ = − 1

q − q−1
|12〉′ +

1
q − q−1

|32〉′,
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Q1,±√
q (I2)|m + 1

2〉′ =
1

q − q−1
|m + 3

2〉′ +
1

q − q−1
|m− 1

2〉′, m > 0,

Q2,±√
q (I2)|12〉′′ =

1
q − q−1

|12〉′′ +
1

q − q−1
|32〉′′,

Q2,±√
q (I2)|m + 1

2〉′′ =
1

q − q−1
|m + 3

2〉′′ +
1

q − q−1
|m− 1

2〉′′, m > 0,

determine irreducible representations of Uq(so2,1) which are denoted by Q1,±√
q and Q2,±√

q , respec-
tively. We have

Q±
1 = Q1,±

1 ⊕Q2,±
1 , Q±√

q = Q1,±√
q ⊕Q2,±√

q .

The representations Raε with ε = ±iπ/2τ + 1
2 are also reducible. They lead to the following

irreducible representations. For any complex number a we define the representations R(i,±)
a and

R
(−i,±)
a of Uq(so2,1) acting on the Hilbert space H with the orthonormal basis |n〉, n = 1, 2, 3, . . .,

by the formulas

R(i,±)
a (I1)|k〉 = −qk−1/2 + q−k+1/2

q − q−1
|k〉,

R(i,±)
a (I2)|1〉 = ± [a]

q1/2 − q−1/2
|1〉 + i

[a− 1]
q1/2 − q−1/2

|2〉,

R(i,±)
a (I2)|k〉 = i

[a− k]
qk−1/2 − q−k+1/2

|k + 1〉 + i
[a + k − 1]

qk−1/2 − q−k+1/2
|k − 1〉, k �= 1,

and by the formulas

R(−i,±)
a (I1)|k〉 =

qk−1/2 + q−k+1/2

q − q−1
|k〉, R(−i,±)

a (I2) = −R(i,±)
a (I2).

For ε = ±iπ/2τ + 1
2 we have

Ra,±iπ/2τ+1/2 = R(i,±)
a ⊕R(−i,±)

a .

Note that for a = 1/2 the representations R
(±i,±)
a are equivalent to the corresponding repre-

sentations Q1,±√
q and Q2,±√

q .
The algebra Uq(so2,1) has also irreducible infinite dimensional representations with highest

weights or with lowest weights which are classified in the paper [4]. They are subrepresentations
of the corresponding representations Raε. We give a list of these representations.

Let l = 1
2 , 1,

3
2 , 2, . . .. We denote by R+

l the representation of Uq(so3) acting on the Hilbert
space Hl with the orthonormal basis |m〉, m = l, l + 1, l + 2, . . ., and given by formulas (6)–(8)
with a = −l. By R−

l we denote the representation of Uq(so3) acting on the Hilbert space Ĥl

with the orthonormal basis |m〉, m = −l,−l− 1,−l− 2, . . ., and given by formulas (6)–(8) with
a = l.

Now let a �= 0 (mod Z) and a �= 1
2 (mod Z). We denote by Ha the Hilbert space with the

orthonormal basis |m〉, m = −a,−a + 1,−a + 2, . . .. On this space the representation R+
a acts

which is given by formulas (6)–(8). On the Hilbert space Ĥa with the orthonormal basis |m〉,
m = a, a− 1, a− 2, . . ., the representation R−

a acts which is given by (6)–(8).
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4 Other infinite dimensional representations of Uq(so2,1)

Let us construct additional two series of infinite dimensional irreducible representations of
Uq(so2,1) which cannot be obtained from the representations Raε. Let H be the complex Hilbert
space with the basis |m〉, m = 0,±1,±2, . . .. Let a and b be complex numbers such that
a2 + b2 = 1, a �= 0, b �= 0 and a �= b. We define on the operators Q̂±

ab(I1) and Q̂±
ab(I2) determined

by the formulas

Q̂±
ab(I1)|m〉 = ±qm + q−m

q − q−1
|m〉,

Q̂±
ab(I2)|m〉 =

1
q − q−1

|m− 1〉 +
1

q − q−1
|m + 1〉, m �= 0,±1,

Q̂±
ab(I2)|0〉 =

b
√

2
q − q−1

|1〉 +
a
√

2
q − q−1

| − 1〉,

Q̂±
ab(I2)|1〉 =

b
√

2
q − q−1

|0〉 +
1

q − q−1
|2〉,

Q̂±
ab(I2)| − 1〉 =

a
√

2
q − q−1

|0〉 +
1

q − q−1
| − 2〉.

A direct computation shows that these operators satisfy the determining relations (1)–(3) and
therefore determine a representation of Uq(so2,1) which is denoted by Q̂±

ab.
Let now H′ be the complex Hilbert space with the basis |k〉, k = ±1

2 ,±3
2 , . . .. Let a and b be

complex numbers such that a2 + b2 = 1, a �= 0, b �= 0. We define on the space H′ the operators
Q̆±

ab(I1) and Q̆±
ab(I2) determined by the formulas

Q̆±
ab(I1)|k〉 =

qk + q−k

q − q−1
|k〉,

Q̆±
ab(I2)|k〉 =

1
q − q−1

|k − 1〉 +
1

q − q−1
|k + 1〉, k �= ±1

2
,

Q̆±
ab(I2)|12〉 =

a

q − q−1
|12〉 +

1
q − q−1

|32〉 +
b

q − q−1
| − 1

2〉,

Q̆±
ab(I2)| − 1

2〉 = − a

q − q−1
| − 1

2〉 +
b

q − q−1
|12〉 +

1
q − q−1

| − 3
2〉.

A direct computation shows that these operators also determine representations of Uq(so2,1)
which are denoted by Q̆±

ab.
Thus, we have constructed the following classes of irreducible infinite dimensional represen-

tations of the algebra Uq(so2,1):
(a) The representations Raε with the exclusions of Theorem 1.
(b) The representations R±i,±

a , a ∈ C.
(c) The representations R±

l , l = 1
2 , 1,

3
2 , 2, . . ., and R±

a , a �= 0 (mod Z), a �= 1
2 (mod Z).

(d) The representations Q1,±
1 and Q2,±

1 .
(e) The representations Q1,±√

q and Q2,±√
q .

(f) The representations Q̂±
ab and Q̆±

ab, a
2 + b2 = 1, a �= 0, b �= 0, and a �= b for Q̂±

ab.
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Theorem 2. Every irreducible infinite dimensional weight representation of the algebra Uq(so2,1)
is equivalent to one of the representations of classes (a)–(f) describe above.

A proof of this theorem is long and will be given in a separate paper. In particular, the proof
uses the following proposition:

Proposition. Let |q| �= 1. If b �= 1
2 and b �= 1, then the set

qb+m + q−b−m

q − q−1
, m ∈ Z,

has no coinciding numbers. If b = 1
2 , then this set consists only of pairs of coinciding numbers.

If b = 1, then this set consists of the point 0 and pairs of coinciding numbers.

This proposition show for which representations the operator R(I1) has multiple eigenvalues.

5 ∗-representations of Uq(so2,1)

In the previous section we described all irreducible infinite dimensional representations of
Uq(so2,1). The aim of this section is to separate ∗-representations of Uq(so2,1) from the set
of the representations (a)–(f).

Note that ∗-representations of the universal enveloping algebra U(so2,1) correspond to unitary
representations of the Lie group SO(2, 1). Irreducible ∗-representations of Uq(so2,1) can be found
by using the method described, for example, in Section 6.4 of [13]. The same method is used for
separation of ∗-representations in the set of the representations (a)–(f). Let us give the result
of this separation.

Theorem 3. Let q = eh, h ∈ R. Then the following representations from the set (a)–(f) are
∗-representations or equivalent to ∗-representations:

(a) the representations Raε, a = iρ − 1/2, ρ ∈ R, ε = c + inπ/h, 0 ≤ c < 1, n = 0, 1 (the
principal series);

(b) the representations Raε, a ∈ R, ε = c+inπ/h, 0 ≤ c < 1, n = 0, 1, such that −c < a < c−1
for c > 1/2 and c− 1 < a < −c for c < 1/2 (the supplementary series);

(c) the representations Raε, Im a = π/2h, ε = c + inπ/h, 0 ≤ c < 1, n = 0, 1 (the strange
series);

(d) all the representations R+
a , a ≥ −1/2, and R−

a , a ≤ 1/2 (the discrete series).

This list of irreducible ∗-representations of Uq(so2,1) coincides with that of [4].

Theorem 4. Let q = eiϕ, 0 < ϕ ≤ 2π. We suppose that q is not a root of unity. The following
representations from the set (a)–(f) are ∗-representations or equivalent to ∗-representations:

(a) the representations Raε, a = iρ− 1/2, ρ ∈ R, 0 ≤ ε < 1, if

cos(ε + n)ϕ · cos(ε + n + 1)ϕ > 0 for all n ∈ Z;

(b) the representations Raε, Re a = π/2ϕ, 0 ≤ ε < 1, if

sin(ε + n− a)ϕ · sin(ε + n + a + 1)ϕ · cos(ε + n)ϕ · cos(ε + n + 1)ϕ > 0 for all n ∈ Z;

(c) the representations R±i,±
a if

sin(a− n)ϕ · sin(a + n)ϕ · sin(n− 1/2)ϕ · sin(n + 1/2)ϕ < 0 for n = 1, 2, 3, . . . .
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Cλ-extended oscillator algebras, where Cλ is the cyclic group of order λ, are introduced
and realized as generalized deformed oscillator algebras. For λ = 2, they reduce to the
well-known Calogero–Vasiliev algebra. For higher λ values, they are shown to provide in
their bosonic Fock space representation some interesting applications to supersymmetric
quantum mechanics and some variants thereof: an algebraic realization of supersymmetric
quantum mechanics for cyclic shape invariant potentials of period λ, a bosonization of para-
supersymmetric quantum mechanics of order p = λ − 1, and, for λ = 3, a bosonization of
pseudosupersymmetric quantum mechanics and orthosupersymmetric quantum mechanics of
order two.

1 Introduction

Deformations and extensions of the oscillator algebra have found a lot of applications to physical
problems, such as the description of systems with non-standard statistics, the construction of
integrable lattice models, the investigation of nonlinearities in quantum optics, as well as the
algebraic treatment of quantum exactly solvable models and of n-particle integrable systems.
The generalized deformed oscillator algebras (GDOAs) (see e.g. Ref. [1] and references

quoted therein) arose from successive generalizations of the Arik–Coon [2] and Biedenharn–
Macfarlane [3] q-oscillators. Such algebras, denoted by Aq(G(N)), are generated by the unit,
creation, annihilation, and number operators I, a†, a, N , satisfying the Hermiticity conditions(
a†

)† = a, N † = N , and the commutation relations[
N, a†

]
= a†, [N, a] = −a,

[
a, a†

]
q
≡ aa† − qa†a = G(N), (1.1)

where q is some real number and G(N) is some Hermitian, analytic function.
On the other hand, G-extended oscillator algebras, where G is some finite group, appeared in

connection with n-particle integrable models. For the Calogero model [4], for instance, G is the
symmetric group Sn [5].
For two particles, the S2-extended oscillator algebra A(2)

κ , where S2 = { I,K | K2 = I }, is
generated by the operators I, a†, a, N , K, subject to the Hermiticity conditions

(
a†

)† = a,
N † = N , K† = K−1, and the relations[

N, a†
]
= a†, [N,K] = 0, K2 = I,[

a, a†
]
= I + κK (κ ∈ R), a†K = −Ka†,

(1.2)

together with their Hermitian conjugates.
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When the S2 generator K is realized in terms of the Klein operator (−1)N , A(2)
κ becomes a

GDOA characterized by q = 1 and G(N) = I+κ(−1)N , and known as the Calogero–Vasiliev [6]
or modified [7] oscillator algebra.
The operator K may be alternatively considered as the generator of the cyclic group C2

of order two, since the latter is isomorphic to S2. By replacing C2 by the cyclic group of or-
der λ, Cλ = { I, T, T 2, . . . , T λ−1 | T λ = I }, one then gets a new class of G-extended oscillator
algebras [8], generalizing that describing the two-particle Calogero model. In the present com-
munication, we will define the Cλ-extended oscillator algebras, study some of their properties,
and show that they have some interesting applications to supersymmetric quantum mechanics
(SSQM) [9] and some of its variants.

2 Definition and properties of Cλ-extended oscillator algebras

Let us consider the algebras generated by the operators I, a†, a, N , T , satisfying the Hermiticity
conditions

(
a†

)† = a, N † = N , T † = T−1, and the relations[
N, a†

]
= a†, [N,T ] = 0, T λ = I,

[
a, a†

]
= I +

λ−1∑
µ=1

κµT
µ, a†T = e−i2π/λ Ta†,

(2.1)

together with their Hermitian conjugates [8]. Here T is the generator of (a unitary representation
of) the cyclic group Cλ (where λ ∈ {2, 3, 4, . . .}), and κµ, µ = 1, 2, . . . , λ− 1, are some complex
parameters restricted by the conditions κ∗µ = κλ−µ (so that there remain altogether λ − 1
independent real parameters).
Cλ has λ inequivalent, one-dimensional matrix unitary irreducible representations (unirreps)

Γµ, µ = 0, 1, . . . , λ− 1, which are such that Γµ (T ν) = exp(i2πµν/λ) for any ν = 0, 1, . . . , λ− 1.
The projection operator on the carrier space of Γµ may be written as

Pµ =
1
λ

λ−1∑
ν=0

e−i2πµν/λ T ν , (2.2)

and conversely T ν , ν = 0, 1, . . . , λ− 1, may be expressed in terms of the Pµ’s as

T ν =
λ−1∑
µ=0

ei2πµν/λPµ. (2.3)

The algebra defining relations (2.1) may therefore be rewritten in terms of I, a†, a, N ,
and Pµ = P

†
µ, µ = 0, 1, . . . , λ− 1, as

[
N, a†

]
= a†, [N,Pµ] = 0,

λ−1∑
µ=0

Pµ = I,

[
a, a†

]
= I +

λ−1∑
µ=0

αµPµ, a†Pµ = Pµ+1 a
†, PµPν = δµ,νPµ,

(2.4)

where we use the convention Pµ′ = Pµ if µ′ − µ = 0modλ (and similarly for other ope-
rators or parameters indexed by µ, µ′). Equation (2.4) depends upon λ real parameters
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αµ =
λ−1∑
ν=1

exp(i2πµν/λ)κν , µ = 0, 1, . . . , λ− 1, restricted by the condition
λ−1∑
µ=0

αµ = 0. Hence, we

may eliminate one of them, for instance αλ−1, and denote Cλ-extended oscillator algebras by
A(λ)

α0α1...αλ−2 .
The cyclic group generator T and the projection operators Pµ can be realized in terms of N as

T = ei2πN/λ, Pµ =
1
λ

λ−1∑
ν=0

ei2πν(N−µ)/λ, µ = 0, 1, . . . , λ− 1, (2.5)

respectively. With such a choice, A(λ)
α0α1...αλ−2 becomes a GDOA, A(λ)(G(N)), characterized by

q = 1 and G(N) = I +
λ−1∑
µ=0

αµPµ, where Pµ is given in Eq.(2.5).

For any GDOA Aq(G(N)), one may define a so-called structure function F (N), which is the
solution of the difference equation F (N + 1) − qF (N) = G(N), such that F (0) = 0 [1]. For
A(λ)(G(N)), we find

F (N) = N +
λ−1∑
µ=0

βµPµ, β0 ≡ 0, βµ ≡
µ−1∑
ν=0

αν (µ = 1, 2, . . . , λ− 1). (2.6)

At this point, it is worth noting that for λ = 2, we obtain T = K, P0 = (I + K)/2,
P1 = (I − K)/2, and κ1 = κ∗1 = α0 = −α1 = κ, so that A(2)

α0 coincides with the S2-extended
oscillator algebra A(2)

κ and A(2)(G(N)) with the Calogero–Vasiliev algebra.
In Ref. [10], we showed that A(λ)(G(N)) (and more generally A(λ)

α0α1...αλ−2) has only two differ-
ent types of unirreps: infinite-dimensional bounded from below unirreps and finite-dimensional
ones. Among the former, there is the so-called bosonic Fock space representation, wherein
a†a = F (N) and aa† = F (N + 1). Its carrier space F is spanned by the eigenvectors |n〉 of
the number operator N , corresponding to the eigenvalues n = 0, 1, 2, . . ., where |0〉 is a vacuum
state, i.e., a|0〉 = N |0〉 = 0 and Pµ|0〉 = δµ,0|0〉. The eigenvectors can be written as

|n〉 = N−1/2
n

(
a†

)n |0〉, n = 0, 1, 2, . . . , (2.7)

where Nn =
n∏

i=1
F (i). The creation and annihilation operators act upon |n〉 in the usual way,

i.e.,

a†|n〉 =
√
F (n+ 1) |n+ 1〉, a|n〉 =

√
F (n) |n− 1〉, (2.8)

while Pµ projects on the µth component Fµ ≡ { |kλ + µ〉 | k = 0, 1, 2, . . . } of the Zλ-graded

Fock space F =
λ−1∑
µ=0

⊕Fµ. It is obvious that such a bosonic Fock space representation exists if

and only if F (µ) > 0 for µ = 1, 2, . . . , λ− 1. This gives the following restrictions on the algebra
parameters αµ,

µ−1∑
ν=0

αν > −µ, µ = 1, 2, . . . , λ− 1. (2.9)

In the bosonic Fock space representation, we may consider the bosonic oscillator Hamiltonian,
defined as usual by

H0 ≡ 1
2

{
a, a†

}
. (2.10)
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It can be rewritten as

H0 = a†a+
1
2


I + λ−1∑

µ=0

αµPµ


 = N +

1
2
I +

λ−1∑
µ=0

γµPµ, (2.11)

where γ0 ≡ 1
2α0 and γµ ≡

µ−1∑
ν=0

αν + 1
2αµ for µ = 1, 2, . . . , λ− 1.

The eigenvectors of H0 are the states |n〉 = |kλ+µ〉, defined in Eq.(2.7), and their eigenvalues
are given by

Ekλ+µ = kλ+ µ+ γµ +
1
2
, k = 0, 1, 2, . . . , µ = 0, 1, . . . , λ− 1. (2.12)

In each Fµ subspace of the Zλ-graded Fock space F , the spectrum of H0 is therefore harmonic,
but the λ infinite sets of equally spaced energy levels, corresponding to µ = 0, 1, . . . , λ− 1, may
be shifted with respect to each other by some amounts depending upon the algebra parameters
α0, α1, . . . , αλ−2, through their linear combinations γµ, µ = 0, 1, . . . , λ− 1.
For the Calogero–Vasiliev oscillator, i.e., for λ = 2, the relation γ0 = γ1 = κ/2 implies

that the spectrum is very simple and coincides with that of a shifted harmonic oscillator. For
λ ≥ 3, however, it has a much richer structure. According to the parameter values, it may be
nondegenerate, or may exhibit some (ν + 1)-fold degeneracies above some energy eigenvalue,
where ν may take any value in the set {1, 2, . . . , λ− 1}. In Ref. [11], we obtained for λ = 3 the
complete classification of nondegenerate, twofold and threefold degenerate spectra in terms of
α0 and α1.
In the remaining part of this communication, we will show that the bosonic Fock space

representation of A(λ)(G(N)) and the corresponding bosonic oscillator Hamiltonian H0 have
some useful applications to SSQM and some of its variants.

3 Application to supersymmetric quantum mechanics
with cyclic shape invariant potentials

In SSQM with two supercharges, the supersymmetric Hamiltonian H and the supercharges Q†,
Q =

(
Q†)†, satisfy the sqm(2) superalgebra, defined by the relations
Q2 = 0, [H, Q] = 0,

{
Q,Q†

}
= H, (3.1)

together with their Hermitian conjugates [9]. In such a context, shape invariance [12] provides
an integrability condition, yielding all the bound state energy eigenvalues and eigenfunctions,
as well as the scattering matrix.
Recently, Sukhatme, Rasinariu, and Khare [13] introduced cyclic shape invariant potentials

of period p in SSQM. They are characterized by the fact that the supersymmetric partner
Hamiltonians correspond to a series of shape invariant potentials, which repeats after a cycle of
p iterations. In other words, one may define p sets of operators

{
Hµ, Q

†
µ, Qµ

}
, µ = 0, 1, . . . , p−1,

each satisfying the sqm(2) defining relations (3.1). The operators may be written as

Hµ =

(
H(µ) − E(µ)

0 I 0
0 H(µ+1) − E(µ)

0 I

)
, Q†

µ =
(
0 A†

µ

0 0

)
, Qµ =

(
0 0
Aµ 0

)
, (3.2)
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where

H(0) = A†
0A0,

H(µ) = Aµ−1A
†
µ−1 + E(µ−1)

0 I = A†
µAµ + E(µ)

0 I, µ = 1, 2, . . . , p,

Aµ =
d

dx
+W (x, bµ), A†

µ = − d

dx
+W (x, bµ), µ = 0, 1, . . . , p,

(3.3)

and E(µ)
0 denotes the ground state energy of H(µ) (with E(0)

0 = 0). Here the superpotentials
W (x, bµ) depend upon some parameters bµ, such that bµ+p = bµ, and they satisfy p shape
invariance conditions

W 2(x, bµ) +W ′(x, bµ) =W 2(x, bµ+1)−W ′(x, bµ+1) + ωµ, µ = 0, 1, . . . , p− 1, (3.4)

where ωµ, µ = 0, 1, . . . , p− 1, are some real constants.
From the solution of Eq.(3.4), one may then construct the potentials corresponding to the

supersymmetric partners H(µ), H(µ+1) in the usual way, i.e., V (µ) =W 2(x, bµ)−W ′(x, bµ)+E(µ)
0 ,

V (µ+1) =W 2(x, bµ) +W ′(x, bµ) + E(µ)
0 . For p = 2, Gangopadhyaya and Sukhatme [14] obtained

such potentials as superpositions of a Calogero potential and a δ-function singularity. For
p ≥ 3, however, only numerical solutions of the shape invariance conditions (3.4) have been
obtained [13], so that no analytical form of V (µ) is known. In spite of this, the spectrum is
easily derived and consists of p infinite sets of equally spaced energy levels, shifted with respect
to each other by the energies ω0, ω1, . . . , ωp−1.
Since for some special choices of parameters, spectra of a similar type may be obtained with

the bosonic oscillator Hamiltonian (2.10) acting in the bosonic Fock space representation of
A(p)(G(N)), one may try to establish a relation between the class of algebras A(p)(G(N)) and
SSQM with cyclic shape invariant potentials of period p.
In Ref. [11], we proved that the operators H(µ), A†

µ, and Aµ of Eqs.(3.2) and (3.3) can be
realized in terms of the generators of p algebras A(p)(G(µ)(N)), µ = 0, 1, . . . , p− 1, belonging to
the class

{A(p)(G(N))
}
. The parameters of such algebras are obtained by cyclic permutations

from a starting set {α0, α1, . . . , αp−1} corresponding to A(p)(G(0)(N)) = A(p)(G(N)). Denoting
by N , a†µ, aµ the number, creation, and annihilation operators corresponding to the µth algebra
A(p)(G(µ)(N)), where a†0 = a†, and a0 = a, we may write the fourth relation in the algebra
defining relations (2.4) as

[
aµ, a

†
µ

]
= I +

p−1∑
ν=0

α(µ)
ν Pν , α(µ)

ν ≡ αν+µ, µ = 0, 1, . . . , p− 1, (3.5)

while the remaining relations keep the same form.
The realization of H(µ), A†

µ, Aµ, µ = 0, 1, . . . , p− 1, is then given by

H(µ) = F (N + µ) = N + µI +
p−1∑
ν=0

βν+µPν = H
(µ)
0 − 1

2

p−1∑
ν=0

(
1 + α(µ)

ν

)
Pν + E(µ)

0 I,

A†
µ = a

†
µ, Aµ = aµ,

(3.6)

where H(µ)
0 ≡ 1

2

{
aµ, a

†
µ

}
is the bosonic oscillator Hamiltonian associated with A(p)(G(µ)(N)),

E(µ)
0 =

µ−1∑
ν=0

ων , and the level spacings are ωµ = 1 + αµ. For this result to be meaningful,
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the conditions ωµ > 0, µ = 0, 1, . . . , p − 1, have to be fulfilled. When combined with the
restrictions (2.9), the latter imply that the parameters of the starting algebra A(p)(G(N)) must

be such that −1 < α0 < λ − 1, −1 < αµ < λ − µ − 1 −
µ−1∑
ν=0

αν if µ = 1, 2, . . . , λ − 2, and

αλ−1 = −
λ−2∑
ν=0

αν .

4 Application to parasupersymmetric
quantum mechanics of order p

The sqm(2) superalgebra (3.1) is most often realized in terms of mutually commuting boson
and fermion operators. Plyushchay [15], however, showed that it can alternatively be realized
in terms of only boson-like operators, namely the generators of the Calogero–Vasiliev algebra
A(2)(G(N)) (see also Ref. [16]). Such an SSQM bosonization can be performed in two different
ways, by choosing either Q = a†P1 (so that H = H0 − 1

2(K + κ)) or Q = a†P0 (so that
H = H0 + 1

2(K + κ)). The first choice corresponds to unbroken SSQM (all the excited states
are twofold degenerate while the ground state is nondegenerate and at vanishing energy), and
the second choice describes broken SSQM (all the states are twofold degenerate and at positive
energy).
SSQM was generalized to parasupersymmetric quantum mechanics (PSSQM) of order two

by Rubakov and Spiridonov [17], and later on to PSSQM of arbitrary order p by Khare [18]. In
the latter case, Eq. (3.1) is replaced by

Qp+1 = 0 (with Qp �= 0),
[H, Q] = 0,
QpQ† +Qp−1Q†Q+ · · ·+QQ†Qp−1 +Q†Qp = 2pQp−1H,

(4.1)

and is retrieved in the case where p = 1. The parasuperchargesQ, Q†, and the parasupersymmet-
ric Hamiltonian H are usually realized in terms of mutually commuting boson and parafermion
operators.
A property of PSSQM of order p is that the spectrum of H is (p+ 1)-fold degenerate above

the (p − 1)th energy level. This fact and Plyushchay’s results for p = 1 hint at a possibility of
representing H as a linear combination of the bosonic oscillator Hamiltonian H0 associated with
A(p+1)(G(N)) and some projection operators, as in Eq.(3.6).
In Ref. [10] (see also Refs. [8, 19]), we proved that PSSQM of order p can indeed be bosonized

in terms of the generators of A(p+1)(G(N)) for any allowed (i.e., satisfying Eq.(2.9)) values of
the algebra parameters α0, α1, . . . , αp−1. For such a purpose, we started from ansätze of the
type

Q =
p∑

ν=0

σνa
†Pν , H = H0 +

1
2

p∑
ν=0

rνPν , (4.2)

where σν and rν are some complex and real constants, respectively, to be determined in such
a way that Eq.(4.1) is fulfilled. We found that there are p+ 1 families of solutions, which may
be distinguished by an index µ ∈ {0, 1, . . . , p} and from which we may choose the following
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representative solutions

Qµ =
√
2

p∑
ν=1

a†Pµ+ν ,

Hµ = N +
1
2
(2γµ+2 + rµ+2 − 2p+ 3)I +

p∑
ν=1

(p+ 1− ν)Pµ+ν ,

(4.3)

where

rµ+2 =
1
p

[
(p− 2)αµ+2 + 2

p∑
ν=3

(p− ν + 1)αµ+ν + p(p− 2)
]
. (4.4)

The eigenvectors ofHµ are the states (2.7) and the corresponding eigenvalues are easily found.
All the energy levels are equally spaced. For µ = 0, PSSQM is unbroken, otherwise it is broken
with a (µ+ 1)-fold degenerate ground state. All the excited states are (p + 1)-fold degenerate.
For µ = 0, 1, . . . , p− 2, the ground state energy may be positive, null, or negative depending on
the parameters, whereas for µ = p− 1 or p, it is always positive.
Khare [18] showed that in PSSQM of order p, H has in fact 2p (and not only two) conserved

parasupercharges, as well as p bosonic constants. In other words, there exist p independent
operatorsQr, r = 1, 2, . . . , p, satisfying withH the set of equations (4.1), and p other independent
operators It, t = 2, 3, . . . , p+ 1, commuting with H, as well as among themselves. In Ref. [10],
we obtained a realization of all such operators in terms of the A(p+1)(G(N)) generators.
As a final point, let us note that there exists an alternative approach to PSSQM of order p,

which was proposed by Beckers and Debergh [20], and wherein the multilinear relation in Eq.(4.1)
is replaced by the cubic equation[

Q,
[
Q†, Q

]]
= 2QH. (4.5)

In Ref. [8], we proved that for p = 2, this PSSQM algebra can only be realized by those
A(3)(G(N)) algebras that simultaneously bosonize Rubakov–Spiridonov–Khare PSSQM algebra.

5 Application to pseudosupersymmetric quantum mechanics

Pseudosupersymmetric quantum mechanics (pseudoSSQM) was introduced by Beckers, Debergh
and Nikitin [21] in a study of relativistic vector mesons interacting with an external constant
magnetic field. In the nonrelativistic limit, their theory leads to a pseudosupersymmetric os-
cillator Hamiltonian, which can be realized in terms of mutually commuting boson and pseud-
ofermion operators, where the latter are intermediate between standard fermion and p = 2
parafermion operators.
It is then possible to formulate a pseudoSSQM [21], characterized by a pseudosupersymmetric

Hamiltonian H and pseudosupercharge operators Q, Q†, satisfying the relations

Q2 = 0, [H, Q] = 0, QQ†Q = 4c2QH, (5.1)

and their Hermitian conjugates, where c is some real constant. The first two relations in Eq.(5.1)
are the same as those occurring in SSQM, whereas the third one is similar to the multilinear
relation valid in PSSQM of order two. Actually, for c = 1 or 1/2, it is compatible with Eq.(4.1)
or (4.5), respectively.
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In Ref. [10], we proved that pseudoSSQM can be bosonized in two different ways in terms of
the generators of A(3)(G(N)) for any allowed values of the parameters α0, α1. This time, we
started from the ansätze

Q =
2∑

ν=0

(
ξνa+ ηνa†

)
Pν , H = H0 +

1
2

2∑
ν=0

rνPν , (5.2)

and determined the complex constants ξν , ην , and the real ones rν in such a way that Eq.(5.1)
is fulfilled.
The first type of bosonization corresponds to three families of two-parameter solutions, la-

belled by an index µ ∈ {0, 1, 2},

Qµ(ηµ+2, ϕ) =
(
ηµ+2a

† + eiϕ
√
4c2 − η2

µ+2 a
)
Pµ+2,

Hµ(ηµ+2) = N +
1
2
(2γµ+2 + rµ+2 − 1)I + 2Pµ+1 + Pµ+2,

(5.3)

where 0 < ηµ+2 < 2|c|, 0 ≤ ϕ < 2π, and

rµ+2 =
1
2c2
(1 + αµ+2)

(|ηµ+2|2 − 2c2
)
. (5.4)

Choosing for instance ηµ+2 =
√
2|c|, and ϕ = 0, hence rµ+2 = 0 (producing an overall shift of

the spectrum), we obtain

Qµ = c
√
2

(
a† + a

)
Pµ+2,

Hµ = N +
1
2
(2γµ+2 − 1)I + 2Pµ+1 + Pµ+2.

(5.5)

A comparison between Eq.(5.3) or (5.5) and Eq.(4.3) shows that the pseudosupersymmetric
and p = 2 parasupersymmetric Hamiltonians coincide, but that the corresponding charges are
of course different. The conclusions relative to the spectrum and the ground state energy are
therefore the same as in Sec. 4.
The second type of bosonization corresponds to three families of one-parameter solutions,

again labelled by an index µ ∈ {0, 1, 2},

Qµ = 2|c|aPµ+2,

Hµ(rµ) = N +
1
2
(2γµ+2 − αµ+2)I +

1
2
(1− αµ+1 + αµ+2 + rµ)Pµ + Pµ+1,

(5.6)

where rµ ∈ R changes the Hamiltonian spectrum in a significant way. We indeed find that the
levels are equally spaced if and only if rµ = (αµ+1 − αµ+2 + 3)mod 6. If rµ is small enough,
the ground state is nondegenerate, and its energy is negative for µ = 1, or may have any sign
for µ = 0 or 2. On the contrary, if rµ is large enough, the ground state remains nondegenerate
with a vanishing energy in the former case, while it becomes twofold degenerate with a positive
energy in the latter. For some intermediate rµ value, one gets a two or threefold degenerate
ground state with a vanishing or positive energy, respectively.
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6 Application to orthosupersymmetric
quantum mechanics of order two

Mishra and Rajasekaran [22] introduced order-p orthofermion operators by replacing the Pauli
exclusion principle by a more stringent one: an orbital state shall not contain more than one
particle, whatever be the spin direction. The wave function is thus antisymmetric in spatial
indices alone with the order of the spin indices frozen.
Khare, Mishra, and Rajasekaran [23] then developed orthosupersymmetric quantum me-

chanics (OSSQM) of arbitrary order p by combining boson operators with orthofermion ones,
for which the spatial indices are ignored. OSSQM is formulated in terms of an orthosupersym-
metric Hamiltonian H, and 2p orthosupercharge operators Qr, Q

†
r, r = 1, 2, . . . , p, satisfying the

relations

QrQs = 0, [H, Qr] = 0, QrQ
†
s + δr,s

p∑
t=1

Q†
tQt = 2δr,sH, (6.1)

and their Hermitian conjugates, where r and s run over 1, 2, . . . , p.
In Ref. [10], we proved that OSSQM of order two can be bosonized in terms of the generators

of some well-chosen A(3)(G(N)) algebras. As ansätze, we used the expressions

Q1 =
2∑

ν=0

(
ξνa+ ηνa†

)
Pν , Q2 =

2∑
ν=0

(
ζνa+ ρνa

†
)
Pν , H = H0 +

1
2

2∑
ν=0

rνPν , (6.2)

and determined the complex constants ξν , ην , ζν , ρν , and the real ones rν in such a way that
Eq.(6.1) is fulfilled. We found two families of two-parameter solutions, labelled by µ ∈ {0, 1},

Q1,µ(ξµ+2, ϕ) = ξµ+2aPµ+2 + eiϕ
√
2− ξ2µ+2 a

†Pµ,

Q2,µ(ξµ+2, ϕ) = −e−iϕ
√
2− ξ2µ+2 aPµ+2 + ξµ+2a

†Pµ,

Hµ = N +
1
2
(2γµ+1 − 1)I + 2Pµ + Pµ+1,

(6.3)

where 0 < ξµ+2 ≤ √
2 and 0 ≤ ϕ < 2π, provided the algebra parameter αµ+1 is taken as

αµ+1 = −1. As a matter of fact, the absence of a third family of solutions corresponding to
µ = 2 comes from the incompatibility of this condition (i.e., α0 = −1) with conditions (2.9).
The orthosupersymmetric Hamiltonian H in Eq.(6.3) is independent of the parameters ξµ+2,

ϕ. All the levels of its spectrum are equally spaced. For µ = 0, OSSQM is broken: the levels
are threefold degenerate, and the ground state energy is positive. On the contrary, for µ = 1,
OSSQM is unbroken: only the excited states are threefold degenerate, while the nondegenerate
ground state has a vanishing energy. Such results agree with the general conclusions of Ref. [23].
For p values greater than two, the OSSQM algebra (6.1) becomes rather complicated because

the number of equations to be fulfilled increases considerably. A glance at the 18 independent
conditions for p = 3 led us to the conclusion that the A(4)(G(N)) algebra is not rich enough to
contain operators satisfying Eq.(6.1). Contrary to what happens for PSSQM, for OSSQM the
p = 2 case is therefore not representative of the general one.



Cλ-Extended Oscillator Algebras: Theory and Applications 297

7 Conclusion

In this communication, we showed that the S2-extended oscillator algebra, which was introduced
in connection with the two-particle Calogero model, can be extended to the whole class of Cλ-
extended oscillator algebras A(λ)

α0α1...αλ−2 , where λ ∈ {2, 3, . . .}, and α0, α1, . . . , αλ−2 are some
real parameters. In the same way, the GDOA realization of the former, known as the Calogero–
Vasiliev algebra, is generalized to a class of GDOAs A(λ)(G(N)), where λ ∈ {2, 3, . . .}, for
which one can define a bosonic oscillator Hamiltonian H0, acting in the bosonic Fock space
representation.
For λ ≥ 3, the spectrum of H0 has a very rich structure in terms of the algebra parameters

α0, α1, . . . , αλ−2. This can be exploited to provide an algebraic realization of SSQM with cyclic
shape invariant potentials of period λ, a bosonization of PSSQM of order p = λ − 1, and, for
λ = 3, a bosonization of pseudoSSQM and OSSQM of order two.
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Some difficulties of the construction of quantum group gauge field theory on the classical and
quantum spacetime are clarified. The classical geometric interpretation of the ghost field is
generalized to case of the quantum group gauge field theory.

1 Introduction

The notation of a generalized Lie group as a noncommutative and noncocommutative Hopf
algebra was done by Drinfeld [1], Jimbo [2], Woronowicz [3]. The first step in the construction
of noncommutative dynamics was undertaken by I.G. Biedenharn [4] and McFarlane [5] in their
study of the quantum noncommutative harmonic oscillator. From this period attempts were
undertaken to construct deformed dynamical theories [6, 7, 8, 9], in particular, the deformed
gauge theory named the quantum group gauge field theory with the quantum group playing the
role of the gauge group. The conceptual problems concerning of the definition of the gauge field
theory where the quantum group is considered as object of the gauge symmetry, i.e. the quantum
group gauge field theory are not settled. Such theories investigated by Bernard [10], Aref’eva and
Volovich [11], Hietarinta [12], Isaev and Popowicz [13], Bernard [10], Watamura [15], Brzezinski,
Majid [16, 17], Hajac [18], Sudbery [19]. The deformed gauge field theory is interesting from
various points of view. The enlargement of the rigid frameworks of the gauge theory would
help to solve the fundamental theoretical problems of the spontaneos symmetry breaking and
the quark confinement. In particular, in the quantized deformed gravity theory the spacetime
becomes noncommutative and could possible provide the regularization mechanism. In the
quantized gauge theory the deformation could be interpreted as a kind of the symmetry breaking,
which does not reduce the symmetry but deforms it. This mechanism could give the masses to
some vector bosons without the necessity to consider Higgs fields. There are two approaches in
the construction of q-deformed dynamical field theory. The spacetime in one of them is assumed
to be the usual manifold and it deforms only the structure of the dynamical variables. In the
second approach the spacetime becomes the quantum (noncommutative) manifold.

2 The quantum group gauge field theory on the classical spaces

2.1. The classical gauge field theory. Let T a, a = 1, 2, . . . , N be generators of the Lie
algebra of some compact Lie group G satisfying the relations

[Ta, Tb] = fabcT c, (1)
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where fabc are structure constants of this algebra. The basic objects of nonabelian gauge theory
are the gauge fields – the Yang–Mills potentials. These are the set of vector fields Aa

µ(x),
a = 1, 2, . . . , N , µ = 0, 1, 2, 3. The matrix gauge potentials

Aµ(x) = T aAa
µ(x) (2)

define the matrix strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (3)

or in component form

Fµν = T aF a
µν , Fµν = ∂µA

a
ν − ∂a

νAµ + fabcAb
µA

c
ν . (4)

The Lagrangian density of the theory

L = −1/4F a
µνF

aµν (5)

is invariant under the gauge transformation

Aµ → g(x)−1Aµg(x) + g(x)−1∂µg(x), (6)

where g(x) = exp{εa(x)T a}, and εa(x) are real functions. The transformation (6) can be written
in the infinitesimal form as

δAa
µ = fabcεb(x)Ac

µ(x) − ∂µε
a(x), δF a(x) = fabcεbF c(x). (7)

In the following we shall review the several approaches in the construction of the q-deformed
gauge field theory.

2.2. The construction based on the differential extension of the quantum group
Gq [13, 11]. The main efforts in this approach were directed to keep the classical form of the
gauge transformation for the gauge potentials. The problem is in the following. Let A be an
element of some extension of the quantum group Gq. What differential calculus on this group
should be considered and from what extension of this group should be taken the potential A to
guarantee that the gauge transformed element A′ also belongs to that extension. In some cases
this problem were solved [13, 11].

2.3. The construction based on the bicovariant differential calculus on the quantum
group [14]. There are many methods to deform a Lie algebra. The one of them is the method
of the bicovariant differential calculus on the quantum groups.

Definition 2.1. A bicovariant bimodule over Hopf algebra A is a triplet (Γ,∆L,∆R) bimodule Γ
over A and of linear mappings

∆L : Γ → A⊗ Γ, ∆R : Γ → Γ ⊗A
such that diagrams

1.
Γ ∆L−→ A⊗ Γ

∆L ↓ ↓ 1 ⊗ ∆L

A⊗ Γ ∆⊗1−→ A⊗A⊗ Γ
,

Γ ∆L−→ A⊗ Γ
↘ ↓ ε⊗ id

k ⊗ Γ

2.
Γ ∆R−→ Γ ⊗A

∆R ↓ ↓ 1 ⊗ ∆R

Γ ⊗A id⊗∆−→ Γ ⊗A⊗A
,

Γ ∆R−→ Γ ⊗A
↘ ↓ id⊗ ε

Γ ⊗ k
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3.
Γ ∆R−→ Γ ⊗A

∆L ↓ ↓ ∆L ⊗ id

A⊗ Γ id⊗∆R−→ A⊗ Γ ⊗A

commute and

4. ∆L(aωb) = ∆L(a)∆ω∆L(b), ∆R(aωb) = ∆R(a)∆ω∆R(b).

Definition 2.2. A first order differential calculus over Hopf algebra A is a pair (Γ, d), where Γ
is bimodule over A, and the liner mapping d : A → Γ such that d(ab) = dab + adb and Γ =
{adb : a, b ∈ A}.
Definition 2.3. A first order differential calculus is called bicovariant differential calculus
on the quantum group if (Γ,∆L,∆R) is a bicovariant bimodule and ∆L(da) = (id ⊗ d)∆(a),
∆R(da) = (d⊗ id)∆(a).

Definition 2.4. A first order differential calculus is called universal if Γ = ker m, m : A⊗A →
A is multiplication map in algebra A, and d = 1 ⊗ a− a⊗ 1.

It easy to see that d : A → Γ is linear map satisfying the Leibnitz rule, Γ has the bimodule

structure c
(∑

k

ak ⊗ bk

)
=

∑
k

cak ⊗ bk,
(∑

k

ak ⊗ bk

)
c =

∑
k

ak ⊗ bkc and every element of Γ has

the form
∑
k

akdbk.

Definition 2.5. A Z2-graded complex differential algebra (Ω, d) is Z2-graded complex algebra
Ω = Ω+ + Ω−,equipped with the graded derivation d which is odd and of square zero dΩ+,− ⊂
Ω−,+, d2 = 0.

Every first order differential calculus (Γ, d) generate Z2-graded complex differential algebra
(Ω(A), d). A complex differential algebra generated by universal calculus is called a differential
envelop of A and is denoted as (ΩA, d). The space dual to the left-invariant subspace Γinv can
be introduced as a linear subspace of A′ whose basis elements χi ∈ A′ are defined by

da = χi ∗ aωi for all a ∈ A. (8)

The analogue of the ordinary permutation operator is a bimodule automorphism Λ in Γ ⊗ Γ
defined by

Λ
(
ωi ⊗ ηj

)
= ηj ⊗ ωi, (9)

i.e. Λ(aτ) = aΛ(τ), Λ(τb) = Λ(τ)b, where a ∈ A, τ ∈ Γ⊗Γ. With the help of braiding operator Λ
the exterior product of the elements ρ, ρ′ ∈ Γ is given

ρ
∧
ρ′ = ρ⊗ ρ′ − Λ(ρ⊗ ρ′), (10)

ωi
∧
ωj = ωi ⊗ ωj − Λij

kl

(
ωk ⊗ ωl

)
. (11)

The exterior product of two left invariant forms satisfies the relation

ωi
∧
ωj =

1
q2 + q−2

[
Λij

kl +
(
Λ−1

)ij

kl

]
ωk

∧
ωl. (12)
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There exists an adjoint representation M i
j of the quantum group defined by the right action on

the left invariant ωi

∆R

(
ωi

)
= ωi ⊗M i

j , M i
j ∈ A. (13)

The bicovariant calculus on a Gq is characterized by the functionals χi and f i
j on A satisfying

χiχj − Λkl
ijχkχl = Ck

ijχk, (14)

Λnm
ij f i

pf
i
q = fn

i f
m
j Λij

pq, (15)

Ci
mnf

m
j f

n
k = Λpq

jkχpf
i
q + Cl

jkf
i
p, (16)

χn
kf

n
l = Λij

klf
n
i χj , (17)

where Λij
kl = f i

l (M j
k), Ci

jk = χk(M i
j). In adjoint representation these conditions have the form

Cn
riC

s
nj −Rkl

ijC
n
rkC

s
nl = Ck

ijC
s
rk, (18)

Λnm
ij Λik

rpΛjs
kq = Λnk

ri Λms
kj Λij

pq, (19)

Ci
mnΛm

i Λi
jC

s
lk = Λnm

jk Λil
rqC

s
lp + Cm

jkΛis
rm, (20)

Cm
rkΛns

ml = Λij
klΛ

nm
ri Cs

mj . (21)

In this case the Lie algebra (1) of the gauge group of the classical gauge theory, taking into
account of (14), is replaced by the quantum Lie algebra

TaTb − Λcd
abTcTd = Cc

abTc. (22)

As in the classical case (2) the gauge field is defined by the same formula Aµ = Aa
µTa, but now

the gauge potentials are noncommutative and satisfy the commutation relations

Aa
[µA

b
ν] = − 1

q2 + q−2

(
Λ + Λ−1

)ab

cd
Ac

[µA
d
ν]. (23)

The field strength can be represented in the form

F a
µν = ∂[µA

a
ν] + P kl

A mnC
a
klA

m
[µA

n
ν], (24)

where Cn
kl = Cn

kl − Λij
klC

n
ij . The deformed gauge transformations are assumed to have the form

δA = −dε−Aε+ εA, ε = εaTa. (25)

The gauge parameters ε are q-numbers and are assumed to have the following commutation
relations

εaAa = Λab
mnε

n. (26)

Then F is transformed as δF = εF − Fε and the deformed Lagrangian density L = F a
µνF

b
µνgab

is invariant under transformations (25) if

Λnb
rsC

a
mngab + Cb

rsgmb = 0. (27)
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2.4. The construction based on the quantum deformation of the BRST algebra
[6, 15, 9]. One of the alternative formulations of the gauge field theory is the BRST method.
In this approach the BRST transformation s is defined and parameter ε(x) is replaced by the
ghost field C(x). If we restrict ourselves by the pure Yang–Mills field theory, then BRST
transformations are reduced to the form

sAa
µ = ∂Ca + fa

bcA
b
µC

C , sCa = −1
2
fa

bcC
bCc. (28)

The gauge field strength F a is transformed covariantly sF a = fa
bcF

bCc. As was noted in [17]
if we use the gauge symmetry of the Hopf algebra then it is necessary to formulate all theory
in the algebraic frameworks. The gauge transformations should be represented in the abstract
language. As we saw at (26) it is not known to what algebra belongs the set of the parameters.
The idea of [6] is as follows: replace local gauge parameters of the theory by the ghost fields
which now placed at same level as the gauge and matter fields. The formulation of all theory is
algebraic.

3 The quantum group gauge field theory on the quantum spaces

3.1. The geometrical meaning of the gauge field potentials [21]. Let P and M be
smooth manifolds, a Lie group G smooth acting on P and the differentiable principal fiber
bundle P (M,G) over M with the group G. A global (local) cross-section of a principal fiber
bundle is a map σ from the base space (neighbourhood Uα) to the bundle space P such that
π(σ(x)) = x, ∀x ∈ M (πσα(x) = x, ∀x ∈ Uα) Let ωα be a 1-form in Uα. It can be written in
terms of its components (Lie-algebra valued functions) Aµ

α(x)

ω =
∑

µ

Aµ
α(x)dxµ. (29)

Suppose we transform σα into σ′α by the action of some g ∈ G. If σ′α(x) = σα(x)g(x), then
ω′

α = σ′∗αω = A′µdxµ, where

A′
µ = g−1Aµg + g−1∂µg. (30)

This reproduces the gauge transformation formula for gauge potentials (6). The connection form
ω describes at the same time both the Yang–Mills potential and ghost fields. It is split into two
components of the gauge field φ which is horisontal and the ghost field χ which is normal to the
section σ. From the Cartan–Maurer theorem the equations follow:

sχ+ 1/2[χ, χ] = 0, sφ+Bχ = 0, (31)

which are the same as BRST transformation (28).

3.2. The construction based on the quantum group generalization of the fiber bundle
[17, 18]. The quantum group gauge field theory is constructed also in the framework of the fiber
bundle with the quantum structure group [17]. The Cartan–Maurer equation obtained by the
universal bicovariant differential calculus on quantum group is the same as BRST transformation
ghost fields of the quantum group gauge field theory. But for general quantum fiber bundle this
problem is open.
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Use of Quantum Algebras in Quantum Gravity
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After brief survey of appearance of quantum algebras in diverse contexts of quantum gravity,
we demonstrate that the particular deformed algebras, which arise within the approach of
J. Nelson and T. Regge to (2 + 1) anti-de Sitter quantum gravity (for space surface of
genus g) and which should generate algebras of independent quantum observables, are in
fact isomorphic to nonstandard q-deformed analogues U ′

q(son) (introduced in 1991) of Lie
algebras of the orthogonal groups SO(n), n being related to g as n = 2g + 2.

1 Introduction

Quantum or q-deformed algebras may appear in quantum (or q-versions of) gravity in various
situations. Let us mention some of them.

• Case of n spacetime dimensions (n ≥ 2), straightforward approach to construct q-gravity
(this is accomplished, e.g., in [1]). Basic steps are:

– Start with some version of quantum/q-deformed algebra isoq(n) (in [1] it is projected
out from the standard quantum algebras Uq(Br), Uq(Dr) of Drinfeld and Jimbo [2]). In the
particular Poincare algebra isoq(3, 1) exploited by Castellani, only those commutation relations
which involve momenta do depend on the parameter q, while the Lorentz subalgebra remains
non-deformed;

– Develop necessary bicovariant differential calculus;
– A q-gravity is constructed by “gauging” the q-analogue of Poincaré algebra. The resulting

Lagrangian turns out to be a generalization [1] (see also [3]) of the usual Einstein or Einstein–
Cartan one.

It is worth to emphasize that in this approach the obtained results, including physical impli-
cations, unambiguously depend on the specific features of chosen the q-algebra.

• Two-dimensional quantum Liouville gravity [4], within particular framework of quantiza-
tion, leads to the appearance [5] of quantum algebras such as Uq(sl(2,C)).

• Case of 3-dimensional (Euclidean) gravity. The simpl approach developed by Ponzano
and Regge [6] employs irreducible representations of the algebra su(2) labelled by spins j and
assigned to edges of tetrahedra in triangulation, the main ingredient being 6j-symbols of su(2).
Within natural generalization of this approach by Turaev and Viro [7], see also [8], the underlying
symmetry of the action (which can be related to Chern–Simons theory) is that of the quantum
algebra suq(2), and basic objects are q − 6j symbols. Due to this, physical quantities become
expressible through topological (knot or link) invariants. The parameter q takes into account the
cosmological constant and, on the other hand, is connected with the (quantized) Chern–Simons
coupling constant k as q = exp 2iπ

k+2 .
• (2 + 1)-dimensional gravity with or without cosmological constant Λ is known to possess

important peculiar features [9, 10]. Within the approach to quantization developed by J. Nelson
and T. Regge, specific deformed algebras arise [11, 12] for the situation with Λ < 0, and just
this fact will be of our main concern here.
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2 Nonstandard q-deformed algebras U ′
q(son), their advantages

As defined in [13], the nonstandard q-deformation U ′
q(son) of the Lie algebra son is given as

a complex associative algebra with n− 1 generating elements I21, I32, . . ., In,n−1 obeying the
defining relations (denote q + q−1 ≡ [2]q)

I2
j,j−1Ij−1,j−2 + Ij−1,j−2I

2
j,j−1 − [2]q Ij,j−1Ij−1,j−2Ij,j−1 = −Ij−1,j−2,

I2
j−1,j−2Ij,j−1 + Ij,j−1I

2
j−1,j−2 − [2]q Ij−1,j−2Ij,j−1Ij−1,j−2 = −Ij,j−1,

[Ii,i−1, Ij,j−1] = 0 if | i− j |> 1.

(1)

At q → 1, [2]q → 2 (non-deformed or classical limit), these go over into the defining relations of
the so(n) Lie algebras.

Among the advantages of these nonstandard q-deformed algebras with regards to the Drinfeld–
Jimbo quantum deformations, the following should be pointed out.

(i) Existence of the canonical chain of embedded subalgebras (from now on, we omit the
prime in the symbol)

Uq(son) ⊃ Uq(son−1) ⊃ · · · ⊃ Uq(so4) ⊃ Uq(so3)

in the case of Uq(son) and, due to this, implementability of the q-analogue of Gelfand–Tsetlin
formalism enabling one to construct finite dimensional representations [13, 14].

(ii) Existence, for all the real forms known in the nondeformed case q = 1, of their respective
q-analogues – the “compact” Uq(son) and the “noncompact” Uq(sop,s) (with p + s = n) real
forms. Moreover, each such form exists along with the corresponding chain of embeddings. For
instance, in the n-dimensional q-Lorentz case we have

Uq(son−1,1) ⊃ Uq(son−1) ⊃ Uq(son−2) ⊃ · · · ⊃ Uq(so3).

This fact enables one to develop the construction and analysis of infinite-dimensional represen-
tations of Uq(son−1,1), see [13, 15].

(iii) Existence of embedding Uq(so3) ⊂ Uq(sl3) generalizable [16] to the embedding of higher
q-algebras such that Uq(son) ⊂ Uq(sln), – the fact which enables construction of the proper
quantum analogue [16] of symmetric coset space SL(n)/SO(n).

(iv) If one attempts to get a q-analogue of the Capelli identity known to hold for the dual pair
sl2 ↔ son, nothing but this nonstandard q-algebra Uq(son) inevitably arises [17]. As a result, the
relation Casimir{Uq(sl2)} = Casimir{Uq(son)} is valid [17, 18] within particular representation.

(v) Natural appearance, as will be discussed in Sec.4, of these q-algebras within the Nelson–
Regge approach to 2 + 1 quantum gravity.

As a drawback let us mention the fact that Hopf algebra structure is not known for Uq(son),
although for the situation (iii) the nonstandard q-algebra Uq(son) was shown to be a coideal [16]
in the Hopf algebra Uq(sln).

Recall that it was (i), (ii) which motivated introducing in [13] this class of q-algebras.

3 Bilinear formulation of Uq(son)

Along with the definition in terms of trilinear relations (1) above, a ‘bilinear’ formulation of
Uq(son) can as well be provided. To this end, one introduces the generators (set k > l + 1,
1 ≤ k, l ≤ n)

I±k,l ≡ [Il+1,l, I
±
k,l+1]q±1 ≡ q±1/2Il+1,lI

±
k,l+1 − q∓1/2I±k,l+1Il+1,l
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together with Ik+1,k ≡ I+
k+1,k ≡ I−k+1,k. Then (1) imply

[I+
lm, I+

kl]q = I+
km, [I+

kl, I
+
km]q = I+

lm, [I+
km, I+

lm]q = I+
kl if k > l > m,

[I+
kl, I

+
mp] = 0 if k > l > m > p or if k > m > p > l;

[I+
kl, I

+
mp] = (q − q−1)(I+

lpI
+
km − I+

kpI
+
ml) if k > m > l > p.

(2)

Analogous set of relations exists which involves I−kl along with q → q−1 (denote this “dual” set
by (2′)). In the ‘classical’ limit q → 1 , both (2) and (2′) reduce to those of son.

To illustrate, we give the examples of n = 3, isomorphic to Fairlie–Odesskii algebra [19], and
n = 4 (recall that the q-commutator is defined as [X,Y ]q ≡ q1/2XY − q−1/2Y X):

Uq(so4) :




Uq(so3) : [I21, I32]q = I+
31, [I32, I

+
31]q = I21, [I+

31, I21]q = I32. (3)

[I32, I43]q = I+
42, [I+

31, I43]q = I+
41, [I21, I

+
42]q = I+

41,

[I43, I
+
42]q = I32, [I43, I

+
41]q = I+

31, [I+
42, I

+
41]q = I21,

[I+
42, I32]q = I43, [I+

41, I
+
31]q = I43, [I+

41, I21]q = I+
42,

(4)

[I43, I21] = 0, [I32, I
+
41] = 0, [I+

42, I
+
31] = (q − q−1)(I21I43 − I32I

+
41). (5)

The first relation in (3) is viewed as definition for the third generator I+
31; with this, the algebra is

given in terms of q-commutators. Dual copy of Uq(so3) involves the generator I−31 = [I21, I32]q−1

which enters the relations same as (3), but with q → q−1. Similar remarks concern the generators
I+
42, I

+
41, as well as (dual copy of) the whole algebra Uq(so4).

4 The deformed algebras A(n) of Nelson and Regge

For (2 + 1)-dimensional gravity with cosmological constant Λ < 0, the Lagrangian involves spin
connection ωab and dreibein ea, a, b = 0, 1, 2, combined in the SO(2, 2)-valued (anti-de Sitter)
spin connection ωAB of the form

ωAB =

(
ωab

1
αea

− 1
αeb 0

)
,

and is given in the Chern–Simons (CS) form [10]

α

8

(
dωAB − 2

3
ωA

F ∧ ωFB

)
∧ ωCDεABCD.

Here A,B = 0, 1, 2, 3, the metric is ηAB = (−1, 1, 1,−1), and the CS coupling constant is
connected with Λ, so that Λ = − 1

3α2 . The action is invariant under SO(2, 2), leads to Poisson
brackets and field equations. Their solutions (infinitesimal connections) describe space-time
which is locally anti-de Sitter.

To describe global features of space-time, of principal importance are the integrated connec-
tions which provide a mapping S : π1(Σ) → G of the homotopy group for a surface Σ into
the group G = SL+(2, R) ⊗ SL−(2, R) (spinorial covering of SO(2, 2)) and thoroughly studied
in [11]. To generate the algebra of observables, one takes the traces

c±(a) = c±(a−1) =
1
2
tr[S±(a)], a ∈ π1, S± ∈ SL±(2, R).
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For g = 1 (torus) surface Σ, the algebra of (independent) quantum observables was derived [11],
which turned out to be isomorphic to the cyclically symmetric Fairlie–Odesskii algebra [19]. This
latter algebra, however, is known to coincide [15] with the special n = 3 case of Uq(son). So,
natural question arises whether for surfaces of higher genera g ≥ 2, the nonstandard q-algebras
Uq(son) also play a role.

Below, the positive answer to this question is given.
For the topology of spacetime Σ×R (fixed-time formulation; Σ is genus-g surface), the homo-

topy group π1(Σ) is most efficiently described in terms of 2g + 2 = n generators t1, t2, . . . , t2g+2

introduced in [12] and such that

t1t3 · · · t2g+1 = 1, t2t4, ..., t2g+2 = 1, and
2g+2∏
i=1

ti = 1.

Classical gauge invariant trace elements (n(n− 1)/2 in total) defined as

αij =
1
2
Tr(S(titi+1 · · · tj−1)), S ∈ SL(2, R), (6)

generate concrete algebra with Poisson brackets, explicitly found in [12]. At the quantum level,
to the algebra with generators (6) there corresponds quantum commutator algebra A(n) specific
for 2+1 quantum gravity with negative Λ. For each quadruple of indices {j, l, k,m}, j, l, k,m =
1, . . . , n, obeying (see [12]) ‘anticlockwise ordering’

j
↙ ↖

l m
↘ ↗

k

(7)

the quantum algebra A(n) reads [12]:

[amk, ajl] = [amj , akl] = 0,

[ajk, akl] =
(
1− 1

K

)
(ajl − aklajk),

[ajk, akm] =
(

1
K

− 1
)
(ajm − ajkakm),

[ajk, alm] =
(
K − 1

K

)
(ajlakm − aklajm).

(8)

Here the parameter K of deformation involves both α and Planck’s constant, namely

K =
4α − ih

4α + ih
, α2 = − 1

3Λ
, Λ < 0. (9)

Note that in (6) only one copy of the two SL±(2, R) is indicated. In conjunction with this,
besides the deformed algebra A(n) derived with, say, SL+(2, R) taken in (6) and given by (8),
another identical copy of A(n) (with the only replacement K → K−1) can also be obtained
starting from SL−(2, R) taken in place of SL(2, R) in (6). This another copy is independent
from the original one: their generators mutually commute.
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5 Isomorphism of the algebras A(n) and Uq(son)

To establish isomorphism between the algebra A(n) from (8) and the nonstandard q-deformed
algebra Uq(son) one has to make the following two steps.

Redefine:
{
K1/2(K − 1)−1

}
aik −→ Aik,

Identify: Aik −→ Iik, K −→ q.

Then, the Nelson–Regge algebra A(n) is seen to translate exactly into the nonstandard q-
deformed algebra U ′

q(son) described above, see (2). We conclude that these two deformed
algebras are isomorphic to each other (of course, for K �= 1). Recall that n is linked to the
genus g as n = 2g + 2, while K = (4α − ih)/(4α + ih) with α2 = − 1

Λ .
Let us remark that it is the bilinear presentation (2) of the q-algebra Uq(son) which makes

possible establishing of this isomorphism. It should be stressed also that the algebra A(n) plays
the role of “intermediate” one: starting with it and reducing it appropriately, the algebra of
quantum observables (gauge invariant global characteristics) is to be finally constructed. The
role of Casimir operators in this process, as seen in [12], is of great importance. In this respect let
us mention that the quadratic and higher Casimir elements of the q-algebra Uq(son), for q being
not a root of 1, are known in explicit form [18, 20] along with eigenvalues of their corresponding
(representation) operators [20].

As shown in detail in [11], the deformed algebra for the case of genus g = 1 surfaces (tori)
reduces to the desired algebra of three independent quantum observables which coincides with
A(3), the latter being isomorphic to the Fairlie–Odesskii algebra Uq(so3). The case of g = 2 is
significantly more involved: here one has to derive, starting with the 15-generator algebra A(6),
the necessary algebra of 6 (independent) quantum observables. J. Nelson and T. Regge have
succeeded [21] in constructing such an algebra. Their construction however is highly nonunique
and, what is more essential, is not seen to be extendable to general situation of g ≥ 3.

6 Outlook

Our goal in this note was to attract attention to the isomorphism of the deformed algebras A(n)
from [12] and the nonstandard q-deformed algebras U ′

q(son) introduced in [13]). The hope is
that, taking into account a significant amount of the already existing results concerning diverse
aspects of U ′

q(son) (the obtained various classes of irreducible representations, knowledge of
Casimir operators and their eigenvalues depending on representations, etc.) we may expect for
a further progress concerning construction of the desired algebras of quantum observables for
space surfaces of genera g > 2.
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On Casimir Elements of q-Algebras U ′
q(son)

and Their Eigenvalues in Representations

A.M. GAVRILIK and N.Z. IORGOV

Bogolyubov Institute for Theoretical Physics, Metrologichna Street 14b, Kyiv 143, Ukraine

The nonstandard q-deformed algebras U ′
q(son) are known to possess q-analogues of Gel’fand–

Tsetlin type representations. For these q-algebras, all the Casimir elements (corresponding
to basis set of Casimir elements of son) are found, and their eigenvalues within irreducible
representations are given explicitly.

1 Introduction

The nonstandard deformation U ′
q(son), see [1], of the Lie algebra son admits, in contrast to

standard deformation [2] of Drinfeld and Jimbo, an explicit construction of irreducible represen-
tations [1, 3] corresponding to those of Lie algebra son in Gel’fand–Tsetlin formalism. Besides,
as it was shown in [4], U ′

q(son) is the proper dual for the standard q-algebra Uq(sl2) in the
q-analogue of dual pair (son, sl2).

Let us mention that the algebra U ′
q(so3) appeared earlier in the papers [5]. As a matter of

interest, this algebra arose naturally as the algebra of observables [6] in 2 + 1 quantum gravity
with 2D space fixed as torus. At n > 3, the algebras U ′

q(son) are no less important, serving as
intermediate algebras in deriving the algebra of observables in 2+1 quantum gravity with 2D
space of genus g > 1, so that n depends on g, n = 2g + 2 [7, 8]. In order to obtain the algebra
of observables, the q-deformed algebra U ′

q(so2g+2) should be quotiented by some ideal generated
by (combinations of) Casimir elements of this algebra. This fact, along with others, motivates
the study of Casimir elements of U ′

q(son).

2 The q-deformed agebras U ′
q(son)

According to [1], the nonstandard q-deformation U ′
q(son) of the Lie algebra son is given as

a complex associative algebra with n− 1 generating elements I21, I32, . . . , In,n−1 obeying the
defining relations (denote q + q−1 ≡ [2]q)

I2
j,j−1Ij−1,j−2 + Ij−1,j−2I

2
j,j−1 − [2]q Ij,j−1Ij−1,j−2Ij,j−1 = −Ij−1,j−2,

I2
j−1,j−2Ij,j−1 + Ij,j−1I

2
j−1,j−2 − [2]q Ij−1,j−2Ij,j−1Ij−1,j−2 = −Ij,j−1,

[Ii,i−1, Ij,j−1] = 0 if | i− j |> 1.

(1)

Along with definition in terms of trilinear relations, we also give a ‘bilinear’ presentation. To
this end, one introduces the generators (here k > l + 1, 1 ≤ k, l ≤ n)

I±k,l ≡ [Il+1,l, I
±
k,l+1]q±1 ≡ q±1/2Il+1,lI

±
k,l+1 − q∓1/2I±k,l+1Il+1,l
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together with Ik+1,k ≡ I+
k+1,k ≡ I−k+1,k. Then (1) imply

[I+
lm, I+

kl]q = I+
km, [I+

kl, I
+
km]q = I+

lm, [I+
km, I+

lm]q = I+
kl if k > l > m,

[I+
kl, I

+
mp] = 0 if k > l > m > p or k > m > p > l;

[I+
kl, I

+
mp] = (q − q−1)(I+

lpI
+
km − I+

kpI
+
ml) if k > m > l > p.

(2)

Analogous set of relations exists involving I−kl along with q → q−1 (let us denote this “dual” set
by (2′)). If q → 1 (‘classical’ limit), both (2) and (2′) reduce to those of son.

Let us give explicitly the two examples, namely n = 3 (the Odesskii–Fairlie algebra [5]) and
n = 4, using the definition [X,Y ]q ≡ q1/2XY − q−1/2Y X:

U ′
q(so4) :




U ′
q(so3) : [I21, I32]q = I+

31, [I32, I
+
31]q = I21, [I+

31, I21]q = I32. (3)

[I32, I43]q = I+
42, [I+

31, I43]q = I+
41, [I21, I

+
42]q = I+

41,

[I43, I
+
42]q = I32, [I43, I

+
41]q = I+

31, [I+
42, I

+
41]q = I21,

[I+
42, I32]q = I43, [I+

41, I
+
31]q = I43, [I+

41, I21]q = I+
42,

(4)

[I43, I21] = 0, [I32, I
+
41] = 0, [I+

42, I
+
31] = (q − q−1)(I21I43 − I32I

+
41). (5)

The first relation in (3) can be viewed as the definition for third generator needed to give
the algebra in terms of q-commutators. Dual copy of the algebra U ′

q(so3) involves the generator
I−31 = [I21, I32]q−1 and the other two relations similar to (3), but with q → q−1.

In order to describe the basis of U ′
q(son) we introduce a lexicographical ordering for the

elements I+
k,l of U ′

q(son) with respect to their indices, i.e., we suppose that I+
k,l ≺ I+

m,n if either
k < m, or both k = m and l < n. We define an ordered monomial as the product of non-
decreasing sequence of elements I+

k,l with different k, l such that 1 ≤ l < k ≤ n. The following
proposition describes the Poincaré–Birkhoff–Witt basis for the algebra U ′

q(son).

Proposition. The set of all ordered monomials is a basis of U ′
q(son).

3 Casimir elements of U ′
q(son)

As it is well-known, tensor operators of Lie algebras son are very useful in construction of
invariants of these algebras. With this in mind, let us introduce q-analogues of tensor operators
for the algebras U ′

q(son) as follows:

J±
k1,k2,...,k2r

= q∓
r(r−1)

2

∑′

s∈S2r

εq±1(s)I±ks(2),ks(1)
I±ks(4),ks(3)

· · · I±ks(2r),ks(2r−1)
. (6)

Here 1 ≤ k1 < k2 < · · · < k2r ≤ n, and the summation runs over all the permutations s of
indices k1, k2, . . . , k2r such that

ks(2) > ks(1), ks(4) > ks(3), . . . , ks(2r) > ks(2r−1), ks(2) < ks(4) < · · · < ks(2r)

(the last chain of inequalities means that the sum includes only ordered monomials). Symbol
εq±1(s) ≡ (−q±1)�(s) stands for a q-analogue of the Levi–Chivita antisymmetric tensor, �(s)
means the length of permutation s. (If q → 1, both sets in (6) reduce to the set of components
of rank 2r antisymmetric tensor operator of the Lie algebra son.)

Using q-tensor operators given by (6) we obtain the Casimir elements of U ′
q(son).
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Theorem 1. The elements

C(2r)
n =

∑
1≤k1<k2<...<k2r≤n

qk1+k2+···+k2r−r(n+1)J+
k1,k2,...,k2r

J−
k1,k2,...,k2r

, (7)

where r = 1, 2, . . . , �n
2 	 (�x	 means the integer part of x), are Casimir elements of U ′

q(son), i.e.,
they belong to the center of this algebra.

In fact, for even n, not only the product (which constitutes C
(n)
n ) of elements C

(n)+
n ≡ J+

1,2,...,n

and C
(n)−
n ≡ J−

1,2,...,n belongs to the center, but also each of them.

We conjecture that, in the case of q being not a root of 1, the set of Casimir elements C
(2r)
n ,

r = 1, 2, . . . , �n−1
2 	, and the Casimir element C

(n)+
n (for even n) generates the center of U ′

q(son),
i.e., any element of the algebra U ′

q(son) which commutes with all other elements can be presented
as a polynomial of elements from this set of Casimir elements.

Let us give explicitly some of Casimir elements. For U ′
q(so3) and U ′

q(so4) we have

C
(2)
3 = q−1I2

21 + I+
31I

−
31 + qI2

32 = qI2
21 + I−31I

+
31 + q−1I2

32,

C
(2)
4 = q−2I2

21 + I2
32 + q2I2

43 + q−1I+
31I

−
31 + qI+

42I
−
42 + I+

41I
−
41,

C
(4)+
4 = q−1I21I43 − I+

31I
+
42 + qI32I

+
41 = qI21I43 − I−31I

−
42 + q−1I32I

−
41 = C

(4)−
4 .

For U ′
q(so5) the fourth order Casimir element is

C
(4)
5 = q−2J+

1,2,3,4J
−
1,2,3,4 + q−1J+

1,2,3,5J
−
1,2,3,5

+ J+
1,2,4,5J

−
1,2,4,5 + qJ+

1,3,4,5J
−
1,3,4,5 + q2J+

2,3,4,5J
−
2,3,4,5,

where J+
i,j,k,l = q−1I+

jiI
+
lk − I+

kiI
+
lj + qI+

kjI
+
li and J−

i,j,k,l = qI−jiI
−
lk − I−kiI

−
lj + q−1I−kjI

−
li . For U ′

q(so6),
we present only the highest order Casimir element:

C
(6)+
6 = q−3I21I43I65 − q−2I+

31I
+
42I65 + q−1I32I

+
41I65 − q−2I21I

+
53I

+
64 + q−1I+

31I
+
52I

+
64

− I32I
+
51I

+
64 + q−1I21I54I

+
63 − I+

41I
+
52I

+
63 + qI+

42I
+
51I

+
63 − I+

31I54I
+
62 + I+

41I
+
53I

+
62

− q2I43I
+
51I

+
62 + qI32I54I

+
61 − q2I+

42I
+
53I

+
61 + q3I43I

+
52I

+
61.

Finally, let us give explicitly the quadratic Casimir element of U ′
q(son),

C(2)
n =

∑
1≤i<j≤n

qi+j−n−1I+
jiI

−
ji .

This formula coincides with that given in [4], and is a particular case of (7).

4 Irreducible representations of U ′
q(son)

Let us give a brief description of irreducible representations (irreps) of U ′
q(son). More detailed

description of these irreps can be found in [1, 3].
As in the case of Lie algebra son, finite-dimensional irreps T of the algebra U ′

q(son) are
characterized by the set mn ≡ (m1,n, m2,n, . . . , m�n

2
	,n) (here �x	 means the integer part of x) of



On Casimir Elements of q-Algebras U ′
q(son) and Their Eigenvalues in Representations 313

numbers, which are either all integers or all half-integers, and satisfy the well-known dominance
conditions

m1,n ≥ m2,n ≥ · · · ≥ mn
2
−1,n ≥ |mn

2
,n| if n is even,

m1,n ≥ m2,n ≥ · · · ≥ mn−1
2

,n ≥ 0 if n is odd.

To give the representations in Gel’fand–Tsetlin basis we denote, as in the case of Lie algebra son,
the basis vectors |α〉 of representation spaces by Gel’fand–Tsetlin patterns α. The representation
operators Tmn(I2p+1,2p) and Tmn(I2p,2p−1) act on |α〉 by the formulae

Tmn(I2p+1,2p)|α〉 =
p∑

r=1

(
Ar

2p(α)|m+r
2p 〉 −Ar

2p(m
−r
2p )|m−r

2p 〉
)
,

Tmn(I2p,2p−1)|α〉 =
p−1∑
r=1

(
Br

2p−1(α)|m+r
2p−1〉 −Br

2p−1(m
−r
2p−1)|m−r

2p−1〉
)
+ iC2p−1|α〉.

Here the matrix elements Ar
2p,B

r
2p−1, C2p−1 are obtained from the classical (non-deformed)

ones by replacing each factor (x) with its respective q-number [x] ≡ (qx − q−x)/(q − q−1);
besides, the coefficient 1

2 in the ‘classical’ Ar
2p is replaced with the lr,2p-dependent expression

(([lr,2p][lr,2p + 1])/([2lr,2p][2lr,2p + 2]))1/2, where lr,2p = mr,2p + p− r.

5 Casimir operators and their eigenvalues

The Casimir operators (the operators which correspond to the Casimir elements), within irre-
ducible finite-dimensional representations of U ′

q(son) take diagonal form. To give them explicitly,
we employ the so-called generalized factorial elementary symmetric polynomials (see [9]). Fix
an arbitrary sequence of complex numbers a = (a1, a2, . . .). Then, for each r = 0, 1, 2, . . . , N ,
introduce the polynomials of N variables z1, z2, . . . , zN as follows:

er(z1, z2, . . . , zN |a) =
∑

1≤p1<p2<···<pr≤N

(zp1 − ap1)(zp2 − ap2−1) . . . (zpr − apr−r+1). (8)

The Casimir operators in the irreducible finite-dimensional representations characterized by
the set (m1,n, m2,n, . . . , mN,n), N = �n

2 	, by the Schur Lemma, are presentable as (here 1
denotes the unit operator):

Tmn(C
(2r)
n ) = χ

(2r)
mn 1.

Theorem 2. The eigenvalue of the operator Tmn

(
C

(2r)
n

)
is

χ
(2r)
mn = (−1)rer([l1,n]2, [l2,n]2, . . . , [lN,n]2|a)

where a = ([ε]2, [ε+1]2, [ε+2]2, . . .), lk,n = mk,n +N − k+ ε. Here ε = 0 for n = 2N and ε = 1
2

for n = 2N + 1.
In the case of even n, i.e., n = 2N ,

Tmn

(
C(n)+

n

)
= Tmn

(
C(n)−

n

)
=

(√−1
)N

[l1,n][l2,n] . . . [lN,n]1.

The eigenvalues of Casimir operators are important for physical applications. Let us quote
some of Casimir operators together with their eigenvalues. For U ′

q(so3),

T(m13)

(
C

(2)
3

)
= −[m13][m13 + 1]1.
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For U ′
q(so4) we have

T(m14,m24)

(
C

(2)
4

)
= − (

[m14 + 1]2 + [m24]2 − 1
)
1,

T(m14,m24)

(
C

(4)+
4

)
= T(m14,m24)

(
C

(4)−
4

)
= −[m14 + 1][m24]1.

Finally, for U ′
q(so5) the Casimir operators are

T(m15,m25)

(
C

(2)
5

)
= − (

[m15 + 3/2]2 + [m25 + 1/2]2 − [1/2]2 − [3/2]2
)
1,

T(m15,m25)

(
C

(4)
5

)
=

(
[m15 + 3/2]2 − [1/2]2

) (
[m25 + 1/2]2 − [1/2]2

)
1.

6 Concluding remarks

In this note, for the nonstandard q-algebras U ′
q(son) we have presented explicit formulae for

all the Casimir operators corresponding to basis set of Casimirs of son. Their eigenvalues in
irreducible finite-dimensional representations are also given. We believe that the described
Casimir elements generate the whole center of the algebra U ′

q(son) (of course, for q being not a
root of unity).

As mentioned, the algebras U ′
q(son) for n > 4 are of importance in the construction of algebra

of observables for 2+1 quantum gravity (with 2D space of genus g > 1) serving as certain
intermediate algebras. For that reason, the results concerning Casimir operators and their
eigenvalues will be useful in the process of construction of the desired algebra of independent
quantum observables for the case of higher genus surfaces, in the important and interesting case
of anti-De Sitter gravity (corresponding to negative cosmological constant).
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Discrete Subgroups of the Poincaré Group

W.H. KLINK
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The framework of point form relativistic quantum mechanics is used to construct interacting
four-momentum operators in terms of creation and annihilation operators of underlying
constituents. It is shown how to write the creation and annihilation operators in terms of
discrete momenta, arising from discrete subgroups of the Lorentz group, in such a way that
the Poincaré commutation relations are preserved. For discrete momenta the bosonic creation
and annihilation operators can be written as multiplication and differentiation operators
acting on a holomorphic Fock space. It is shown that with such operators matrix elements
of the relativistic Schrödinger equation become an infinite coupled set of first order partial
differential equations.

1 Introduction

In nonrelativistic quantum mechanics one often puts a system of interest in a box, in order to
deal with discrete momenta and avoid delta functions. This is equivalent to looking at rep-
resentations of discrete subgroups of the Euclidean group, the group consisting of rotations and
Galilei boosts, and itself a subgroup of the full Galilei group. It is of interest to see if the same
thing can be done for relativistic systems, and in particular to see what happens to relativistic
spin. The point of this paper is to show how to construct discrete subgroups of the Lorentz
group and then embed these discrete subgroups in a quasidiscrete Poincaré subgroup, in order
to construct interacting four-momentum operators.

The context for this work is point form relativistic quantum mechanics [1], wherein all in-
teractions are put in the four-momentum operators, and the Lorentz generators are free of
interactions. The Lorentz generators are readily exponentiated to give global Lorentz transfor-
mations; this is important since discrete subgroups do not have an associated Lie algebra. The
point form is to be contrasted with the more usual instant form of dynamics, where interactions
are present in the Hamiltonian and boost generators, and the momentum and angular momen-
tum generators are free of interactions (for a discussion of the various forms of dynamics, see
for example [2]).

One of the main reasons for introducing discrete subgroups is that the creation and anni-
hilation operators that are used to build the interacting four-momentum operators then have
discrete momenta in their arguments, and for bosonic creation and annihilation operators, can
be realized as multiplication and differentiation operators acting on a holomorphic Hilbert space.
In this representation matrix elements of the relativistic Schrödinger equation then take on the
form of an infinite coupled set of first order partial differential equations.

2 Point form quantum mechanics

In order to have a relativistic theory it is necessary to satisfy the commutation relations of
the Poincaré algebra. In quantum field theory this is done by integrating the stress-energy
tensor – made up of polynomials of field operators – over a time constant surface (see for
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example [3]). It is however also possible to integrate over the forward hyperboloid, in which
case the interactions will all be in the four-momentum operators, which must commute with one
another, [Pµ, P ν ] = 0, where µ and ν run between zero and three. Here Pµ = Pµ

fr + Pµ
I , the

sum of free and interacting four-momentum operators. Since Lorentz generators do not contain
interactions, it is more convenient to deal with representations of global Lorentz transformations,
written as UΛ, where Λ is a Lorentz transformation and UΛ the unitary operator representing
the Lorentz transformation. The Poincaré relations are then

[Pµ, P ν ] = 0, (1)

UΛP
µU−1

Λ = (Λµ
ν )

−1P ν . (2)

Since Pµ are the generators for space-time translations, the relativistic Schrödinger equation
can be written as

i�∂/∂xµ|Ψx〉 = Pµ|Ψx〉, (3)

where |Ψx〉 is an element of the Fock space and x (= xµ) is a space-time point. The space-time
independent Schrödinger equation is then

Pµ|Ψ〉 = pµ|Ψ〉, (4)

where pµ is an eigenvalue of Pµ. The mass operator is M :=
√

PµPµ and must have a spectrum
bounded from below.

For particles of mass m (m > 0) and spin j, it is well known that the irreducible representa-
tions of the Poincaré group can be written as

UΛ|p, σ〉 =
j∑

σ′=−j

|Λp, σ′〉Dj
σ′,σ(RW ), (5)

Ua|p, σ〉 = e−ipµaµ |p, σ〉, (6)

Pµ|p, σ〉 = pµ|p, σ〉. (7)

Here p is a four-momentum vector satisfying pµpµ = m2, σ is a spin projection variable, and |p, σ〉
is a (nonnormalizable) state vector. RW is a Wigner rotation (see, for example [4] and references
cited therein) and Dj

σ′,σ( ) an SU(2) D function. For infinitesimal space-time elements a,
equation (7) follows from equation (6).

To get a many-body theory, creation and annihilation operators are introduced which take
on the transformation properties of the single particle states, equations (5), (6):

[a(p, σ), a†(p′, σ′)]± = 2Eδ3(p− p′)δσ,σ′ , (8)

UΛa
†(p, σ)U−1

Λ =
j∑

σ′=−j

a†(Λp, σ′)Dj
σ′,σ(RW ), (9)

Uaa
†(p, σ)U−1

a = e−ipµaµa†(p, σ), (10)

where ± means commutator or anticommutator. Then a free four-momentum operator can be
written as

Pµ
fr =

∑
σ

∫
dp(pµ)a†(p, σ)a(p, σ) (11)
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and satisfies the Poincaré commutation relations, equations (1), (2). dp := d3p/2
√

m2 + p2 is
the Lorentz invariant measure.

The full interacting four-momentum operator, Pµ = Pµ
fr +Pµ

I , must also satisfy equation(1):

[Pµ, P ν ] = 0
= [Pµ

fr + Pµ
I , P ν

fr + P ν
I ]

= [Pµ
fr, P

ν
I ] + [Pµ

I , P ν
fr] + [Pµ

I , P ν
I ].

(12)

Equation(12) can be satisfied if [Pµ
I , P ν

I ] = 0 and [Pµ
fr, P

ν
I ] = [P ν

fr, P
µ
I ].

A natural way to construct an interacting four-momentum operator that satisfies these equa-
tions is with an interaction Lagrangian built out of local fields. While the long range goal is to
use discrete subgroups for pion-nucleon interactions, in this paper we will consider the simpler
case of a charged scalar meson interacting with a neutral meson. If a(p) and b(p) denote the
annihilation operators for the positively and negatively charged mesons, while c(k) denotes the
annihilation operator for the neutral meson, then local fields φ(x) and φ†(x) for the charged
mesons and χ(x) for the neutral meson are defined by

φ(x) =
∫

dp
(
e−ipµxµa(p) + eipµxµb†(p)

)
, φ†(x) =

∫
dp

(
e−ipµxµb(p) + eipµxµa†(p)

)
,

χ(x) =
∫

dk
(
e−ikµxµc(k) + eikµxµc†(k)

)
,

(13)

where pµpµ = m2 and kµkµ = m2
π.

An interacting four-momentum operator can be built out of these local fields by integrating
(say a trilinear coupling) over the forward hyperboloid:

Pµ
I = λ0

∫
d4xδ

(
xνxν − τ2

)
θ(x0)xµφ†(x)φ(x)χ(x); (14)

if derivative couplings, say of the form ∂φ†(x)/∂xα∂φ(x)/∂xαχ(x), and of all higher order deriva-
tives are also added on to equation (14), then an interacting four-momentum operator with an
arbitrary potential will result. That is, each differentiation of a field brings down a power of
momentum, and if these are all added together, and the integration over space-time carried out,
the interacting four-momentum operator will have the form,

Pµ
I (1) =

∫
dp dp′ dk∆µ(p− p′ + k)v(pαp′α,−pαkα, p

′
αk

α)a†(p)a(p′)c†(k), (15)

plus seven other terms of the same form involving different creation and annihilation ope-
rators. λ0 is a coupling constant and the coupling constants for all the higher derivatives
times the powers of momenta combine to give the potential function v( ). For example,
there is a term of the form a(p)b(p′)c†(k) in which the potential function has the argument

v(−pαp′α, p′αkα, pαkα). Thus, Pµ
I =

8∑
i=1

Pµ(i), and by construction satisfies equation (12).

∆µ(p) :=
∫
d4xδ

(
xαxα − τ2

)
θ(x0)xµeipαxα and comes from the exponentials in the field op-

erators. The full four-momentum operator, a sum of free four-momentum operators for the
three types of particles called a, b, and c and the interacting four-momentum operator, of the
form given in equation (15), satisfies the point form equations, equations (1) and (2) (this is
shown in reference [5]), and provides the starting point for the discrete subgroups of the Lorentz
group.



320 W.H. Klink

3 Discrete subgroups of the Lorentz group

In order for the arguments in the creation and annihilation operators introduced in section (2)
to become discrete, the Lorentz transformations which boost a particle from its rest frame must
be discrete:

pn = Λ(n)p(rest), (16)

where p(rest) is the rest frame four-momentum, p(rest) = (m, 0, 0, 0). To construct discrete
subgroups of the Lorentz group, it is convenient to start with Lorentz transformations along the
z direction, in which case the discrete elements have the form

Λz(n) =




chβn 0 0 shβn
0 1 0 0
0 0 1 0

shβn 0 0 chβn


 . (17)

For a fixed constant β, the set of elements with n ranging over all positive and negative integers
forms a discrete subgroup of the group of all z axis Lorentz transformations. The minimum
momentum is p1 = m shβ and in the limit where β goes to zero, n to infinity, such that βn = α,
one recovers the continuum limit.

Next consider the finite rotation subgroups of the full rotation group, SO(3), and in particular
the crystallographic subgroups denoted by SO(3)D (see for example [6], chapters two and four).
Now arbitrary Lorentz transformations can be written as

Λ = RΛzR
′, (18)

where R, R′ are elements of SO(3). Then discrete subgroups SO(1, 3)D of the continuous
Lorentz group SO(1, 3) have elements of the form

ΛD = RDΛz(n)R′
D, (19)

where RD, R′
D are elements of SO(3)D. Thus the relevant discrete subgroups of the Lorentz

group are indexed by the finite subgroups of the rotation group.
The discrete Lorentz transformations can now be adjoined to space-time translations to give

groups with a Poincaré-like structure. Because of the semidirect product nature of the Poincaré
group, the Lorentz transformations act on space-time translations, but not the other way around.
Hence it is possible to adjoin discrete Lorentz transformations to continuous space-time transla-
tions and still get a group structure. These groups will be called quasi-discrete Poincaré groups
and denoted by PD, with a group law given by

(ΛD, a)(Λ′
D, a′) = (ΛDΛ′

D,ΛDa+ a′), (20)

with ΛD in SO(1, 3)D and a in R4.
The representations of PD are obtained in exactly the same way as the ordinary Poincaré

group representations, namely as induced representations [4]. For positive mass representations
the little group is now SO(3)D and the action of a discrete Lorentz transformation on a state
with discrete four-momentum pD and spin projection σ is given by

UΛD
|pD, σ〉 =

j∑
σ′=−j

|ΛDpD, σ′〉Dj
σ′,σ(RW ), (21)
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where now RW is a discrete Wigner rotation given by

RW = B−1(ΛDpD)ΛDB(pD), (22)

with the discrete momenta given by pD = B(pD)p(rest), and B(pD) a boost (coset) repre-
sentative of SO(1, 3)D with respect to SO(3)D. It should be noted that since the irreducible
representations of all the finite subgroups of SO(3) are bounded in their spin values [6], the
irreducible representation label j in equation (21) can only take on low lying spin values. Thus
relativistic spin is well-defined for the discrete subgroups of the Lorentz group, but bounded in
its possible values.

Given the representations of PD, creation and annihilation operators with discrete arguments
can be defined in the usual way:

|pD, σ〉 = a†(pD, σ)|0〉,
[a(pD, σ), a†(p′D, σ′)]± = δpD,p′Dδσ,σ′ , Pµ

fr =
∑
σ,pD

pµ
Da†(pD, σ)a(pD, σ). (23)

A problem however arises when attempting to define local fields. As an example take the charged
scalar field, equation (13) with

φD(x) :=
∑
pD

e−ipµ
Dxµa(pD) + eipµ

Dxµb†(pD),

UΛD
φD(x)U−1

ΛD
= φD(ΛDx), UaφD(x)U−1

a = φD(x+ a).

(24)

But

[φ(x), φ†(y)] =
∑
pD

e−ipµ
D(xµ−yµ) − eipµ

D(xµ−yµ) := ∆D(x− y). (25)

Then ∆D(ΛDx) = ∆D(x) and ∆D(−x) = −∆D(x). However, for x spacelike, there is in general
no ΛD such that ΛDx = −x; rather there is only a restricted set of space-time points x satisfying
this equation. Therefore in general ∆D(x) �= 0 for x spacelike and φD(x) is not local.

It is nevertheless still possible to define the discrete analogue of the interacting four-mo-

mentum operator, Pµ
ID

so that the sum Pµ
ID

=
8∑

i=1
Pµ

ID
(i), as in equation (15), satisfies the point

form equations, equation (1), with now the Lorentz transformations replaced by discrete Lorentz
transformations (proofs of these statements are given in reference [7]).

4 Matrix elements of the point form
relativistic Schrödinger equation

To conclude we show how to convert the point form equations, equations (1), (2), and (4) into
a set of coupled first order partial differential equations. To keep the formalism as simple as
possible we consider one space and one time dimension only. Then the bosonic creation and
annihilation operators, c†(kn) and c(kn), can be replaced, respectively, by zn and ∂/∂zn, with
the bosonic Fock space now a holomorphic Hilbert space:

F(π) = {f(Z)|‖f‖2 < ∞, f holomorphic}, (26)

with a differentiation inner product given by (f, f ′) = f�(∂/∂Z)f ′(Z)|Z=0, where Z denotes
the set of complex variables {zn} with n running over all the integers (see for example [8] and
references therein).
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Typical terms in the full four-momentum operator have the following form:

Pµ
fr(π) =

∑
n

kµ
nzn∂/∂zn, Pµ

I (1) =
∑

n,n′,m

vµ(n, n′,m)a†(n)a(n′)zm, (27)

where now vµ(n, n′,m) includes both the ∆µ and the potential v() terms of the four-momentum
operator, equation (15).

The goal is now to convert the relativistic Schrödinger equation, equation (4), into a coupled
set of first order partial differential equations; this is possible because in all the terms in the full
four-momentum operator, the meson annihilation operator, ∂/∂zn, never appears as a product
with itself, but only as a product with other creation and annihilation operators. Therefore
matrix elements of the relativistic Schrödinger equation will give a set of coupled first order
differential equations.

The a, b creation and annihilation operators always occur in pairs that conserve baryon
number, and hence it is easily shown that Pµ commutes with the baryon number operator,
defined by

B̂ =
∑

n

a†(n)a(n) + b†(n)b(n), (28)

with positive or negative integers as eigenvalues. The Fock space thus decomposes into baryon
number sectors, and there will be a coupled set of differential equations for each baryon number
sector.

As an example consider the B = 0 sector, the physical vacuum, one pion, . . ., sector, for
which the wave function can be written as

|ΨB=0〉 = f (0)(Z)|0〉+
∑
n,n′

f (2)(Z, n, n′)|n, n′〉+ · · · , (29)

that is, a superposition of 0, 1, 2, . . . particle-antiparticle pairs, where in each term there is a
function of Z representing the meson cloud. |0〉 in equation (29) designates the a, b type particle
bare vacuum only, since the bare meson vacuum is given by f(Z) = 1.

Taking B = 0 sector matrix elements of the relativistic Schrödinger equation with the wave
function given in equation (29),

〈0|Pµ|ΨB=0〉 = (mπ, 0)µ〈0|ΨB=0〉
〈m,m′|Pµ|ΨB=0〉 = (mπ, 0)µ〈m,m′|ΨB=0〉

... =
...

(30)

then gives a set of coupled partial differential equations in the ’meson cloud’ amplitudes,
f (0)(Z) for mesons with no particle-antiparticle pairs, f (2)(Z, n, n′) for mesons with one particle-
antiparticle pair having discrete momenta n and n′ respectively (actually momentum p =
m shβn and p′ = m shβn′ respectively).

The first and second of the equations given in equation (30) can be written more explicitly as

mπ

∑
n

kµ
nzn∂/∂znf

(0)(Z) +
∑

m,m′,n

vµ(m,m′, n)(zn + ∂/∂zn)f (2)(Z,m,m′)

= (mπ(v), 0)µf (0)(Z),
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∑
n

vµ(m,m′, n)(zn + ∂/∂zn)f (0)(Z) +m(pµ
m + pµ

m′)f (2)(Z,m,m′)

+mπ

∑
n

kµ
nzn∂/∂znf

(2)(Z,m,m′) +
∑
n,n′

vµ(m,n′, n)(zn + ∂/∂zn)f (2)(Z, n′,m′)

+4
∑
r,r′,n

vµ(r, r′, n)(zn + ∂/∂zn)f (4)(Z,m,m′, r, r′) = (mπ(v), 0)µf (2)(Z, p, p),

where mπ(v) is the eigenvalue for the physical (renormalized) pion, relative to the potential vµ.
If mπ(v) is set equal to zero, the resulting eigenfuction is the eigenfunction for the physical
vacuum. In all cases the eigenfunctions are those for a system at rest. Since the Lorentz boost
generators are kinematic, these eigenfunctions can always be boosted to an arbitrary momentum.
In terms of a column of unknown functions f (0), f (2), f (4), . . ., one gets a tridiagonal matrix of
first order partial differential equations. Possible methods of solution include truncating the f ’s
at some order, but that is the subject of another paper.

In conclusion we have shown how quasidiscrete subgroups of the Poincaré group can be used to
write the total four-momentum operator in terms of discrete momenta. This allows one to replace
the mesonic creation and annihilation operators by multiplication and differentiation operators
acting on a holomorphic Hilbert space. By taking matrix elements of the relativistic Schrödinger
equation in this representation, one gets a set of coupled first order partial differential equations,
in which the unknown functions are related to meson cloud amplitudes. Aside from the specific
application discussed in this paper, one can think of the quasidiscrete subgroups of the Poincaré
group as supplying a method for putting relativistic particles in a box.

It remains to find (at least approximate) solutions to the partial differential equations. More-
over this last section dealt only with systems in one spatial dimension, and to include spin, it
is necessary to go to three dimensions. Finally it would be very interesting to see if clothing
transformations [9] (see also [3], chapter 12), unitary transformations on the interacting four
momentum operator, could be found that give an interacting four-momentum operator in terms
of physical particles.
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We have performed classification of nonequivalent realizations of solvable four-dimensional
Lie algebras. Furthermore, the finite-dimensional invariant spaces are obtained which can be
utilized for construction of exactly solvable matrix models of one-dimensional Schrödinger
equation.

This paper is devoted to the application of realizations of four-dimensional Lie algebras for
the construction of exactly solvable matrix models of one-dimensional Schrödinger equation.

The paper is organized as follows. In first section we perform the construction of realizations
of solvable four-dimensional Lie algebras. Then from the realizations we pick out those for which
we can construct a model. In second section we describe the procedure of obtaining the invariant
spaces admitted by realizations of Lie algebras, which was found in first part of this paper, and
present the invariant spaces.

1 Realizations of four-dimensional Lie algebras

We will construct nonequivalent realizations of four-dimensional real Lie algebras in class of
matrix differential operators

Q = ξ(x)∂x + η(x), (1)

where ξ(x) is smooth real function, η(x) is a complex matrix. Here and below ∂x = d
dx .

Note that the classification of realizations of three-dimensional Lie algebras was done by
R. Zhdanov in [1].

Abstract Lie algebras of dimension n ≤ 5 have been classified by G.M. Mubarakzyanov in [2].
There are twelve algebras L4,j which are not direct sums of algebras of lower dimensions. Let
us consider the algebra L4,6 with non-zero commutation relations

L4,6 : [Q1, Q4] = aQ1, [Q2, Q4] = bQ2 −Q3, [Q3, Q4] = Q2 + bQ3, (a �= 0, b ≥ 0).

From [3] we know that any one of the operators Qi (i = 1, . . . 4) may be equal to ∂x or η(x). Let
Q1 = ∂x and other of operators have the form (1):

Qi = ξi(x)∂x + ηi(x), i = 2, 3, 4.

As [Q1, Q2] = [Q1, Q3] = 0, [Q1, Q4] = aQ1 then ξi = αi, ηi = Ai, i = 2, 3, α4 = ax, η4 = A4,
where αi ∈ R,Ai are arbitrary constant matrices r× r. Substituting Q1 = ∂x, Q2 = α2∂x +A2,
Q3 = α3∂x+A3, Q4 = ax∂x+A4 into the commutation relations we obtain (a− b)2 = −1. That
is why if Q1 = ∂x then there exist no realizations of algebra L4,6 in class of operators (1).

Let Q1 = η(x) and other operators have the form (1). Then all ξi(x) can not be equal to zero
simultaneously.
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If ξ2(x) �= 0, then the operator Q2 may be reduced to the operator Q2 = ∂x. In this case
from commutation relations it follows that Q3 = α3∂x+A3, Q4 = (b−α3)x∂x−A3x+A4, where
α3 ∈ R, Ai are arbitrary constant matrices. The check of the relation [Q3, Q4] = Q2 + bQ3 gives
α2

3 = −1. Hence, in this case algebra L4,6 has no realizations in the class of operators (1) too.
If ξ2(x) = 0, then or ξ3(x) �= 0 or ξ3(x) = 0 and ξ4(x) �= 0. The checking of commutation

relations shows that in this case algebra the L4,6 has no realizations in the class of operators (1).
If ξ2(x) = ξ3(x) = 0 and ξ4(x) �= 0, then operator Q4 may be reduced to the operator Q4 = ∂x

and the checking of commutation relations for the algebra L4,6 shows that Q1 = A exp(−ax),
Q2 = exp(−bx)(B cosx+C sinx), Q3 = exp(−bx)(C cosx−B sinx), where A, B, C are arbitrary
non-zero r × r matrices which satisfy the commutation relations

[A,B] = [A,C] = [B,C] = 0.

Below we give the list of nonequivalent realizations of the four-dimensional Lie algebras L4,j .

L1
4,1 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = Bx+ C,

[A,B] = [A,C] = 0, [B,C] = A.

L2
4,1 : Q1 = A, Q2 = −Ax+B, Q3 = 1

2Ax
2 −Bx+ C, Q4 = ∂x,

[A,B] = [B,C] = [A,C] = 0.

L1
4,2 : Q1 = ∂x, Q2 = ∂x +A, Q3 = β∂x +B, Q4 = x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = A+B.

L2
4,2 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = x∂x +Bx+ C,

[A,B] = 0, [B,C] = B, [A,C] = aA.

L1
4,3 : Q1 = ∂x, Q2 = A, Q3 = B, Q4 = x∂x + C,

[A,B] = [A,C] = 0, [B,C] = A.

L2
4,3 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = Bx+ C,

[A,B] = [B,C] = 0, [A,C] = A.

L3
4,3 : Q1 = Ae−x, Q2 = B, Q3 = −Bx+ C, Q4 = ∂x,

[A,B] = [B,C] = [A,C] = 0.

L1
4,4 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = x∂x +Bx+ C,

[A,B] = 0, [A,C] = A, [B,C] = A+B.

L2
4,4 : Q1 = Ae−x, Q2 = e−x(Ax+B), Q3 = e−x

(
1
2Ax

2 −Bx+ C)
, Q4 = ∂x,

[A,B] = [A,C] = [B,C] = 0.

L1
4,5 : Q1 = ∂x, Q2 = α∂x +A, Q3 = β∂x +B, Q4 = x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = B.

L2
4,5 : Q1 = A, Q2 = ∂x + εB, Q3 = ∂x + (1− ε)B, Q4 = (εb+ (1− ε)a)x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = (εa+ (1− ε)b)B.
L3

4,5 : Q1 = Ae−x, Q2 = e−ax(α∂x +B), Q3 = e−bx(β∂x + C), Q4 = ∂x,

[A,B] = −αA, [A,C] = −βB, [B,C] = αbC − βaB, a = b.

L4,6 : Q1 = Ae−ax, Q2 = e−bx(B cosx+ C sinx), Q3 = e−bx(C cosx−B sinx),
Q4 = ∂x, [A,B] = [A,C] = [B,C] = 0.
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L1
4,7 : Q1 = A, Q2 = −Ax+B, Q3 = ∂x, Q4 = x∂x − 1

2Ax
2 +Bx+ C,

[A,B] = 0, [A,C] = 2A, [B,C] = B.

L2
4,7 : Q1 = Ae−2x, Q2 = Be−x, Q3 = e−x(Bx− C), Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = −A.
L1

4,8 : Q1 = A, Q2 = ε∂x + (ε− 1)(Ax−B), Q3 = (1− ε)∂x + ε(Ax+B),

Q4 = (2ε− 1)x∂x + C, [A,B] = [A,C] = 0, [B,C] = (1− 2ε)B.

L2
4,8 : Q1 = A, Q2 = e−x(α∂x +B), Q3 = ex(β∂x + C), Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = −βB − αC +A, αβ = 0.

L1
4,9 : Q1 = A, Q2 = ∂x − ε(Ax+B), Q3 = ∂x + (1− ε)(Ax+B), Q4 = x∂x + C,

[A,B] = 0, [A,C] = 2A, [B,C] = (1− 2ε)B.

L2
4,9 : Q1 = Ae−(1+b)x, Q2 = e−x(εα∂x +B), Q3 = e−bx((1− ε)β∂x + C),

Q4 = ∂x, [A,B] = −ε(1 + b)Aα, [A,C] = (ε− 1)(1 + b)βA,
[B,C] = A+ εαbC + (ε− 1)βB.

L4,10 : Q1 = A, Q2 = B cosx+ C sinx, Q3 = C cosx−B sinx, Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = A.

L4,11 : Q1 = Ae−2ax, Q2 = e−ax(B cosx+ C sinx), Q3 = e−ax(C cosx−B sinx),
Q4 = ∂x, [A,B] = [A,C] = 0, [B,C] = A.

L1
4,12 : Q1 = Ae−x, Q2 = Be−x, Q3 = ∂x, Q4 = C,

[A,B] = 0, [A,C] = −B, [B,C] = A.

L2
4,12 : Q1 = A cosx+B sinx, Q2 = B cosx−A sinx, Q3 = α∂x + C, Q4 = ∂x,

[A,B] = 0, [A,C] = A+ αB, [B,C] = B − αA.

Here A, B, C are arbitrary constant r × r matrices, α, β are arbitrary constants, ε = 0, 1.
In what follows we shall consider only 2× 2 matrices. It is known [4], that any matrix may

be reduced to one of the forms
(
λ1 0
0 λ2

)
or

(
λ 1
0 λ

)
. After corresponding procedure we

conclude that realizations of algebras L1
4,1, L

1
4,2, L

1
4,3, L

1
4,4, L

1
4,7, L

2
4,7, L

1
4,9, L4,10, L4,11, L1

4,12

has no models. Thus we will seek models for realizations of Lie algebras L2
4,1, L

2
4,2, L

2
4,3, L

3
4,3,

L2
4.4, L

1
4,5, L

2
4,5, L

3
4,5, L4,6, L1

4,8, L
2
4,8, L

2
4,9, L

2
4,12.

2 Invariant spaces admitted by four-dimensional Lie algebras

The second step in construction of matrix models is description of invariant spaces for each of
obtained realizations of four-dimensional Lie algebras. This step we will show for an example of
realization of the Lie algebra L4,6.

It is known [3], that invariant space corresponding to the operator Q4 = ∂x have such form:

Π = Π1 ⊕Π2 =
∑

j

exp(λjx)P [mj ]�e1 +
∑

j

exp(λjx)R[nj ]�e2,

where P [mj ], R[nj ] are mj , nj-th degree polynomials in x.
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Acting on Π by the operator Q1 = A exp(−ax) we get

Q1Π = A exp(−ax)
∑

j

exp(λjx)P [mj ]�e1 +A exp(−ax)
∑

j

exp(λjx)R[nj ]�e2

=
∑

j

exp((λj − a)x)P [mj ]λ�e1 +
∑

j

exp((λj − a)x)R[nj ](λ�e2 + �e1)

=
∑

j

exp((λj − a)x)
(
λP [mj ] +R[nj ]

)
�e1 +

∑
j

exp((λj − a)x)R[nj ]λ�e2.

Let λ �= 0. Fix the minimum λ1. Then λ1−a < λ1. But this inequality is impossible. Hence,
a polynomial near exp(λ1 − a) must be R1 = 0, and respectively P 1 = 0. Thus all polynomials
are zero, and invariant space is empty. This case is not interesting for us, that is why we do not
consider the case λ = 0. So, the result of the action Q1 on Π has such form:

Q1Π =
∑

j

exp((λj − a)x)R[nj ]�e1.

The invariant space will have the form:

Π1 =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp(λkx)R[nk]�e2

)
, nk ≤ mk.

We act on Π1 by the operator Q2 = exp(−bx)(B cosx+ C sinx):

Q2Π1 =
∑

k

exp((λk − b− i)x)R[nk]((b2 + ic2)�e1 + (b1 + ic1)�e2)

+
∑

k

exp((λk − (a+ b)− i)x)P [mk](b1 + ic1)�e1.

Again we fix minimum λ1. Then degrees λk − b − i < λ1, λk − (a + b) − i < λk. That is why
R1 = P 1 = 0 or b1 + ic1 = 0. In the first case the invariant space is empty. Thus we take the
case for which b1 + ic1 = 0. Hence, the invariant space admitted by the operators Q1, Q2, Q4

should have such form:

Π2 =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp((λk − b− i)x)S[rk]�e1 + exp(λkx)R[nk]�e2

)
,

mk, rk ≥ nk.

Finally, we act on the space Π2 by operator Q3 = exp(−bx)(C cosx−B sinx):

Q3Π2 =
∑

k

(
exp((λk − b+ i)x)R[nk]((b2 − ic2)�e1 + (b1 − ic1)�e2)

+ exp((λk − a− b+ i)x)P [mk](b1 − ic1)�e1 + exp((λk − 2b)x)S[rk](b1 − ic1)�e1
)
.

After similar actions we obtain that b1 − ic1 = 0. This equality is possible when b1 = c1 = 0.
Hence invariant space admitted by the Lie algebra L4,6 has the following form:

Π =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp((λk − b− i)x)S[rk]�e1

+ exp((λk − b+ i)x)T [qk]�e1 + exp(λkx)R[nk]�e2

)
, qk,mk, rk ≥ nk.
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Moreover, matrices A, B, C are of the following form:

A =
(

0 1
0 0

)
, B =

(
0 b2
0 0

)
, C =

(
0 c2
0 0

)
.

Below we adduce invariant spaces for rest of four-dimensional Lie algebras.

L2
4,1 : Π =

∑
k

exp(λkx)P [mk]�e1 +
∑

k

exp(λkx)R[nk]�e2, mk ≥ nk + 2,

A = σ0, B = b2σ0, C = c1E + c2σ0.

L3
4,3 : Π =

∑
k

exp((λk − 1)x)S[rk]�e1 +
∑

k

exp(λkx)R[nk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

rk ≥ nk + 1, A = σ0, B = b2σ0, C = c1E + c2σ0.

L2
4,4 : Π =

∑
k

exp((λk − 1)x)S[rk]�e1 +
∑

k

exp(λkx)R[nk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

rk ≥ nk + 2, A = σ0, B = b2σ0, C = c2σ0.

L3
4,5 : Π =

K1∑
k=0

exp
((

−c1
β
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β
+ 1 + k

)
x

)
d∗k�e2,

K1 ≥ K2 + 2, dk, d
∗
k = const, A = λE + σ0, B = aσ0,

C =
c1
β
E +

c2
β
σ0 − aσ+, a = ±1.

L4,6 : Π =
∑

k

exp((λk − a)x)P [mk]�e1 +
∑

k

exp((λk − b− i)x)S[rk]�e1

+
∑

k

exp((λk − b+ i)x)T [qk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

qk,mk, rk ≥ nk, A = σ0, B = b2σ0, C = c2σ0.

L2
4,8 : 1. Π =

K1∑
k=0

exp
((

−c1
β

− k
)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β

− k
)
x

)
d∗k�e2,

K1 > K2, dk, d
∗
k = const, A = σ0, B =

1
β
σ0, C =

c1
β
E.

2. Π =
K1∑
k=0

exp
((

−b1
α
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−b1
α
+ k

)
x

)
d∗k�e2,

K1 > K2, dk, d
∗
k = const, A = σ0, B =

b1
α
E, C =

1
α
σ0.

L2
4,9 : 1. ε = 0, Π =

K1∑
k=0

exp
((

−c1
β
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β
+ 2 + k

)
x

)
d∗k�e2,

K1 ≥ K2, dk, d
∗
k = const, A = σ0, B =

1
b
σ0, C = c1E + c2σ0 − 2σ+.

2. ε = 1, Π =
K1∑
k=0

exp
((

−b1
α
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−b1
α
+ 1 + b+ k

)
x

)
d∗k�e2,

K1 ≥ K2, dk, d
∗
k = const, A = σ0, B =

b1
α
E +

b2
α
σ0 − (1 + b)σ+, C =

1
α
σ0.
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L2
4,12 : 1. Π =

∑
k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2

+
∑

k

exp((λk − i)x)T [qk]�e2 +
∑

k

exp((λk + i)x)V [tk]�e2,

nk, tk, qk ≤ mk, rk, sk, A = λE, B = αλE, C = c1E + (c2 − c1)σ+.

2. Π =
∑

k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2

+
∑

k

exp((λk − i)x)T [qk]�e2 +
∑

k

exp((λk + i)x)V [tk]�e2,

nk, tk, qk ≤ mk, rk, sk, A = λE, B = αλE, C = νE + σ0.

3. Π =
∑

k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

qk,mk, rk ≥ nk, A = σ0, B = b2σ0, C = c1E + c2σ0 + σ+.

Here P [mk], R[nk], S[rk], W [sk], T [qk], V [tk] are mk, nk, rk, sk, qk, tk-th degree polynomials in x

correspondingly, σ0 =
(

0 1
0 0

)
, σ+ =

(
0 0
0 1

)
, E =

(
1 0
0 1

)
, λ, α, β, ν, b1, b2, c1, c2 are

arbitrary constants, α, β �= 0.

3 Conclusions

The above realizations of Lie algebras and the corresponding invariant spaces will be used for
construction of exactly solvable 2 × 2 matrix Schrödinger models in future works. What is
more, Hermitian models present special interest since they describe physical models with real
eigenvalues of Hamiltonians.

The author would like to thank R.Z. Zhdanov for formulation of the problem and S.V. Spichak
and V.I. Lahno for discussion of some issues of this work.
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In the paper we consider the problem about the canonical form of linear operators on vector
spaces that are gradable by a partially ordered set with involution. In a natural and impor-
tant (from the practical point of view) case we establish a connection between this problem
and the problem of description representations of partially ordered sets with involution.

The problem of about the canonical form of linear operators on a finite-dimensional S-space
over a field k, where S = (A, ∗) is a partially ordered set with involution, was introduced by
the author in [1] (see also [2–4]). In present paper we reduce a natural and important (from the
practical point of view) case of this problem to the problem of description of representations of
partially ordered sets with involution.

1. Main concepts. Through out the paper all vector spaces are finite-dimensional and all
partially ordered sets (posets) are finite. A poset A with trivial involution ∗ is identified with A.
Under consideration of linear maps, morphisms, functors, etc. we use the right-side notations
(in particular, vector spaces are right).

For a poset with involution S = (A, ∗) and a field k we denote by modSk the category with
objects the vector k-spaces U = ⊕x∈AUx, where Ux∗ = Ux for all x ∈ A (such k-spaces are called
S-spaces over k), and with morphisms δ : U → U ′ those linear maps δ ∈ Homk(U,U ′) for which
δx∗x∗ = δxx for all x ∈ A and δxy = 0 if x � y (such maps are called S-maps) [1]; here δxy

denotes (as usual in analogous situations) the linear map of Ux into U ′
y, induced by the map δ).

If |A| = 1, the category modAk coincide with the category mod k of all (finite-dimensional)
vector k-spaces.

The set of all S-maps of U into U ′ (U and U ′ are S-spaces) is denoted by HomS.k(U,U ′). If
U is a S-space and C ⊂ A, UC denotes the subspace ⊕x∈CUx ⊂ U ; if, moreover, V is a k-space
and γ ∈ Homk(V,U), γC denotes the map of V into UC induced by γ; if γ is a map of a S-space
U into a S-space U ′, γC,D denotes the map of UC into U ′

D induced by γ.
Let S = (A, ∗) be a poset with involution and f = f(t) be a polynomial over k. We denote by

ΛS,k the category whose objects are the linear operators on S-spaces, i.e. the pairs (U,ϕ) formed
a S-space U and a map ϕ ∈ Homk(U,U). A morphism from (U,ϕ) to (U ′, ϕ′) is determined
by a S-map δ : U → U ′ such that ϕδ = δϕ′. By ΛS,k,f we denote the full subcategory of ΛS,k

consisting of all objects (U,ϕ) such that f(ϕ) = 0.

2. Formulation of the main result. Let f = f(t) be a polynomial over k. If x is a root
of f(t), r(x) denotes its multiplicity. We assume that each root of f(t) belongs to k and has
multiplicity < 3. For f = f(t), define a poset with involution P̂f = (Pf , ∗f ) in the following
way:

1) Pf consists of the triples (x, p, i) formed by a root x of f(t), and integer numbers p and i
such that 1 ≤ i ≤ p ≤ r(x);

2) (x, p, i) ≤ (y, q, j) if and only if x = y, and p ≥ q, i ≤ j or p ≤ q, j − i ≥ q − p;
3) x∗f = y for unequal x = (x, p, i) and y = (y, q, j) if and only if x = y and p = q.
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Let S = (A, ∗) be a poset with involution. A representation of S is (in our terms) a triple
(V,U, γ) formed by vector k-space V ∈ mod k, U ∈ modSk and a linear map γ ∈ Homk(V,U);
a morphism of representations (V,U, γ) → (V ′, U ′, γ′) is given by a pair (µ, ν) of linear maps
µ ∈ Homk(V, V ′) and ν ∈ HomS,k(U,U ′) such that γν = µγ′ (see [5]). Thus defined category is
denoted by Rk(S).

Denote by Rk(S || P̂f ), where S || P̂f is the direct sum of S and P̂f (i.e. S || P̂f = (A ∪ Pf , ∗),
A ∩ Pf = ∅ and ∗ on A ∪ Pf is induced by ∗ on A and ∗f on Pf ), the full subcategory of
Rk(S || P̂f ) consisting of all objects (V,U, γ) with γA : V → UA and γPf

: V → UPf
being

isomorphisms mod k.
In this paper we shall prove the following statement.

Theorem A. Let S = (A, ∗) be a poset with involution, and f = f(t) be a polynomial (over
k) such that each its root belong to k and has multiplicity < 3. Then the categories ΛS,k,f and
Rk(S || P̂f ) are equivalent.

3. Proof of Theorem A. Recall that a functor F : Φ → Ψ is called faithful (respectively,
full) if, for an arbitrary X,Y ∈ ObΦ, the map F : HomΦ(X,Y ) → HomΨ(X,Y ) is injective
(respectively, surjective); a functor F is called dense if each Y ∈ ObΨ is isomorphic to some
XF (a special case of a dense functor is a surjective on objects functor, i.e. such one that the
map F : ObΦ → ObΨ is surjective). According to the well-known theorem a functor F is
equivalence of categories if and only if it is full, faithful and dense.

For a P̂f -space U , we denote by [U ] a linear operator on U with the following (Jordan) matrix
([U ]xy), where x = (x, p, i) and y = (y, q, j) run through the set Pf :

[U ]x x = x1 for every x;
[U ]x y = 1 if x = y, p = q, i = j − 1;
[U ]x y = O in the remaining cases,

where 1 = 1U(x).
Define a functor F : Rk(S || P̂f ) → ΛS,k,f as follows:

(V,U, γ)F = (UA, γ
−1
A γPf

[UPf
]γ−1

Pf
γA) for an object (V,U, γ);

(µ, ν)F = νA,A for a morphism (µ, ν) : (V,U, γ) → (V ′, U ′, γ′).

Here S-map νA,A is a morphism in ΛS,k,f because the equality ϕνA,A = νA,Aϕ
′, where ϕ =

γ−1
A γPf

[UPf
]γ−1

Pf
γA and ϕ′ = (γ′A)

−1γ′Pf
[U ′

Pf
](γ′Pf

)−1γ′A, easily reduces to the obviously equality
[UPf

]νPf ,Pf
= νPf ,Pf

[U ′
Pf
] (using the equalities γAνA,A = µγ′A and γPf

νPf ,Pf
= µγ′Pf

which are
equivalent to the equality γν = µγ′)

It follows from the equalities γAνA,A = µγ′A and γPf
νPf ,Pf

= µγ′Pf
(taking into account the

invertibility of the maps γA and γPf
) that µ = 0 and ν = 0 whenever (µ, ν)F = 0. Hence the

functor F is faithful.
The functor F is full — for a morphism α : (V,U, γ)F → (V ′, U ′, γ′)F , we can take as a

morphism (µ, ν) : (V,U, γ) → (V ′, U ′, γ′) such that (µ, ν)F = α the following morphism:

µ = γAα(γ′A)
−1, νA,A = α, νPf ,Pf

= γ−1
Pf
γAα(γ′A)

−1γ′Pf
(νA,Pf

= 0, νPf ,A=0).

Finally, let us verify that the functor F is surjective on objects. If (W,ϕ) ∈ ΛS,k,f , denote by
W 0 the P̂f -space ⊕x=(x,p,i)∈Pf

Wx, whereWx = Ker (ϕ−x1W ), and fix a map λ ∈ Homk(W,W 0)
such that ϕ = λ[W 0]λ−1. Then we can take as the objects (V,U, γ) ∈ Rk(S || P̂f ) such that
(V,U, γ)F = (W,ϕ) the following object: V =W , UA =W , UPf

=W 0 and γA = 1UA
, γPf

= λ.
Thus the functor F is full, faithful and dense. Theorem A is proved.
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4. Generalization of Theorem A. Our theorem can be generalized to the case of an arbitrary
polynomial f(t). Here we consider the case when each root of f(t) belong to k and have an
arbitrary multiplicity r (1 ≤ r ≤ deg f).

In this situation we shall also need representations of so-called completed posets [6]. A com-
pleted poset consists of a poset B and an equivalence relation ∼ on B≤ = {(x, y) ∈ B×B|x ≤ y}.
These data are subjected to the condition that x ≤ z ≤ y and (x, y) ∼ (x′, y′) imply the existence
of a unique z′ satisfying x′ ≤ z′ ≤ y′, (x, z) ∼ (x′, z′) and (z, y) ∼ (z′, y′). In case (x, x) ∼ (x′, x′)
we shall write x ∼ x′; therefore it is possible to describe restriction of the relation ∼ on B. A
completed poset is called weakly completed if (x, y) ∼ (x′, y′) implies x = y and x′ = y′.

Let T = (B,∼) be a completed poset. A T -space (over k) is a B-space U = ⊕b∈BUb such
that Ux = Uy if x ∼ y. A T -map of U into U ′ (U and U ′ are T -spaces) is a B-map ϕ : U → U ′

such that ϕxy = ϕzt if (x, y) ∼ (z, t); HomT.k(U,U ′) denotes the set of all T -maps of U into U ′.
The category of T -spaces over k (whose objects and morphisms are, respectively, the T -spaces
and T -maps) is denoted by modTk.

Representations of a completed poset T = (B,∼) are defined in a way analogous to that for
a poset with involution S = (A, ∗). A representation of T = (B,∼) is (in our terms) a triple
(V,U, γ) formed by vector k-spaces V ∈ mod k, U ∈ modTk and a linear map γ ∈ Homk(V,U).
A morphism of representations (V,U, γ) → (V ′, U ′, γ′) is given by a pair (µ, ν) of linear maps
µ ∈ Homk(V, V ′) and ν ∈ HomT,k(U,U ′) such that γν = µγ′. The category of all representations
of T = (B,∼) is denoted by Rk(T ).

For f = f(t), we shall consider (instead of the poset with involution P̂f = (Pf , ∗f ) which was
considered above) the completed posets (P̃f ,∼f ), where Pf is defined by the conditions 1)
and 2), and the relations ∼f on P≤

f , defined in the following way: ((x, p, i, ), (x, q, j)) ∼f

((x′, p′, i′), (x′, q′, j′)) if, and only if, x = x′, p = p′, q = q′ and i − i′ = j − j′. This obvi-
ously implies that (x, p, i) ∼f (x′, p′, i′)) if and only if x = x′ and p = p′.

Let S = (A, ∗) be a poset with involution. We identify S with the weakly completed poset
(A,∼∗), where x ∼∗ x′ for x �= x′ if, and only if, x∗ = x′ (x, x′ ∈ A). Consider the direct
sum of S and P̃f : S || P̃f = (A,∼∗) || (Pf ,∼f ) .As in the case above denote by Rk(S || P̃f )
the full subcategory of Rk(S || P̃f ) consisting of all objects (V,U, γ) with γA : V → UA and
γPf

: V → UPf
being isomorphisms in mod k.

We have the following generalization of Theorem A.

Theorem B. Let S = (A, ∗) be a poset with involution, and f = f(t) be a polynomial (over k)
with roots belonging to k. Then the categories ΛS,k,f and Rk(S || P̃f ) are equivalent.
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In the present paper we consider irreducible representations of Poincaré parasuperalgebra
with central charges for even N and find the internal symmetry group for case PµP

µ > 0.
The generalization of Wess–Zumino model for N = 1 and arbitrary p is also obtained.

1 Introduction

Supersymmetry (SUSY), introduced in theoretical physics and mathematics, has a lot of in-
teresting applications [1]. One of them consists in mixing fermionic and bosonic states. It has
important consequences in the quantum field theory, namely, this property provides a mechanism
for cancellation of the ultraviolet divergences. Moreover, supersymmetric quantum field theory
(SSQT) allows to unify the space symmetries of the Poincaré group with internal symmetries [2].
It allows to overcome the“no-go” theorem of Coleman and Mandula.

Supersymmetric quantum field theory (SSQFT) induced appearance of supersymmetric quan-
tum mechanics (SSQM) [3]. SSQM stimulated deeper understanding of ordinary quantum me-
chanics and provided new ways for solving some problems [4].

SSQM has been generalized to the parasupersymmetric quantum mechanics (PSSQM) [5].
The latter deals with bosons and p = 2 parafermions having parastatistical properties. Here p
is the so-called paraquantization order [6]. Soon an independent version of PSSQM yielding to
positive defined Hamiltonians was proposed [7].

The crucial step in developing PSSQM was made by Beckers and Debergh [8] who required
Poincaré invariance of the theory and formulated the group-theoretical foundations of the so-
called parasupersymmetric quantum field theory (PSSQFT). This theory is a natural gener-
alization of SSQFT, dealing with the Poincaré parasupergroup (or Poincaré parasuperalgebra
(PPSA)) instead of the Poincaré supergroup (or Poincaré superalgebra (PSA)).

Recently IRs of the PPSA for N = 1 have been described [9] and then IRs for arbitrary N
and internal symmetry group have been found [10, 11].

The present paper consists of two main parts. In the first part we consider the Poincaré
parasuperalgebra with central charges. The second part includes the physical model, which is
invariant under the Poincaré parasuperalgebra.

2 Extended Poincaré parasuperalgebra

Definition of the PPSA and the main Casimir operators. The Poincaré parasuperalgebra
[8–11] is generated by ten generators Pµ, Jµν of the Poincaré group, satisfying the commutation
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relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPσ − gµσPν),

[Jµν , Jρσ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ),

Jµν = −Jνµ, µ, ν = 0, 1, 2, 3

(2.1)

and N parasupercharges QJ
α, (Q

J
α)

† (α = 1, 2, J = 1, 2, . . . , N), which satisfy the following
double commutation relations

[QI
α, [Q

J
β , Q

K
γ ]] = 4εαβZ

IJQK
γ − 4εαγZ

IKQJ
β ,

[(QI
α)

†, [(QJ
β)

†, (QK
γ )

†]] = 4εαβZ
∗IJ(QK

β )
† − 4εαγZ

∗IK(QJ
β)

†,

[QI
α, [Q

J
β , (Q

K
γ )

†]] = 4εαβZ
IJ(QK

γ )
† − 4QJ

β(σµ)αγP
µ,

[(QI
α)

†, [QJ
β , t(Q

K
γ )

†]] = 4(QK
γ )

†(σµ)αβP
µ − 4εαβZ

∗IKQJ
β ,

(2.2)

where σν are the Pauli matrices, (·)αγ stand for the matrix elements. Relations (2.1), (2.2)
include operators ZIJ , which we call the central charges. This definition is a direct generalization
of Poincaré superalgebra with central charges.

In analogy with the Poincaré superalgebra the central charges must satisfy the relations
Z∗

IJ = ZIJ , ZIJ = −ZJI and commute with generators of the PPSA. The spinor indices are
risen and dropped using the universal spinor εαβ (ε11 = ε11 = ε22 = ε22 = 0, ε12 = ε21 = 1,
ε21 = ε12 = −1).

In addition, we have the following commutation relations between the generators of the
Poincaré group and the parasupercharges:

[Jµν , Q
J
α] = − 1

2i
(σµν)αβ Q

J
β , [Pµ, Q

J
α] = 0,

[Jµν ,
(
QJ

α

)†
] = − 1

2i
(
σ∗

µν

)
αβ

(
QJ

β

)†
, [Pµ,

(
QJ

α

)†
] = 0.

(2.3)

The PPSA, as well as PSA, can be extended by adding the generators Σl of the internal
symmetry group, which satisfy the following relations:

[QI
α,Σl] = SI

lJQ
J
α, [Σl,

(
QI

α

)†
] = S∗I

lJ

(
QI

α

)†
, [Σl,Σm] = fk

lmΣk. (2.4)

By analogy with the PSA, Pσ and Jµν are called even and QJ
α,

(
QJ

α

)† are called odd elements
of the PPSA.

In the papers [8–11] two main Casimir operators were found. They have the form

C1 = PµP
µ, C2 = PµP

µBνB
ν − (BµP

µ)2, (2.5)

where

Bµ =
1
2
εµνρσJ

νρP σ + (σµ)AB Q̄I
AQ

I
B.

The eigenvalues of C1, C2 are used for the classification of irreducible representations (IRs) of
PPSA.

IRs with the central charges. Like the case of the ordinary Poincaré group, IRs of the PPSA
can be divided into three main classes I. PµP

µ > 0, II. PµP
µ = 0, III. PµP

µ < 0. It is known
[8–11] that for classes I and II there exists the additional Casimir operator C3 = P0/|P0|, whose
eigenvalues are ε = ±1. In other words, the classes I and II can be splitted into two subclasses
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corresponding to the fixed values of C3, and we will mark them by I+ and II+ (for class C3 = 1)
and I− , II− (for class C3 = −1).

The IRs for these main classes are described in [8–11]. Here we note that for the Poincaré
superalgebra only classes I+ and II+ exist (since the relevant generators P0 should be positive
defined).

Now let us consider the IRs of PPSA with central charges (2.1)–(2.3). In the present paper
we shall obtain the IRs for class I+. The rest of IRs will be considered in our forthcoming papers.

Thus, for class I+ we have C3 = 1 and Pµ = (M, 0, 0, 0) in the rest frame. The central
charges ZIJ have to be equal to the unit matrix multiplied by the numeric coefficients which
are elements of the N ×N antisymmetric matrix Z.

By means of the unitary transformation Z −→ Z̄ = UZU †, any such matrix can be reduced
to the quasidiagonal form

Z̃IJ = U I
LU

J
MZLM , (2.6)

where

Z̃IJ = ε⊗D (even N), Z̃IJ =
(
ε⊗D 0
0 0

)
(odd N), (2.7)

D is a diagonal matrix with the positive real entries Zm, and ε is the universal spinor. Relations
(2.2) are invariant under the simultaneous transformation

ZIJ −→ Z̃IJ = U IKULJZKJ , QI
A −→ Q̃I

A = UJKQK
A , (2.8)

where all nonzero ZIJ are exhausted by the following ones Z2m−1,2m = −Z2m,2m−1 = Zm.
Choosing a new basis

Q2m−1
1 =

1√
2
(Q̂2m−1

1 + Q̂2m
1 ), Q2m−1

2 =
1√
2
( ˆ̄Q2m

2 − ˆ̄Q2m−1
2 ),

Q2m
1 =

1√
2
(Q̂2m−1

2 + Q̂2m
2 ), Q2m

2 =
1√
2
( ˆ̄Q2m

1 − ˆ̄Q2m−1
1 ),

(2.9)

we reduce relations (2.2) in the rest frame P = (M, 0, 0, 0) to the form

[Q̂2k−1
A , [ ˆ̄Q2m−1

B , Q̂J
C ]] = δABδkm(2M − Zk)Q̂J

C ,

[Q̂2k
A , [ ˆ̄Q2m

B , Q̂J
C ]] = δABδkm(2M + Zm)Q̂J

C ,

[ ˆ̄Q2k−1
A , [Q̂2m−1

B , ˆ̄QJ
C ]] = δABδkm(2M − Zm) ˆ̄QJ

C ,

[ ˆ̄Q2k
A , [Q̂2m

B , ˆ̄QJ
C ]] = δABδkm(2M + Zm)Q̂J

C ,

(2.10)

the remaining double commutators of the parasupercharges are equal to zero.
Below we shall restrict ourselves to the case, where all Zm < 2M . Then, using the analogy

of (2.10) with the formulas from [11], we easily find the general solution of (2.10):

Q̂2m−1
A = (−1)A−1

√
2M − Zm(S4N+1, 8m−11+4A − iS4N+1, 8m−10+4A),

Q̂2m
A = (−1)A−1

√
2M + Zm(S4N+1, 8m−9+4A − iS4N+1, 8m−8+4A),

(2.11)

where SIJ are generators of SO(1, 4N + 1) satisfying the commutation relations

[Skl, Smn] = −i(gkmSln + glnSkm − gknSlm − glmSkm).
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Substituting (2.11) into (2.9), we obtain parasupercharges in the rest frame

Q2m−1
A =

√
M − Zm/2((−1)A−1S4N+1, 8m−11+4A − S4N+1, 8m−10+4A)

+
√
M + Zm/2(S4N+1, 8m−9+4A + i(−1)AS4N+1, 8m−8+4A),

Q2m
A =

√
M − Zm/2(−S4N+1, 8m−7+4A + i(−1)A−1S4N+1, 8m−6+4A)

+
√
M + Zm/2((−1)AS4N+1, 8m−5+4A + iS4N+1, 8m−4+4A).

(2.12)

In accordance with [11] the IRs of the class I+ of the PPSA with central charges Zm < 2M
are labeled by the following sets of numbers (M, j, n1, n2, . . . , n2N , Z1, Z2, . . . , Z{n

2
}), here j label

the IRs of SO(3); n1 ≥ n2 ≥ . . . ≥ n2N label the IRs of SO(1, 4N + 1); n1, n2, . . . , n2N are
either integer or half integer. Using the Lorentz transformation, we can find the basis elements
Pµ, Jµν , Q

j
α, Q̄J

α in arbitrary frame.

Internal symmetry group. The internal symmetry group for PPSA without central charges
was described in [11]. In paper [11] the authors showed that the internal symmetry group for
IRs of classes I+ and II+ and arbitrary N is SU(N).

Therefore, it is interesting to generalize these results to the case of nontrivial central charges.
In this paper we shall obtain the IRs of class I+, Zm < 2M , Zm 
= 0 and even N .

In analogy with SUSY it is easy to see that the internal symmetry group is smaller than
in the case of central charges, equal to zero. Indeed, considering the first of relations (2.2) for
α = β = 1, γ = 2:

[QJ
1 , [Q

J
2 , Q

K
1 ]] = 4ZIJQK

1 (2.13)

and evaluating the commutators of l.h.s. and r.h.s. of (2.13) with Σl and using (2.4) we come
to the following condition

SI
lJZ

JK = SK
lJZ

JI . (2.14)

In other words, the products of generators of the internal group with the matrix of central
charges should be symmetric matrices.

Now let us present the explicit description of internal symmetry algebra for IRs of class I+

and even N. In our case the internal symmetry algebra is isomorphic to Sp(N). The basis
elements have the following form

Akk = Z−1
k (−S8k−7, 8k−6 − S8k−5, 8k−4 + S8k−3, 8k−2 + S8k−1, 8k),

Bkk = Z−1
k (S8k−5, 8k − S8k−4, 8k−1 + S8k−7, 8k−2 − S8k−6, 8k−3)

+ i(S8k−5, 8k−1 + S8k−4, 8k + S8k−7, 8k−3 + S8k−6, 8k−2),

Ckk = (Bkk)†,

Akn = (f−
kn + f−

nk)Σkn + (f+
kn + f+

nk)Σk+2, n+2,

Bkn = f−
nkΣ̃kn + f−

knΣ
†
kn + f+

nkΣ̃k+2, n+2 − f+
nkΣ̃

†
k+2, n+2, n > k,

Ckn = (Bkn)†, n < k,

(2.15)

where

f±
kn =

1
Zn

√
2M ± Zk

2M ± Zn
, f±

nk =
1
Zk

√
2M ± Zn

2M ± Zk
,
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Σkn = S8k−7, 8n−6 − S8k−6, 8n−7 − S8k−3, 8n−2 + S8k−2, 8n−3

− i(S8k−7, 8n−7 + S8k−6, 8n−6 + S8k−3, 8n−3 + S8k−2, 8n−2),

Σ̃kn = −S8k−7, 8n−2 + S8k−6, 8n−3 + S8k−3, 8n−6 − S8k−2, 8n−7

− i(S8k−7, 8n−3 + S8k−6, 8n−2 + S8k−3, 8n−7 + S8k−2, 8n+6),

n 
= k, k, n = 1, 2, ..., N/2.

Matrices (2.18) commute with the generators of Poincaré group and satisfy the following
relations

[Akk, QJ
A] = Z−1

k (δJ, 2k−1 − δJ, 2k)QJ
A,

[Bkk, QJ
A] = 2Z−1

k δJ, 2k−1Q
J
2k,

[Ckk, QJ
A] = 2Z−1

k δJ, 2kQ
2k−1
A ,

[Akn, QJ
A] = δJ, 2k−1Z

−1
k Q2k−1

A − δJ, 2n−1Z
−1
n Q2k−1

A + δJ, 2kZ
−1
K Q2n

A − δJ, 2kZ
−1
n Q2k

A ,

[Bkn, QJ
A] = δj, 2k−1Z

−1
k Q2n

A + δJ, 2n−1Z
−1
n Q2k

A ,

[Ckn, QJ
A] = δJ, 2kZ

−1
k Q2n−1

A + δJ, 2nZ
−1
n Q2k−1

A ,

[Amn, Akl] = Z−1
k δknAml − Z−1

m δmlAnk,

[Amn, Bkl] = Z−1
n (δnkBml + δnlBmk),

[Amn, Ckl] = [Cmn, Ckl] = 0,

[Bmn, Ckl] = Z−1
k (δnkAml + δmkAnl) + Z−1

k (δnlAmk + δmlAnk).

Thus the internal symmery group for IRs of class I+, Zm < 2M , Zm 
= 0 and even N is Sp(N).

3 Parasupersymmetric Wess–Zumino model

Now let us consider the PPSA without the central charges in the terms of the paragrassmannian
variables for arbitrary p. Then the generators of PPSA will be of the form [8]:

Pµ = pµ = i
∂

∂xµ
,

J12 = x1p2 − x2p1 +
1
4
(θ1Q2 −Q2θ

1 − θ2Q1 +Q1θ
2),

J13 = x1p3 − x3p1 +
i

4
(θ1Q1 −Q1θ

1 − θ2Q2 +Q2θ
2),

J23 = x2p3 − x3p2 +
1
4
(θ1Q1 −Q1θ

1 − θ2Q2 +Q2θ
2),

J01 = x0p1 − x1p0 +
i

4
(Q1θ

1 − θ1Q1 − θ2Q2 +Q2θ
2),

J02 = x0p2 − x2p0 +
1
4
(Q2θ

1 − θ1Q2 + θ2Q1 −Q1θ
2),

J03 = x0p3 − x3p0 +
i

4
(θ2Q1 −Q1θ

2 − θ1Q2 +Q2θ
1),

Q1 =
∂

∂θ1
, (Q1)

† = −2((p3 − p0)θ1 + (p1 + ip2)θ2),

Q2 =
∂

∂θ2
, (Q2)

† = 2((p3 + p0)θ2 − (p1 − ip2)θ1),
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where θα are paragrassmanian variables defined by the Green anzats:

θα =
p∑

i=1

θ(i)
α ,

∂

∂θα
=

p∑
i=1

∂

∂θ
(i)
α

,
[
θ(i)
α , θ

(i)
β

]
+
= 0,

[
θ(i)
α , θ

(j)
β

]
= 0,

[
∂

∂θ
(i)
α

,
∂

∂θ
(i)
β

]
+

= 0,

[
θ(i)
α ,

∂

∂θ
(i)
β

]
+

= δαβ,

[
θ(i)
α ,

∂

∂θ
(j)
β

]
+

= 0,

[
θ(i)
α ,

∂

∂θ
(j)
β

]
= 0,

(3.1)

p is paraquantization order, i 
= j. It should be noted that θα are Majorana spinors.
There exists the realization of N = 1 PPSA in terms of four paragrassmanian variables θ1,

θ2, (θ1)†, (θ2)†. In this case we have

Pµ = pµ = i
∂

∂xµ
,

Jµν = xµpν − xνpµ − 1
2

(
(σµν)αβ

[
θα,

∂

∂θβ

]
+ (σ†

µν)αβ

[
(θα)†,

∂

∂(θβ)†

])
,

Qα = −i
∂

∂θα
− i(σµ)αβ(θβ)†Pµ, (Qα)

† = i
∂

∂(θα)†
+ i(θβ)†(σµ)βαP

µ.

(3.2)

Then we can define the covariant derivatives

(Dα)† =
∂

∂θα
− (σµ)αβ(θβ)†Pµ, (Dα)† = − ∂

∂(θα)†
+ θβ(σµ)βαP

µ. (3.3)

Derivatives (3.3) have important property which will be used below, namely, the operators
L = DαD

α = [D1, D2] and (L)† = (Dα)†(Dα)† = [(D1)†, (D2)†] commute with the PPSA
generators in representation (3.2).

We notice that the representation of PPSA in the terms of paragrassmannian variables can
be found, using the covariant representation for the PPSA [11]. Then we put

√
2M(S51 − iS52) −→ −i

∂

∂θ1
− i(θ1)†M,

√
2M(S53 − iS54) −→ −i

∂

∂θ2
− i(θ2)†M,√

2
M
(S51 + iS52) −→ −i

∂

∂(θ2)†
− iθ1M,

√
2
M
(S53 + iS54) −→ −i

∂

∂(θ1)†
− iθ2M.

Operators (3.2)–(3.3) act on the space of functions Φ(x, θ, (θ)†) which depend on space coor-
dinates xµ and paragrassmanian variables θ, (θ)†. We shall call such functions parasuperfields.
They form the linear space. In general case this space is reducible. In other words, the expansion
Φ(x, θ, (θ)†) by powers of θ and θ† has superficial components. We can eliminate these compo-
nents, if we impose the covariant constraints on Φ. But these constraints should not lead to
the differential consequences in the x-space which restrict the dependence of the parasuperfields
on xµ. For the case N = 1 and arbitrary p these constraints have the following form

DαΦ(x, θ, (θ)†) = 0 or (Dα)†Φ(x, θ, (θ)†) = 0. (3.4)

Constraints (3.4) pick out the invariant subspaces, containing smaller number of component
fields, from the space of the parasuperfields. The fields satisfying conditions (3.4) are called
chiral.

In order to investigate equations (3.4) it is convenient to choose a new representation for the
parasuperfields

Φ± = exp(∓G)Φ, where G =
1
2
(σµ)αβ [(θα)† , θβ ]Pµ (3.5)
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(these representations will be called “+” and “−” representations). The operators A+ and A−

in “+” and “−” representations are connected with the operator A in the initial representation
by the formula

A± = exp(∓G)A exp(±G) (3.6)

Using (3.5), we can show that Φ+ doesn’t depend on (θ)† and Φ+ doesn’t depend on θ.
In the case N = 1 and p = 2 the invariant spaces, picked out by equations (3.4), will contain

6 independent fields: 3 fields with spin 0, 2 filds with spin 1
2 and 1 field with spin 1 (see [8]).

Using the fact that the operator L defined above commutes with the generators Poincaré
parasuperalgebra, we can write down the equation for Φ+(x, θ) (without interaction), which will
be invariant under the Poincaré parasuperalgebra:

(L+)† exp(−2G)Φ∗
+(x, θ) = 0, (3.7)

where (L+)† = [(D+
1 )

†, (D+
2 )

†], (D+)† is the covariant derivative in “+” representation. For
p = 2 we find, taking into account (3.3), (3.5), that the equations for the component fields A,
φα, ψαβ, λα, B (below we omit the indices“+”) are

(p0 + +S+p)+Λ = 0, div +Λ = 0, (3.8)

(p0 + +σ+p)ϕ = 0, (3.9)

✷A = 0, (3.10)

χ(x) = B(x) = λ1 = λ2 = 0, (3.11)

where +Λ = (ψ22 − ψ11, −i(ψ22 + ψ11), ψ12 + ψ21), χ(x) = ψ12 − ψ21, the matrices Sa have the
form

S1 =


 0 0 0

0 0 −i
0 i 0


 , S2 =


 0 0 i

0 0 0
−i 0 0


 , S3 =


 0 −i 0

i 0 0
0 0 0


 .

It is obvious that (3.8) is the system of Maxwell’s equations for the massless field with spin 1.
System (3.9) is the system of the equations for the massless field with spin 1

2 . Equation (3.10)
is the equation for the massless field with spin 0. In addition, it is obvious from (3.11) that two
scalar fields and spinor field are equal zero.

Now let us consider the equation for Φ+(x, θ) including the interaction (parasupersymmetric
Wess–Zumino model). In this case parasupersymmetric equation for Φ+(x, θ) has the form

((L+)†)p exp(−2G)Φ∗
+(x, θ) = gΦ2

+(x, θ), (3.12)

where g is interaction constant. For p = 1 we recover supersymmetric Wess–Zumino model. For
p = 2 it yields the model described in [8].

The Lagrangian which corresponds to equation (3.12) has the form

L = (Φ∗
+exp(2G)Φ+)(θ1)p(θ2)p((θ1)†)p((θ2)†)p +

1
3
(gΦ3

+)(θ1)p(θ2)p + (c.c.),

(c.c. is complex conjugation). In conclusion of this paper let us note that the Wess–Zumino
model for p > 1 is incompatible with the description of massive particles (see [8]).
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On ∗-Wild Algebras

S. KALUTSKII

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine

In this article, we consider discrete groups and study the complexity of their representations
from the point of view of the theory of ∗-representations.

Let F2 be the free group with two generators, C∗(F2) be the group C∗-algebra.

Definition (see [1]). We call a discrete group F ∗-wild if there exist n ∈ N and an epimorphism
ϕ : C∗(F )→ Mn(C∗(F2)).

In this note, we give two constructions that allow to construct examples of ∗-wild groups
(other than the semi-direct products F � G, where F is a wild group). Note that the group
W = F � G is ∗-wild if F is a ∗-wild group.

1. Let G be a discrete group that has a faithful irreducible unitary representation in the
algebra Mn(C). In what follows, we assume that the group G is already an irreducible group
of unitary operators in the algebra Mn(C), i.e., such that if [x, g] = 0 for all g ∈ G and some
x ∈ Mn(C), then x = λIn, λ ∈ C, In is the identity operator in Mn(C). Let F be a free group
with generators u1, . . . , um (the number of generators can be finite or infinite). Let also B1,
. . . , Bm be unitary operators in the algebra Mn(C). Consider the group G1 = 〈e ⊗ g | g ∈
G, e is the identity of the group F 〉 ⊂ Mn(C∗(F )). Note that G ∼= G1.

Theorem. The group G2 = 〈G1, u1 ⊗ B1, . . . , um ⊗ Bm〉 (the smallest subgroup of Mn(C∗(F ))
containing the set of generating elements: elements of G1, u1 ⊗B1, . . . , um ⊗Bm ∈ Mn(C∗(F )))
is ∗-wild.
Proof. Let us construct a homomorphism φ:C∗(G2)→ Mn(C∗(F )) by extending the embedding
G2 ⊂ Mn(C∗(F )) to a homomorphism of the group C∗-algebra C∗(G2). Consider a unitary
representation π:F → B(H) on a Hilbert space H. Denote by π̂ the lift of the representation
π, i.e., π̂ = π ⊗ In. Define a functor Φ:RepF → RepG2 as follows: Φ(π) = π̂ ◦ φ. Let K be an
intertwining operator for the representation π of the group F . Set Φ(K) = K ⊗ In.
Let us show that φ is an epimorphism. To prove that, it is sufficient to show (see [2]) that

the functor Φ:RepF → RepG2 is full (here RepG is a category where the points are unitary
representations of the group G, and morphisms are intertwining operators).
Recall that a functor Φ is called full, if it defines a one-to-one correspondence between inter-

twining operators for the corresponding representations of the groups F and G.
Let us show that the defined functor is full, i.e., there is a one-to-one correspondence between

intertwining operators for the representation π of the group F and intertwining operators for
the representation π̂ ◦ φ of the group G2. Let us consider an intertwining operator L for the
representation π̂ ◦ φ of the group G2, i.e., the operator L commutes with all operators of the
representation π̂ ◦ φ. Since the operator L commutes with elements of the group π̂ ◦ φ(G1), it
follows that L must have the form K ⊗ In, where K ∈ B(H), In is the identity in the algebra
Mn(C). Since the operator L commutes with the elements π(u1) ⊗ B1, . . . , π(um) ⊗ Bm, it
follows that K commutes with all of the elements π(u1), . . . , π(um), i.e., the functor Φ defines a
one-to-one correspondence between intertwining operators. In virtue of paragraph 1.10 [1], the
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constructed functor Φ:RepF → RepG2 is full and faithful, and since F is a ∗-wild group, there
exists an epimorphism ψ:C∗(F )→ Mn(C∗(F2)). Then the composition ψ ◦φ is an epimorphism
and ψ ◦ φ:C∗(G2)→ Mn(C∗(F2)), hence G2 is ∗-wild.

2. We give one more construction of ∗-wild groups that have the following form: they are
extensions of a group F by a group G, where F is a ∗-wild group.
Consider the group G = 〈g1, . . . , gp〉, where the number of generators could be both finite

or infinite. The conditions that are imposed on the group G are the same as in 1. Consider
the set T = {D is a discrete group, D ⊂ Un(C) | so that there exists an extension of the
group G by the group D}. Consider the discrete groups V = 〈w ⊗ g | w ∈ Fm, g ∈ G〉,
Z1 = 〈e ⊗ z | e is the identity in Fm, z ∈ Z〉. Note that V ∼= Fm × G. By construction, V is
∗-wild. Consider the group generated by all products of elements of the groups V and Z1, and
denote it by Y = 〈V, Z1〉. Note that Y is an extension of the group V by Z1.

Proposition. The group Y is ∗-wild.
Proof. The proof is similar to the proof of Theorem. Construct a homomorphism φ:C∗(Y )→
Mn(C∗(V )) by extending the embedding Y ⊂ Mn(C∗(V )) to a homomorphism of the group
C∗-algebra C∗(Y ). We only prove that the correspondence for the intertwining operators for a
representation π of the group V and the intertwining operators for the representation π̂ ◦ φ of
the group Y is one-to-one.
Consider an operator K that intertwines the representation π̂ ◦φ of the group Y . The opera-

tor K commutes with all operators of the group π̂ ◦ φ(Y ). Hence, K has the form p⊗ In, where
p ∈ B(H), H is the corresponding Hilbert space, and In is the identity of the algebra Mn(C).
Since K commutes with elements of the group Fm, it follows that p commutes with all elements
w ∈ Fm, i.e., there exists an epimorphism φ:C∗(Y )→ Mn(C∗(V )), i.e., Y is ∗-wild.
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The procedure of reducing of canonical field degrees of freedom for a system of charged
particles plus electromagnetic field in the constraint Hamiltonian formalism is developed
up to the first order in the coupling constant expansion. The canonical realization of the
Poincaré algebra in the terms of physical variables is found. The relation between covariant
and physical particle variables in the Hamiltonian description is studied.

1 Introduction

Usually, an interaction within a system of N charged particles is described by means of the
electromagnetic field with its own degrees of freedom represented by the 4-potential Aµ(x), x ∈
M4, over the Minkowski space-time1 [1, 2, 3].

Such a system of particles plus electromagnetic field is completely determined by the following
action

S = −
∫ N∑

a=1

ma

√
uµ

a(τ)uaµ(τ)dτ

−
∫ N∑

a=1

eau
µ
a(τ)Aµ[xa(τ)]dτ − 1

16π

∫
Fµν(x)Fµν(x)d4x.

(1.1)

Here Fµν(x, τ) = ∂µAν(x, τ) − ∂νAµ(x, τ) is the field strength; ma, ea are the mass and the
charge of particle a, respectively, uµ

a(τ) = dxµ
a(τ)/dτ , and τ �→ xµ

a(τ) gives parametric equation
of the particle world line in the Minkowski space-time.

But often it is desirable to exclude the field degrees of freedom and formulate the description
of the system only in the terms of particle variables. The elimination of the field variables can
be performed exactly in the action (1.1). This leads to the time-symmetric Wheeler–Feynman
electrodynamics [4, 5] with the Fokker action. Nonlocality of the Fokker-type actions result in
serious difficulties in transition to the Hamiltonian description [6]. The same problems occur
when Fokker-type action is replaced by the single-time Lagrangian depending on the infinity
order derivatives of the particle coordinates [7, 8]. Although this problem can be solved within
the corresponding approximation schemes [6, 9]. Here we shall consider an alternative way to

1The Minkowski space-time M4 is endowed with a metric ‖ηµν‖ = diag(1,−1,−1,−1). The Greek indices
µ, ν, . . . run from 0 to 3; the Latin indices from the middle of alphabet, i, j, k, . . . run from 1 to 3 and both types
of indices are subject of the summation convention. The Latin indices from the beginning of alphabet, a, b, label
the particles and run from 1 to N . The sum over such indices is indicated explicitly.
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overcome these difficulties. The main idea consists in the elimination of field degrees of freedom
after transition to the Hamiltonian description of the particles plus field theory.

Then, we must solve the field Hamiltonian equations of motion and make the canonical
transformation to the free field variables. After that the canonical free field variables will be
eliminated by means of canonical constraint method. This procedure gives us the canonical
realization of the Poincaré algebra in the terms of particle variables.

However, the field equations of motion are nonlinear, so we will find the solutions of these
equations and other relations in the first order in the coupling constant expansion. Therefore,
the Lienard–Wiechert potentials will be the expected solutions of the field equations.

The present paper is organized as follows. In Section 2, there is a canonical realization of the
Poincaré algebra for the system of N point charged particles plus electromagnetic field (field
theory).

In Section 3, we find solutions of the field equations of motion of first order in the coupling
constant expansion, make canonical transformation to the free field variables and eliminate them
with help of constraints. We obtain a canonical realization of the Poincaré generators depending
on the particle coordinates and momenta. It is shown that the new generators form an algebra.
There is a study of relations between new canonical coordinates and positions of particles of the
reduced system.

The conclusions in Section 4 contain some final remarks and the outline of future research.

2 Field theory Poincaré generators

Action (1.1) for the system of field and particles is manifestly Poincaré-invariant. Its invariance
leads to the conservation of the symmetric energy-momentum tensor [1, 3]

θµν(z) =
N∑

a=1

ma

∫
uµ

a(τ)uν
a(τ)√

u2
a(τ)

δ4(xa(τ)− z)dτ

+
1
4π

(
−Fµλ(z)F ν

λ(z) +
1
4
Fλσ(z)F λσ(z)ηµν

)
.

(2.1)

For transition to the Hamiltonian description we use 3 + 1 splitting of the Minkowski space-
time corresponding to the instant form of dynamics [10, 11]. In geometric approach the instant
form of dynamics is determined by foliation of the Minkowski space-time by the hyperplanes
x0 = τ , τ ∈ R.

In this case the Lagrangian of the system is

L = −
N∑

a=1

ma

√
1− u2

a(τ)dτ −
N∑

a=1

ea

(
ui

a(τ)Ai[xa(τ), τ ] +A0[xa(τ), τ ]
)

− 1
16π

∫
Fµν(x, τ)Fµν(x, τ)d3xdτ,

where xa = (xi
a), ua = (ui

a), A(x, τ) = (Ai(x, τ)).
The canonical momenta are given by

pai(τ) = − ∂L

∂ui
a

=
mauai(τ)√
1− u2

a(τ)
+ eaAi[xa(τ), τ ],

Ei(x, τ) =
δL

δȦi(x, τ)
=

1
4π

F i0(x, τ), E0(x, τ) =
δL

δȦ0(x, τ)
= 0.
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The canonical and Dirac Hamiltonians are

H =
N∑

a=1

[√
m2

a + [pa − eaA(xa)]
2 + eaA0(xa)

]
+

∫ (
1

16π
FijFij + 2πEiEi −A0∂iE

i

)
d3x,

HD = H +
∫
λE0d3x,

where λ is the Dirac multiplier.
The basic Poisson brackets are

{xi
a(τ), pbj(τ)} = −δabδ

i
j , {Aµ(x, τ), Eν(y, τ)} = ηµνδ3(x − y). (2.2)

The constraint E0(x, τ) ≈ 0 (≈means “weak equality” in the sense of Dirac) reflects the gauge
invariance of S; its time constancy produces the only secondary constraint, ∂iE

i(x, τ)−ρ(x, τ) ≈
0, where ρ(x, τ) =

N∑
a=1

eaδ
3(x−xa(τ)). The two constraints E0(x, τ) ≈ 0, ∂iE

i(x, τ)−ρ(x, τ) ≈ 0

are first class with vanishing Poisson brackets. Therefore, the corresponding conjugate variables

A0(x, τ),
∫

∆−1(x − y)∂iAi(y, τ)d3y, (∆−1(x) = −1/(4π|x|)) are arbitrary functions.

Conservation of the energy-momentum tensor (2.1) leads to ten conserved Poincaré genera-
tors:

Pµ =
∫
θµ0(x, τ)d3x, Mµν =

∫ (
xµθν0(x, τ)− xνθµ0(x, τ)

)
d3x.

They can be rewritten in terms of canonical variables as

P 0 =
N∑

a=1

√
m2

a + [pa − eaA(xa)]
2 +

∫ (
1

16π
FijFij + 2πEiEi

)
d3x,

P k =
N∑

a=1

[
pk

a − eaA
k(xa)

]
+

∫
ElF lkd3x,

Mk0 =
N∑

a=1

xk
a

√
m2

a + [pa − eaA(xa)]
2 +

∫ (
1

16π
FijFij + 2πEiEi

)
xkd3x− τP k,

M ik =
N∑

a=1

(xi
ap

k
a − xk

ap
i
a) +

∫ (
xkEl∂iAl − xiEl∂kAl

)
d3x+

∫ (
AiEk −AkEi

)
d3x,

where pa = (pi
a). They satisfy the commutation relations of the Poincaré algebra,

{Pµ, P ν} = 0, {Pµ,Mνλ} = ηµνP λ − ηµλP ν ,

{Mµν ,Mλσ} = −ηµλMνσ + ηνλMµσ − ηνσMµλ + ηµσMνλ,

in terms of the Poisson brackets (2.2).
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3 Reduction of field degrees of freedom

The equations of motion in first order in the coupling constant expansion are

ẋi
a =

pi
a√

m2
a + p2

a

+
eaΠ

ij
a√

m2
a + p2

a

Aj(xa), ṗai = ∂aiAj(xa)
eap

j
a√

m2
a + p2

a

+ ea∂aiA0(xa),

Ȧi = −4πEi + ∂iA0, Ėi = −ji − ∆
4π

Ai − 1
4π

∂i
(
∂jA

j
)
, (3.1)

Ė0 = ∂iE
i − ρ ≈ 0, Ȧ0 = λ,

where Πij
a ≡ δij − pi

ap
j
a/(m2

a + p2
a), j

i =
N∑

a=1

(
eap

i
a/

√
m2

a + p2
a

)
δ3(x− xa(τ)) is current density,

and λ is an arbitrary function of the evolution parameter τ . They are generated by the Dirac
Hamiltonian

HD =
N∑

a=1

[√
m2

a + p2
a +

eapai√
m2

a + p2
a

Ai(xa) + eaA0(xa)

]

+
∫ (

1
16π

FijFij + 2πEiEi −A0∂iE
i

)
d3x+

∫
λE0d3x.

From Eqs.(3.1) one gets

Äk −∆Ak − ∂k

(
Ȧ0 − ∂lAl

)
= 4πjk.

If we require that Ȧ0−∂lAl = 0 (the Lorentz gauge), then by using the constraint ∂iE
i−ρ ≈ 0

we obtain wave equations for the potentials

Äk −∆Ak = 4πjk, Ä0 −∆A0 = 4πρ. (3.2)

The general solutions of the inhomogeneous Eqs.(3.2) can be presented in the form

Aµ = Arad
µ +A1

µ,

where Arad
µ is the general solution of the corresponding homogeneous equation and

A1
k(x, τ) = 4π

N∑
a=1

∫
D(τ − τ ′|x − xa(τ ′))

eapak(τ ′)√
m2

a + p2
a(τ ′)

dτ ′,

A1
0(x, τ) = 4π

N∑
a=1

ea

∫
D(τ − τ ′|x − xa(τ ′))dτ ′,

(3.3)

with the real Green function D which satisfies the equation (∂2
τ −∆)D(τ |x) = δ(τ)δ3(x).

In a given approximation, the expressions (3.3) do not depend on the concrete choice of the
Green function (retarded or advanced) and after integration and using free-particle equations
we obtain

A1
k(x, τ) =

N∑
a=1

eauak√
[ua(x − xa(τ))]2 + (1− u2

a)(x − xa(τ))2
,
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A1
0(x, τ) =

N∑
a=1

ea√
[ua(x − xa(τ))]2 + (1− u2

a)(x − xa(τ))2
, (3.4)

where uk
a = pk

a/
√
m2

a + p2
a is the free-particle velocity.

Let us perform the canonical transformation to the new field variables:

φµ(x, τ) = Aµ(x, τ)−A1
µ(x, τ), χ

k(x, τ) = Ek(x, τ)− Ek
1 (x, τ), (3.5)

where Ek
1 (x, τ) is

Ek
1 (x, τ) = − 1

4π

(
Ȧk

1(x, τ)− ∂kA1
0(x, τ)

)

= − 1
4π

N∑
a=1

ea(1− u2
a)(x

k − xk
a(τ))√

[ua(x − xa(τ))]2 + (1− u2
a)(x − xa(τ))2

.

This transformation changes the particle variables: (xi
a, pai) �→ (qi

a, kai), where

xi
a = qi

a +
∫ [(

φk +
1
2
A1

k

)
∂Ek

1

∂kai
−

(
χk +

1
2
Ek

1

)
∂A1

k

∂kai
− E0 ∂A

1
0

∂kai

]
d3x, (3.6)

pai = kai −
∫ [(

φk +
1
2
A1

k

)
∂Ek

1

∂qi
a

−
(
χk +

1
2
Ek

1

)
∂A1

k

∂qi
a

− E0∂A
1
0

∂qi
a

]
d3x.

In the considered approximation the equalities (3.5) may be put into the form

Aµ = φµ +A1
µ(qa,ka) = φµ +A1

µ(xa,pa),

Ek = χk + Ek
1 (qa,ka) = χk + Ek

1 (xa,pa).

Let us note some useful transformation properties of A1
k, E

k
1 , A

1
0

{Al
1(x, τ), x

ipk − xkpi −mik} = δilAk
1(x, τ)− δklAi

1(x, τ),

{Al
1(x, τ), x

kp0 −mk0} = δklA1
0(x, τ),

{El
1(x, τ), x

ipk − xkpi −mik} = δilEk
1 (x, τ)− δklEi

1(x, τ),

{El
1(x, τ), x

kp0 −mk0} =
1
4π

(
∂lAk

1(x, τ)− ∂kAl
1(x, τ)

)
,

{A1
0(x, τ), x

ipk − xkpi −mik} = 0,

{A1
0(x, τ), x

kp0 −mk0} = Ak
1(x, τ),

here p0 =
N∑

a=1

√
m2

a + k2
a, p

i =
N∑

a=1
ki

a, m
k0 =

N∑
a=1

qk
a

√
m2

a + k2
a, m

ik =
N∑

a=1
(qi

ak
k
a − qk

ak
i
a).

The conserved quantities after the canonical transformation may be rewritten as

P 0 =
N∑

a=1

√
m2

a + k2
a +

1
2

N∑
a=1

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]

+
∫ [

1
16π

ΦijΦij + 2πχiχi

]
d3x,

P i =
N∑

a=1

ki
a +

∫
χkΦkid3x,
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Mk0 =
N∑

a=1

qk
a

√
m2

a + k2
a +

1
2

N∑
a=1

qk
a

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]

+
∫ [

1
16π

ΦijΦij + 2πχiχi

]
xkd3x− τP k,

M ik =
N∑

a=1

(qi
ak

k
a − qk

ak
i
a) +

∫ (
xkχl∂iφl − xiχl∂kφl

)
d3x+

∫ (
φiχk − φkχi

)
d3x,

here Φij = ∂iφj − ∂jφi.
We reduce field degrees of freedom using the following set of constraints

(Ψα) = (φk, χ
k, φ0, E

0) ≈ 0. (3.7)

The constraints depending on gauge Ak, A0 potentials already contain gauge-fixing constraints.
Indeed, the equations of motion lead to the conclusion that A0 is an arbitrary function. However,
the additional constraint Ȧ0−∂lAl ≈ 0 together with the pure secondary constraint ∂iE

i−ρ ≈ 0
defines A0 as a function of particle variables (see Eq.(3.4)). In this case, ∂lAl can be found from
the additional constraint in the terms of the coordinates and the momenta of particles too.
Using Hodge decomposition for Ak

Ak(x, τ) = A⊥
k (x, τ) + ∂k

∫
∆−1(x − y)∂lAl(y, τ)d3y

≈ A⊥
k (x, τ) + ∂k

∫
∆−1(x − y)∂lA

1
l (y, τ)d

3y,

we see that the constraint Ak −A1
k ≈ 0 or φk ≈ 0 analogously determines ∂lAl as Ȧ0 −∂lAl ≈ 0.

This means that the gauge-fixing constraints and the constraints Eqs.(3.7) does not need to be
separated.

The constraints Eqs.(3.7) are second class, so we can eliminate them by means of use of the
Dirac brackets:

{F,G}D = {F,G} −
∫
{F,Ψα(x, τ)}C−1

αβ (x − y){Ψβ(y, τ), G} d3xd3y

=
N∑

a=1

(
∂F

∂qi
a

∂G

∂ki
a

− ∂G

∂qi
a

∂F

∂ki
a

)
,

where ‖C−1
αβ (x − y)‖ is the inverse matrix to ‖{Ψα(x, τ),Ψβ(y, τ)}‖.

Thus we obtain the Poincaré generators of the reduced system

P 0 =
N∑

a=1

√
m2

a + k2
a +

1
2

N∑
a=1

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]
, P i =

N∑
a=1

ki
a,

Mk0 =
N∑

a=1

qk
a

√
m2

a + k2
a +

1
2

N∑
a=1

qk
a

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]
− τP k,

M ik =
N∑

a=1

(qi
ak

k
a − qk

ak
i
a),

which act on the particle phase space T ∗
R

3N . They satisfy the commutation relations of the
Poincaré algebra in a given approximation.
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According to the Eq.(3.6) the covariant particle positions xi
a are connected with the canonical

variables as

xi
a = qi

a +
1
2

∫ [
A1

k

∂Ek
1

∂kai
− Ek

1

∂A1
k

∂kai

]
d3x. (3.8)

These relations cannot be complemented to the canonical transformation to the reduced phase
space T ∗

R
3N in full accordance with the famous no-interaction theorem [12]. It can be verified

directly that in a given approximation the expression (3.8) satisfies the world line condition

{xi
a,M

k0}D = {xi
a, P

0}xk
a − τδik.

The Poisson brackets between particle positions are

{xi
a, x

j
b}D =

∫ (
∂A1

k

∂kbj

∂Ek
1

∂kai
− ∂Ek

1

∂kbj

∂A1
k

∂kai

)
d3x �≡ 0.

4 Conclusions

In this paper a method of reduction the field degrees of freedom by means of canonical constraints
has been developed for a system of N charged particles plus electromagnetic field. In the first
order in the coupling constant expansion it is shown that the properties of the Poincaré algebra
are preserved after field reduction.

We found the solutions of the inhomogeneous field equations of motion as the sum of the
Lienard–Wiechert potentials and the free fields. By means of the canonical transformation to
the free field variables we got new form for the Poincaré generators. It is turned out that
the Poincaré generators may be presented as the sum of free field and particle terms. In our
approximation we eliminate the radiation phenomenon connected with the free electromagnetic
fields. The commutation and transformation properties of particle positions are studied.

The obtained description may be used for the statistical description of the system of charged
particles interacting without field. The elaborated procedure of reduction can be realized for
the gravity in near future.
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Irreducible Representations of the Dirac Algebra

for a System Constrained on a Manifold

Diffeomorphic to SD
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The irreducible representations of the Dirac algebra for a particle constrained to move on SD

are generalized to a system on a manifold diffeomorphic to SD. It is shown that there exists
a one-one correspondence between irreducible representations of two Dirac algebras given
respectively on SD and on the manifold diffeomorphic to it. Among diffeomorphic mappings
connecting SD to the manifold the area-preserving one plays a crucial role to derive out
our main result. It is observed that the representation space of the Dirac algebra is kept
unchanged through area-preserving mappings.

1 Dirac algebra

Let us consider a system constrained to move on a D-dimensional manifold embedded in the
(D + 1)-Euclidean space RD+1 whose coordinates will be denoted as x1, x2, . . . , xD+1. The
Hamiltonian in RD+1 is assumed to be

H =
1
2

D+1∑
α=1

p2
α + V (x) (1.1)

and the D-dimensional smooth manifold on which the system is constrained will be written as

f(x) = 0 (1.2)

with f(x) ∈ C∞. We further assume the manifold to be diffeomorphic to SD.
Equation (1.2) is the so called primary constraint. According to the prescription by Dirac [1]

the consistency of (1.2) under the time development leads us to the secondary constraint that
can be written as

{f,α(x), pα} = 0, (1.3)

where and in what follows f,α(x) ≡ ∂αf(x), f,αβ(x) ≡ ∂α∂βf(x), {A,B} ≡ AB + BA and
repeated two Greek indices in a single term indicate a summation of such terms in which the
pair of those indices run over 1 to D + 1. The fundamental Dirac brackets [1] for canonical
variables in classical mechanics are seen to be converted to

[xα, xβ ] = 0, (1.4)

[xα, pβ ] = iΛαβ(x), (1.5)

[pα, pβ] = − i

2

{
1

R2(x)
(f,α(x)f,βγ(x)− f,β(x)f,αγ(x)) , pγ

}
, (1.6)
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where

R2(x) ≡ f,α(x)f,α(x) (1.7)

and

Λαβ(x) ≡ δαβ − f,α(x)f,β(x)
R2(x)

. (1.8)

With direct calculations one easily finds that Eqs. (1.4)∼(1.6) are compatible with the con-
straints (1.2) and (1.3). The inner product of two wave functions χ(x) and ϕ(x) is given by

〈χ|ϕ〉 =
∫

dD+1xδ(f(x))χ∗(x)ϕ(x). (1.9)

We call the algebra described by (1.2)∼(1.6) the Dirac algebra on f(x) = 0.

2 Relation between two Dirac algebras

In order to examine the Dirac algebra on f(x) = 0 we introduce another manifold in RD+1

which is also diffeomorphic to SD. We denote it as

g(x) = 0. (2.1)

Then we have the following Dirac algebra just corresponding to (1.3)∼(1.8):
{g,α(x), pα} = 0, (2.2)

[xα, xβ ] = 0, (2.3)

[xα, pβ ] = iΛ′
αβ(x), (2.4)

[pα, pβ] = − i

2

{
1

R′2(x)
(g,α(x)g,βγ(x)− g,β(x)g,αγ(x)) , pγ

}
, (2.5)

where

R′2(x) = g,α(x)g,α(x) and Λ′
αβ(x) = δαβ − g,α(x)g,β(x)

R′2(x)
. (2.6)

Since the manifold (1.2) is connected with (2.1) through a diffeomorphic mapping

x′
α = x′

α(x) (or equivalently xα = xα(x′)), (2.7)

we may write the relation between them as

g(x′) = f(x). (2.8)

For the sake of simplicity by applying a scale transformation we will set up the following
normalization condition for the volume of the manifold∫

dD+1xδ(f(x)) =
∫

dD+1xδ(g(x)) (2.9)

without loss of generality1.
1Applying the scale transformation xα → ρxα, pα → (1/ρ)pα with ρ > 0 and introducing ḡ(x) ≡ g(ρx) we find

that (2.1)∼(2.5) remain unchanged under the replacement g(x)→ ḡ(x), and we have∫
dD+1xδ(g(x)) = ρD+1

∫
dD+1δ(ḡ(x)).
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Now assuming that there exist operators xα and pα (α = 1, 2, . . . , D + 1) that satisfy the
Dirac algebra on f(x) = 0 we introduce a transformation such that


x′

α = x′
α(x),

p′α =
1
2

{
(Λ′(x′)[∂x/∂x′])αβ , pβ

}
,

(2.10)

where Λ′(x′) and [∂x/∂x′] stand for (D+1)× (D+1)-matrices whose (α, β)-elements are given
by Λ′

αβ(x′) and ∂xβ/∂x
′
α, respectively. Similarly the matrices Λ(x) and [∂x

′/∂x] are defined by
(Λ(x))αβ = Λαβ(x) and [∂x′/∂x]αβ = ∂x′

β/∂xα. The equations (2.10) provide us with a variable
transformation (x, p) → (x′, p′) in the operator form. It must be written in the representation
space of xα and pα. Then there holds the following:

Theorem. Given xα and pα that satisfy the Dirac algebra on f(x) = 0 then the operators x′
α

and p′α defined by (2.10) satisfy the Dirac algebra on g(x) = 0 for an arbitrary diffeomorphic
mapping described with (2.7) and (2.8).

Before entering a proof of the Theorem we remark the followings:

1. Let A, B and C be operators. If [[C,A], B] = 0, then

{A, {B,C}} = {{A,B}, C, }. (2.11)

Thus if further [A,B] = 0, we have

1
2
{A, {B,C}} = {AB,C}. (2.12)

Proof: omitted.

2. There holds true the identity

Λ(x)[∂x′/∂x]Λ′(x′) = Λ(x)[∂x′/∂x]. (2.13)

Proof: Inserting Λ′
γβ(x′), which is defined by (2.6), into the left hand side (l.h.s.) of the above

we find

(α, β)-element of l.h.s. = (Λ(x)[∂x′/∂x])αβ − 1
R′2(x′)

Λαρ(x)
∂x′

γ

∂xρ
g,γ(x′)g,β(x′)

= (Λ(x)[∂x′/∂x])αβ − 1
R′2(x′)

Λαρ(x)f,ρ(x)g,β(x′) = (Λ(x)[∂x′/∂x])αβ ,

where use has been made of (2.8) together with Λαρ(x)f,ρ(x) = 0. (q.e.d.)

3. We can uniquely solve the second equation of (2.10) with respect pα to obtain

pα =
1
2
{(Λ(x)[∂x′/∂x])αβ , p

′
β}. (2.14)

Proof: Taking symmetrized products of (Λ(x)[∂x′/∂x])γα/2 with the both sides of the second
equation of (2.10) and making a sum over α we obtain with help of (2.11) and (2.13)

1
2
{(Λ(x)[∂x′/∂x])γα, p

′
α} =

1
4

{
(Λ(x)[∂x′/∂x])γα, {(Λ′(x′)[∂x/∂x′])αβ , pβ}

}

=
1
2
{(Λ(x)[∂x′/∂x]Λ′(x′)[∂x′/∂x])γβ, pβ}

=
1
2
{(Λ(x)[∂x′/∂x][∂x/∂x′])γβ, pβ} = 1

2
{Λγβ(x), pβ}
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which reduces to

pγ − 1
2

{
f,γ(x)f,β(x)

R2(x)
, pβ

}
= pγ − 1

4

{
f,γ(x)
R2(x)

, {f,β(x), pβ}
}
= pγ ,

where we have used (1.8) together with (2.12) and (1.3). Thus we have proved (2.14).

With these preparations we will give a proof of the Theorem. To this end we first examine
the constraint (2.2) starting with the Dirac algebra on f(x) = 0. Taking the anti-symmetrized
products of g,α(x′) with the both sides of the second equation of (2.10) we find

{g,α(x′), p′α} =
1
2

{
g,α(x′), {(Λ′(x′)[∂x/∂x′])αβ , pβ}

}

=
{
g,α(x′)Λ′

αγ(x′)[∂x/∂x′]γβ , pβ

}
= 0,

where use has been made of (2.12) and the identity g,α(x′)Λ′
αγ(x′) = 0. Thus the constraint

(2.4) has been derived
Next to derive (2.6) we make a commutator of x′

α with p′β . Then from (2.10) we obtain

[x′
α, p

′
β ] =

1
2

[
x′

α, {(Λ′(x′)[∂x/∂x′])βγ , pγ}
]

= (Λ′(x′)[∂x/∂x′])βγ [x′
α, pγ ] = i(Λ′(x′)[∂x/∂x′])βγ [∂x′/∂x]ραΛργ(x)

= iΛ′
αβ(x′)− i

R2(x)
(Λ′(x′)[∂x/∂x′])βγf,γ(x)f,ρ(x)[∂x′/∂x]ρα

= iΛ′
αβ(x′)− i

R2(x)
Λ′

βγ(x′)g,γ(x′)f,ρ(x)[∂x′/∂x]ρα = iΛ′
αβ(x′),

which proves (2.4).
Finally we will derive (2.5). To avoid complications we will proceed in the following way: As

seen from (1.5) and (1.6) the commutator [p′α, p′β] is linear in pγ ’s, thereby applying (2.14) we
can write it as

[p′α, p
′
β] =

i

2

{
c[αβ]
γ (x′), p′γ

}
(2.15)

with undetermined functions of x′, which have been denoted as c
[αβ]
γ (x′). Taking the commuta-

tors of x′
γ with the both sides of (2.15) we obtain from the left hand side

[x′
γ , [p

′
α, p

′
β]] = [[x′

γ , p
′
α], p

′
β] + [p′α, [x

′
γ , p

′
β ]]

= −i

[
g,γ(x′)g,α(x′)

R′2(x′)
, p′β

]
+ i

[
g,γ(x′)g,β(x′)

R′2(x′)
, p′α

]

by virtue of (2.6), while from the right hand side
{
c[αβ]
ρ (x′), [x′

γ , p
′
ρ]

}
= −Λ′

γρ(x′)c[αβ]
ρ (x′) = −c[αβ]

γ (x′) +
1

R′2(x′)
g,γ(x′)g,ρ(x′)c[αβ]

ρ (x′).

Since the right hand sides of the above two equations are the same we find

c[αβ]
γ (x′) =

1
R′2(x′)

g,γ(x′)g,ρ(x′)c[αβ]
ρ (x′) + i

[
g,γ(x′)g,α(x′)

R′2(x′)
, p′β

]
− i

[
g,γ(x′)g,β(x′)

R′2(x′)
, p′α

]
.
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Then inserting this relation into the right hand side of (2.15) we find

[p′α, p
′
β] =

i

2

{
1

R′2(x′)
c[αβ]
ρ (x′)g,ρ(x′)g,γ(x′), p′γ

}

− 1
2

({[
1

R′2(x′)
g,α(x′)g,γ(x′), p′β

]
, p′γ

}
− (α ↔ β)

)
,

where the first term of the right hand side is found to vanish owing to (2.12) and (2.2). On the
other hand, with the aid of (2.4) we have by direct calculation[

1
R′2(x′)

g,α(x′)g,γ(x′), p′β

]
= iΛ′

ρβ(x′)
∂

∂x′
ρ

(
1

R′2(x′)
g,α(x′)g,γ(x′)

)

=
i

R′2(x′)

(
g,αβ(x′)g,γ(x′)− g,α(x′)g,β(x′)g,ρ(x′)g,γ(x′)

∂

∂x′
ρ

(
1

R′2(x′)

)

−g,α(x′)g,β(x′)g,ρ(x′)g,γρ(x′)
R′2(x′)

)
+

i

R′2(x′)
g,α(x′)g,βγ(x′)

− i

R′4(x′)
(
2g,βρ(x′)g,α(x′)g,ρ(x′) + g,αρ(x′)g,ρ(x′)g,β(x′)

)
g,γ(x′),

which immediately leads to[
1

R′2(x′)
g,α(x′)g,γ(x′), p′β

]
− (α ↔ β) =

i

R′2(x′)
(
g,α(x′)g,βγ(x′)− g,β(x′)g,αγ(x′)

)

− i

R′4(x′)
(
g,α(x′)g,βρ(x′)g,ρ(x′)− g,β(x′)g,αρ(x′)g,ρ(x′)

)
g,γ(x′).

Then taking the anti-commutators of p′γ with the both sides of the above equation we find the
contribution from the second term of the right hand side turns zero due to (2.12) and (2.2), and
finally obtain

[p′α, p
′
β] = − i

2

{
1

R′2(x′)
(
g,α(x′)g,βγ(x′)− g,β(x′)g,αγ(x′)

)
, p′γ

}
,

thereby proving (2.5). Thus we have completed the proof of the Theorem.

It is noted that among diffeomorphic mappings satisfying (2.9) there always exist [2] those
which obey the condition

dD+1xδ(f(x)) = dD+1x′δ(g(x′)). (2.16)

We call them area-preserving mappings. Eq.(2.6) is of course equivalent to δ(f(x)) = det[∂x′/∂x]
×δ(f(x)). After normalizing the constraints in a form of (2.9) we will apply this type of mapping2

under which the transformation of the wave function ϕ(x) is given by

ϕ′(x′) = ϕ(x). (2.17)

Then we are led to the invariance of the inner product of wave functions under the area-preserving
mapping, i.e.,∫

dD+1xδ(f(x))χ′∗(x)ϕ′(x) =
∫

dD+1xδ(g(x))χ∗(x)ϕ(x). (2.18)

2Physically the existence of the are-preserving mapping under the condition (2.9) could be understood by
considering an incompressible fluid which uniformly covers the manifold.
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Since, as was mentioned already, the transformation (2.10) has the inverse, the two descriptions
based on the respective Dirac algebras on f(x) = 0 and g(x) = 0 are seen to be equivalent. Thus,
if conversely starting with the canonical variables xα and pα that satisfy the Dirac algebra on
g(x) = 0 we will then obtain those on f(x) = 0 by applying the inverse transformation of (2.10).
It can be written as


x′

α = x′
α(x),

p′α =
1
2

{
(Λ(x′)[∂x/∂x′])αβ , pβ

}
,

(2.19)

where the first line stands for an area-preserving mapping from the manifold of g(x) = 0 to that
of f(x) = 0 so that it satisfies f(x′) = g(x) together with (2.9). It is noted that as seen from the
process of deriving (2.14) the transformation (2.19) is uniquely given by (2.10). Furthermore it
is also remarkable that owing to (2.18) the irreducible representation space of (xα, pα) is found
to be the same as that of (x′

α, p
′
α), that is, in this case the irreducible representation space of

the Dirac algebra is kept unchanged under a smooth deformation of the manifold.
Based on this fact we will determine, in the next section, all possible irreducible representa-

tions of the Dirac algebra on f(x) = 0. To this end we will use SD for the manifold g(x) = 0
in (2.19), since the irreducible representations of the Dirac algebra on SD have been known
completely [3].

3 Irreducible representations and remarks

The operators pβ in the irreducible representation space of the Dirac algebra on SD are given
by [3]


p1 = −1

2
{x2, L12} − αx2,

p2 =
1
2
{x1, L12}+ αx1

for D = 1 (3.1)

with 0 ≤ α < 1, and

pβ =
1
2
{xρ, Lρβ} for D ≥ 2, (3.2)

where, in x-diagonal representation, Lαβ (α, β = 1, 2, . . . , D + 1) are defined by

Lαβ ≡ 1
i

(
xα

∂

∂xβ
− xβ

∂

∂xα

)
. (3.3)

In (3.1) and (3.2) we have assumed the radius of SD to be 1 for simplicity.
For D = 1 the irreducible representations are uniquely specified by α, while for each of

D ≥ 2 we have one and only one irreducible representation. Furthermore it is known [3] that
the irreducible representations of the Dirac algebra on SD are exhausted by the above. Thus
inserting pβ in (3.1) and (3.2) into the right hand side of (2.19) we can completely determine all
possible irreducible representations of the Dirac algebra on f(x) = 0. They are expressed as

p′β =
1
2
{(Λ(x′)[∂x′/∂x])βγxρ, Lργ} − α(Λ(x′)[∂x′/∂x])βγxρεργ for D = 1 (3.4)

and

p′β =
1
2
{(Λ(x′)[∂x′/∂x])βγxρ, Lργ} for D ≥ 2. (3.5)
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It is to be noted that for D = 1 there exist an infinite number of inequivalent irreducible
representations corresponding to values of the parameter α, while in the case of D ≥ 2 the
irreducible representation is uniquely given except for unitary equivalent representations.

Finally in concluding the present note we make a few remarks. It has been shown [3] that
each of pβ ’s in (3.1) and (3.2) is a self-adjoint operator. Hence it is obvious that the operators
p′β given by (3.4) and (3.5) are all symmetric (hermitian) as easily seen from (2.18) and (2.19).
Perhaps, however, they will be self-adjoint as well, although the proof has not yet been known.
Moreover from the arguments made in this note it could be expected that if there exists a
representation space of the Dirac algebra on a given manifold it is uniquely determined only by
the topology of the manifold.

A detailed study on these problems would highly be desired.
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We study the representations of generalisation of the Cuntz algebra On. The algebra

On,{αk}n
k=1

is a C∗-algebra generated by isometries s1, . . . , sn such that
n∑

k=1

αksks
∗
k = e,

where 0 < αk < 1, k = 1, . . . , n. The fact that some algebra is ∗-wild implies that the
problem of unitary description of all representations of the algebra is very complicated. We
show that the algebra O4,{αk=1/2}4

k=1
is ∗-wild and establish the criterion of ∗-wildness of

the algebra O3,{αk}3
k=1

.

This paper is concerned with the complexity problem of unitary description of representations
for C∗-algebras generated by isometries connected with some relation on an infinite-dimensional
Hilbert space. These algebras were suggested by Yurĭı Samoilenko.

The fact that some algebra is ∗-wild implies that the problem of unitary description of all
representations is very complicated.

On C∗-algebra On, {αk}n
k=1

As in [1, 2], we consider a C∗-algebra Pn = P(α1, . . . , αn) generated by orthoprojectors p1, . . .,
pn such that

n∑
k=1

αkpk = e, (1)

where e is the identity of the algebra and 0 < αk < 1, k = 1, . . ., n . Let us note that the
condition 0 < αk < 1, k = 1, . . . , n is not a restriction. It was shown in [6] that it is always
possible to reduce the values of the coefficients α1, . . . , αn by a linear change of the variables
p1, . . . , pn to this form.

For the same set αk we deal with the C∗-algebra On,{αk}n
k=1

generated by isometries s1, s2, . . .,
sn such that

n∑
k=1

αksks
∗
k = e. (2)

For αk = 1, k = 1, . . . , n it is the Cuntz algebra On. The Cuntz algebra On is nuclear, simple
and non type I (see [3]).

In this paper we prove that the algebra O4,{αk=1/2}4
k=1

is ∗-wild and establish the criterion of
∗-wildness of the algebra O3,{αk}3

k=1
. In [4] we considered O3,{αk}3

k=1
when α1 + α2 + α3 = 2.



358 H. Pavlenko and A. Piryatinska

In [5, 6] all irreducible representations of the algebras P3 = P(α1, α2, α3) and P4 = P(α1, α2,
α3, α4) were described. The algebra P3 has one-dimensional and two-dimensional irreducible
representations. All irreducible representations of the algebras P4 are finite-dimensional Jaco-
bian matrices. In case α1 + α2 + α3 + α4 = 2 all irreducible representations of the algebra P4

are one-dimensional and two-dimensional. It means that the algebras P3 and P4 are tame.
For n ≥ 5 and α1 = α2 = α3 = α; α4 = α5 = β, α+ β = 1, the problem of description of the

collection of orthoprojectors {Pk}5
k=1 such that

α
3∑

k=1

Pk + β
5∑

i=4

Pi = I, (3)

is ∗-wild (see [7]).

On majorization of C∗-algebras

Let us give definitions of majorization of C∗-algebras and ∗-wildness following to [1, 8].
The problem of description of pairs of self-adjoint (or unitary) operators up to unitary equiva-

lence (representations of the ∗-algebra S2 (or U2) generated by a pair of free self-adjoint (or uni-
tary) generators) was choosen as the standard ∗-wild problem in the theory of ∗-representations
in [7].

The problem of unitary classification of representation of pairs of self-adjoint operators con-
tains as a subproblem the problem of unitary classification of representation of any ∗-algebra
with a countable number of generators (see [1]).

A problem containing the standard ∗-wild problem is called ∗-wild.
A number of ∗-wild algebras have been studied in recent years ([1, 7, 9]).
Let A be a C∗-algebra. We will denote by RepA the category of representations of A. The

objects of this category are the representations A to L(H) (the algebra of linear bounded op-
erators in a Hilbert space H), the morphisms are intertwining operators. Let N be a nuclear
C∗-subalgebra of L(H0). Let π : A → L(H) be a representation of A. It induces the represen-
tation

π̃ = π ⊗ id:A ⊗ N 	→ L(H ⊗H0)

of the algebra A ⊗ N.

Definition 1. We say that a C∗-algebra B majorizes a C∗-algebra A (and denote it by B 
 A),
if there exist a nuclear C∗-algebra N and a unital ∗-homomorphism ψ:B 	→ A⊗N such that the
functor F : RepA 	→ RepB defined by the following rule:

F (π) = π̃ ◦ ψ for any π ∈ RepA, (4)

F (A) = A⊗ I for any operator A intertwining π1 and π2, (5)

is full.

Denote by π(A)′ a commutant of π(A).

Remark 1. In order to verify whether F is full it is enough to check for any representation
π ∈ Rep (A) in L(H) that the condition A ∈ F (π)(B)′ implies A = A⊗I ∈ π(A) and A ∈ π(A)′.

Remark 2. To prove that functor F is full it is enough to show that the ∗-homomorphism ψ is
a surjection (see [1]).

The proofs of these remarks see in [1].
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Let F2 denote the free group on two generators u, v. Denote by C∗(F2) an enveloping
C∗-algebra of F2.

Definition 2. A C∗-algebra is called ∗-wild if A 
 C∗(F2).

Let us repeat that the fact that some algebra is ∗-wild implies that the problem of unitary
description of all representations is very complicated.

On representations of the algebra O4,{αk=1/2}4
k=1

The C∗-algebra P4 = P(1/2, 1/2, 1/2, 1/2) has such irreducible representations (see [5]):
1) one-dimensional representation is

P1 = P2 = I, P3 = P4 = 0;

2) two-dimensional representation is

P1 =
(

cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

)
, P2 =

(
sin2 φ − cosφ sinφ

− cosφ sinφ cos2 φ

)
,

P3 =
(

0 0
0 1

)
, P4 =

(
1 0
0 0

)
,

here 0 < φ < π/2.
Let us consider the corresponding C∗-algebra O4,{αk=1/2}4

k=1
.

Theorem 1. The C∗-algebra O4,{αk=1/2}4
k=1

is ∗-wild.

We will prove three lemmas for the proof of this theorem. In accordance by the definition of
∗-wildness to prove ∗-wildness of the algebra O4,{αk=1/2}4

k=1
, we give a ∗-homomorphism

ψ : O4,{αk=1/2}4
k=1

→ M2(C∗(F2))⊗ N.

Here N is a nuclear C∗-algebra, N ⊂ L(H0). As N we take the Cuntz algebra

O2 = C〈T1, T2, T
∗
1 , T

∗
2 | T ∗

1 T1 = T ∗
2 T2 = I0, T1T

∗
1 + T2T

∗
2 = I0〉.

We take the operators T1, T2 acting in a separable Hilbert space H0 such that

T1 : ej → e2j−1, T2 : ej → e2j , (6)

where {ej}∞j=1 is an orthonormal basis of H0.
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We set

ψ(s1) = S1 =




(cosφ)u 0 0 0 0 0 . . .
(sinφ)e 0 0 0 0 0 . . .

0 (cosφ)v 0 0 0 0 . . .
0 (sinφ)e 0 0 0 0 . . .
0 0 (cosφ)u 0 0 0 . . .
0 0 (sinφ)e 0 0 0 . . .
0 0 0 (cosφ)v 0 0 . . .
0 0 0 (sinφ)e 0 0 . . .
...

. . . . . . . . .




,

ψ(s2) = S2 =




(sinφ)u 0 0 0 0 0 . . .
−(cosφ)e 0 0 0 0 0 . . .

0 (sinφ)v 0 0 0 0 . . .
0 −(cosφ)e 0 0 0 0 . . .
0 0 (sinφ)u 0 0 0 . . .
0 0 −(cosφ)e 0 0 0 . . .
0 0 0 (sinφ)v 0 0 . . .
0 0 0 −(cosφ)e 0 0 . . .
...

. . . . . . . . .




,

ψ(s3) = S3 =




0 0 0 0 0 0 . . .
e 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 e 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 e 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 e 0 0 . . .
...

. . . . . . . . .




,

ψ(s4) = S4 =




e 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 e 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 e 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 e 0 0 . . .
0 0 0 0 0 0 . . .
...

. . . . . . . . .




,

(7)

here 0 < φ < π/2.

Lemma 1. The map ψ defined by (7) is a ∗-homomorphism from O4,{αk=1/2}4
k=1

to M2(C∗(F2))
⊗O2.

Proof. It is easy to check that S1, S2, S3, S4 satisfy the relations of the C∗-algebraO4,{αk=1/2}4
k=1

.
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One can see that the map ψ has the form:

S1 =
(

(cosφ)u 0
(sinφ)e 0

)
⊗ T1 +

(
0 (cosφ)v
0 (sinφ)e

)
⊗ T2,

S2 =
(

(sinφ)u 0
−(cosφ)e 0

)
⊗ T1 +

(
0 (sinφ)v
0 −(cosφ)e

)
⊗ T2,

S3 =
(

0 0
e 0

)
⊗ T1 +

(
0 0
0 e

)
⊗ T2, S4 =

(
e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

(8)

here T1, T2 are the same as in (6).
Let us note that M2(C∗(F2)) ⊗ O2 � (C∗(F2)) ⊗ O2 because O2 � M2(O2) [10]. Therefore

the ∗-homomorphism ψ is the needed homomorphism for the proof of ∗-wildness of the algebra.
Let π be a representation of C∗(F2) in a Hilbert space Ĥ. Then the map ψ induces the

representation F (π) of O4,{αk=1/2}4
k=1

in a Hilbert space H.

Lemma 2. If π ∈ RepC∗(F2) in L(Ĥ) and A ∈ (Fψ(π)(O4{αk=1/2}4
k=1

))′ then A = A ⊗ I and
A ∈ π(C∗(F2))′ (here I is the identity in L(H)).

The proof follows by direct computation.

Lemma 3. The ∗-homomorphism ψ : O4,{αk=1/2}4
k=1

→ M2(C∗(F2))⊗O2 is a surjection.

Proof. In the algebra M2(C∗(F2))⊗O2 we choose the following generators:

a11 =
(

e 0
0 0

)
⊗ I0, a12 =

(
0 e
0 0

)
⊗ I0,

a21 =
(

0 0
e 0

)
⊗ I0, a22 =

(
0 0
0 e

)
⊗ I0,

b =
(

u 0
0 v

)
⊗ I0, c1 =

(
e 0
0 e

)
⊗ T1, c2 =

(
e 0
0 e

)
⊗ T2.

(9)

It is easy to see that the linear combinations of the generators a11, a12, a21, a22, b, c1, c2 give
everywhere dense set of M2(C∗(F2))⊗O2. The closure by norm gives our C∗-algebra. To prove
that ψ is a surjection we point out the elements of the algebra O4,{αk=1/2}4

k=1
which give the

generators of M2(C∗(F2))⊗O2:

S4S
∗
4 = a11, S4S

∗
3 = a12, a21 = a∗12, S3S

∗
3 = a22,

S∗
4(S1 + S2) = b, S2

4S
∗
4 + S3S4S

∗
3 = c1, S2

3S
∗
3 + S4S3S

∗
4 = c2.

The proof of Theorem 1 follows from Remark 1 and Lemmas 1, 2. Another proof follows from
Remark 2 and Lemmas 1, 3.

The criterion of ∗-wildness of the algebra O3,{αk}3
k=1

For the algebras P3 = P(α1, α2, α3) all irreducible representations were described in [5]. The
irreducible representations of these algebras exist only in the cases:

1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3, P1 = P3 = P3 = I;
2) αi ∈ R\{1}, αj +αk = 1,0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers

from the set {1, 2, 3}, Pj = Pk = I; Pi = I if αi = 0 and Pi = 0 otherwise;
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3) α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3, P1, P2, P3 are two-dimensional matrices:

P1 =
(

1 0
0 0

)
,

P2 =
(

cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

)
, P3 =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
,

(10)

here

cosφ =

√
(1− α2)(α2 + α3 − 1)

α2(2− α2 − α3)
, sinφ =

√
1− α3

α2(2− α2 − α3)
,

cos θ =

√
(1− α3)(α2 + α3 − 1)

α3(2− α2 − α3)
, sin θ = −

√
1− α2

α3(2− α2 − α3)
.

(11)

Theorem 2. The C∗-algebra O3,{α1,α2,α3} is ∗-wild if one of the following conditions holds:
1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3;
2) αi = 0, αj + αk = 1, 0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers

from the set {1, 2, 3};
3) αj +αk = 1, αi = αj or αi = αk, 0 < αl < 1, l = 1, 2, 3; here i, j, k are pairwise different

integers from the set {1, 2, 3}.
Proof. One-dimensional representations of the algebra P3 exist only when conditions 1, 2, 3
hold. In the first case we set the ∗-homomorphism ψ : O3,{αk}3

k=1
→ C∗(F2) by the following

way: ψ(s1) = e, ψ(s2) = u, ψ(s3) = v and ψ(sj) = u, ψ(sk) = v, ψ(si) = e in the second case
(here u, v are the generators of C∗(F2). It is easy to see that the map ψ is a surjection.

In the third case we restrict ourselves the case αi = αj . We give a ∗-homomorphism ψ :
O3,{αk}3

k=1
→ M2(C∗(F2))⊗O2 in such a way:

ψ(si) = Si =
(

e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

ψ(sj) = Sj =
(

0 0
e 0

)
⊗ T1 +

(
0 0
0 e

)
⊗ T2, ψ(sk) = Sk =

(
u 0
0 v

)
⊗ I0,

(12)

here T1, T2 are the same as in (6). It is easy to check that the functor F induced by the ∗-ho-
momorphism ψ is full. Therefore the algebra O3,{α1,α2,α3} majorizes C∗(F2) and is ∗-wild.
Theorem 3. If α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3, then the C∗-algebra O3,{α1,α2,α3} is
∗-wild.
Proof. We set the ∗-homomorphism ψ : O3,{αk}3

k=1
→ M2(C∗(F2))⊗O2 in such a way:

ψ(s1) = S1 =
(

e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

ψ(s2) = S2 =
(

(cosφ)u 0
(sinφ)e 0

)
⊗ T1 +

(
0 (cosφ)v
0 (sinφ)e

)
⊗ T2,

ψ(s3) = S3 =
(

(cos θ)u 0
(sin θ)e 0

)
⊗ T1 +

(
0 (cos θ)v
0 (sin θ)e

)
⊗ T2,

(13)

here T1, T2 are the same as in (6), cosφ, sinφ, cos θ, sin θ are such as in (11).
It is easy to verify that the functor F generated by the ∗-homomorphism ψ is full.
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Remark 3. One can see that these theorems together give also the needed conditions of ∗-wild-
ness of O3,{αk}3

k=1
since either there are no representations of the corresponding algebra P3 for

other αk, k = 1, 2, 3 (see [5]) or there are no representations of the algebra O3,{αk}3
k=1

(in the
case αi �= 0, if αi �= αj and αi �= αk, here i, j, k are pairwise different integers from the set
{1, 2, 3}).

The criterion of ∗-wildness of the C∗-algebra O3,{αk}3
k=1

follows from Theorems 2, 3 and
Remark 3.

Theorem 4. The algebra O3,{αk}3
k=1

is ∗-wild if and only if α1, α2, α3 satisfy one of the following
conditions:

1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3;

2) αi = 0, αj + αk = 1, 0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers
from the set {1, 2, 3};

3) αj + αk = 1, αi = αj or αi = αk, 0 < αl < 1, l = 1, 2, 3, here i, j, k are pairwise different
integers from the set {1, 2, 3};

4) α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3.
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C∗-Algebras Associated with Quadratic
Dynamical System

Stanislav V. POPOVYCH and Tatyana Yu. MAISTRENKO

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine

In this paper we consider enveloping C∗-algebras of ∗-algebras given by generators and
defining relations of the following form A = C〈X,X∗| XX∗ = f(X∗X)〉, where f is a
Hermitian mapping. Some properties of these algebras associated with simple dynamical
systems (f,R) are studied. As an example quadratic dynamical systems are considered.

1 Introduction

It is well known that there is close connection between the representation theory of C∗-algebras
and structure of dynamical systems (f(), X). In the case when f is one-to-one mapping, the
C∗-algebra associated with the transformation group had been studied by many authors, for
example by Glimm, Effros and Hahn. The general theory of cross-products of C∗-algebras was
elaborated by Doplicher, Kastler and Robinson.
In recent papers (see [8] and references given there in) a special class of ∗-algebras given

by generators and relations was considered and some of the results from the theory of cross-
product C∗-algebras were transferred into non-bijective settings, which may be important in
studying of multi-dimensional non-linear deformation (see [11, 10, 3]), such as Witten’s first
deformation of su(2), Quesne and Beckers non-linear deformation of su(2) etc. Examples were
studied in connection with different quantum deformations of algebras, such as Quantum Unit
Disc (Klimek and Lesnievski), one-dimensional q-CCR and their non linear transformation, ets
see [7, 8].
Thus, for example, for one-parameter Quantum Unit Disc there corresponds the dynamical

system: f(λ) = (q+µ)λ−µ
µλ+1−µ , where µ is a parameter of deformation, for two-parameter Quantum

Unit Disc there corresponds f(λ) = (q+µ)λ+1−q−µ
µλ+1−µ , for Witten’s first deformation of su(2) there

corresponds two-dimensional quadratic map f(x, y) = (p−1(1 + p−1x), g(gy− x+ (p− p−1)x2)),
where g = ±1 depending on the chosen real form and p is a parameter of deformation.
In the present paper we will deal with a one-dimensional polynomial map f : R → R and

consider ∗-algebra Af = C〈X,X∗| XX∗ = f(X∗X)〉. Under condition of simplicity of the
dynamical system (f,R) we prove that the enveloping C∗-algebra is GCR (type I) C∗-algebra
and investigate some other properties. We also discuss the question what relation between
dynamical systems (f1,R) and (f2,R) corresponds to the isomorphism of enveloping C∗-algebras
of ∗-algebras Af1 and Af2 .
In the last section we consider an example: Unharmonical Quantum Oscillator, i.e. the two-

parametric family of ∗-algebras Aa,b = C〈X,X∗| XX∗ = 1+ aX∗X − b(X∗X)2〉, where a and b
are real parameters with b > 0. Some partitioning of parametric domain into parts depending
on isomorphism class of C∗-enveloping algebra are given.
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2 Simple dynamical systems

For the convenience of the reader we repeat the relevant material from [12, 8] without proofs,
thus making our exposition self-contained. By the dynamical system we mean a continuous map
f : R → R or f : I → I, where I ⊂ R is a closed bounded interval. By the orbit of dynamical
system (f,R) we mean a sequence δ = (xk)k∈P , where P is one of the sets Z, N, such that
f(xk) = xk+1. But sometimes we will consider orbit as the set {xk| k ∈ P}. The set of all orbits
will be denoted by Orb(f). For x ∈ R denote by O+(x) the forward orbit, i.e. (fk(x))k≥0. For
every orbit δ ∈ Orb(f) define ω(δ) be the set of accumulation points of forward half-orbit and
α(δ) be the set of accumulation points of backward half-orbit.
By the positive orbit of (f(),R) we mean a sequence ω = (xk)k∈Z such that f(xk) = xk+1 and

xk > 0 for all integer k. Unilateral positive orbit is a sequence ω = (xk)k∈N (Fock-orbit) such
that x1 = 0 and f(xk) = xk+1, xk > 0 for k > 1 or ω = (x−k)k∈N (anti-Fock-orbit) such that
x−1 = 0 and f(xk) = xk+1, xk > 0 for k < −1. Define Orb+(f) be the set of all positive orbits
which are either periodic (cycles) or contain no cycles. Note that ω(δ) = ∅ for any anti-Fock
orbit δ and α(δ1) = ∅ for the Fock orbit δ1.
Cycle β = {β1, . . . , βm} is called attractive if there is a neighborhood U of β such that

f(U) ⊆ U and ∩i>0f
i(U) = β.

Point x ∈ R is called non-wandering if for every its neighborhood U there exists a positive
integer m such that fm(U) ∩ U �= ∅.
Since we will consider only bounded from above functions f and positive orbits we can always

consider our dynamical system on closed interval [0, sup f ].
In this paper we will deal with a simple dynamical system which possesses one of the equiv-

alent properties listed in the following theorem:

Theorem 1 ([12], 3.14]). Let (f(), I) be dynamical system with f ∈ C(I), (I ⊂ R is closed
bounded interval). The following conditions are equivalent:

1) for every x ∈ I ω(x) = ω(O+(x)) is cycle;
2) Per(f) is closed;
3) every non-wandering point is periodic.

f is called partially monotone, if I decomposes into a finite union of sub intervals, on which
f is monotone.
Let us mention the following statement from [8].

Theorem 2. Let (f, I) be a dynamical system with partially monotone and continuous f . Then
the following conditions are equivalent:

1) Per(f) is closed;
2) for some positive integer m the relation Fix(f2m+1

) = Fix(f2m
) holds;

3) any quasi-invariant ergodic measure is concentrated on a single element of the trajectory
decomposition.

The class of dynamical systems which satisfies equivalent conditions 1–3 of Theorem 2 is
denoted by F2m . Let us note that when Per(f) is closed Theorem ([12], 3.12) implies that the
length of every cycle is a power of 2 and there no homoclinical orbits (i.e. orbit δ such that
α(δ) = ω(δ) is a cycle).
We will need the following lemma:

Lemma 1. Let (f,R) be simple dynamical system with bounded f and the set of periodic points
which are not the points of attractive cycles, i.e. the set [0, sup f ]∩Per(f)\ ∪β-attractive cycle β be
finite then for every orbit δ ∈ Orb+(f) the α-boundary α(δ) is cycle which is not attractive.
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Proof. 1. Let us show that every α-boundary point is non-wandering: if x ∈ α(δ) then
for arbitrary ε > 0 and positive integer n there is y ∈ Bε(x) and integer l ≥ n such that
f l(y) ∈ Bε(x). Indeed, if δ = (xk)k∈Z then there is subsequence x−nk

→ x. For a given ε > 0
we can find an integer k0 such that x−nk

∈ Bε(x) for all k ≥ k0. Take k1 > k0 such that
nk1 ≥ nk0 + n and put y = x−nk1

∈ Bε(x) and l = nk1 − nk0 ≥ n. Then f l(y) = x−nk0
∈ Bε(x).

2. Since for a simple dynamical system every non-wandering point is periodic we obtain that
α(f) = ∪δ∈Orb+(f)α(δ) is contained in Per(f) ∩ [0, sup f ].
3. Let β be an attractive cycle and assume that β ⊆ α(δ), then α(δ) = β. Indeed, let

β1 ∈ α(δ) be another cycle, then there is ε > 0 such that β1∩Bε(β) = ∅. Since β is an attractive
cycle there is η > 0 and η < ε such that for arbitrary y ∈ Bη(β) we have O+(y) ⊆ Bε(β). Let
δ = (xk)k∈Z. Since β1 ∈ α(δ) there is a positive integer k0 such that x−k0 ∈ Bε1(β1), where
ε1 > 0 chosen such that Bε1(β1)∩Bε(β) = ∅. But β ∈ α(δ) so there is a positive integer k1 > k0

with the property x−k1 ∈ Bη(β) then O+(x−k1) ⊆ Bε(β) and, obviously, x−k0 ∈ O+(x−k1). This
is a contradiction. Thus we have proved that α(δ) = β. But this implies that α(δ) = ω(δ) = β.
So δ is a homoclinical orbit and so (f,R) is not simple. Which is a contradiction. Thus α(δ)
has no attractive cycles.

4. Let us prove that α(δ) is a single cycle for every orbit δ. We already know that α(δ) ⊂
[0, sup f ]∩Per(f)\∪β-attractive cycle β. Since the last one is a finite set there is ε > 0 such that for
arbitrary distinct cycles β1, β2 ∈ α(δ) we have Bε(β1) ∩Bε(β2) = ∅ and f(Bε(β1)) ∩Bε(β2) = ∅
(the last is a possible since f(β1) = β1 and so f(β1) ∩ β2 = ∅). There is a positive integer n
such that x−k ∈ Bε(α(δ)) for every k > n. Thus for every cycle β ∈ α(δ) there is positive ε1 < ε
such that f(y) ∈ Bε1(β1) for every y ∈ Bε1(β), where β1 �= β (in the opposite case would be
α(δ) = β). This contradicts f(Bε(β)) ∩Bε(β1) = ∅.

3 Representation theory of ∗-algebras associated
with F2m dynamical systems

The following theorem is due to Samoilenko and Ostrovskii [8].

Theorem 3. Let f be partially monotone continuous map and (f,R) be F2m dynamical system.
Let A = C〈X,X∗| XX∗ = f(X∗X)〉 be corresponding ∗-algebra.

1. To every positive non-cyclic orbit ω(xk)k∈Z there corresponds an irreducible representation
πω in Hilbert space l2(Z) given by the formulae: Uek = ek−1, Cek =

√
xkek for k ∈ Z and

X = UC is a polar decomposition.

2. To positive Fock-orbit ω = (xk)k∈N there corresponds an irreducible representation πω in
Hilbert space l2(N) given by the formulae: Ue0 = 0, Uek = ek−1, Cek =

√
xkek for k > 1 and

X = UC.

3. To positive anti-Fock-orbit ω = (x−k)k∈N there corresponds an irreducible representation
πω in Hilbert space l2(N) given by the formulae: Uek = ek−1, Cek =

√
xkek for k > 1 and

X = UC.

4. To cyclic positive orbit ω = (xk)k∈N of length m there corresponds a family of m-
dimensional irreducible representation πω,φ in Hilbert space l2({1, . . . ,m}) given by the formulae:
Ue0 = eiφem−1, Uek = ek−1, Cek =

√
xkek for k = 1, . . . ,m; 0 ≤ φ ≤ 2π and X = UC.

This is a complete list of unequivalent irreducible representation of a given ∗-algebra.
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4 Enveloping C∗-algebra

Let f be a bounded from above Hermitian polynomial (hence f is always partially monotone
and continuous). Let Af = C〈X,X∗| XX∗ = f(X∗X)〉 be ∗-algebra given by generators and
relations which has at least one representation. Let C = sup f . Then for any representation π
of ∗-algebra Af we have ‖X‖ ≤

√
C. Thus there is an enveloping C∗-algebra, which we denote

by Ef . Let us note that by Theorem 3.3 [12] for f ∈ C1(I, I) simplicity of a dynamical system
is equivalent to (f, I) ∈ F2m for some integer m.

Theorem 4. Let a dynamical system (f,R) be simple and δ ∈ Orb+(f).
1. If δ is non-cyclic bilateral orbit than C∗(πδ) = Z ×δ C(δ) is a cross-product of C∗-algebra,

where δ = δ ∪ ω(δ) ∪ α(δ).
The set of irreducible representation Irr(C∗(πδ)) is πδ, πω(δ),φ, πα(δ),φ, where 0 ≤ φ ≤ 2π.
2. Assume that 0 is not a periodic point. If δ is a Fock-orbit then C∗(πδ) ∼=Mm(T (C(T))) is

a matrix algebra of dimension m =| ω(δ) | over C∗-algebra T (C(T)) of the Toeplitz operators.
The same is true for anti-Fock orbit with m =| α(δ) |.

Proof. Let π ∈ Irr(C∗(πδ)) then σ(π(C2)) ⊆ σ(πδ(C2)) = δ ∪ ω(δ) ∪ α(δ). Since every
irreducible representation of C∗(πδ) is also an irreducible representation of ∗-algebra A there
is orbit δ′ such that π = πδ′ . Then we will have δ′ ⊆ δ ∪ ω(δ) ∪ α(δ). Since no cycle can be
properly contained in an orbit δ′ we conclude that δ′ = δ or δ′ = ω(δ) or δ′ = α(δ). So π must
be one of the representations listed in the theorem. Let us prove that all of them are actually
representations of the algebra C∗(πδ). Let A = diag(. . . , x−1, x0, x1, . . .) be diagonal operator
in Hilbert space l2(Z) with orthonormal basis {ek}, where δ = (. . . , x1, x0, x1, . . .). Let U be
a bilateral shift operator Uek = ek−1. The equality UAU∗ = f(A) implies UAU∗ ∈ C∗(A).
Since B = U∗AU is a diagonal operator Bek = xk+1ek and the mapping xk → xk+1 is mutually
continuous on the closure of δ(which is σ(A)) B ∈ C∗(A). Thus the mapping ρ(D) = UDU∗ is
a automorphism of C∗(A). Let us prove that C∗(π(δ)) is a cross-product C∗-algebra. Consider

the linear subspace Lt = {
n∑

−m
Aiu

iet|Ai ∈ C∗(A); m,n ≥ 0}. Then Lt is dense in H and

Lt is isomorphic to a dense subspace in L2(Z,C) via isomorphism
∑

Aiu
iet → f(), where

f(i) = (Aiet+i, et+i). Direct computations show that A(
∑

αiei) =
∑

αiφt(U−iAU∗−i), where
φt(D) = (Det, et) for all D ∈ C∗(A) is a one-dimensional representation of C∗(A). Thus πδ is a
regular representation, λφ, associated with the representation φt. Since φ = ⊕t∈Zφt is a faithful
representation of C∗(A) we conclude that λφ is faithful on the cross-product Z×ρC

∗(A) (see [9],
Theorems 7.7.5 and 7.7.7). Since all representations λφt are isomorphic to πδ we conclude that
C∗(πδ) is Z×ρ C

∗(A).
Consider the case of unilateral orbits. Since point 0 is not periodic and the dynamical system

is simple we conclude that for every orbit δ there is η > 0 such that δ ⊆ [η, sup f ], i.e. δ
is separeted from zero. Let δ = (xk)k∈N be the Fock orbit. Then πδ(X) is a weighted shift
operator with all weights separated from zero. If X = UC is polar decomposition of X then
U,C ∈ C∗(X) and the algebra of compact operators K ⊆ C∗(X) (see [1], Lemma 2.1). We know
that ω(δ) = (yk)k∈N is periodic orbit and xk − yk → 0. By Theorem 3 C = diag(

√
xk). Let us

put C1 = diag(
√
yk) then since C − C1 ∈ K and K ⊆ C∗(U,C) and K ⊆ C∗(U,C1) we conclude

that C∗(U,C) = C∗(U,C1) as operator algebras. If m =| ω(δ) | then C∗(U,C1) = C∗(UC1) is an
algebra generated by m-periodic weighted shift. It is known that C∗-algebra generated by all m-
periodic weighted shifts in a given separable Hilbert space is isomorphic to T (C(T)) (the Toeplitz
operators) and there is m-periodic shift which generate this algebra. But if D = diag(dk) and
D1 = diag(d1

k) are diagonal operators with m-periodic coefficients and m is least possible, then
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C∗(U,D) = C∗(U,D1) (since the map g : dk → d1
k is continuous on σ(D) and by functional

calculus f(D) = D1 and obviously, f(UDU∗) = Uf(D)U∗). From these facts follows that
C∗(X) = T (C(T)). For anti-Fock orbits arguments are the same.
Define support of the dynamical system (f,R) to be the union X =

⋃
δ∈Orb+(f) δ and the

finite support Xfin to be union of positive cycles.

Theorem 5. If a dynamical system (f(),R) is simple then the C∗-algebra Ef is GCR (type I
C∗-algebra), and the finite spectrum is homeomorphic to Xfin/ ∼, where ∼ is an orbit equivalence
relation.

Proof. First let us show that the finite-dimensional spectrum Irr(Ef ) � (Xfin/ ) × S1 (Xfin

is finite and so compact set). Indeed, it is obvious that f : Xfin → Xfin is one-to-one map.
Thus we can apply the results from [5]. If δ ∈ Orb+(f) is a bilateral non-periodic orbit then by
previous theorem, the set of irreducible representation Irr(C∗(πδ)) is πδ, πω(δ),φ, πα(δ),φ, where
0 ≤ φ ≤ 2π. Since we know the topology on finite dimensional representations we conclude that
Irr(C∗(πδ)) is T0 space. Hence C∗(πδ) is GCR-C∗-algebra. It is known that T (C(T)) is also a
GCR algebra. Cyclic orbits generate finite-dimensional and so GCR algberas. Hence Ef is GCR
C∗-algebra.
The question of isomorphism of enveloping C∗-algebras may turn to be very difficult. Even

in one-to-one case there are only fragmentary results in this direction, for example it is known
that for minimal dynamical systems on Cantor sets the isomorphism of cross-product C∗-
algebras equivalent to orbit-equivalence of corresponding dynamical systems (with condition
on K0-groups) see [4], Theorem 4. However, in particular “discrete” case we have the following:

Theorem 6. If dynamical systems (f1,R) and (f2,R) are simple and for every non-cyclic orbit
δ ∈ Orb+(fk) there exists a point x ∈ δ isolated in the support space of a dynamical system
(fk,R), then Ef1

∼= Ef2 if and only if there is a one-to-one map φ : Orb+(f1)/ ∼→ Orb+(f2)/ ∼,
such that |φ(δ)| = |δ| and φ(ω(δ)) = ω(φ(δ)), φ(α(δ)) = α(φ(δ)). Moreover in this case the
topology on Irr(Efk

) is given by its base consisting of closed sets {πδ, πω(δ),φ, πα(δ),φ|φ ∈ S1},
where δ ∈ Orb+(fk)\Cyc(f) and {πβ,φ|φ ∈ M}, where β is a positive cycle and M is a closed
subset in S1. Thus Ef1

∼= Ef2 if and only if their dual spaces are homeomorphic.

Proof. Let ψ : E(f1) → E(f2) be an isomorphism. Then ψ induces a homeomorphism of
spectra spaces ψ∗ : ˆE(f2) → ˆE(f1), i.e the spaces of irreducible representation with Jacobson’s
topology. We know that ˆE(f1) can be identified with Orb+(f1)/. With this identification we
have one-to-one map ψ∗ : Orb+(f2)→ Orb(f1). Let δ ∈ Orb+(f2). Since ψ∗ is homeomorphism
ψ∗(πδ) = ψ∗(π). As we know that πδ = {πω(δ),φ, πα(δ),φ} we have proved necessity of conditions
of the theorem.
Let ω1 be a non-attractive cycle or an empty set and ω2 be non-repellent cycles or empty sets.

Denote Ωω2
ω1
(f1) = {δ ∈ Orb+(f1)|α(δ) = ω1, ω(δ) = ω2}. Then Orb+(f1) is the disjoint union

of these sets. For all δ ∈ Ωω2
ω1
(f1) we will realize the corresponding representation πδ in the same

Hilbert space Hω2
ω1
. Consider an atomic representation of E(f1) which is realized in Hilbert space

H = ⊗ω1,ω2(H
ω2
ω1
)⊗n(ω1,ω2), where n(ω1, ω2) = |Ωω2

ω1
(f1)|. Then E(f1) is isomorphic to the algebra

generated by the diagonal operator C = diag(Cω1,ω2), where Cω1,ω2 = diag(Cδ|δ ∈ Ωω1,ω2) and
Cδ = πδ((XX∗)1/2) and block-diagonal with respect to direct sum decomposition of H operator
U = diag(I ⊗ Uω1,ω2). Discreteness of the dynamical system implies that all block-diagonal
with respect to an expanded direct sum decomposition H = ⊕ω1,ω2 ⊕n(ω1,ω2) H

ω2
ω1
compact

operators belong to E(f1). We will denote this subalgebra of compact operators by K1. Modulo
this compact operators C is Cnormal = diag(I ⊗ Aω1,ω2), where Aω1,ω2ek = x1

k if k < 0 and
Aω1,ω2ek = x2

k if k > 0 and ω1 = (x1
−k)k∈N and ω2 = (x2

k)k∈N regarded as periodic orbit.
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Moreover, it is obvious that C∗(Cnormal, U,K1) = C∗(C,U). If there is φ which satisfies all
conditions of the theorem then we can consider E(f1) and E(f2) in the same Hilbert space and
using functional calculus obtain φ∗(Cnormal(f1)) = Cnormal(f2) (where φ∗ is continuous map
Per(f1)+ → Per(f2)+ which is lifting of φ). and so E(f1) = E(f2) as operator algebras. This
completes the proof.

5 Quadratic dynamical system

In this section we consider an example of one-dimensional quadratic dynamical system. Let
fa,b(x) = 1+ ax− bx2 with {a, b} ∈ R and b > 0 to provide boundedness. Since when a < 0 dy-
namical system is one-to-one on R+ (and so all irreducible representations are one-dimensional)
we assume that a > 0. This dynamical system is conjugated to fµ(x) = µx(1 − x), where
µ = 1 +

√
a2 − 2a+ 1 + 4b. The values of parameter µ when bifurcations of cycles of one para-

metric family {fµ} occur are given in [12]. However a conjugacy relation does not preserve
positiveness, i.e. Orb+(fa,b) may not map into Orb+(fµ).
If (a, b) belong to domain D = {(a, b)| b < 1

2 −
a2

4 +
a
2 +

√
1+2a
2 } bounded by curve G (see

Fig. 1) then for every x ∈ [0; sup fa,b] O+(x) ⊂ [0; sup fa,b]. Thus for such (a, b) algebra Aa,b

has Fock representation and as it easily can be shown has no anti-Fock representations. In the
complement of D algebra Aa,b has anti-Fock representations.

a

b

C

Γ4

Γ2

Γ2∞

Figure 1.

Proposition 1. If (a, b) belong to domain P1 = {(a, b)| b < 1 − (a−1)2

4 } bounded by curve Γ2

(see picture) then Ea,b has one dimensional and Fock irreducible representations only. Moreover
Ea,b � T (C(T)).
Proof. For (a, b) ∈ P1 dynamical system has two fix point β+ > 0, β− < 0 but has no other
cycles.
Let us show that Orb+(f) = {β+, δ1}, where δ1 is the Fock orbit. If δ ∈ Orb+(f) and

δ �= β+, δ �= δ1 then α(δ) is a cycle which cannot be the attractive point β+ (see Lemma 1).
Hence α(δ) = β− < 0 which is contradiction.
Since P1 ⊂ D then δ1 is positive orbit. And Theorem 4 implies that Ea,b � T (C(T)).

Proposition 2. Let P2 = {(a, b)| 1− (a−1)2

4 < b < −a2

4 +
a
2 +

5
4} bounded by curves Γ2 and Γ4.

Domain P2 is divided into three domains P 1
2 , P

2
2 , P

3
2 : P 1

2 = P2 ∩D; P 2
2 = {(a, b) ∈ P2 \D| b <

a+ 1}; P 3
2 = {(a, b) ∈ P2 \D| b > a+ 1}.
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Then for (a, b) ∈ P 1
2 C∗-algebra Ea,b has the family of one-, two-dimensional and the Fock

irreducible representations, but has no anti-Fock representation. For (a, b) ∈ P 2
2 C∗-algebra Ea,b

has one-, two-dimensional and anti-Fock irreducible representations, but has no Fock represen-
tation. For (a, b) ∈ P 3

2 C∗-algebra Ea,b has the family of one-dimensional representations and
anti-Fock irreducible representations, but has no two-dimensional and Fock representations.

For (a, b) from domain bounded by curves Γ4 and Γ8 the dynamical system has 4-cycle,
2-cycle, two fix points and no other cycles.
The curve Γ2∞ ≈ 1.651225 − (a−1)2

4 separates the domain, where the dynamical system is
simple from the one (including Γ2∞), where the dynamical system is not simple.
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On Asymptotic Decompositions for Solutions of

Systems of Differential Equations in the Case of

Multiple Roots of the Characteristic Equation

M.I. SHKIL

M. Dragomanov National Pedagogical University, 9 Pyrogov Str., Kyiv, Ukraine

This paper is a surwey of results on asymptotic expansions of solutions of linear systems
εdx

dt = A(t)x, when the roots of matrix A(t) are multiple. The results, obtained by the
author, as well as by other mathematicians, are briefly reviewed, and some open problems
are listed.

1 A short historical review

The paper presents the results on investigation of linear differential systems with coefficients
depending on “slow” time τ = εt (ε > 0 is a small parameter). Fundamental results on in-
vestigation of such systems were obtained by S.F. Feshchenko, S.G. Krein, Yu.L. Daletskii,
I.Z. Shtokalo, I.M. Rapoport. The works of these authors appeared under direct influence of
asymptotic methods developed by N.M. Krylov, N.N. Bogoliubov, Yu.A. Mitropolskii.

The sources of construction of asymptotic decompositions for solutions of systems of dif-
ferential equations containing a parameter, can be found in the papers by Liouville, Birkhoff,
Schlesinger, Tamarkin.

In particular, Liouville considered the issue of decomposition of arbitrary functions on fun-
damental functions of the equation

d2y

dx2
+ (λq(x)− r(x))y = 0. (1.1)

The fundamental functions obtained by Liouville for the equation (1.1) in the case of large
values of the parameter λ, possess the property of orthogonality. For this reason the form of
decomposition of a given function with respect to fundamental functions of the equation (1.1)
can be determined directly. It is necessary only to show that 1) the constructed series converges;
2) it represents the given function. Liouville showed the convergence of the series by means of
asymptotic formulae for fundamental functions that he obtained. The proof of the statement 2
was obtained by means of certain Sturm’s results.

After the papers of Sturm and Liouville the theory of asymptotic representation of functions
begun to develop quickly.

However, all these studies were concerned with self-conjugate differential equations. These
limitations were removed in the investigations by Schlesinger, Birkhoff, Tamarkin.

Birkhoff considered construction of an asymptotic solution for the differential equation

dny

dxn
+ ρan−1(x, ρ)

dn−1y

dxn−1
+ · · ·+ ρna0(x, ρ)y = 0, (1.2)

where ai(x, ρ), (i = 0, 1, . . . , n−1) are analytical functions with respect to the complex parame-
ter ρ on infifnity and have derivatives of all orders by real variable x ∈ [a; b]. Unlike Schlesinger
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who proved the asymptotic property of solutions only on some fixed ray arg ρ = α for large |ρ|,
Birkhoff proves the same properties for the area θ < arg ρ < ψ.

Tamarkin generalized Birkhoff’s results for systems of linear differential equations

dyi

dx
=

n∑
k=1

aik(x, ρ)yk, i = 1, . . . , n, (1.3)

where aik(x, ρ) are single-value functions of complex parameter ρ, analytical near the point
ρ = ∞ but having singularities with ρ = ∞ (a pole of the order r ≥ 1). The asymptotic
expressions for solutions of the system (1.3), derived by Birkhoff, contain as particular cases
similar formulae, established by other methods by Schlesinger for systems of the form (1.3) and
by Birkhoff for a differential equation of the order n (the latter considered the case r = 1).

In 1936 the paper by Trzitzinsky appeared where he gave a complete exposure of the issue of
asymptotic representation for solutions of systems of ordinary differential equations with gener-
alization of the Schlesinger–Birkhoff–Tamarkin theory for the case of linear integral-differential
equations.

During the period of 1940–1945 a series of V.S. Pugachiov’s papers appeared in which, unlike
the previous researchers, the author presented the asymptotic representation for solutions in
more general form.

We can also speak about papers by G.L. Turritin and M. Hukuchara as papers on asymptotic
issues, where the asymptotic decomposition of a system of linear differential equations, with
coefficients depending on a parameter, into lower-order systems.

At the end of a short historical review of classical papers on asymptotic representation for
solutions of linear differential equations, we shall note that these methods were comprehensively
and fruitfully developed in the following. The extensive lists of references related to these
investigations are given in the books [1, 2].

As we have mentioned above, under the influence of asymptotic methods of Krylov–Bogoliu-
bov–Mitropolskii the investigations on linear differential equations containing a small parameter
in a singular way, started to develop extensively.

S.F. Feshchenko obtained the first results in this direction in 1948–1949. For the equation

d2y

dt2
+ ερ(τ, ε)

dy

dt
+ q(τ, ε)y = εf(τ, ε) · eiθ(t,ε), (1.4)

where ρ(τ, ε), q(τ, ε), f(τ, ε) are slowly changing functions, allowing decomposition by degress of
the small parameter ε. The case when the function ν(τ)

(
ν(τ) = dθ(t,ε)

dt

)
with certain τ from the

area of its variation coincides with one of the simple roots of the characteristic equation, con-
structed for the equation (1.4) was considered, that is very important from mathematical physics
applications perspective, and also from the theoretical side. This case was named “resonance”
by the author.

The theorems proved by S.F. Feshchenko allow to construct an asymptotic solution for the
equation (1.4) in the “resonance” and “non-resonance” (when ν(τ) for any τ does not coincide
with any root of the characteristic equation) cases.

The similar theorems were obtained by S.F. Feshchenko for the system of linear differential
equations of the form (1.4).

Then S.F. Feshchenko obtained very important results on asymptotic decomposition of sys-
tems of linear differential equations of the form

dx

dt
= A(τ, ε)x, (1.5)
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where x is an n-dimensional vector, A(τ, ε) is real square matrix of the order n allowing the
representation

A(τ, ε) =
∞∑

s=0

εsAs(τ). (1.6)

In particular he proved the following theorems.

Theorem 1.1. Let us assume that the roots of the characteristic equation

det ‖A0(τ)− λ · E‖ = 0 (1.7)

(E is a unit matrix) can be splitted into two groups λ1(τ), . . . , λr(τ) and λr+1(τ), . . . , λn(τ)
so that no root from the first group for all τ ∈ [0;L] is equal to roots from the second group.
Then, if A(τ, ε) on the interval [0, L] has derivatives on τ of all orders, the system of differential
equations (1.5) has a formal solution of the form

x = U1(τ, ε)ξ1 + U2(τ, ε)ξ2, (1.8)

where U1(τ, ε), U2(τ, ε) are rectangular matrices of the size correspondingly (n× r), (n× n− r)
and ξ1 is an r-dimensional vector, ξ2 is a n − r-dimensional vector, determined by systems of
differential equations

dξ1

dt
= W1(τ, ε)ξ1,

dξ2

dt
= W2(τ, ε)ξ2 (1.9)

of the order correspondingly r and n− r.

Theorem 1.2. If A(τ, ε) satisfies the conditions of the theorem 1.1 and eigenvalues of the
matrices

∆i(τ) =
1
2
(Wi(τ) +W ∗

i (τ)) , i = 1, 2,

where W1(τ), W2(τ) are diagonal cells of the matrix T−1(τ)A0(τ)T (τ) (T (τ) is a matrix of trans-
formation, T−1(τ) is the inverse of T (τ)), W ∗

1 (τ), W ∗
2 (τ) are matrices conjugate respectively

to the matrices W1(τ), W2(τ) and are non-positive, then for any L > 0 and 0 < ε ≤ ε0 it is
possible to find such constant c > 0 not depending on ε, that if only x |t=0= xm |t=0 (xm is an
m-approximation), then

‖x− xm‖ ≤ εmc. (1.10)

Using of Theorems 1.1, 1.2 it is possible to asymptotically lower the order of the system (1.5).
In particular, if all roots of the equation (1.7) are distinct at the interval [0, L], then these
theorems allow to obtain an asymptotic solution for the system (1.5).

However, by means of theorems on asymptotic decomposition it is possible mainly only to
lower the order of the initial system. In the case of multiple roots of the characteristic equation
it is impossible to get a solution of the initial system differential equations by means of these
theorems. Though this case is frequently encountered both in investigation of theoretical issues
and in solution of practical problems. Even in investigation of one of the simplest equations –
the Sturm–Liouville equation – we encounter a multiple root. These roots are also encountered
in investigation of systems of differential equations with a small parameter at certain derivatives
in the problems of optimal control. Let us note that the case of multiple roots, especially
when multiple elementary divisors correspond to multiple roots, is rather complicated. It is
the consequence of the fact that the initial system of differential equations in general does not



376 M.I. Shkil

have solutions allowing decomposition by integer degrees of the parameter ε. Such solutions,
unlike the case of simple roots, are represented by formal series by different fractional orders of
this parameter, and these orders depend not only on multiplicity of a root of the characteristic
equation, but also on corresponding elementary divisors and on some relations among coefficients
of the system under consideration.

The case of multiple roots of the characteristic equation was comprehensively studied by
M.I. Shkil. These results are partially presented in the following paragraphs.

2 Asymptotic decomposition in the case of multiple roots
of the characteristic equation

Let us consider the system of the form (1.5). We assume that the characteristic equation (1.7) has
at least one root λ = λ0(τ) of the constant multiplicity k, (2 ≤ k < n), with the corresponding
elementary divisor of the same multiplicity.

Theorem 2.1. If A(τ, ε) has at the interval [0;L] derivatives by τ of all orders and the matrix

C(τ) = T−1(τ)
(
dT (τ)
dτ

−A1(τ) · T (τ)
)

, (2.1)

where T (τ) is the matrix transforming A0(τ) to the Jordan form, and T−1(τ) is inverse of T (τ),
such that for every τ ∈ [0;L] its element

ck1 
= 0, (2.2)

then the system of differential equations (1.5) has a formal solution of the form

x = u(τ, µ) exp




t∫
0

λ(τ, µ)dt


 , (2.3)

where an n-dimensional vector u(τ, µ) and a scalar function λ(τ, µ) allow decompositions

u(τ, µ) =
∞∑

S=0

µsus(τ), λ(τ, µ) = λ0(τ) +
∞∑

S=1

µsλs(τ), (2.4)

where

µ = ε1/k. (2.5)

Let us note that if ck1(τ) ≡ 0 but at the same time ck−1,1(τ) + ck2(τ) 
= 0, then the initial
system has a formal solution of the form (2.3), where u(τ, µ), λ(τ, µ) can be represented by
formal series by degrees of the parameter µ = ε

1
k−1 .

Let us adduce a more general result.
Let the following conditions be fulfilled:
1) the matrix A(τ, ε) has derivatives by τ of all orders at the interval [0, L];
2) the characteristic equation (1.7) has one root of constant multiplicity k;
3) there are r ≥ 1 elementary divisors, corresponding to the root λ0(τ), of the form

(λ− λ0(τ))k1 , . . . , (λ− λ0(τ))kr ;

4) one of the following conditions is satisfied:

a) k1 = k2 = · · · = kr = k, b) k1 > k2 > · · · > kr.
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Then for the case a) the following theorem is true:

Theorem 2.2. If the conditions 1)–4) are fulfilled, then for the vector

x = u(τ, µ) exp




t∫
0

λ(τ, µ)dt


 , (2.6)

where an n-dimensional vector u(τ, µ) and a scalar function λ(τ, µ) can be represented by formal
series of the form

u(τ, µ) =
∞∑

S=0

µsus(τ), λ(τ, µ) =
∞∑

S=0

µsλs(τ), (2.7)

where µ = ε
1
k , to be a formal vector solution of the system (1.5), it is necessary and sufficient

that the function (λ1(τ))k for every τ ∈ [0;L] be a root of the equation

det

∥∥∥∥∥∥∥∥∥

ρ+ ck1(τ) ck k+1(τ) · · · ck lr−1+1(τ)
c2 k1(τ) ρ+ c2k k+1(τ) · · · c2k lr−1+1(τ)

...
... · · · ...

cn1(τ) cn k+1(τ) · · · ρ+ cn lr−1+1(τ)

∥∥∥∥∥∥∥∥∥
= 0, (2.8)

where ck1(τ), . . . , cn lr−1+1(τ), lr−1 = (r − 1)k are elements of the matrix (2.1).

Let us note that the proof of the sufficient condition of this theorem simultaneously gives a
method for construction of coefficients of the formal series (2.7).

The similar theorem is true for the case b). It was proved also that for the both cases for-
mal solutions are asymptotic decompositions by the parameter ε of the true solutions of the
system (1.5).

3 Turning points

The theorems, adduced in the Section 1.2, hold true under the condition that the roots of
the characteristic equation and the corresponding elementary divisors preserve the constant
multiplicity for all τ ∈ [0;L]. If these conditions are violated (turning points appear, see [4]),
then the construction of asymptotic solutions for solutions of the systems under study is rather
difficult. Some results for the cases with turning points were obtained only for one second-
order differential equation [3], and for systems of two second-order differential equations [4].
Investigation of this case by different authors was carried out with the use of Airy functions or
by reduction of the differential equations under study to certain model equations. One of these
equations is e.g. the Airy equation. More details can be found in the book [4].

The author of the present paper was the first to attempt constructing of formal decomposi-
tions in elementary functions for solutions of the systems of differential equations (1.5) [5].

Theorem 3.1. Let the following conditions be fulfilled for the system of differential equa-
tions (1.5):

1. The matrix A(τ, ε) admits a decomposition

A(τ, ε) =
∞∑

s=0

εsAs(τ).

2. The matrices As(τ) (s = 0, 1, . . .) are infinitely differentiable at the interval [0, L].
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3. There exists such integer number k ≥ 1 that the roots of the equation

det ‖A0(τ) + εA1(τ) + · · ·+ εkAk(τ)− λE‖ = 0 (3.1)

are simple for all τ ∈ [0;L].
Then there exists a formal vector that is a solution of the system (1.5) such as

x(τ, ε) = U(τ, ε) exp


1

ε

τ∫
0

Λ(σ, ε)dσ


 · a, (3.2)

where U(τ, ε) is (n× n)-matrix which allows a formal decomposition

U(τ, ε) =
∞∑

S=0

εsUs(τ, ε), (3.3)

Λ(τ, ε) is a diagonal matrix, constructed of the roots of the equation (1.7), a is a constant n-
dimensional vector.

Let us note that unlike formal decompositions, adduced in the paragraph 1.2, coefficients in
the decomposition (3.3) depend on ε, what presents considerable difficulties for investigation of
asymptotic properties of these decompositions. Some results in this direction were obtained in
the papers of the author and his students [6, 7].

4 Simplification of formal decompositions. Problems

The proof of existence of formal solution for the system (1.5) can be simplified considerably
by means of consideration of another algebraic equation, related to the system (1.5). However
in this case new and rather difficult problems appear, related to substantiation of asymptotic
properties of formal solutions, obtained by means of this method. We will illustrate the above
statements by consideration of the simplified system of the form

dx

dt
= A(τ)x, (4.1)

where n×n-matrix A(τ) is differentiable sufficient number of times at the interval [0, L] (τ = εt,
ε > 0 is a small parameter).

We shall assume that the characteristic equation

det ‖A(τ)− λE‖ = 0 (4.2)

at the interval [0, L] has only one identically multiple root λ = λ0(τ) of the multiplicity n, with
corresponding elementary divisor of the same multiplicity.

Then by means of the substitution

x = V (τ)y, (4.3)

where V (τ) is a matrix, reducing the matrix A(τ) to the Jordan form, the system (4.1) can be
reduced to the form

dy

dt
= B(τ, ε)y, (4.4)

where

B(τ, ε) = W (τ)− εV −1(τ)V ′(τ), (4.5)
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W (τ) is a Jordan cell, corresponding to the root λ0(τ), V −1(τ) is the inverse of V (τ), V ′(τ) is
a derivative of V (τ).

Let us construct an equation

det ‖B(τ, ε)− ρE‖ = 0. (4.6)

We will assume that the roots ρ1(τ, ε), . . . , ρn(τ, ε) of equation (4.6) are simple for ∀ x ∈ [0;L]
and ∀ ε ∈ (0; ε0], or that

ρi(τ, ε) 
= ρj(τ, ε), i 
= j, ∀ i, j = 1, n. (4.7)

Then making the following substitution in the system (4.4)

y = Um(τ, ε, ε)z, Um(τ, ε, ε) =
m∑

S=0

εsUs(τ, ε), (4.8)

(m ≥ 1 is a natural number) and defining the matrices Us(τ, ε) (s = 0,m) by means of the
method [2], we arrive at the system of differential equations of the form

Um(τ, ε, ε)
dz

dt
= Um(τ, ε, ε)

(
Λm(τ, ε, ε) + εm+1Cm(τ, ε)

)
z, (4.9)

where a diagonal matrix

Λm(τ, ε, ε) =
m∑

S=0

εsΛs(τ, ε), (4.10)

and an n× n-matrix Cm(τ, ε) are determined by means of the formulae from [2].
Let for all τ ∈ [0;L] and for a sufficiently small ε ∈ (0; ε0] the following conditions are fulfilled:
1. The matrix Um(τ, ε, ε) is non-singular. Then the system (4.9) can be written in the form

dz

dt
=

(
Λm(τ, ε, ε) + εm+1Cm(τ, ε)

)
z, (4.11)

2. Re(ρj(τ, ε, ε))j=1,n ≤ 0,

Cm(τ, ε) = O
(
ε−α

)
(ε → 0), (4.12)

where 0 ≤ α < m, then the system (4.11) can be integrated by means of the method of sequential
approximations (conditions 2 ensure the applicability of this method). Whence for the vector z
we obtain an asymptotic formula by the parameter ε (ε → 0):

z = exp


1

ε

τ∫
0

m∑
s=0

εsΛs(σ, ε)dσ


 a+O

(
εm−α

)
, (4.13)

where a is a constant n-dimensional vector.
3. The matrix Um(τ, ε, ε) is limited by the norm. Then using (4.3), (4.8), (4.13) we obtain

an asymptotic formula for the vector x.
Finally we note that the formula (4.13) was obtained in assumption of conditions 1–2, where

coefficients of the system (4.1) do not appear explicitly. The following question a rises:
What should be the requirements for the matrix A(τ) for the conditions 1–3 to be fulfilled?

The answer for this question presents the problems mentioned at the beginning of the Section 4.
The solution of these problems requires further research.
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Example. Let us consider a scalar equation

d2x

dt2
+ εp(τ)x = 0, (4.14)

where p(τ) 
= 0 at the interval [0;L] and has continuous derivatives up to the second order.
The equation (4.14) can be represented in the form of the system (4.4) where y = (y1, y2)(

y1 = x, y2 = dx
dt

)
is a two-dimensional vector, B(τ, ε) is a square matrix of the form

B(τ, ε) =
∥∥∥∥ 0 1

−εp(τ) 0

∥∥∥∥ . (4.15)

Then according to the assumption the equation has simple roots

ρ1(τ, ε) =
√

−εp(τ), ρ2(τ, ε) = −
√
−εp(τ). (4.16)

We apply the transformation (4.8) to the system (4.4) with the matrix (4.15), putting m = 1.
Then we obtain a system of the form (4.9) where the matrices U1(τ, ε, ε), Λ1(τ, ε, ε) are:

U1(τ, ε, ε) =

∥∥∥∥∥∥∥∥∥

1 +
εp′(τ)

8p(τ)
√−εp(τ)

1− εp′(τ)
8p(τ)

√−εp(τ)

√−εp(τ)− εp′(τ)
8p(τ)

−εp′(τ)
8p(τ)

∥∥∥∥∥∥∥∥∥
,

Λ1(τ, ε, ε) = diag
(√

−εp(τ) +
εp′(τ)
4p(τ)

, −
√
−εp(τ) +

εp′(τ)
4p(τ)

)
,

U−1
1 (τ, ε, ε) =

1
a(τ, ε)

∥∥∥∥∥∥∥∥∥∥

−εp′(τ)
8p(τ)

εp′(τ)
8p(τ)

√−εp(τ)
− 1

εp′(τ)
8p(τ)

−
√
−εp(τ) 1 +

εp′(τ)
8p(τ)

√−εp(τ)

∥∥∥∥∥∥∥∥∥∥
,

a(τ, ε) =
εp′(τ)
8p(τ)

−
√
−εp(τ)− ε2(p′(τ))2

32p2(τ)
√−εp(τ)

.

(4.17)

The matrix C1(τ, ε) is determined by means of the formula

C1(τ, ε) = −U−1
1 (τ, ε, ε)(U1(τ, ε)Λ1(τ, ε) + U ′

1(τ, ε)), (4.18)

where

U1(τ, ε) =
p′(τ)

8p(τ)
√−εp(τ)

∥∥∥∥∥
1 −1

−√−εp(τ) −√−εp(τ)

∥∥∥∥∥ ,

Λ1(τ, ε) = diag
(

p′(τ)
4p(τ)

,
p′(τ)
4p(τ)

)
.

(4.19)

The direct computation of the elements of the matrix C1(τ, ε) (we will omit it, as it is very
cumbersome) shows that they have the order O

(
ε−

1
2

)
in the neighbourhood of the point ε = 0

for all τ ∈ [0;L]. So, having required the fulfilment of the condition

ReΛ1(τ, ε, ε) ≤ 0 (4.20)
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(this condition will be satisfied when the function p(τ) > 0 for ∀ τ ∈ [0;L]), we get the following
asymptotic formula for the vector z:

z = exp


1

ε

τ∫
0

Λ1(σ, ε, ε)dσ


 a+O

(
ε

1
2

)
, (4.21)
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On Asymptotic Formulae for Solutions of Differential

Equations with Summable Coefficients

M.I. SHKIL and P.F. SAMUSENKO

M. Dragomanov National Pedagogical University, 9 Pyrogov Str., Kyiv, Ukraine

Using the technique of asymptotic expansions, we prove the theorem about the form of system
dx
dt = A(t)x, when the eigenvalues of A(t) are multiple and the corresponding elementary
divisors have constant multiplicity.

In this paper we consider a system of differential equations

dx

dt
= A(t)x, t ≥ t0 (1)

in the case when eigenvalues of the matrix A(t) are multiple and the corresponding elementary
divisors are of constant multiplicity.

The problem of asymptotic behaviour of solutions of the system (1) was partially solved by
I.M. Rappoport [1] and M.I. Shkil [2] by reducing it to the generalized L-diagonal form

dx

dt
= (Λ(t) + C(t))x, (2)

where Λ(t) = diag {W1(t), . . . ,Wm(t)}, Wk(t) = ||wij(t)||nk
1 , wii(t) = wi(t), wii+1(t) = 1,

wij(t) = 0 (i �= j, j �= i+ 1).
In particular I.M. Rappoport, having imposed some restrictions on elements of the matrices

Λ(t) and C(t) [1], obtained asymptotic formulae for solutions of the system (2). He also adduced
the simplest substitutions by means of which the system (1) can be reduced to the system (2).
M.I. Shkil and his students in investigation of asymptotic properties of the system (1) used
the previously developed methods of asymptotic integration for systems of differential equations
with slowly changing coefficients

dx

dt
= A(τ, ε)x,

where

A(τ, ε) =
∞∑

s=0

εsAs(τ), τ ∈ [0;L], τ = εt

and ε is a small parameter, in the case of multiple eigenvalues of the matrix A0(τ). Here constant
multiplicity elementary divisors of A0(τ) caused substantial difficulties.

In this paper we suggest a method for construction of asymptotic solutions of the system (1)
by reducing it to the L-diagonal form

dx

dt
= (Λ(t) + C(t))x, (3)

where Λ(t) = diag {λ1(t), . . . , λn(t)}.
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It follows from conditions imposed on the matrix A(t) that there exist non-degenerate for all
t ≥ t0 matrix T (t) such that

T−1(t)A(t)T (t) = Λ(t),

where Λ(t) is a Jordan matrix corresponding to the matrix A(t). In the system (1) we set

x = T (t)y

and multiply the obtained system by T−1(t). We get

dy

dt
=

(
Λ(t)− T−1T

′
(t)

)
y. (4)

In the following we will assume that the matrix D(t) = Λ(t)− T−1T
′
(t) has simple eigenvalues

at the interval [t0; +∞). Instead of the system (4) we will consider the system

ε
dy

dt
= D(t)y, (5)

where ε > 0 is a real parameter (the system (5) with ε = 1 coincides with system (4)). When
we assume

y = Um(t, ε)z, Um(t, ε) =
m∑

s=0

εsUs(t),

where z is an n-dementional vector and Us(t) are square matrices of the order n, we obtain

εUm(t, ε)
dz

dt
= (D(t)Um(t, ε)− εU ′

m(t, ε))z. (6)

We will construct the matrices Us(t) (s = 0, 1, . . . ,m) for the following matrix equality to be
satisfied:

D(t)Um(t, ε)− εU ′
m(t, ε) = Um(t, ε)

(
Λm(t, ε) + εm+1Cm(t, ε)

)
, (7)

where Λm(t, ε) is diagonal matrix of the form Λm(t, ε) =
m∑

s=0
εsΛs(t) and Cm(t, ε) is a square

matrix of the order n to be determined.
Matrices Um(t, ε),Λm(t, ε) we will determine from the equality (7) where we require coeffi-

cients at ε0, ε1, . . . , εm to be equal. Then we obtain the following system of matrix equations

D(t)U0(t)− U0(t)Λ0(t) = 0, (8)

D(t)Us(t)− Us(t)Λ0(t) = U ′
s−1(t) +

s∑
j=1

Us−j(t)Λj(t). (9)

Let us write the matrix equation (8) in the vector form. For this purpose we designate the
columns of the matrix U0(t) as u0i(t) (i = 1, 2, . . . , n) and write the matrix Λ0(t) in the form

Λ0(t) = diag {λ1(t), λ2(t) . . . , λn(t)},
where λi(t) (i = 1, 2, . . . , n) are eigenvalues of the matrix D(t). Then we obtain the following
system of equations from (8):

(D(t)− λi(t)E)u0i(t) = 0. (10)
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Thus, if µi(t) (i = 1, 2, . . . , n) are eigenvectors of the matrix D(t), we can set

u0i(t) = µi(t).

Let us note that we showed in [3] that it is possible to construct µi(t) (i = 1, 2, . . . , n) so that

(µi(t), ψj(t)) =
{

1, i = j;
0, i �= j, i, j = 1, . . . , n.

where ψj(t) (j = 1, 2, . . . , n) are elements of the zero space of the matrices (D(t)− λj(t)E)∗.
Let us consider the system of matrix equations (9) with s = 1, having written it in the vector

form

(D(t)− λi(t)E)u1i(t) = g1i(t), i = 1, 2, . . . , n, (11)

where u1i(t) are columns of the matrix U1(t) and vector g1i(t) is determined as follows:

g1i(t) = u′0i(t) + u0i(t)λ1i(t). (12)

The equation (11) is solvable with respect to u1i(t) if and only if the vector g1i(t) (i =
1, 2, . . . , n) is orthogonal to all vectors that are solutions of the corresponding homogeneous
associated system. Thus, for the system (11) to have a solution, it is necessary and sufficient
that for all t ≥ t0 the following equality is satisfied:

(g1i(t), ψi(t)) = 0, i = 1, 2, . . . , n.

Substituting to the latter equation the value of the vector g1i(t), we obtain a scalar equation
with respect to λ1i(t)

(µ′i(t), ψi(t)) + (µi(t)λ1i(t), ψi(t)) = 0.

Whence we get that

λ1i(t) = −(µ′i(t), ψi(t)), i = 1, 2, . . . , n. (13)

Therefore we can set

Λ1(t) = diag {λ11(t), λ12(t), . . . , λ1n(t)}.
Then, substituting the values of λ1i(t) into (11), we get a system that has a solution with

respect to the vector u1i(t). We will look for this solution in the form

u1i(t) =
n∑

r=1

c
(1)
ri (t)µr(t), i = 1, 2, . . . , n, (14)

where c(1)ri (t) are functions that have to be determined for the vector (14) to satisfy the sys-
tem (11). For this purpose we substitute (14) into the system (11) and scalarly multiply the
obtained equality by the vector ψj(t) (j = 1, 2, . . . , n). We obtain

c
(1)
ji (t)(λj(t)− λi(t)) = (g1i(t), ψj(t)), j = 1, 2, . . . , n.

When i = j we obtain the equality

c
(1)
jj (t) · 0 ≡ 0.
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Thus we can take an arbitrary function c(1)jj (t), e.g.

c
(1)
jj (t) ≡ 0, t ≥ t0.

In case when i �= j we get that

c
(1)
ji (t) =

(g1i(t), ψj(t))
λj(t)− λi(t)

.

Then the vector u1i(t) is as follows:

u1i(t) =
n∑

r=1,r �=i

(g1i(t), ψr(t))
λr(t)− λi(t)

µr(t).

So we determined the matrices U1(t) and Λ1(t).
Using the method of mathematical induction we can show that similarly it is possible to find

all further matrices Us(t) and Λs(t) (s = 2, 3, . . . , n). from the equations (9) [2, 3].
Let us proceed to the finding of the matrix Cm(t, ε).
Taking into account that arbitrary elements of the matrix Um(t, ε) can be chosen so that [3]

detUm(t, ε) �= 0, t ≥ t0,
then we get from the system (7) with ε = 1

Cm(t, 1) = −U−1
m (t, 1)


U ′

m(t) +
m∑

k=1

m∑
j=k

Uj(t)Λm+k−j(t)


 .

Thus, the system (4) is reduced to the system of the form

dz

dt
= (Λm(t, 1) + Cm(t, 1))z. (15)

If also
a) neither of the differences

Reλi(t, 1)− Reλj(t, 1) (16)

changes the sign for all t ≥ t1 ≥ t0, where λi(t, 1) (i = 1, 2, . . . , n) are diagonal elements of the
matrix Λm(t, 1);

b)
∞∫

t0

||Cm(t, 1)||dt <∞, (17)

then for the vector xs(t), which is solution of the system (1), we have the formula

xs(t) = µsj(t) exp

t∫
t0

λj(t, 1)dt, s, j = 1, 2, . . . , n, (18)

where µsj(t) are continuous functions in the interval [t0; +∞).
Thus, the following theorem hold true.

Theorem. Let the matrix D(t) of the system (4) on the segment [t0; +∞) have simple eigen-
values and the condidtions (16), (17) be fulfilled. Then n solutions of the system (1) have the
form (18).
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PP-Test for Integrability of Some Evolution

Differential Equations

Valentina P. FILCHAKOVA
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3 Tereshchenkivs’ka Str., Kyiv, Ukraine

The connection between transcendents of Painlevé and evolution equations is discussed. The
calculus PP-procedure is proposed.

The Painlevé singularity analysis is one of the systematic and powerful method to identify the
integrability conditions of nonlinear partial differential equations (NPDEs). In recent years, this
method has been applied to a very large number of NPDEs and systematically established the
complete integrability properties like Lax pair, Bäcklund, Darboux and Miura transformations,
bilinear transformation, soliton solutions and so on.
In the last decade of the nineteenth century some mathematicians focused their attention on

the classification of ordinary differential equations (ODEs) on the basis of the type of singularity
their of solutions.
It is essential to distinguish between two types of singularities. Fixed singularities determined

by the coefficients of the equation and its location do not therefore depend on initial conditions.
Movable singularities are such whose location on the complex plane does indeed depend on the
initial conditions.
The beginning of the study of singularities in the complex plane for differential equations was

always attributed to Cauchy, whose idea was to consider local solutions on the complex plane
and to use methods of analytical continuation to obtain general solutions. For this procedure
to work a complete knowledge of singularities of the equation and its location in the complex
plane is required.
Some French mathematicians (Painlevé, Gambier, Garnier and Chazy), following the ideas

of Fuchs, Kovalevskaya, Picard and other, completely classified first order equations and studied
second order differential equations. In this case, Paul Painlevé [1] found 50 types of second order
equations whose only movable singularities were ordinary poles. This special analytical property
now carries his name and in what follow will be referred to as the Painlevé Property (PP). Of
these 50 types of equations 44 can be integrated in terms of known functions (Riccati equations,
elliptic functions, linear equations) and the other six in spite of having meromorphic solutions
do not have algebraic integrals that would allow to reduce the equation to quadratures. Today
these are known as Painlevé Transcendents:

P1 : w′′(z) = 6w2(z) + az;
P2 : w′′(z) = 2w3(z) + zw(z) + b;

P3 : w′′(z) =
w′2

w
+ ez(aw2 + b) + e2z

(
cw3 +

d

w

)
;

P4 : w′′(z) =
w′2

2w
+
3w3

2
− 4zw2 + 2

(
z2 − a

)
w +

b

w
;

P5 : w′′(z) = w′2
(
1
2w

+
1

w − 1

)
− w′

z
+
(w − 1)2(aw + b/w)

z2
+

cw

z
+

dw(w + 1)
w − 1

;
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P6 : w′′(z) =
w′2

2

(
1
w
+

1
w − 1

+
1

w − z

)
− w′

(
1
z
+

1
z − 1

+
1

w − z

)

+
w(w − 1)(w − z)

z2(z − 1)2

(
a+

bz

w2
+ c(z − 1)(w − 1)2 + dz(z − 1)(w − z)2

)
.

P1, P2, P3, P4 being simple meromorphic functions; P5 has fixed transcendent critical points
z = 0, z =∞; P6 has fixed transcendent critical points z = 0, z = 1, z =∞.
The main contribution of Paul Painlevé lies in that he established the basis for a theory

that would allow one a priory, by singularity analysis, to decide on integrability of the partial
differential equations (PDEs) without previously solving them. Singularity analysis turns out
to be a test of integrability for an equation.
An ordinary differential equation (ODE) is said to possess the Painlevé property if all of its

movable singularities are poles. The relation between integrability and the absence of movable
critical points was made more explicit through the work [2] in which it was established such
ARS (Ablowitz, Ramani, Segur) conjecture: every ODE obtained by similarity reduction of
a partial differential equation (PDE) solvable with the inverse scattering method posses the
Painlevé property. For the equations that do not have symmetries the ARS conjucture is quite
useless as it is not possible to obtain similarity reductions from usual group-theory procedures.
The definition of the PP for PDEs was proposed in [3]. According to these authors, we say

that a PDE has the PP if its solutions are singlevalued in a neighbourhood of the manifold
of movable singularities. When this manifold depends on the initial conditions it is called a
movable singularity manifold.
It is known that the singularities of a function f(z1, z2, . . . , zn) of n > 1 complex variables

cannot be isolated; rather they occur along analytic manifolds of (complex)-dimension n − 1
determined by equation of the form

χ(z1, z2, . . . , zn) = 0, (1)

being an analytical function of its variables in a neighbourhood of the singularity manifold
defined by (1).
To test for the presence of PP one assumes that a solution u(z1, z2, . . . , zn) of a PDE can be

expanded around the singularity manifold (1) as following Laurent series of the form

u = χ−α
∞∑

k=0

ukχ
k, (2)

where the coefficients uk(z1, z2, . . . , zn) are analytical in a neighbourhood of χ = 0.
It is possible in any to truncate the expansion series at a certain term in order to obtain partic-

ular solutions of the equation. If the expansion is truncated at the constant term, expression (2)
reduces to:

u = u0ϕ
−α + u1ϕ

1−α + · · ·+ uα. (3)

Substitution of (3) in the corresponding PDE leads to an overdetermined system of equations
for ϕ, uj and their derivatives. The truncation of the Painlevé series is the basis of a method
called as Singular Manifold Method (SMM). One then substitutes the above expansion (2) in
the PDE to determine the value of α and the recurrence relations among the uk’s. If all the
allowed values of α turn out to be integers and the set of recurrence relations consistently allows
for the arbitrariness of initial conditions, then the given PDE is said to posses the PP and is
conjectured to integrable.



PP-Test for Integrability of Some Evolution Differential Equations 389

An algorithmic procedure has recently been put forward for determining similarity reductions
for PDEs. The essence of the procedure is to study the Lie symmetries.
It has been found that Painlevé Transcendents often appear in similarity reductions of the

evolution equations with solitons.
The soliton is an object describing solitary wave solutions interacting among themselves

without any change in shape except for a small change in its phase. The solitary waves were
studied and were described in hydrodynamics problems by Scott Rassel (1844), Boussinesq
(1872), Korteveg-de-Vries (1895), M.A. Lavrentjev (1945), Friedrichs (1954). But the concept
of “soliton” emerged for the first time in 1965 with Zabusky and Kruskal [4] and the Korteveg-
de-Vries (KDV) equation reappeared between 1955 and 1960 in the context of plasma physics.
The Hirota’s bilinear method [5] is known as a powerful procedure for generating multisoliton

solutions for PDEs. It is essentially consists in bilinearizing the differential equation by an
transformation reminiscent of the Painlevé truncated expansion. The WTC (Weiss, Tabor,
Carnevale) method also provides an iterative procedure for generating solitons from the Lax pair
and from the corresponding auto-Bäcklund transformation,where the corresponding singularity
manifold ϕ is determined in each step and after n-steps the solution can be expressed in terms
of the product ϕ1, ϕ2, . . . , ϕn from which it is then possible to construct the Hirota τ -function
associated with the solution with n solitons.
The Inverse Scattering Method (ISM) was developed initially allowing one to solve many

integrable evolution equations with soliton solutions,in particular, the KdV equation:

6ut = 3uux − 1
2
uxxx, (4)

and its different modifications:

6vt = 3v2vx − 1
2
vxxx, (5)

ut + upux + uxxx = 0; (6)

the sine-Gordon equation:

uxt = sinu; (7)

the Kline–Gordon equation:

uxt = f ′(u), f(u) = − cosu; (8)

the Schrödinger equation:

iut = u2
x − 4iu2ux + 8|u|4u; (9)

the Boussinesq equation:

utt = uxx + 6
(
u2

)
xx

− uxxx; (10)

and the Born–Infeld equation:(
1− u2

t

)
uxx + 2uxuxt −

(
1 + u2

x

)
utt = 0. (11)

In recent years Miura transformation

f(z) = w′(z) + w2(z), w(z) ≡ P2 (12)

widely was applied to find the automodel solutions of evolution equations of the type (4)–(11).
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There is a known connection between first Painlevé transcendent P1 and the automodel
solution of KdV equation of such type

ut + uxxx − 6uxu = 0, u(x, t) ≡ u, (13)

which is received by following relation:

u(x, t) = 2[w(z)− t], z = x − 6t2, w(z) ≡ P1. (14)

The substitution

u(x, t) ≡ w(z), z = x − t (15)

relates P1 with automodel solution of Boussinesq equation (10). Second Painlevé transcendent P2

relates with modifications of KdV equation (6) and

vt + vxxx − 6vxv2 = 0; v ≡ v(x, t). (16)

In fact, if we make such transformation

u(x, t) = [3(t − t0)]−2/3f(z), z = [3(t − t0)]−1/3(x − x0) (17)

and then carry out some mathematical procedure of differential calculus using Miura transfor-
mation (12) we obtain automodel solution (17) for equation (13) where w(z) being P2. KdV
evolution equation of type (16) has the automodel solution

v(x, t) = [3(t − t0)]−1/3w(z), z = [3(t − t0)]−1/3(x − x0), w(z) ≡ P2. (18)

Other evolution equations also have relation with Painlevé transcendents, particularly, the sine–
Gordon equation (7) relates with P3, the Schrödinger equation (9) relates with P4, the KdV
equation of type (5) relates with P5 and the Born–Infeld equation (11) relates with P6.
We apply two types of expansions, described in [6], to construct the Painlevé transcendents

at explicit form.
In brief, the calculus of Painlevé Property Procedure comes to the following:

1. The initial Cauchy problem for Painlevé equations P1 − P6 solves, by exact initial con-
ditions, in a holomorphic neighbourhood with help of truncated expansions to consider
local solutions on the complex plane and use the method of analytical continuation for
obtaining general solution. Unknown coefficients an of the power series can be obtained
from recurrence relations [7].

2. In order to find a location of unknown poles of m-th order (to the point, Painlevé tran-
scendents have the poles of the different orders for every number (1, 2, . . . , 6) we apply the
algorithm of isolation of pole, proposed by the author [8].

3. On the one hand, the meromorphic integrals of [P1 − P6] can be represented by super-
position of finite polynomial Pν(z) and some general summarized geometrical progression
Rν(z) in a neighbourhood of singularities for Painlevé transcendents. Corresponding corre-
lations for the coefficients of the regular power series, m-orders of poles and value q = 1/R,
defining location of poles, were found.

4. On the other hand, meromorphic integrals of [P1 − P6] can be expanded around poles
in form of Laurent series in a neighbourhood of the found poles and then both type of
expansions (regular, described in 1, and irregular, described in 3) stick together.

5. Transition across the pole realizes with help of procedure of the analytical continuations,
which also is used in the case of realization of procedure for isolation of poles.
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6. All algebraic operations with the power series and Laurent series and obtaining of recur-
rence relations were made according to the Method of generalized power series, proposed
by Prof. P.F. Fil’chakov for solving of wide classes of linear and nonlinear problems and
described in his book [9]. This method is based on Euler’s method with using of Cauchy’s
formula for multiplying of power series.

We hope that there will be further study in this direction.
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We present the theorems about the asymptotic expansion in ε for the solution of the three-
component system ε dx

dt = A(t)x for the case, when 3× 3 matrix A(t) has multiple roots.

1. Development of asymptotic methods of solution of differential equations with variable
coefficients started in 19 century in Fourier’s, Liouville’s and Sturm’s papers. The systematic
research of the linear differential equations with slowly variable coefficients bigin from fifty yeares
after Feschenko papers were published. However for new, more accurate and rational the serch
methods of solutions such equations and their systems continus. For the systems which roots of
characteristic equations are simple the solutions are easily found by classical Birkhoff method.
The first result in the case of multiple roots of characteristics equations in general case was
obtained in 60–70 years in Shkil’s works.

In my work I suggest a method for reduction of identical multiple roots of characteristic
equations to simple roots of some algebraic equations. It enables one to make use of well-
known formula for the construction of the asymptotic solution of the system under study what
considerably simplifies calculations.

2. Consider the system of first order linear differential equations

ε
dx

dt
= A(t)x, (1)

where x is three dimensional vector, A(t) = ‖aij‖, i, j = 1, 2, 3 is matrix, whose elements are
infinitely differentiable on the segment [0, L], ε > 0 is the small parameter.

Let us build the characteristic equation

det ‖A(t)− λE‖ = 0, (2)

(where E is unit matrix), that is
 a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ


 = −λ3 + λ2(a11 + a22 + a33)− λ(a11a33 + a22a33

+a11a22 − a31a13 − a32a23 − a12a21) + a21a32a13 + a12a23a31

+a11a22a33 − a31a13a22 − a12a21a33 − a32a23a11 = 0.

The substitution

λ = ν +
a11 + a22 + a33

3
transforms it into the cubic equation of the canonical form

ν3 + p(t)ν + g(t) = 0,

where p(t), q(t) is linear combination of the matrix A(t) coefficients.
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Let the matrix A(t) be such that

D(t) = −27q2(t)− 4p3(t) = 0, ∀ t ∈ [0, L].

Then equation (1) has multiple roots. There are two possible cases
a) p(t) �= 0, q(t) �= 0 – root of multiplicity two and one root of multiplicity one;
b) p(t) = q(t) = 0 – one root of multiplicity three.
We don’t consider the ase a), since then the methods of [1] allow to split the system under

study into subsystem, for which the characteristic equations has one simple root and one root
of multiplicity two. This case will be considered separately. In case b) we have one elementary
divisor

λ1(t) ≡ λ2(t) ≡ λ3(t) ≡ λ0(t) ≡ a11(t) + a22(t) + a33(t)
3

=
trA(t)

3
. (3)

of multiplicity three.
Then, as it is shown in [2], there exists the nondegenerate matrix of the transformation of

similarity V (t) that transforms the matrix A(t) to the quasidiagonal canonical form W (t) =
V −1(t)A(t)V (t), where

W (t) =


 λ0(t) 1 0

0 λ0(t) 1
0 0 λ0(t)


 ,

The substitution x = V (t)y transforms system (1) into the system

ε
dy

dt
= D(t, ε)y, (4)

where

D(t, ε) =


 λ0(t) 1 0

0 λ0(t) 1
0 0 λ0(t)


 + ε


 b11 b12 b13

b21 b22 b23
b31 b32 b33


 ,


 b11 b12 b13

b21 b22 b23
b31 b32 b33


 = V −1(t)V ′(t).

Using Cardano formula, we obtain the eidenvalues of system (4).

ρ1 = λ0 +
εb1
3

+
3

√
ε3a+ ε2b+ εc+

√
ε6d6 + ε5d5 + · · ·+ ε2d2

+
3

√
ε3a+ ε2b+ εc−

√
ε6d6 + ε5d5 + · · ·+ ε2d2 = λ0 +O

(
ε1/3

)
,

ρ2 = λ0 +
εb1
3

+
3

√
ε3a+ ε2b+ εc+

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−1
2
+ i

√
3
2

)

+
3

√
ε3a+ ε2b+ εc−

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−1
2
− i

√
3
2

)
= λ0 +O

(
ε1/3

)
,
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ρ3 = λ0 +
εb1
3

+
3

√
ε3a+ ε2b+ εc+

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−1
2
− i

√
3
2

)

+
3

√
ε3a+ ε2b+ εc−

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−1
2
+ i

√
3
2

)
= λ0 +O

(
ε1/3

)
,

where b1, a, b, c, d6, d5, . . . , d2 are linear combinations of the coefficient of matrix A(t). Assume
that ε6d6 + · · · + ε2d2 �= 0. When ρi are different and the eigenvectors µi(t, ε), µ∗

i (t, ε) of the
matrix D(t, ε) and conjugate matrix D∗(t, ε) may be chosen in such a way that their scalar
products have the form

(µi · µ∗
j ) =

{
1, i = j,
0, i �= j, i, j = 1, 2, 3.

(5)

For example take

µi(t, ε) =




1

εb31(1 + εb23)− εb21(λ0 + εb33 − ρi)
(λ0 + εb22 − ρi)(λ0 + εb33 − ρi)− εb32(1 + εb23)

ε2b32b21 − εb31(λ0 + εb22 − ρi)
(λ0 + εb22 − ρi)(λ0 + εb33 − ρi)− εb32(1 + εb23)




=




1

εb31(1 + εb23)− εb21
(
εb33 −O

(
ε1/3

))(
εb22 −O

(
ε1/3

)) (
εb33 −O

(
ε1/3

)) − εb32(1 + εb23)

ε2b32b21 − εb31
(
εb22 −O

(
ε1/3

))(
εb22 −O

(
ε1/3

)) (
εb33 −O

(
ε1/3

)) − εb32(1 + εb23)




=




1

ε1/3 b31(1 + εb23)− ε1/3b21
(
ε2/3b33 −O

(
ε0

))(
ε2/3b22 −O (ε0)

) (
ε2/3b33 −O (ε0)

) − ε1/3b32(1 + εb23)

ε2/3 ε2/3b32b21 − b31
(
ε2/3b22 −O

(
ε0

))
(
ε2/3b22 −O (ε0)

) (
ε2/3b33 −O (ε0)

) − ε
1
3 b32(1 + εb23)




=




O
(
ε0

)
O

(
ε1/3

)
O

(
ε2/3

)

 .

As we can see, vector µi can be write in form

µi =
(
1, ε1/3µa

i2, ε
2/3µa

i3

)
. (6)

Here and below index a denotes analitical in point ε = 0 function. So, it is easy to notice that
for the condition (5) to hold, the coordinates of the vector µ∗

i must have the form

µ∗
i =

(
µa∗

i1 , ε
−1/3µa∗

i2 , ε
−2/3µa∗

i3

)
. (6′)

The following theorems hold true.

Theorem 1. If the functions aij(t), i, j = 1, 2, 3 are infinitely differentiable on the segment
[0, L], then system (4) has the formal particular solution

y(t, ε) = U(t, ε, ε) exp


1

ε

t∫
0

λ(τ, ε, ε) dτ


 , (7)
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where U(t, ε, ε) is an 3-component vector, and λ(t, ε, ε) is a scalar function which are represented
by the following formal series

U(t, ε, ε) =
∞∑

s=0

εsUs(t, ε), λ(t, ε, ε) =
∞∑

s=1

εsλs(t, ε) + ρ1(t, ε). (8)

Proof. In order to prove this theorem let us substitute the vector y, given by the relation (7),
into system (4). We have

εU ′(t, ε, ε) ≡ (D(t, ε)− λ(t, ε, ε)E)U(t, ε, ε). (9)

The coefficients of series (8) are to be determined from the following system of algebraic equations

(D(t, ε)− ρ1(t, ε)E)U0(t, ε) = 0, (10)

(D(t, ε)− ρ1(t, ε)E)Um(t, ε) = U ′
m−1(t, ε) +

m∑
j=1

λj(t, ε)Um−j(t, ε), m = 1, 2, . . . . (11)

Here ( )′ denotes the derivative with respect to t.
Consider vector equation (10). It is obvious that

U0(t, ε) = µ1(t, ε). (12)

Let us turn to the system (11). Since det ‖D(t, ε) − ρ1(t, ε)E‖ = 0, for the existence of
a solution of the inhomogeneous system of algebraic equations of such form it is necessary and
sufficient that the scalar product of the vector on the right hand side with any solution of the
associated system, that is the system

(D(t, ε)− ρ1(t, ε)E)∗y = 0,

vanishes [3]. That’s why((
U ′

m−1(t, ε) +
m∑

j=1

λj(t, ε)Um−j(t, ε)
)
· µ∗

1(t, ε)
)
= 0, m = 1, 2, . . . .

From this, making use of properties of the scalar product and formulas (5), (12), we obtain

λm(t, ε) = −(U ′
m−1(t, ε) · µ∗

1(t, ε))−
m−1∑
j=1

λj(t, ε)(Um−j(t, ε) · µ∗
1(t, ε)), m = 1, 2, . . . . (13)

We shall look for the vector Um(t, ε) in the form

Um(t, ε) = c
(m)
1 (t, ε) · µ1(t, ε) + c

(m)
2 (t, ε) · µ2(t, ε) + c

(m)
3 (t, ε) · µ3(t, ε), (14)

where c
(m)
k (t, ε), k = 1, 2, 3 are scalar functions. Substituting (14) into (11), we obtain that the

functions c(m)
1 (t, ε) are arbitrary. Let c(m)

1 (t, ε) ≡ 0. Then

Um(t, ε) =
3∑

k=2

c
(m)
k (t, ε) · µk(t, ε)

=
3∑

k=2

(U ′
m−1(t, ε) · µ∗

k(t, ε)) +
m∑

j=1
λj(t, ε)Um−j(t, ε) · µ∗

k(t, ε))

ρk(t, ε)− ρ1(t, ε)
· µk(t, ε).

(15)
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Taking into account (5) and (15), formula (13) can be rewritten in the form

λm(t, ε) = −(U ′
m−1(t, ε) · µ∗

1(t, ε)), m = 1, 2, . . . . (16)

So, the solution of the system (10), (11) can be written in the form of recurrent formulas
(15), (16). Construction of the formulas for the coefficientes of series (8) completes the proof.

3. Let’s evaluate the coefficients of series (8). Estimate of the U0(t, ε) give in (6). That’s
why, taking into account (12), write

U0(t, ε) =
(
1, ε1/3Ua

02(t, ε), ε
2/3Ua

03(t, ε)
)
. (17)

The diferentiation with respect to t have not an influence on the function’s analitical in ε. If
ε is function’s zero, then we carry out it from the differentiation sign as a const, that is ε will
not become a function’s pole. The differentiation differential can increase only the order of the
functions zero in the point ε = 0, but it only can improve the rezult. Look for

λ1(t, ε) =




0

ε1/3Ua′
02(t, ε)

ε2/3Ua′
03(t, ε)


 ·




µa∗
11(t, ε)

ε−1/3µa∗
12(t, ε)

ε−2/3µa∗
13(t, ε)


 = λa

1(t, ε). (18)

Then

U1(t, ε) =
3∑

k=2

(U ′
0(t, ε) · µ∗

k(t, ε)) + λ1(t, ε)(U0(t, ε) · µ∗
k(t, ε))

ρk(t, ε)− ρ1(t, ε)
µk(t, ε).

Proceed from (6′), (17), (18) we can conclude that the numerator of the fraction of this sum
is analitical function. Evaluate the denominator.

ρ2 − ρ1 =
3

√
ε3a+ ε2b+ εc+

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−3
2
+ i

√
3
2

)

+
3

√
ε3a+ ε2b+ εc−

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−3
2
− i

√
3
2

)
= O

(
ε1/3

)
,

ρ3 − ρ1 =
3

√
ε3a+ ε2b+ εc+

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−3
2
− i

√
3
2

)

+
3

√
ε3a+ ε2b+ εc−

√
ε6d6 + ε5d5 + · · ·+ ε2d2

(
−3
2
+ i

√
3
2

)
= O

(
ε

1
3

)
.

So

U1(t, ε) =
3∑

k=2

fa(t, ε) · (1, ε1/3µa
k2(t, ε), ε

2/3µa
k3(t, ε)

)
ε1/3(ρk(t, ε)− ρ1(t, ε))a

=
(
ε−1/3Ua

11, ε
0Ua

12, ε
1/3Ua

13

)
.

Then

λ2(t, ε) = −




ε−1/3Ua′
11

ε0Ua′
12

ε1/3Ua′
13


 ·




µa∗
11

ε−1/3µa∗
12

ε−2/3µa∗
13


 = ε−1/3λa

2(t, ε).
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Assume that for all Uj(t, ε), λj(t, ε), j < m next formulas are true

Uj(t, ε) =
(
Ua

1j(t, ε)

εj/3
,
Ua

2j(t, ε)

ε(j−1)/3
,
Ua

3j(t, ε)

ε(j−2)/3

)
=

Ua
j (t, ε)

εj/3
,

λj(t, ε) =
λa

j (t, ε)

ε(j−1)/3
, j = 1, 2, . . . ,m− 1,

(19)

m is some fixed natural number.
Let’s show the correctness this assumption for j = m, m ∈ N . Whis usage of (19), (6′),

formula (16) can be rewritten as

λm(t, ε) = −
(
Ua′

1(m−1)(t, ε)

ε(m−1)/3
,
Ua′

2(m−1)(t, ε)

ε(m−2)/3
,
Ua′

3(m−1)(t, ε)

ε(m−3)/3

)

×
(
µa∗

11(t, ε), ε
−1/3µa∗

12(t, ε), ε
−2/3µa∗

13(t, ε)
)
=

λa
m(t, ε)

ε(m−1)/3
.

So, λm(t, ε) have pole in ε and its order is (m − 1)/3, what confirms the correctness of our
assumption for j = m.

Likewise, rewrite (15):

Um(t, ε) =
3∑

k=2

((
Ua′

1(m−1)

ε(m−1)/3
,
Ua′

2(m−1)

ε(m−2)/3
,
Ua′

3(m−1)

ε(m−3)/3

)
·
(
µa∗

k1, ε
−1/3µa∗

k2, ε
−2/3µa∗

k3

)

+
m∑

j=1

λa
j (t, ε)

ε(j−1)/3

(
Ua

1(m−j)

ε(m−j)/3
,

Ua
2(m−j)

ε(m−j−1)/3
,

Ua
3(m−j)

ε(m−j−2)/3

)
·
(
µa∗

k1, ε
−1/3µa∗

k2, ε
−2/3µa∗

k3

)


×
(
µa

k1, ε
1/3µa

k2, ε
2/3µa

k3

)
ε1/3(ρk − ρ1)a

=
3∑

k=2

fa
1

ε(m−1)/3
·
(
µa

k1, ε
1/3µa

k2, ε
2/3µa

k3

)
ε1/3(ρk − ρ1)a

=
(

µa
k1

εm/3
,

µa
k2

ε(m−1)/3
,

µa
k3

ε(m−2)/3

)
· fa

1

(ρk − ρ1)a
=

Ua
m(t, ε)
εj/3

.

So, using the mathematical induction, we conclude that the formulas (19) hold true for all j ∈ N .
Then the following expansions for series (8) take place

U(t, ε, ε) =
∞∑

s=0

ε2s/3Ua
s (t, ε), λ(t, ε, ε) =

∞∑
s=1

ε(2s+1)/3λa
s(t, ε) + ρ1(t, ε). (20)

Here Ua
s (t, ε), λ

a
s(t, ε) are analytical in ε.

4. Next Theorem 2 proves the asymptotic property of formal solution in the sense of [4].

Theorem 2. If the conditions of Theorem 1 are fulfilled and

Re (ρ1(t, ε)) ≤ 0 for ∀ t ∈ [0, L], 0 < ε ≤ ε0, (21)

on the segment [0, L] m-th approximations satisfies the diferential system (4) up to O
(
ε(2m+3)/3

)
.

Proof. For the proof, similarly to [1], let us introduce the vector

ym(t, ε, ε) = Um(t, ε, ε) exp


1

ε

t∫
0

λm(τ, ε, ε) dτ


 , (22)
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where

Um(t, ε, ε) =
m∑

s=0

εsUs(t, ε) =
m∑

s=0

ε2s/3Ua
s (t, ε),

λm(t, ε, ε) =
m∑

s=1

εsλs(t, ε) + ρ1(t, ε) =
m∑

s=1

ε(2s+1)/3λa
s(t, ε) + ρ1(t, ε), m ≥ 1.

(23)

Substitute (22) to the differential expression

L(ym) = ε
dym

dt
−D(t, ε)ym. (24)

We have

L(ym(t, ε)) = [εU ′
m(t, ε, ε)−D(t, ε)Um(t, ε, ε)

+ λm(t, ε, ε)Um(t, ε, ε)] exp


1

ε

t∫
0

λm(τ, ε, ε) dτ


 .

(25)

The magnitude of the function exp
(

1
ε

t∫
0

λm(τ, ε, ε) dτ
)
is limited on the set {K : 0 < ε ≤ ε0; t ∈

[0, L]}. In fact∣∣∣∣∣∣exp

1

ε

t∫
0

λm(τ, ε, ε) dτ




∣∣∣∣∣∣ = exp


1

ε

t∫
0

αm(τ, ε, ε) dτ




= exp


1

ε

t∫
0

[
α0(τ, ε) + εα1(τ, ε) + . . .+ ε(2m+1)/3αm(τ, ε)

]
dτ




(26)

(here αm(τ, ε, ε) =
m∑

s=1
ε

2
3
s+ 1

3αs(τ, ε) is the real part of the function λm(τ, ε, ε), defined by (23),

α0(τ, ε) is the real part of the function ρ1(τ, ε), αs(τ, ε) are analytical, s = 1, 2, . . .).
Since the functions α1(τ, ε), . . . , αm(τ, ε) according to theorem 1 are infinitely differentiable

on the segment [0, L], (26) can be rewritten as

exp


1

ε

t∫
0

α0(τ, ε) dτ


 exp


1

ε

t∫
0

[
εα1(τ, ε) + · · ·+ ε(2m+1)/3αm(τ, ε)

]
dτ




≤ exp


1

ε

t∫
0

α0(τ, ε) dτ


 exp


 t∫

0

m∑
s=1

ε(2s−2)/3 | αs(τ, ε) | dτ



≤ exp


1

ε

t∫
0

α0(τ, ε) dτ


 exp


M

t∫
0

(
1 + ε2/3 + . . .+ ε(2m−2)/3

)
dτ




≤ exp


1

ε

t∫
0

α0(τ, ε) dτ


 exp

(
ML

1− ε
m/3
0

1− ε
2/3
0

)
,
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here (M = max | αs(t, ε) |), s = 1, . . . ,m. In virtue of (21) we can state that this value is
limited.

Let’s evaluate the vector which is the multiplier at exp
(

1
ε

t∫
0

λm(τ, ε, ε) dτ
)
in right hand side

of the equality (25). Since when we determined coeficients of series Um(t, ε, ε), λm(t, ε, ε) we
compared the coefficientes at the external powers of ε parameter up to order including m itself,
it is clear that this vector will have nonzero coefficients only at the powers εm+1, εm+2, . . . , ε2m.
That is why, taking into account said above on derivative with respect to t of function Um(t, ε, ε)
and (19), we obtain

ε(U ′
0(t, ε) + εU ′

1(t, ε) + · · ·+ εmU ′
m(t, ε))−D(t, ε)(U0(t, ε) + εU1(t, ε) + · · ·+ εmUm(t, ε))

+(ρ1(t, ε) + ελ1(t, ε) + · · ·+ εmλm(t, ε))(U0(t, ε) + εU1(t, ε) + · · ·+ εmUm(t, ε))

= εm+1U ′
m(t, ε) +

m∑
j=1

εm+j
m∑

s=j

λs(t, ε)Um+j−s(t, ε) = εm+1U
a′
m (t, ε)
εm/3

+
m∑

j=1

εm+j
m∑

s=j

λa
s(t, ε)

ε(s−1)/3

Ua
m+j−s(t, ε)

ε(m+j−s)/3
= ε(2m+3)/3Ua′

m (t, ε) +
m∑

j=1

ε(2m+2j+1)/3
m∑

s=j

λa
s(t, ε)

×Ua
m+j−s(t, ε) = ε(2m+3)/3Ua′

m (t, ε) + ε(2m+3)/3
m∑

j=1

ε(2j−2)/3
m∑

s=j

λa
s(t, ε)U

a
m+j−s(t, ε)

= ε(2m+3)/3


Ua′

m (t, ε) +
m∑

j=1

ε(2j−2)/3
m∑

s=j

λa
s(t, ε)U

a
m+j−s(t, ε)


 = O

(
ε(2m+3)/3

)
, m ∈ N.

The theorem is proved.

5. If system (1) is system of the linear differential equations of the second order, then theorem
likewise Theorem 1, 2 take place. Formulas (20) for n = 2 have form

U(t, ε, ε) =
∞∑

s=0

εs/2Ua
s (t, ε), λ(t, ε, ε) =

∞∑
s=1

ε(s+1)/2λa
s(t, ε) + ρ1(t, ε).

The solution, found by the method of Theorem 1, satisfies the system (4) up to O
(
ε(m+2)/2

)
.

The advantage of this method in contradistinction to well know M.I. Shkil’s method [1], is
the possibility bringing the solution of the equation with multiple roots to the classical theory
of the simple roots.

Let us illustrate it on the example

ε
d2y

dt2
+ p(t)y = 0,

here p(t) �= 0, t ∈ [0, L].
Let us write this equation in the form of system (4). We use here the following notations

y = εy1, dy
dt = y2.

Then we obtain the system

ε
dy1

dt
= y2,

ε
dy2

dt
= ε

d2y

dt
= −p(t)εy1
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or

ε
dy

dt
=

(
0 1

−εp(t) 0

)
y,

where y is a two dimensional vector.
In this case the roots of the characteristic equation are different.

ρ1(t, ε) =
√

−εp(t), ρ2(t, ε) = −
√
−εp(t).

Then the conditions of Theorem 1 are satisfied. That’s why using the recurrent formulas for
Um(t, ε), λm(t, ε), we obtain

U0(t, ε) =
(
1,

√
−εp(t)

)
, λ1(t, ε) = − p′(t)

4p(t)
, U1(t, ε) =

(
p′(t)

8
√
ε(−p(t))3/2

,− p′(t)
8p(t)

)
,

λ2(t, ε) =
p′2(t)

32
√
ε(−p(t))5/2

, U2(t, ε) =
(

p′′

16εp2
− 3p′2

32εp3
,

p′′

16
√
ε(−p)3/2

− 3p′2

32
√
ε(−p)5/2

)
.

Substitute the vector

y1(t, ε, ε) =
(
(1,

√−εp) + ε

(
p′

8
√
ε(−p)3/2

,− p′

8p

))
exp


1

ε

t∫
0

(√−εp− ε
p′

4p

)
dτ




to differential expression (24). We have

L(y1(t, ε, ε)) = ε
√
ε

(
− p′′

8p3/2
+

7p′2

32(−p)5/2
,

√
εp′′

8p
− 3

√
εp

′2

64p2

)
exp


1

ε

t∫
0

(√−εp− ε
p′

4p

)
dτ


.

As you can see, the vector y1(t, ε, ε) satisfies the system of the differential equations up to
O

(
ε3/2

)
.

Likewise

y2 =
((

1,
√−εp

)
+ ε

(
p′

8
√
ε(−p)3/2

,− p′

8p

)
+ ε2

(
p′′

16εp2
− 3p′2

32εp3
,

p′′

16
√
ε(−p)3/2

− 3p′2

32
√
ε(−p)5/2

))
exp


1

ε

t∫
0

(√−εp− ε
p′

4p
+ ε2 p′2

32
√
ε(−p)5/2

)
dτ


,

and asymptotical evaluation

L(y2) = ε2

(
77p′3

28p4
− 21p′p′′

26p3
+

√
εp

′2p′′

29(−p)9/2
− 3

√
εp′4

210(−p)11/2
,

− 7p′2

26p2
− 19

√
εp′p′′

26(−p)5/2
− 33

√
εp′3

27(−p)7/2
+

√
εp′′

24(−p)3/2
− εp′2p′′

29p4
+

3εp′4

210p5

)
= O

(
ε2

)
holds true.

References
[1] Shkil M.I., Asymptotic Methods for Differential Equations, Kyiv, Vyshcha Shkola, 1971.

[2] Gantmacher F.R., Theory of Matrices, Moscow, 1953.

[3] Shkil N.I., Starun I.I. and Yacovets V.P., Asymptotic Integration of Linear Systems of Differential Equations,
Kyiv, Vyshcha Shkola, 1989.

[4] Bogolyubov N.N. and Mitropolsky Yu.A., Asymptotic Methods in the Theory of Nonlinear Oscillations,
Moscow, Nauka, 1974.



Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 2, 401–405.

On Hyperelliptic Solutions of Spectral Problem

for the Two-Dimensional Schrödinger Equation

A.M. KOROSTIL

Institute of Magnetism of NASU, 36b Vernadskii Str., 03142 Kyiv, Ukraine

On the basis of the special Abelian 2-differentials of the second kind corresponding to hyper-
eliptic curves of the g genus addition formulae for hyperelliptic functions determined on the
Jacobi manifold is considered. In the case of hyperelliptic curves of the second genus these
formulae yield both relations for hypereliptic ℘-functions which can be rewritten as inte-
grable nonlinear differential equations and 2-dimensional differential relations which are the
generalization of the one-dimensional two-gap Schrödinger equation with potentials which
have the form of the linear combinations of hyperelliptic ℘-functions with shift arguments.

Introduction

The hyperelliptic Abel functions expressed as derivatives from the hyperelliptic sigma function σ
(which is proportional to the n-dimensional Riemann theta function) are an n-dimensional gen-
eralization of the elliptic one-dimensional Weierstrass functions [1, 2, 3]. First and second
derivatives of these hypereliptic functions are hyperelliptic ζ- and ℘-functions dependent on
vector arguments u which is the Abel map of corresponding hypereliptic curve V to the Jacobi

manifold Jac(V ), where V =
{
(y, x) ∈ C2 : y2 −

2g∑
i=0

λix
i = 0

}
means the hyperelliptic curve.

An algebraic curve V is characterized by canonical differential 1-forms including holomorphic,
meromorhic differentials of second and third kinds and the special differential 2-form of second
kind. The fundamental relation between the differential 2- and 1-forms which is established
with a help of the Riemann vanishing theorem for the theta functions leads to the fundamental
Baker relations between hyperelliptic σ- and ℘-functions. This permits to construct special
multi-dimensional linear differential equations with known (see [4, 5]) solutions. Also, the Baker
relation leads to the relation connecting derivatives of ℘-functions part of which can be rewritten
in the form of known integrable equations (see [5]).

1 Relations between differential 1- and 2-forms

The hyperelliptic curve V with cuts connecting branching points realizes the hyperelliptic Rie-
mann curve which is characterized by the canonical system of differential 1-forms holomorphic
and meromorphic on the Reimann surface. Holomorphic differentials dui = xi−1dx/y, i = 1, g
on the Riemann curve with the canonical basis of cycles a1, ag and b1, bg determine g×g-matrices
of a- and b-periods

2ω =
(∮

ak

ul

)
, 2ω′ =

(∮
bk

dul

)
.

The relations

dv = (2ω)−1du,
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and

τ =
∮

bk

dvl = ω−1ω′

determine the normalized g-dimensional vector v and the τ -matrix of the Riemann surface Γ,
respectively. These vector and matrix determine the the Riemann theta function

θ[ε
′

ε′′ ](z̃|τ ) =
∑

n∈Zg

exp
{
ıπ

(
n +

1
2
ε′, τn +

1
2
ε

)
+ 2ıπ

(
z̃ +

1
2
ε′′,n +

1
2
ε′
)}

,

z̃ =
∫ xk

x0

dv −
g∑

k=1

∫ xk

x0

dv + K, Kj =
1 + τjj

2
−

∑
i�=j

∫
ai

(
dvi(x)

∫ x

x0

dvj

)
,

at x ∈ Γ where Γ is the Riemann surface corresponding to the hyperelliptic curve V . Here
ε′(′′) =

(
ε′1(′′), . . . , ε′g(′′)), ε′i

(′′) ∈ (0, 1). The vanishing property of this theta function in g
points of the Riemann surface which constitutes the essence of the Riemann vanishing theorem
(see [6]) is used for calculating principal relations between proposed by Klein [1] above mentioned
hyperelliptic Abel functions.

The meromorphic differentials of second kind of the form

drj =
2g+1−j∑

k=j

(k + 1− j)λk+1+j
xkdx
4y

, j = 1, g (1)

determine η-matrices of a and b-periods

2η =
(
−

∮
ak

drl

)
, 2η′ =

(
−

∮
bk

drl

)
.

The latter together with ω-matrices enter in definition of the above mentioned basis hyperelliptic
Abel function

σ(u) = C(τ ) exp
{
uT κu

}
θ[ε]

(
(2ω)−1u − Ka|τ

)
. (2)

Here κ = (2ω)−1η, Ka is the vector of Riemann constants with the base point a and C(τ ) is
the constant which is determined by the parameters of the hyperelliptic curve V (see [5]).

Principal relations between the hyperelliptic σ-functions (refsithet) and ζ and ℘-functions
are provided with help of the fundamental 2-differential

dω(z1, z2) =
2y1y2 + F (x1, x2)

4(x1 − x2)2
dx1

y1

dx2

y2
, (3)

where

F (x1, x2) = 2λ2g+2x
g+1
1 xg+1

2 +
g∑

i=0

xi
1x

i
2(2λ2i + λ2i+1(x1 + x2)). (4)

Taking into account (4) we can rewrite (3) in the form

dω(x1, x2) =
∂

∂x2

(
y1 + y2

2y1(x1 − x2)

)
dx1dx2 + duT (x1)dr(x2) (5)

of the Abelian 2-differential with the pole of the second order.
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Applying the Abel map (defined by the equalityÂ(· · ·) =
g∑

k=1

∫ xk

x0k
dx(· · ·)) to the fundamental

2-differential (3) with respect to the variable x2, integrating over the variable x1 taking into
account (5) and the Riemann vanishing theorem [6] we can obtain an expression in the form of
rations of logarithm of the Riemann theta functions [2] (also see [5]). Then, a substitution the
theta-representation of σ functions (2) leads to the fundamental relation

∫ x

µ

g∑
i=1

∫ xi

µi

2yyi + F (x, xi)
4(x− xi)2

dx
y

dxi

yi

= ln




σ

(∫ x
a0

du −
g∑

i=1

∫ xi

ai
du

)

σ

(∫ x
a0

du −
g∑

i=1

∫ µi

ai
du

)

 − ln




σ

(∫ µ
a0

du −
g∑

i=1

∫ xi

ai
du

)

σ

(∫ µ
a0

du −
g∑

i=1

∫ µi

ai
du

)

 ,

(6)

where the F -function is defined above.
By definition, ζ and ℘ hyperelliptic functions are determined via σ functions by differential

relations

ζi(u) =
∂

∂ui

lnσ(u), ℘ij(u) = − ∂2

∂uj∂uj

lnσ(u), i, j = 1, g,

where the vector u belongs to the Jacobian Jac(V ) of the hyperelliptic curve. A differentiation
of (6) with respect to variables uj leads to relation for ζ and ℘ hyperelliptic functions corre-
sponding to hyperelliptic curves with the arbitrary genus g.

Differentiating ∂2/∂xi∂xj the relation (6) yields the equality

P (x;u) = 0, P (x;u) =
g−1∑
j=0

℘g,j+1x
j (7)

which gives the solution of the inverse Jacobi problem consisting in calculating points xi, i = 1, g
of the Riemann surface via the values of the vector u.

Differentiating both sides (6) with respect to ∂/∂xi from both sides of (6) we can come to
the relations

−ζj

(∫ x0

a
du + u

)
=

∫ x0

a
drj +

g∑
k=1

∫ xk

ak

drj − 1
2

g∑
k=0

yk


Dj(R′(z))

R′(z)

∣∣∣∣∣
z=xk


 , (8)

where R(z) =
g∏
0
(z − zj) and R′(z) = (∂/∂z)R(z) and

−ζj(u) =
g∑

k=1

∫ xk

ak

drj − 1
2
℘gg,j+1(u). (9)

The relations (8) and (9) are the basis for obtaining principal relations between hyperelliptic
functions.
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2 Basis relations for hyperelliptic functions

A differentiation of the relations (8) and (9) with the respect to uj leads to the fundamental
Baker addition formula ([3], see [5])

σ(u + v)σ(u − v)
σ2(u)σ2(v)

= M(u,v), (10)

where M(u,v) is a polynomial in ℘-functions. Here M -function is determined by differential
equation [5]{(

∂2

∂u2
g

− ∂2

∂v2
g

)
lnMk−1(u,v) + 2M1(u,v)

}
M2

k−1(u,v)− 4Mk(u,v)Mk−1(u,v) = 0. (11)

This equation is a recursive relation for Mk-functions where the subscript k means the genus of
the corresponding hyperelliptic curve V .

In the case g = 2 under consideration it can be shown that

M(u,v) = ℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u). (12)

On the basis of the Baker addition formula and the recursive relation (11) we can obtain the
system of possible relations between derivatives of ℘-functions with respect to variables ui,
i = 1, g.

Taking logarithm of both sides of the equality (10) and with help of differentiating ith respect
to uj and vj we can obtain well known addition formulae for the hyperelliptic ζ-functions of the
form

ζj(u + v)− ζ(u)− ζj(v) =
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v) (13)

and

ζj(u + v) + ζj(u − v) = ζ(u) + ζj(v) +
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v), (14)

ζj(u + v)− ζj(u − v) = 2ζ(v) +
1

M(u,v)
∂

∂uj

M(u,v). (15)

Then, expanding the functions

Ω+ = lnσ(u + v) + lnσ(u − v), Ω− = lnσ(u + v)− lnσ(u − v)

into power series in the small value v and taking into account the relations (14) and (15) we
can obtain all possible differential relations between ℘-functions. In the case of the genus g = 2
such power expansion leads to relations

℘2222 = 6℘2
22 +

1
2
λ3 + λ4℘22 + 4℘12,

℘1111 = 6℘2
11 − 3λ0℘22 + λ1℘12 + λ2℘11 − 1

2
λ0λ4 +

1
8
λ1λ3,

℘2221 = 6℘22℘12 + λ4℘12 − 2℘11,

℘2111 = 6℘12℘11 + λ2℘12 − 1
2
λ1℘22 − λ0,

℘2211 = 2℘22℘11 + 4℘2
12 +

1
2
λ3℘12.
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Here the first equation can be rewritten as the two-gap KdV equation with respect to ℘22 and
the last equation can be rewritten as sine-Gordon equation with respect to ln℘12. Analogously
we can obtain another differential relations between ℘ functions (see [5]).

The relation (13) can be rewritten as a differential equation

∂

∂uj

Φ(u) = ΛΦ(u), Λ =
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v) (16)

with respect to the Bloch function

Φ(u0,u; (y, x)) =
σ(α − u)
σ(α)σ(u)

exp
(
−1
2
yu0 + ζT (α)u

)
,

for which the hyperelliptic curve V (y, x) is the spectral variety. Here ζT (α) = (ζ1(α), . . . , ζg(α))
and (y, x) ∈ V , u and α =

∫ x
a du ∈ Jac(V ). Using the equation (refDE) we can construct

the system of linear differential equations of the second order both for the Φ-function and for
linear combinations of their derivatives. This system yields the solution of the spectral problem
for linear differential equations of the second order which can considerate as generalization of
Schrödinger equation.

In the case of the genus g = 2 this system of differential equations with respect to Φ-function
has the form [5]

(
∂2

2 − 2℘22

)
Φ =

1
4
(4x+ λ4)Φ,(

∂2∂1 − ℘22∂
2
2 +

1
2
℘222∂2 + ℘2

22 − 2℘12

)
Φ =

1
4

(
4x2 + λ4x+ λ3

)
Φ,

(
∂2

1 − 2℘12∂
2
2 + ℘122∂2 + 2℘22℘12

)
Φ =

1
4

(
4x3 + λ4x

2 + λ3x+ λ2

)
Φ,

where λi denotes coefficients of the hyperelliptic curve V . Analogously spectral problem is sol-
ved for the function in the form of linear combinations of different derivatives of Φ-function
with different shifts of argument u. In doing so, corresponding linear differential equations have
a similar form and after reduction from the hyperelliptic to elliptic curve V turn to be the
one-dimension Schrödinger equations with the Treibich–Verdier potentials [7].
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We consider a system of nonlinear partial differential equations admitting the operator
Zakharov–Shabat representation. By means of nonlocal reductions approach explicit so-
lutions of the equations under consideration are found.

In the last 30 years a great progress in the investigation of nonlinear partial differential
equations of mathematical and theoretical physics was achieved due to application of different
approaches mainly based on modern functional and algebraic-geometric methods [1–3]. It gave
possibility to study different properties of solutions important for applications in physics, me-
chanics and other fields of knowledge and to construct exact formulae for solutions of many
systems of nonlinear differential equations having numerous applications.

In the present communication we consider an approach connected with studying of a system
of nonlinear partial differential equations possessing so-called operator Zakharov–Shabat repre-
sentation which is based on reduction principle. The formula for exact solutions of a system of
nonlinear partial differential equations describing resonance interaction of M waves is given.

1. Let Φ be a function of variables x, y, t ∈ R1 satisfying to a system of linear partial
differential equations

α
∂Φ
∂y

= L1Φ, β
∂Φ
∂t

= L2Φ, α, β ∈ R1, (1)

where differential operators

L1 =
p∑

i=0

ui
∂i

∂xi
, ui = ui(x, y, t), i = 0, p, (2)

L2 =
q∑
0

vj
∂j

∂xj
, vj = vj(x, y, t), j = 0, q, (3)

are defined in the corresponding functional space.
A system (1)–(3) is compatible if the following Frobenius (operator) condition

β
∂L1

∂t
− α

∂L2

∂y
+ [L1, L2] = 0 (4)
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takes place, where in the operator equation [L1, L2] = L1L2−L2L1 is a commutator of differential
operators L1 and L2.

The operator relation (4) is called the Zakharov–Shabat representation or the generalized
Lax representation [1, 2].

In general the equality (4) is fulfilled if the potentials (coefficients of operators L1 and L2)

ui = ui(x, y, t), i = 0, p, vj = vj(x, y, t), j = 0, q, (5)

satisfy a system of partial differential equations usually written in the form

Kl[u,v] = 0, l = 0, p + q, (6)

where u = {u1, u2, . . . , up} , v = {v1, v2, . . . , vq}.
The equations (4) and (6) are equivalent in the certain sense [1, 2].
The given compatible linear system (1)–(3) has an important significance and practical ap-

plications when the coefficients of the operators (2), (3) satisfy to some additional conditions,
which are called reductions.

One of the important problem of the modern theoretical and mathematical physics and, in
particular, the theory of nonlinear dynamical system [2, 3], is the problem of classification and
description of the reductions under which the system (1)–(3) is compatible.

There is an important type of restrictions under which the system of differential equations
(1)–(3) is compatible. This restrictions are called nonlocal reductions [4, 5].

Definition. A system of equations of general form

F [u,v; Φ;x, y, t] = 0 (7)

is called a nonlocal reduction for the system (1)–(3) if the equations (7) and (1)–(3) are com-
patible.

If nontrivial functions

ui = Fi[Φ;x, y, t], i = 0, p, vj = Gj [Φ;x, y, t], j = 0, q, (8)

satisfy the equations (7), then after substitution of functions (8) into system (1)–(3) we obtain
a system of nonlinear partial differential equations of the following form

α
∂Φ
∂y

=
p∑

i=0

Fi[Φ;x, y, t]
∂iΦ
∂xi

, (9)

β
∂Φ
∂t

=
q∑

j=0

Gj [Φ;x, y, t]
∂jΦ
∂xj

. (10)

The system (9), (10) is compatible due to the conditions (4). In other words, the functions (8)
satisfy the system of partial differential equations (6).

Thus, the problem of solving the system of nonlinear differential equations (7) equivalent to
the operator equation (4) in (2+ 1)-dimensions is reduced to the corresponding problem for the
system (9), (10) in (1 + 1)-dimensions.

2. Nonlocal reductions in linear hyperbolic systems. Explicit solutions to a sys-
tem of nonlinear differential equations describing resonance interaction of M waves.
Let us consider a hyperbolic system of linear partial differential equations of first order

∂Φ
∂y

= A
∂Φ
∂x

+ PΦ, (11)
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∂Φ
∂t

= B
∂Φ
∂x

+ QΦ, (12)

∂Φ∗

∂y
= A

∂Φ∗

∂x
− P̄ T Φ∗, (13)

∂Φ∗

∂y
= B

∂Φ∗

∂x
− Q̄T Φ∗, (14)

where A = diag (a1, a2, . . . , an) and B = diag (b1, b2, . . . , bn) are diagonal (n × n)-matrices,
elements of which are real numbers satisfying to the conditions ai 
= aj , bi 
= bj when i 
= j,
i, j = 1, n.

Here Φ = Φ(x, y, t) and Φ∗ = Φ∗(x, y, t) are (n×m)-matrix functions, elements of which are
second-degree integrable with respect to variable x, i.e.,

+∞∫
s

|Φkm(x, y, t)|2 dx < +∞,

+∞∫
s

|Φ∗
km(x, y, t)|2 dx < +∞, (15)

where k = 1, n, j = 1,m and s is an arbitrary (fixed) real number.
The property (15) of the matrices Φ = Φ(x, y, t) and Φ∗ = Φ∗(x, y, t) described above we will

denote in the following way

Φ = Φ(x, y, t), Φ∗ = Φ∗(x, y, t) ∈ MatN×nN (R3;Lx
2(s,+∞)). (16)

The matrix potentials P = P (x, y, t) and Q = Q(x, y, t) belong to the space Matn×m(R3;
Lx

2(s,+∞)), i.e., they are (n ×m)-matrix functions, elements of which are second-degree inte-
grable with respect to variable x. In addition, we suppose that the diagonal elements of matrices
P and Q are equal to zero, i.e.,

Pii(x, y, t) ≡ 0, Qii(x, y, t) ≡ 0, i = 1, n. (17)

The compatibility condition (4) for the system (11), (12) as well as for the conjugate system
(13), (14), implies the following relation

[A,Q] = [B,P ], (18)

Pt −Qy + AQx −BPx + [P,Q] = 0. (19)

It is easy to verify that the matrix-functions

P = [V,A], Q = [V,B] (20)

satisfy the condition (18) for some arbitrary (n× n)-matrix-function V = V (x, y, t).
Thus the corresponding system of partial differential equations of the form (6) can be written

as follows

[Vt, A] − [Vy, B] + AVxB −BVxA + [[V,A], [V,B]] = 0. (21)

In the case when V is an Hermitian matrix, the equation (21) is one of fundamental nonlinear
models of theoretical physics since it describes a resonance interaction of M waves, where M =
n(n−1)/2 waves [1–3]. The equation (21) is a basic system of differential equations of nonlinear
optics [6] when n = 3.
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The equality (21) is considered as a system of nonlinear partial differential equations, solutions
of which should be found.

To find the exact formula for the solutions of equation (21) let us consider now the unper-
turbed system of the form (11), (12) (or with zero potential P and Q) of the following form

∂ϕ

∂y
= A

∂ϕ

∂x
,

∂ϕ

∂t
= B

∂ϕ

∂x
. (22)

where the matrix function ϕ = ϕ(x, y, t) ∈ Matn×m(R3, Lx
2(s,+∞)).

The following theorem is valid.

Theorem 1. Let C is (n × n)-matrix with constant and real elements such that C̄T = C and
detC 
= 0.

Then under the mapping

ϕ → Φ = ϕΩ−1, (23)

where (m×m)-matrix

Ω = C +

+∞∫
x

ϕ̄T (x, y, t)ϕ(x, y, t) dx (24)

has in some domain σ = {(y, t) ∈ R2} nonzero determinant, the system of differential equations
(23) is transformed into the following system

∂Φ
∂y

= A
∂Φ
∂x

+
[
ΦΩ̃−1Φ̄T , A

]
Φ, (25)

∂Φ
∂t

= B
∂Φ
∂x

+
[
ΦΩ̃−1Φ̄T , B

]
Φ, (26)

where (m×m)-matrix Ω̃ = Ω̃(x, y, t) is represented by the formula

Ω̃ = C−1 −
+∞∫
x

Φ̄T (x, y, t)Φ(x, y, t) dx. (27)

Theorem 1 is proved by the direct calculation and by using the following lemma.

Lemma 1. The matrix Ω̃ is inverse to the matrix Ω, i.e.,

ΩΩ̃ = Ω̃Ω = E, (28)

where E is identity (m×m)-matrix.

To prove the lemma 1 it is sufficient to note that det Ω̃ 
= 0 if (y, t) ∈ σ and x is enough large
and to consider the derivative of matrix Ω̃ with respect to variable x ∈ R1, i.e.,

∂

∂x
Ω̃ = Φ̄T (x, y, t)Φ(x, y, t). (29)

Taking into consideration formula (23) and compairing the value (29) with relations

∂

∂x
Ω̃−1 = −Ω−1ΩxΩ−1 = Ω−1ϕ̄TϕΩ−1 = Φ̄T Φ, (30)

it is easy to conclude the Lemma 1.
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From the argument mentioned above we deduce the following theorem.

Theorem 2. The identity

ΦΩ̃−1Φ̄T ≡ ϕΩ−1ϕ̄T (31)

is true.

The system (25), (26) is compatible since the system (22) has the same property. It is a
simple implication from compatibility conditions (18) and (19).

By comparison of equations (11), (12) and (22) it is easy to conclude that the constraints

P = [V,A], Q = [V,B], (32)

where

V = ΦΩ̃−1Φ̄T = Φ


C−1 −

+∞∫
x

Φ̄T Φ dx




−1

Φ̄T (33)

are admissible nonlocal reductions for the system of linear partial differential equations (11),
(12).

Thus, it allows us to state the following result.

Theorem 3. The solution of partial differential equations (21) are represented with the following
formula

V = Φ


C−1 −

+∞∫
x

Φ̄T Φ dx




−1

Φ̄T ≡ ϕ


C +

+∞∫
x

ϕ̄Tϕdx




−1

ϕ̄T

or in component form

Vij = ϕi


C +

+∞∫
x

ϕ̄T
k ⊗ ϕk dx




−1

ϕ̄T
j ,

where ϕi = ϕi(x + aiy + bit) is i-tuple of matrix function ϕ(x, y, t).
Matrix function ϕ(x, y, t) is a solution of unperturbed systems (22) and has elements of the

following form ϕkm = fkm(x + aky + bkt), where fkm(τ), k = 1, n, m = 1,m, are arbitrary
continuos differentiable functions of variable τ ∈ R1.
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The theorem establishing the correctness of the inhomogeneous problem for polyparabolic
equation with righ-hand side belonging to set of bounded functions in Rn is proved. Exact
formulas for constants of evaluations for potentials with the these densities are represented;
exact solutions for particular cases are obtained.

We consider inhomogeneous problem for a linear partial differential equation

Tm+1u ≡
m+1∑
j=0

(−1)j
(
m+ 1
j

)
∂m−j+1

∂tm−j+1
∇2ju(t,x) = f(t,x), (1)

where t ∈ R1
+, x ∈ Rn (n ∈ N), ∇2 is the Laplace operator, f(t,x) ∈ L1

loc(R
1+n),

(
m+1

j

)
are

binomial coefficients.
In the case m = 0 this equation is transformed to the classical heat transfer equation. Let us

introduce an arbitrary exact solution for equation Tm+1u = 0, which is defined at a domain of
space Rn+1, the polycaloric function [1, 2], which takes the form

u(t,x) = u0(t,x) + tu1(t,x) + · · ·+ tmum(t,x), (2)

where uk(t,x) are solutions of the equation Tu = 0. We find by induction

Tm+1(tku) =
m+1∑
j=0

j!
(
m+ 1
j

)(
k

j

)
tk−jTm−j+1u. (3)

The fundamental solution for operator Tm+1 from space D′(R1+n) is [3]

Em,n(t,x) =
θ(t)tm−n/2

(2
√
π)nm!

e−
|x|2
4t . (4)

It is positive, vanishing for t < 0, infinitely differentiable for (t,x) 	= 0 and has additional
properties∫

Rn

Em,n(t,x) dnx =
tm

m!
, (5)

∂k

∂tk
Em,n(+0,x) = 0 (0 ≤ k ≤ m− 1),

∂m

∂tm
Em,n(+0,x) = 1. (6)

From Em,n ∈ L1
loc(R

1+n) the solution of the problem (1) can be written as convolution [4]

u(t,x) = Em,n(t,x) ∗ f(t,x), (7)
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which define a polycaloric potential with density f(t,x). Then u ∈ L1
loc(R

1+n), if

h(t,x) = [Em,n(t,x) ∗ |f(t,x)|] ∈ L1
loc(R

1+n). (8)

The following theorem gives one of density classes with convolution (7). For simplification we
do not write further indices m and n.

Let us denote a class of functions vanishing for t < 0 and bounded in the sphere 0 ≤ t ≤ t0:
|f | ≤ Af = sup |f(τ, ξ)| (0 ≤ τ ≤ t , ξ ∈ Rn) as K0.

Theorem. If f(t,x) ∈ K0, a polycaloric potential U(t,x) of m-th order is in K0, can be written
in the form (7) and satisfies the following estimates:

|U | ≤ Af
tm+1

(m+ 1)!
, (9)

∣∣∣∣∂kU

∂tk

∣∣∣∣ ≤ Afa
(k)
m,nt

m−k+1, (10)

∣∣∇2pU
∣∣ ≤ Afb

(p)
m,nt

m−p+1, (11)

Here a(k)
m,n and b(p)

m,n are positive constants, and initial conditions are

U(+0,x) = 0, (12)

∂kU

∂tk

∣∣∣∣∣
t=+0

= 0 (1 ≤ k ≤ m), ∇2pU |t=+0 = 0 (1 ≤ p ≤ m), (13)

T sU(+0,x) = 0 (1 ≤ s ≤ m). (14)

Proof. Under Fubini theorem from (5) we get

h(t,x) ≤ Af
tm+1

(m+ 1)!
.

As |U | ≤ h, since U = 0 for t < 0, estimate (9) is satisfied and thus U ∈ K0.
Using the formula of convolution differentation with respect to t and property (6), for t > 0

we come to

∂kU

∂tk
=

t∫
0

∫
Rn

f(τ, ξ)
∂k

∂tk
E(t− τ,x − ξ) dnξ dτ.

Then ∣∣∣∣∂kU

∂tk

∣∣∣∣ ≤ Af

∫
Rn

∂k−1

∂tk−1
E(t, ξ) dnξ. (15)

Further

∂k−1E
∂tk−1

=
1

(2
√
π)nm!

k−1∑
l=0

(
k − 1
l

)
dk−l−1tm−n/2

dtk−l−1

∂l

∂tl
e−

|ξ|2
4t ,
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and

dk−l−1tm−n/2

dtk−l−1
=

Γ
(
m− n

2 + 1
)

Γ
(
m− n

2 − k + l + 2
) tm−n

2
−k+l−1,

∂l

∂tl
e−

|ξ|2
4t = t−le−

|ξ|2
4t

l−1∑
j=0

(−1)j(l − 1) . . . (l − j)
(
l

j

) ( |ξ|2
4t

)l−j

,

follows term in (15)

∫
Rn

∂k−1

∂tk−1
E(t, ξ) dnξ =

tm−n
2
+k+1

(2
√
π)nm!

k−1∑
l=0

(
k − 1
l

)
Γ

(
m− n

2 + 1
)

Γ
(
m− n

2 − k + l + 2
)

×
l−1∑
j=0

(−1)j(l − 1)(l − 2) . . . (l − j)
(
l

j

) ∫
Rn

( |ξ|2
4t

)l−j

e−
|ξ|2
4t dnξ.

Here Γ(z) is the Gamma function [5].
But inserting∫

Rn

|ξ|2l−2je−
|ξ|2
4t dnξ

=
2π

n
2

Γ
(

n
2

) ∞∫
0

ρ2(l−j)+n−1e−
ρ2

4t dρ =
(2
√
π)n

Γ
(

n
2

) 22l−2jΓ
(
l − j +

n

2

)
tl−j+n

2 ,

(16)

into (15) yields estimate (10), where a constant a(k)
m,n depends on the order of polycaloric poten-

tial, order of its derivative with respect to time, dimension of space and is calculated exactly:

a(k)
m,n =

Γ
(
m− n

2 + 1
)

m!Γ
(

n
2

) k−1∑
l=1

l−1∑
j=0

(
k−1

l

) ((
l
j

))2
Γ

(
l − j + n

2

)
(l − j)j!

lΓ
(
m− n

2 − k + l + 2
) .

Following the usual procedure for finding estimates let us consider operator

∇2pU = ∇2p[E(t,x) ∗ f(t,x)] = f(t,x) ∗ ∇2pE(t,x).
Since f ∈ K0, then

∣∣∇2pU
∣∣ ≤ Af

t∫
0

∫
Rn

∇2pE(τ,x) dnx dτ =
Af

(2
√
π)nm!

t∫
0

τm−n/2

∫
Rn

∇2pe−
|x|2
4τ dnx dτ. (17)

We can easily prove that

∇2pe−
|x|2
4τ = 2−2pe−

|x|2
4τ

p∑
j=0

(−1)j(2j)!
(
2p
2j

)
j! τ2p−j

|x|2p−2j ,

hence in (17)
∫
Rn

∇2pe−
|x|2
4τ dnx = 2−2p

p∑
j=0

(−1)j(2j)!
(
2p
2j

)
j! τ2p−j

∫
Rn

|x|2p−2je−
|x|2
4τ dnx. (18)
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Here the integral in the right hand side exists and is calculated according to the formula (16).
Inserting the result of calculation into inequality (17), we obtain final result (11). Here a constant
b
(p)
m,n can be written in the form:

b(p)
m,n =

(2p)!
(m− p+ 1)m! Γ

(
n
2

) p∑
j=0

Γ
(
p− j + n

2

)
22j(2p− 2j)!

.

So we proved the estimates (9)–(11). Hence the polycaloric potential satisfies conditions (12)
and (13), and the initial condition (14) follows from previous formula (3).

From Theorem we can apply the results for equation (1) with inhomogeneous initial conditions
corresponding conditions (14):

T ku(+0,x) = ϕk(x) (1 ≤ k ≤ m).

We look for exact solutions of problem (1) in the form corresponding (7):

u(t,x) =
1

(2
√
π)nm!

t∫
0

τm−n/2e−
|x|2
4τ dτ

∫
Rn

f(t− τ, ξ)e−
|ξ|2−2(x·ξ)

4τ dnξ. (19)

Namely, we consider cases of the general formula (19). If f = f(t, |x|), then for n ≥ 2 from (19)
we obtain

u(t, r) =
1

2n−1
√
π Γ

(
n−1

2

)
t∫

0

τm−n/2e−
|r|2
4τ dτ

×
∞∫
0

ρn−1e−
ρ2

4τ f(t− τ, ρ)dρ

π∫
0

e
rρ
2τ

cos ϕ sinn−2 ϕdϕ,

where r2 = x2
1 + x2

2 + · · ·+ x2
n. Since for ν > 0

π∫
0

e±z cos ϕ sin2ν ϕdϕ =
√
π Γ

(
ν +

1
2

) (
2
z

)ν

Iν(z),

then for n ≥ 2

u(t, r) =
1

2r
n
2
−1m!

t∫
0

τm−1e−
|r|2
4τ dτ

∞∫
0

ρ
n
2 e−

ρ2

4τ In
2
−1

(rρ
2τ

)
f(t− τ, ρ) dρ. (20)

Here Iν(z) is the Bessel function [5].
The degenerate case n = 1 has the following solution

u(t,x) =
1

2
√
πm!

t∫
0

τm− 1
2 e−

x2

4τ dτ

∞∫
−∞

e−
ξ2−2xξ

4τ f(t− τ, ξ) dξ. (21)

If the dimension of space is odd, then the integral with respect to ρ in (16) yields the integral
from elementary functions. Namely, since for n = 3

I 1
2
(z) =

√
2
πz

shz,
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solution (20) is

u(t, r) =
1√
πm! r

t∫
0

τm− 1
2 e−

r2

4τ dτ

∞∫
0

ρ2e−
ρ2

4τ sh
(rρ
2τ

)
f(t− τ, ρ) dρ. (22)

Separately, we consider the case when f(t,x) is a finite function in Rn. If

f(t,x) = Aω(t)F (|x|) θ(R2 − |x|2) (A,R = const > 0, n ≥ 2).

then for same density from (20) we obtain

u(t, r) =
1

2r
n
2
−1m!

t∫
0

τm−1e−
r2

4τ ω(t− τ) dτ

R∫
0

ρ
n
2 e−

ρ2

4τ In
2
−1

(rρ
2τ

)
F (ρ) dρ.

Let us consider n = 1 and f(t,x) = Aθ(t)θ(R− |x|). From (21) we get solution in the form

u(t,x) =
A

2m!

t∫
0

τm

[
erf

(
R+ x
2
√
τ

)
+ erf

(
R− x
2
√
τ

)]
dτ, (23)

where erf(z) is the probabilistic integral [5]. Then using

t∫
0

τmerf
(

z

2
√
τ

)
dτ = 2

(z
2

)2m+2
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z
2
√

t

ξ−2m−3erf(ξ) dξ,

and the formula [3]

∞∫
ξ

ξ−2m−3erf(ξ) dξ =
1
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{
(−1)m+1√π
Γ
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m+ 3

2
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(−1)k
Γ
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(
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2
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,

we obtain exact solution from (23)

u(t,x) =
Atm

2(m+ 1)!

[
Φm

(
R+ x
2
√
t

)
+Φm

(
R− x
2
√
t

)]
, (24)

where

Φm(z) = erf(z) +
(−1)m+1√π
Γ

(
m+ 3

2

) z2m+2erfc(z)− 1
π
e−z2

m+1∑
k=1

(−1)k
Γ

(
m− k + 3

2

)
Γ

(
m+ 3

2

) z2k+1.

We can verify easily that reduced exact solutions of problem (1) for density from K0 satisfied
proved above theorem.

Thus we can apply the results for a problem

sinTu = F (t,x). (25)
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Using the expansion of left side in series and generalizing (2) and (3), we can write the
fundamental solution of operator sinT from space D′(R1+n) in the form of expansion into series

Sn(t,x) =
∞∑

m=0

(−1)mEm,n(t,x)
(2m+ 1)!

=
θ(t)e−

|x|2
4t

(2
√
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|x|2
4t t−n/2−1

(2
√
π)n

t∫
0

ber2
√
τ dτ.

(26)

This expansion is absolutely convergent for t > 0 and has the following properties:∫
Rn

Sn(t,x) dnx =
∞∑

m=0

(−1)mt2m

(2m)!(2m+ 1)!
,

∂k

∂tk
Sn(+0,x) = 0 (k = 2p− 1),

∂k

∂tk
Sn(+0,x) =

(−1)p

(2p+ 1)!
(k = 2p).

Then we obtain a solution of problems (25) for f(t,x) ∈ K0 in the form of convolution

u(t,x) = Sn(t,x) ∗ f(t,x), (27)

that has form similarly to (20) and (21) for n ≥ 2

u(t, r) =
1

2r
n
2
−1

∞∑
m=0

(−1)m

(2m)!(2m+ 1)!

t∫
0

τ2m−1e−
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4τ dτ

×
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0

ρ
n
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4τ In
2
−1

(rρ
2τ

)
f(t− τ, ρ) dρ,

(28)

and for n = 1

u(t,x) =
∞∑

m=0

(−1)m

2
√
π(2m)!(2m+ 1)!

t∫
0

τ2m− 1
2 e−

x2

4τ dτ
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−∞

e−
ξ2−2xξ

4τ f(t− τ, ξ) dξ. (29)

If n = 1 and f(t,x) = Aθ(t)θ(R− |x|), we find the exact solution of problem (25)

u(t,x) =
∞∑

m=0

(−1)mAt2m

2((2m+ 1)!)2

[
Φ2m

(
R+ x
2
√
t

)
+Φ2m

(
R− x
2
√
t
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. (30)
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The purpose of the present paper is to establish a unitary parallel multichannel filter bank
approach to clinical magnetic resonance tomography and magnetic resonance microscopy.
The approach which is based on the Stern–Gerlach filter explains the high resolution capa-
bilities of these non-invasive cross-sectional imaging modalities which revolutionized the field
of clinical diagnostics.

To a physicist, the 20th century begins in 1895, with Wilhelm Conrad Röntgen’s unexpected
discovery of X-rays.

Steven Weinberg

One morning about the 10 July 1925 I suddenly saw light: Heisenberg’s symbolic manipula-
tion was nothing but the matrix calculus well-known to me since my student days.

Max Born

The amount of theoretical work one has to cover before being able to solve problems of real
practical value is rather large, but this circumstance is an inevitable consequence of the
fundamental part played by transformation theory and is likely to become more pronounced
in the theoretical physics of the future.

Paul Adrien Maurice Dirac

Magnetic resonance imaging has the potential of totally replacing computed tomography. If
history was rewritten, and CT invented after MRI, nobody would bother to pursue CT.

Philip Drew

From the beginning, it was evident that all of the powerful and sophisticated methods of
nuclear MR spectroscopy could be used in imaging, and those branches in the field of MR
have continued to enrich one another.

Paul Christian Lauterbur

1 The Stern–Gerlach filter

In 1921 and 1922, the pioneers of nuclear magnetic resonance (NMR), Otto Stern (Nobel Prize
1943) and Walther Gerlach, came up with a technique to test Arnold Sommerfeld’s theory of
spatial quantization using molecular beams. The basic idea of the molecular beam technique –
first demonstrated by L. Dunoyer in 1911 – was to vaporize an element by heating it in a furnace
and then allowing atoms or molecules to escape through a narrow slit located at one end of the
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furnace adjacent to a vacuum chamber. As the atoms or molecules entered the chamber, they
were collimated into a narrow beam of isolated, non-colliding particles via a series of apertures
and directed toward the opposite end of the vacuum chamber where they could be detected by a
flat piece of cold glass that caused the heated molecules or atoms to condense and be deposited
for post-flight analysis.

About 25 years earlier, Pieter Zeeman (Nobel Prize 1902) had found by a spectroscopic ex-
periment that sodium’s single band of yellow spectral light split into multiple, narrow bands
when placed in a strong magnetic field. To experimentally verify the spatial quantization phe-
nomenon, Stern and Gerlach added a strong magnetic field to a molecular beam – actually, in
this case, a beam of silver atoms – and found that they were deposited on the beam detector in
two distinct and well defined separate bands. However, two separate beam channels were not
what they had expected.

Midway through the normal flight path of the beam, Stern and Gerlach had placed a C-
shaped electromagnet, positioned in such a way that a beam of silver atoms traveling along
and between its north and south poles would encounter, perpendicular to the beams’s direction
of motion, a strong magnetic field acting upon the magnetic moments of the atoms in the
beam. How would the external magnetic field affect the individual magnetic moments? The
answer they expected, based on classical physics, was that their degree of reorientation would
be determined by their initial orientation. In other words, they expected that as the randomly
oriented atoms encountered the magnetic field, those atoms whose magnetic moments tended
toward parallel orientation with the external field would be attracted toward the south pole
of the external magnet, those that tended toward anti-parallel orientation with the external
field would be repelled or pushed toward the north pole of the external field, and those that
were basically at right angles to the field direction would proceed to the destination unaffected.
Under that scenario, the magnetic field would tend to widen the narrow beam, because of the
reorientations, resulting in a fairly solid smear of silver being deposited in the center of the
detector and decreasing in density toward the edge of the beam.

That is not what happened. The silver atoms did initially enter the chamber randomly
oriented, as expected, but when they encountered the magnetic field, they were given only two
choices, either parallel or antiparallel, either beam channel 1 or beam channel 2. No other
options were allowed. And apparently all the magnetic moments complied, as two distinct
arcing bands of silver were deposited on the detector glass with nothing in between. Where the
heaviest deposit should have accumulated, according to conventional understanding, there was
nothing! According to George E. Uhlenbeck and Samuel A. Goudsmit, the spatial quantization
phenomenon is due to the spin of the farthest electron of the silver atom.

It is noteworthy, incidentally, that the two ways of looking at quantum effects – Bohr’s
quantum transitions between energy levels and Sommerfeld’s spatial quantization theory – would
foreshadow the two approaches to magnetic resonance taken by Isidor I. Rabi (Nobel Prize 1944)
nearly two decades later as well as the nearly-simultaneous, but independent discoveries of NMR
in condensed matter in late 1945 and early 1946. Rabi and his collaborators would use both
approaches. Edward M. Purcell (Nobel Prize 1952, jointly with Felix Bloch) would focus on
quantum transitions between energy levels and Felix Bloch, former student of Werner Heisenberg,
on physical reorienting of magnetic moments. Of course, neither Purcell nor Bloch had digital
computers available which were powerful and fast enough to apply the dynamics inherent to
NMR to the purposes of non-invasive clinical imaging. Finally, Nicolaas Bloembergen (Nobel
Prize 1981) helped set stage for human MRI scanning and Richard R. Ernst (Nobel Prize 1990)
provided the Fourier transform method to the realm of NMR.
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Figure 1. Splitting of a wave packet caused by an impulsive magnetic field. The figure on the left
displays the probability density, the figure on the right displays streamlines.

Figure 2. Evolution of the spin vector. Immediately after the shock the spin vectors point in
all directions, but after about 2 × 10−14s, they sort themselves into the wave packets of the two
channels.
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Figure 3. Splitting of a wave packet with different mixtures of spin-up and spin-down components.

Figure 4. The evolution of the spin vector when different mixtures of spin-up and spin-down com-
ponents are initially present.
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2 Magnetic resonance tomography

The Stern–Gerlach experiment admits a high tech system application to clinical magnetic reso-
nance tomography [22, 18] and magnetic resonance spectroscopy [10] which is suggested by the
holographic viewpoint of high resolution radar imaging [16]. Actually clinical MRI is based on
a generalization of the Stern–Gerlach filter.

Magnetic resonance tomography has changed the practice of medicine perhaps more than
any other clinical technology developed over the past quarter of a century. This cross-sectional
imaging modality allows to generate high precision images inside a tomographic slice when the
patient is placed in a strong magnetic flux density of high uniformity [12, 17, 21, 25]. The spins
of the protons in the tissue start to precess in a coherent way. Because spin ensembles are
objects of quantum physics [23], the orbital plane W must be interpreted in terms of quantum
physics. This can be done by means of projective spinor quantization which does not consider
the spin as an intrinsic angular momentum but an orientation of the quantum field information
channel. The ensuing method is based on the concept of three-dimensional real Heisenberg Lie
group [19]

G ↪→ Loop(T)

and its natural fibration

G −→ C.

The planar affine symplectic coadjoint orbits of G are realizations of the affine symplectic plane
W not containing the origin, within the dual vector space Lie(G)� of the Lie algebra Lie(G) [22].
The embedding

W ↪→ Lie(G)

makes it apparent that the affine symplectic plane W is also self-dual with respect the Jacobi
bracket of the Lie algebra Lie(G) and that G forms a central extension of the horizontal plane
expG W . The one-dimensional center of G pointed by the origin carries a logarithmic scale along
the longitudinal channel direction. The scale comes from the homeomorphism

expG : Lie(G) −→ G.

By duality, the moment map

µ : W −→ Lie(G)�

is injective and defines a geometric quantization procedure. This quantization procedure allows
to derive Keppler’s Third Law from the Second Law via hyperbolic geometry. Moreover, the
moment map µ associates with the coordinate swapping(

x
y

)
❀

(−y
x

)

the Fourier cotransform

F̄R : L2(R) −→ L2(R).

Thus

F̄R = µ(J).



424 E. Binz and W. Schempp

Figure 5. Architecture of a clinical MRI scanner. The system block diagram shows the main
hardware components of magnetic resonance tomography organized according to function. The
system includes the main magnet, a set of gradient coils, a radiofrequency (RF) coil, a transmitter
based on a pulse shape generator of hard and soft RF pulse trains, a receiver endowed with a
superheterodyne circuitry, and a work station for image processing. Also shown is the pathway
followed by operator commands, pulse sequences, and image data. The imaging subsystem displayed
on the right consists of amplifiers (RF and gradients), the excitation RF coil, and the gradient coils
used to encode the signals. The detection subsystem displayed on the left consists of the receiver
coil, and the hardware involved in the signal amplification pathway.

Due to the moment map µ, the affine symplectic structures of W and the planar coadjoint
orbits of G in the dual vector space Lie(G)� are compatible. Due to the action of the one-
dimensional compact group

U(1,C) = T

of gauge transformations, which leaves the one-dimensional center of G invariant, they are
suitable structures for describing the resonance phenomena of NMR. By making the flux density
non-uniform via the controlled application of R-linear distortions, called magnetic field gradients,
the synchronized phase-frequency coordinates of the points in a spin ensemble inside the selected
tomographic slice can be spatially separated. The switching of orthogonal gradients converts the
Fourier cotransform F̄R via affine R-linear Möbius transformations of the Keppler flow within
the affine symplectic plane W ↪→ P(R × W ) into a unitary parallel multichannel filter bank.
The bank of polyphase filters implemented in the ruled plane W transforms the spin density into
a clinically valuable planar image (Fig. 7). One of the various advantages of the MRI procedure
over X-ray imaging modalities such as CT scanning is that it works in a non-invasive manner
[12, 17, 21, 25]. Unlike CT, which is uniplanar, MRI can produce cross-sectional images from
any plane.
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Figure 6. Simplified flowchart displaying the main principles on which a clinical MRI scanner opera-
tes. The reconstruction process from a collection of multichannel phase histories is through probing
the magnetic moments of nuclei employing strong magnetic flux densities and radiofrequency (RF)
electromagnetic radiation. The whole process of clinical MRI is based on a controlled perturbation
of the equilibrium magnetization of the object with a train of RF pulses and observing the resulting
time-evolving phase coherent response wavelet packet trains in a coil. In terms of line geometry of
dimension 3, the collection of a series of 256–512 views establishes a unitary parallel multichannel
filter bank which reduces the quantum entropy [8]. In the read-out procedure of the quantum
hologram [20], the algorithm of the symplectic Fourier transform reflects the basic structural feature
of the clinical MRI modality. The HASTE (half-Fourier acquisition single-shot turbo spin-echo)
technique takes advantage of the symmetry properties of the symplectic Fourier transform.
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Figure 7. Clinical magnetic resonance tomography: A high resolution sagittal image of the head.
In terms of line geometry of dimension 3, the unitary parallel multichannel filter bank generalizes
the Stern–Gerlach filter to clinical MRI. It generates the high resolution image which is simulated
by a phased-array coil on the receiver side.

Keppler’s geometric method of planet tracking by synchronized clockworks, however, admits a
completely unexpected high tech system application to the field of non-invasive clinical imaging
by NMR [7, 11, 12, 13, 17, 18, 21, 22, 25]. Spin ensembles are excited by the Keppler flow
and combine to a planar image within the affine symplectic plane W ↪→ P(R×W ) that can be
decoded by a unitary parallel multichannel filter bank. In terms of line geometry of dimension 3,
the filter bank generalizes the Stern–Gerlach filter (Fig. 7 supra).

Within ten years, clinical MRI had become a billion-dollar business and continues to expand
rapidly. Although already well established in the clinical diagnostic centers all over the world,
the future of the MRI modality continues to be bright [11, 12, 21, 25]. MRI will become the most
important clinical imaging modality by the year 2010. It will be the major morphological staging
method for the abdomen and pelvis. MR-guided surgery will be commonplace, and thermal
ablation of disc and soft-tissue tumors will be performed under MR control. Morphology, early
stroke detection, and even emergency trauma cases will be done by clinical MRI. In most cases,
the clinical MRI modality will replace conventional CT whole-body scan interpretation, as well
as helical CT scanning [15]. Specifically, brain imaging will no longer make use of CT by 2010 [9].

Quantum teleportation shows that projective spinor quantization is not in conflict with pro-
jective relativity [6]. The method is not restricted to RF pulse trains. It extends to the light-in-
flight recording by ultrafast laser pulse trains in the pico- and femtosecond regime [1, 2, 3, 4, 5].
Moreover, the technique of projective spinor quantization provides a new approach to the Becchi–
Rouet–Stora–Tyutin (BRST) quantization procedure [14, 7]). This underlines the power of the
projective viewpoint adopted for the matching of quantum physics and special relativity.
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Figure 8. Magnetic resonance microscopy: An embryologic study.

Figure 9. Finite element analysis provides the two types of projectively dual totally orthogonal
planes occurring in line geometry of dimension 3. The two planes are cohomologically of different
type. The bundle of radial lines as well as the ruled planes FEM visualize the one-dimensional
compact group U(1,C) of gauge transformations acting on C2. The bank polyphase filters in the
ruled planes transform the spin density into a clinically valuable image.
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3 Conclusion

As a conclusion, the paper establishes via the Stern–Gerlach filter and gauge group analysis
that the higt resolution capability of clinical magnetic resonance tomography is due to a unitary
parallel multichannel filter bank generated by quantum holography.
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The problem of supplying nontrivial models of local covariant and obeying the spectral con-
dition quantum theories of extended objects is discussed. In particular, it was demonstrated
that starting from sufficiently regular generalized random fields the construction of the cor-
responding quantum dynamics describing extended objects is possible. Several particular
examples of such generalized random fields are presented.

1 Introduction

The importance of nonlocal, gauge invariant functionals was firstly recognized in local quantum
field theories of gauge type [28]. In such theories the compatibility of standard positivity,
locality and covariance is hard to achieve if at all, see e.g. [26, 25]. The restrictions of the
allowed set of observables to the set of gauge invariant observables and the arising space of
states seem to be correct choice of subspace of physical states. Also the role played by certain
nonlocal order parameters in studying the phase structure (the complicated vacuum structure)
of gauge quantum field theories must to be pointed out [4, 6, 23, 27, 29]. The still continued
attempts [14] to formulate local, covariant and positive quantum theories of extended objects like
strings, membranes, etc. also justify the importance of searching new mathematical techniques
for constructing nontrivial models of this type. Let us recall also that the recent attempts to
formulate quantum gravity in terms of loop variables seem to be very attractive idea [2]. Finally
let us mention the application of the loop variables in the topological quantum field theories to
the classical problems of geometry [3].

An interesting approach to the construction physically reasonable models of extended objects
was proposed in [23] in the context of quantum field theories of gauge type. The approach
presented in [23] can be called the Euclidean approach and is of axiomatic type. However there
are not too many nontrivial models obeying the system of axioms proposed in [23]. To our
best knowledge the Wilson loop Schwinger functions in the continuum limit of QCD2, and
in the free QEDd are the only examples discussed explicitely in the literature [23], see also
[18, 22]. It is the main aim of the present contribution to provide some new examples of theories
obeying the proposed axiomatic scheme of [23] and to outline a general constructive approach
for constructing models of this sort from the generalized random fields.

2 The Fröhlich–Osterwalder–Seiler axiomatic approach

Let Ck(d) be a variety of k-dimensional piecewise C1 cycles in the space Rd, i.e. elements Γ of
Ck(d), a k-dimensional boundaryless piecewise C1 compact submanifolds of the d-dimensional
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Euclidean space Rd. The allowed topologies τ on Ck(d) are such that only small C∞ local
deformations are allowed and they define a basis of neighborhoods of a given Γ ∈ Ck(d), in
particular local continuous but not differentiable deformations δΓ of Γ send δΓ far from Γ. The
allowed topologies (as above) on the variety Ck(d) can be prescribed explicitly in the metric form
(an example in the case of loops is provided in [23]).

From now on we shall assume that τ is an allowed topology on Ck(d).
A system S = {Sn}n≥0 of functionals, where each Sn is jointly τ -continuous functional on

the space (Ck(d), τ)×n
# , where (Γ1, . . . ,Γn) ∈ Ck(d)×n

# iff Γi ∩ Γj = ∅ for i 	= j, is called k-cycles
Schwinger functional iff it fulfills the following conditions:

FOS0-1 Let Γai
i , i = 1, . . . , n be a translation of Γi ∈ Ck(d) by the vector ai ∈ Rd and

let δ(Γa1
1 , . . . ,Γan

n ) = infi,j{dist(Γai
1 ,Γ

aj

j )}. If δ(Γa1
1 , . . . ,Γan

n ) > 0, then there exist
constants Kn, cn, p such that:

|Sn(Γa1
1 , . . . ,Γan

n )| ≤ Kn exp cnδ−p.

FOS0-2 Let

δt(Γ1,Γ2) = inf
{
|t1 − t2|; t1 :

∨
(t1,x1) ∈ Γ1, t2 :

∨
(t2,x2) ∈ Γ2

}

be a temporal distance between Γ1 and Γ2. Then there exist constants KΓi,ε (depend-
ing on Γi and ε > 0) such that:

|Sn(Γ1, . . . ,Γn)| ≤ KΓ1,ε · · · · ·KΓn,ε

providing δt(Γi,Γj) ≥ ε, i, j = 1, . . . , n.

FOS1 For any n ≥ 1, any ensemble {Γ1, . . . ,Γn} ⊂ Ck(d)×n
# and any permutation π ∈ sn (≡

the symmetric group):

Sn(Γ1, . . . ,Γn) = Sn(Γπ(1), . . . ,Γπ(n)).

FOS2 For any Euclidean motion (a,Λ) ∈ T � O(d) (where O(d) stands for the orthogonal
group, T are translations and � means the standard semidirect product) and any
ensemble Γ1, . . . ,Γn ∈ Ck(d) we have:

Sn(Γ1, . . . ,Γn) = Sn

(
Γ(a,Λ)

1 , . . . ,Γ(a,Λ)
n

)
,

where Γ(a,Λ) =
{
Λ−1(x− a) | x ∈ Γ

}
.

FOS3 Reflection Positivity. Let V+(−) be a subset of Ck(d) ≡
⋃

n≥0 Ck(d)×n
# consisting of

the ensembles of families of nonintersecting cycles

(
∅,Γ1,

(
Γ2

1,Γ
2
2

)
, . . . , (Γn

1 , . . . ,Γ
n
n) , . . .

)
that are supported in Rd

+(−) = {(t,x) ∈ Rd | t > 0(< 0)}. Let Θ be a natural
involution from V+ onto V−. Then for any

Γ ≡
(
∅,Γ1,

(
Γ2

1,Γ
2
2

)
, . . . , (Γn

1 , . . . ,Γ
n
n) , . . .

)
∈ V+
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we have

S(ΓΘΓ) =
∑
l,m

clcmSl+m(Γl
1, . . . ,Γ

l
l,ΘΓ

m
1 , . . . ,ΘΓ

m
m) ≥ 0

and for any c = (c0, c1, . . .) (finite sequence of complex numbers).

FOS4 For any n = k + l, k, l > 0 and |a| → ∞

lim
|a|→∞

Sn(Γ1, . . . ,Γk,Γ′a
1, . . . ,Γ

′a
l ) = Sk(Γ1, . . . ,Γk)Sl(Γ′

1, . . . ,Γ′
l).

It was demonstrated (originally for the case of 1-cycles but the arguments are easily extend-
able to the case of k-cycles with 1 ≤ k ≤ d−1) in [23] that certain real time quantum dynamical
system can be reconstructed from any system of Schwinger functions obeying FOS0-FOS4.

Theorem 2.1 Let S be a system of k-cycles Schwinger functions on (Ck(d), τ). Then there
exists: a separable Hilbert space H, a continuous unitary representation of the universal covering
group of the proper orthochronous Poincaré group P↑

+(d) obeying a spectral condition (i.e. the
joint spectrum of the generators of translations is included in the closed forward light cone).
Moreover there exists a unique vector Ω ∈ H(S) which is invariant under the action of P↑

+(d).

In particular, with any time-ordered ensemble of k-cycles {Γ1, . . . ,Γn} and such that
infi,j{dt(Γi,Γj)} > 0 one can associate (in a unique manner) a system of holomorphic func-
tionals W(Γ1,...,Γn)(z1, . . . , zn) in the tubular region

Tn =
{
(z1, . . . , zn) ∈ Cdn | �m(zi − zi−1) ∈ V d

+

}
,

where V d
+ = {x ∈ Rd | x ·x > 0, x0 > 0} (where x ·x = (x0)2−x2 means Minkowski space scalar

product) and such that
(i) restriction of Wn

(Γ1,...,Γn)(z1, . . . , zn) to the “Euclidean” piece of the boundary ∂ETn of Tn
defined as:

∂ETn =
{
z ∈ Cnd | �z0

i = 0,�mzi = 0,�mz0
i < �mz0

i+1

}

is equal to Sn(Γ1, . . . ,Γn), i.e.

Wn
(Γ1,...,Γn)

((
ia0

1,a1

)
, . . . ,

(
ia0

n,an
))

= Sn

(
Γ(

ia0
1,a1)

1 , . . . ,Γ(
ia0

n,an)
n

)
;

(ii) for any collection (Γ1, . . . ,Γn) of k-cycles located in space-like hyperplanes there exists

lim
zl=xl+iηl→0

ηl−ηl−1∈V d
+

Wn
(Γ1,...,Γn)(z1, . . . , zn) =Wn

(Γ1,...,Γn)(x1, . . . , xn)

in the space of ultradistributions of Jaffe type and with the corresponding indicator func-
tion compatible with the singularity behaviour of FOS0–FOS1.

The boundary ultradistributions Wn
(Γ1,...,Γn)(x1, . . . , xn) are called k-cycles Wightman ultra-

distributions corresponding to Schwinger functional S. The problem of formulating conditions
on the system of W of Wightman ultradistributions that lead to k-cycles Schwinger functions S
obeying FOS0-FOS4 still seems to be open.
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3 The scalar models

Let µλ be an infinite-volume limit of the so called P (Φ)2 interaction [13, 24], where λ > 0 refers
to the major coupling constant. The case λ = 0 corresponds to the Nelson free field measure, i.e.
µ0 stands for the centered Gaussian measure on the space of (real valued) tempered distributions
S ′(R2) defined by

µ0(exp(i(ϕ, f))) ≡ exp
{
−1
2
‖f‖2

−1

}
, (1)

where ‖f‖2−1 = (−� + 1)−1(f ⊗ f), S0 ≡ (−� + 1)−1 being a principial Green function of the
operator (−�+1). Let Γ be a Jordan type curve which is assumed to be sufficiently smooth (see
below). We would like first to give a rigorous mathematical meaning to the (formal) expression∮
Γ ϕ. For this goal we use a theory of Lions–Magenes traces of distributions [20] together with
some arguments from [1].

Lemma 3.1 Let Γ be a Jordan type 1-cycle in R2. If the generalized random field µλ on S ′(R2)
obeys the estimate

µλ(ϕ2(f)) ≤ c−1‖f‖2
−1 + cp‖S0 ∗ f‖Lp + c1‖S0 ∗ f‖L1 , (2)

where p ∈ [2,∞) and c−1, cp, c1 are some nonnegative constants then for µλ a.e. ϕ ∈ S ′(R2)
there exists a trace of ϕ on Γ in the Lions–Magenes sense, denoted as ϕ|Γ and moreover ϕ|Γ ∈⋂

α>0H−α(Γ), where H−α(Γ) are negative-order Sobolev spaces on Γ (defined as in [20]).

Using the fact that χΓ(≡ the characteristic function of Γ) belongs to
⋂

α>0H+α(Γ) (as being
a constant function) it follows easily by dualization that for any µ obeying the estimate (2) we
can define 〈χΓ, ϕ〉 and this number is defined to be

∮
Γ ϕ. Proceeding in this way we can define

for any collection {Γ1, . . . ,Γn} a measurable and defined µ a.e. function

L∗
Γ1,...,Γn

(ϕ) ≡
n∏

j=1

e
i
∮
Γj

ϕ
.

This is an almost sure version of the result on the existence of random loop function for models
of Euclidean Quantum Field Theory obeying (2).

However, due to the problem of exceptional sets the above a.e. result is not sufficient and
certain computable Lp version of the random loop functions has to be given.

Proposition 3.2 Let µ be generalized random field on S ′(R2) obeying the following estimate:

|µ(ϕ2(f))| ≤ c‖f‖2
−1 (3)

for any f with compact support. Let (χε)ε>0 be any smooth mollifier i.e. 0 ≤ χε ∈ C∞
0 (R2) for

any ε > 0,
∫
χε(x)d2x = 1 and limε↓0 χε = δ (≡ Dirac delta) in the sense of weak convergence.

Let {Γ1, . . . ,Γn} be any ensemble of nonintersecting loops of Jordan type.
Then for any p ≥ 1 the unique limit

lim
ε↓0

Lµ
ε (Γ1, . . . ,Γn)(ϕ) ≡

n∏
j=1

e
i
∮
Γj

ϕε ≡ Lµ(Γ1, . . . ,Γn)(ϕ)

exists in Lp(dµ) sense.
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Thus, defining the loop Schwinger functions

Sµ(Γ1, . . . ,Γn) =
∫
S′(R2)

Lµ(Γ1, . . . ,Γn)(ϕ)dµ(ϕ)

for any generalized random field µ obeying (3), we can expect that they are good candidates for
nontrivial models obeying the systems of axioms proposed in Section 2.

Theorem 3.3 Let µ be a Euclidean homogeneous generalized random field obeying the esti-
mate (3). Then the corresponding system of loop Schwinger functions Sµ obeys the system of
FOS0–FOS2 axioms with the possible exception of reflection positivity. If moreover µ is a re-
flection positive random field then the corresponding loop Schwinger functions obey the reflection
positivity axiom too.

It is well known that many of the constructed two-dimensional scalar models of Euclidean
Quantum Field Theory [13, 24] obey the estimates like (2) with the values of p as indicated
in (2) and it is known that the following estimates are valid (see e.g. Lemma 2.1 in [1]):

c−1‖f‖2
−1 + cp‖S0 ∗ f‖Lp + c1‖S0 ∗ f‖L1 ≤ c‖f‖2

−1

for any f with compact support and some c > 0.
A similar theorem is valid for the case of renormalized φ4

3 theory [24] and 2-cycles of Jordan
type in R3. The proof being similar to that above.

However, the weak point of these examples is that the corresponding quantum systems re-
produce the basic quantum field theoretical structures.

Theorem 3.4 Let (cHµλ ; cΩµλ ; cUµλ
t ) be a quantum dynamical system obtained from the P (ϕ)2

loop Schwinger functions and let (Hµλ ; Ωλ;Uµλ
t ) be the corresponding quantum dynamical system

obtained from the point (field theoretical) Schwinger functions [13, 24]. Then there exists a
unitary map J :

J : cHµ
λ → Hµ

λ

such that J : cΩµλ → Ωλ and J−1Uλ
t J = cUλ

t .

For a complete proof see [12].

4 Regular, covariant, generalized random fields

Let (A0,A) be a generalized random field indexed by S(Rd) ⊗Rd, where d ≥ 2 and A stands
for the space components of A according to the decomposition

Rd =
{
(x0,x) | x0 ∈ R, x ∈ Rd−1

}
.

Let us denote by µ the corresponding law of A, i.e. the probability, Borel, cylindric measure
on S ′(Rd) ⊗ Rd. Here S ′(Rd) stands for the space of tempered distributions. A field A is
called vector field iff for any pair (a,Λ), where a ∈ Rd, Λ ∈ SO(d) the following equality

(A, f(a,Λ)) ∼= (A, f) in law holds, where f(a,Λ)(x) =
d−1∑
j=0

Λj
ifj(Λ

−1(x − a)). A vector field A is

called reflection invariant iff (A, rf) ∼= (A, f) (in law), where (rf)0(x0,x) = −f0(−x0,x) and
(rf)i(x0,x) = f i(−x0,x) for i = 1, . . . , d−1. Let us recall that a vector field A which is Markoff
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and reflection invariant is reflection positive. The main question addressed in this section is now
to find sufficient conditions on the field A that enable us to define a family of loop Schwinger
functions obeying the system of axioms FOS0–FOS4. Let ω ∈ C∞

0 (Rd) be a non-negative
function with support in the unit ball {x : ‖x‖ ≤ 1} and such that

∫
ω(x)dx = 1. Then the we

define ωN (x) = Ndω(Nx) and we note that lim
N→∞

ωN (x) = δ(x). For any loop Γ, parametrized

by γ(t), t ∈ [0, 1], we define the following family of test functions from C∞
0 (Rd)⊗Rd:

∆N
Γ,k(x) =

∮
Γ
ωN (x− y)dyk =

∫ 1

0
ωN (γ(t)− x)γ̇k(t)dt.

For a given ensemble {Γ1, . . . ,Γn} of loops we define the sequence of functionals

NL(Γ1, . . . ,Γn)(A) =
n∏
l=1

exp{i〈∆N
Γl
, A〉)}

and the corresponding Schwinger functions

NS(Γ1, . . . ,Γn) = ENL(Γ1, . . . ,Γn)(A).

Theorem 4.1 Let A be a vector, reflection positive generalized random field on the space S ′(Rd)
⊗Rd, d ≥ 2 and let {Gij(x− y)} be a two-point Schwinger function of A. Assume that for any
loop Γ ∈ Cg1(Rd) the following integrals∮

Γ

∮
Γ
|Gii(x− y)|dxidyi (4)

and for all i = 0, . . . , d − 1 do exist. Then, there exists a system of loop Schwinger functions
{Sn} on

⋃
n≥0

Cg1(Rd)×n obeying the system of axioms FOS0–FOS3, where Cg1 means globally

C1-curves.

In particular, the assumptions of Theorem 4.1 are valid for the 2-dimensional versions of
Abelian, free QED. In higher dimensions we should expect some infinite renormalizations
connected to the divergence of the integrals (4) see e.g. [18, 22]. A suitable version of Theorem 4.1
to handle this case can also be formulated [12].

Proof of Theorem 4.1. Using

E
∣∣∣NL(Γ)(A)− N ′L(Γ)(A)

∣∣∣ ≤ E ∣∣∣〈∆N
Γ −∆N ′

Γ , A〉
∣∣∣ ≤ {E ∣∣∣〈∆N

Γ −∆N ′
Γ , A〉

∣∣∣2}
1
2

,

but

E
∣∣∣〈∆N

Γ −∆N ′
Γ , A〉

∣∣∣2 =∑
i,j

Gij

(
∆N

Γ,i −∆N ′
Γ,i,∆

N
Γ,j −∆N ′

Γ,j

)
,

where Gij(x, y) = EAi(x)Aj(y). We see that the problem of L1(dµ)-convergence of functionals
NL(Γ) is reduced to the question of existence of lim

N→∞
Gii

(
∆N

Γ,i,∆
N
Γ,i

)
. For this

∣∣∣∣Gij

((
∆N

Γ −∆N ′
Γ

)
i
,
(
∆N

Γ −∆N ′
Γ

)
j

)∣∣∣∣ =
∣∣∣∣EAi

(
∆N

Γ −∆N ′
Γ

)
i
Aj

(
∆N

Γ −∆N ′
Γ

)
j

∣∣∣∣
≤
{
E〈Ai,

(
∆N

Γ,i −∆N ′
Γ,i

)
〉2
} 1

2
{
E〈Aj ,

(
∆N

Γ,j −∆N ′
Γ,j

)
〉2
} 1

2
.
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Thus, we need to prove that lim
N→∞

Gii

(
∆N

Γ,i,∆
N
Γi

)
exists for all i and then

lim
N→∞

Gii

(
∆N

Γ,i,∆
N
Γi

)
= lim

N→∞

∫
R4

dx

∫
R4

dyGii(x− y)

∫ ∫
[0,1]×2

ωN (γ(t1)− x)γ̇i(t1)ωN (γ(t2)− y)γ̇i(t2)dt1dt2

formally is equal to:∮
Γ

∮
Γ
Gii(x− y)dxidyi =

∫ 1

0
dt1

∫ 1

0
dt2Gii(γ(t1)− γ(t2))γ̇i(t1)γ̇i(t2)

so we need to justify only the change of limit operation lim
N→∞

with integral but this is allowed

by the Lebesgue dominated convergence theorem.

5 Some solvable interacting models

A large class of covariant, Markovian generalized random fields can be obtained as a solution of
systems of covariant partial differential stochastic equations [7, 9, 10, 11].

For this let (τ, τ ′) be a pair of real representations of the special orthogonal transformation
group SO(d), where d is the dimension of the Euclidean space-time. We assume that dimension
of τ (resp. τ ′) is equal to nτ (resp. nτ ′) and we denote the natural lifting of τ to the space
S(Rd) ⊗Rnτ (resp. S(Rd) ⊗Rnτ ′ ) as Tτ (resp. Tτ ′). A first order differential operator D =

3∑
µ=0

Bµ∂µ+M, where Bµ,M ∈Hom(Rnτ ,Rnτ ′ ) is called (τ, τ ′)-covariant operator iff the following

diagram

S ′(Rd)⊗Rdim τ D−→ S ′(Rd)⊗Rdim τ ′

Tτ

� �Tτ ′
S ′(Rd)⊗Rdim τ D−→ S ′(Rd)⊗Rdim τ ′

(5)

commutes. The complete list of such operators for the case d = 2, 3, 4 is well known for any pair
(τ, τ ′). See, e.g. [8, 19, 11, 21].

Let α = (α0, . . . , αd−1) be any multiindex of length d, i.e. αµ ∈ N ∩ {0}, µ = 0, . . . , d − 1
and let |α| = α0 + · · · + αd−1. We denote by IK(d) (for a given integer K > 0) the set of all
multiidices α as above and such that |α| ≤ K and let CK(d) be a cardinality of the set IK(d).
For a given α, let Dα = ∂α0+···+αd−1

∂x
α0
0 ···∂xαd−1

d−1

.

Let us consider the operator D defined as

(Djl
α ) ≡

∑
β∈IK(d)

Ejl
αβD

β (6)

for α, β ∈ IK(d), j, l = 1, . . . , N , where Ejl
αβ are some real numbers. The endomorphism E of

the space RNCK(d) corresponding to Ejl
αβ in the canonical basis of RNCK(d) will be useful in

the following. For f ∈ S(Rd)⊗RN the operator D corresponding to (6) is given by (D)jα(x) =∑
l

(D)jlαf l(x), so D maps S(Rd) ⊗ RN into S(Rd) ⊗ RNCK(d). We fix a pair (DG,DP ) of

operators defined as above.
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A noise corresponding to the pair (DG,DP ) (a general noise of order K) is defined as a
generalized random field ν on the space S(Rd) ⊗RN the characteristic functional Γν of which
is given by the product:

Γν(f) = ΠG
ν (f)Π

P
ν (f), (7)

where the characteristic functional (of Gaussian part of ν) ΠG
ν is defined

ΠG
ν (f) = exp

{
−1
2

∫
Rd

〈DGf,ADGf〉(x)dx
}
, (8)

where A ∈End(RNCK(d)), A ≥ 0, and the characteristic functional (of the Poisson part of ν)
ΠP
ν is explicitly displayed as:

ΠP
ν (f) = exp

{
−
∫
Rd

ΨP (DP f(x))dx
}
, (9)

where

ΨP (y) = −
∫
RNCK \{0}

[
ei〈Λ,y〉 − 1− i〈Λ, y〉

]
dL(Λ) (10)

or

ΨP (y) = −
∫
RNCK \{0}

[
ei〈Λ,y〉 − 1

]
dL(Λ) (11)

for some Borel measure dL on the space RNCK\{0} with all finite moments.
It is easy to observe that a given noise ν on the space S ′(Rd) ⊗Rnτ is Tτ -covariant iff the

following covariance conditions are fulfilled(
τT ⊗ γ

)
(g)B

(
τ ⊗ γT

)
(g) = B, (12)

dL(ET
P )

−1(τ ⊗ γ)(g)(Λ) = dL(ET
P )

−1(Λ), (13)

where B ≡ ET
GAEG, dL(ET

P )
−1 is the transport of the Levy measure dL by the endomorphism

ET
P and finally γ is an orthogonal representation of the group SO(d) in the space RCK(d) defined

explicitly as:

γαβ(g) =
∑
Πµν

d−1∏
µ,ν=1

g
Πµν
µν , (14)

where the sum
∑
Πµν

runs over all matrices (Πµν)d−1
µ,ν=0 built from the elements of {1, . . . ,K} and

chosen in such a way that αµ =
d−1∑
ν=0

Πνµ, βµ =
d−1∑
ν=0

Πµν for α, β ∈ IK(d).

The interesting class of non-Gaussian covariant generalized (Markovian) in a suitable sense,
see e.g. [17, 15], random fields is obtained as a solution of covariant SPDE’s of the type

Dϕ = η, (15)

where D is some (τ, τ ′)-covariant operator which obeys certain additional conditions for the
existence of not too singular Green function (from the infrared divergencies point of view, see
[11, 21] for details), η is a noise of order K which is assumed to be Tτ ′-covariant noise.
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It was proven in [9, 10, 11, 21] that under these conditions the solutions of the equation (15)
do exist in certain sense and give rise to a new Tτ -covariant, generalized Markovian random
fields, the moments of which can be analytically continued to Minkowski space-time yielding a
system of covariant Wightman distributions obeying the spectral conditions (in the weak form)
and the quantum field theoretical locality principle as well (see [7, 11] for details).

We would like to address here the question whether with solutions of (15) obtained in [9, 10,
11] one can associate systems of k-loop Schwinger functions onRd that might be good candidates
for explicit models obeying FOS0-FOS2. The important question on the existence of the
reflection positive solutions of equations of the type (15) being still unsolved in general, presses
the necessity to develop a weaker scheme for obtaining results on the real-time dynamics of
extended objects from the corresponding Euclidean data of the spirit as in the general indefinite
metric quantum field theory [16].

The following localization property of the noise ν is crucial for the existence of the almost
sure version of the corresponding k-cycles Schwinger functionals.

Proposition 5.1 Let Γ(Rd) be the space of locally finite configurations of the space Rd and let
% be a Poisson noise with the characteristics (DP , Ep). Then, the set

η ∈ D′(Rd)⊗RN | η =
N∑
k=1

∑
α∈IK(d)

∞∑
δk,α=1

(−1)|α|Dαδxδk,α
⊗
(
ET
PΛδk,α

)k
α


 . (16)

As a corollary we obtain

Theorem 5.2 Let ϕ be a solution of (15) in the sense explained in [7, 9, 11] and let us assume
that the underlying Green function GD of the operator DT has a decay at least as 1

|x|d+ε if
|x| → ∞ and such that τ contains the appropriate subrepresentation corresponding to k-skew
symmetric tensor. Then, for any fixed configuration (Γ1, . . . ,Γn) of k-cycles on Rd, there exists
a measureable functional defined:

S ′(Rd)⊗Rnτ % ϕ −→
n∏
l=1

ei
∮
Γl

ϕ|
τ(k) , (17)

where φτ (k) is the corresponding stochastic differential k-form which is perfectly well defined for
µϕ-a.e. ϕ ∈ S ′(Rd)⊗Rnτ .

By simple argumentation, the existence of the unique measurable, defined µϕ-a.e. maps

S ′(Rd)⊗Rnτ × Ck(d)×n % (ϕ, (Γ1, . . . ,Γn)) −→
n∏
l=1

ei
∮
Γl

ϕ|
τ(k)

can be proven.
The computable, i.e. L1-version of the above result is provided by the following theorem.

Theorem 5.3 Let D, τ (k) be as in the previous theorem. We impose the following estimates on
the behaviour of the Green function G|τ (k) and its first deriviatives:

|G|τ (k) |(x) ≤
c

|x|p for 0 < |x| < 1 and 0 < p < 4,

|G|τ (k) |(x) ≤
c

|x|p for 1 < |x| and 0 < p,

∣∣∣∣ ∂

∂xµ
G

∣∣∣∣
τ (k)

|(x) ≤ d

|x|q for 1 < |x|, µ = 0, 1, 2, 3 and 0 < q
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and the estimates on the behaviour of the characteristic function ψ (negative defined function,
see e.g. [5]) of the noise η.

|ψ(y)| ≤M |y|1+η for |y| < 1 and (−1 + 4
q
, 1].

In the case of k-cycles, if we demand the estimate

|ψ(y)| ≤M |y|1+η for 1 < |y| with η ∈
(
−1,−1 + 4− k

p

)
∩ (−1, 1]

then for any collection
{
Γ(k)

1 , . . . ,Γ(k)
n

}
of k-cycles there exists a Cauchy sequence of functionals{

N Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)}+∞
N=1

⊂ Lp(S ′(R4)⊗Rnτ , µϕ) for all p ∈ [1,+∞).

Let Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
denote the limit of that sequence treated as an element in the space

L1(S ′(R4)⊗Rnτ , µϕ) (p = 1) and let us define

Sn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
=
∫
S′(R4)⊗Rnτ

Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
(T )µϕ(T ).

If, in addition, the condition η ∈
(
−1 + 4

p , 1
]
is fulfilled then

Sn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
= exp

{
−
∫
R4

ψ

(
n∑
l=1

G
Γ

(k)
l

|τ (k)(x)

)
d4x

}
,

where we introduced the auxiliary function

GΓ(k) |τ (k)(x) =
{ ∫

Γ(k) G|τ (k)(Ω− x)dΩ for x 	∈ Γ(k)

0 for x ∈ Γ(k)

with integration in the sense of k-forms.

The proof of the above results follows the chain of arguments as presented in our earlier
paper [11], where the case of the Wilson loops is discussed. All the details can be found in [21].

Theorem 5.4 Let D, η, τ (k) be as in Theorem 5.3. Then the correspondinig k-loop Schwinger
functionals:

S(Γ1, . . . ,Γn) =
∫
S′(Rd)⊗Rnτ

n∏
l=1

ei
∮
Γl

ϕ|
τ(k)dµ(ϕ) (18)

obey the axioms FOS0–FOS2 and also FOS4.

The important problem to reconstruct the corresponding quantum, real-time dynamics from
the data contained in the k-loop Schwinger functionals and the existence of the corresponding
Wightman functions is left to another publication [12].
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In previous work, Doebner and I introduced a group of nonlinear gauge transformations for
quantum mechanics, acting in a certain family of nonlinear Schrödinger equations. Here the
idea for a further generalization is presented briefly. It makes possible the treatment of the
logarithmic amplitude and the phase of the wave function on an equal footing, suggesting a
more radical reinterpretation of these variables in linear and nonlinear quantum theory.

1 Background

Motivated by our desire to interpret a certain class of nonrelativistic current algebra repre-
sentations as descriptive of quantum mechanical systems, H.-D. Doebner and I proposed a
parameterized family of nonlinear Schrödinger equations (NLSEs) whose solutions would sat-
isfy the appropriate equation of continuity [1, 2, 3]. It was then logically necessary to extend
the usual gauge group for quantum mechanics to include transformations that could act non-
linearly [4, 5]. Writing the complex-valued wave function ψ(x, t), describing a single spinless
particle in a pure state, as ψ = R(x, t) exp[iS(x, t)], where the amplitude R and the phase S are
real, these nonlinear gauge trasnformations act by

R ′ = R, S ′ = ΛS + γ lnR+ θ, (1.1)

where Λ is a smooth, real-valued, nonzero function of t, γ is a smooth, real-valued function of t,
and θ is a smooth, real-valued function of x and t. The transformations (1.1) map members of
our family of NLSEs into each other, and have other desirable properties. In particular, they
extend naturally to act on a hierarchy of N -particle wave functions ψN (x1, . . . ,xN , t), defined
on the (positional) configuration space, in a way that is strictly local and satisfies a separation
condition for product states [6].

The justification for considering them to be gauge transformations is as follows. For all of
the nonlinear quantum theories under discussion, we interpret ρ = |ψ|2 = R2 as the probability
density in configuration space. We adopt as a working hypothesis the view (taken by many
theorists) that all measurements in ordinary quantum mechanics can be regarded as a sequence
of positional measurements, made at different times, where external fields exerting forces may
be imposed on the system between measurements [7, 8]. Then for any wave function ψ obeying
a Schrödinger equation (linear or nonlinear) in our family, the wave function ψ ′ transformed
by (1.1) obeys a transformed Schrödinger equation, still in the family, with gauge-transformed
external fields; while the outcomes of all physical measurements remain invariant.

To be explicit, with

ρ = ψψ, ĵ =
1
2i

[ψ∇ψ − (∇ψ)ψ], (1.2)
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define the real, homogeneous nonlinear functionals

R1 =
∇ · ĵ
ρ

, R2 =
∇2ρ

ρ
, R3 =

ĵ 2

ρ2
, R4 =

ĵ · ∇ρ

ρ2
, R5 =

(∇ρ)2

ρ2
, (1.3)

and consider the following family of one-particle NLSEs (where for mathematical convenience
both sides have been divided by ψ):

i
ψ̇

ψ
= i


 2∑

j=1

νjRj [ψ] +
∇ · (A(x, t)ρ)

ρ




+


 5∑

j=1

µjRj [ψ] + U(x, t) +
∇ · (A1(x, t)ρ)

ρ
+

A2(x, t) · ĵ
ρ

+ α1 ln ρ+ α2S


 .

(1.4)

Here the coefficients νj (j = 1, 2), µj (j = 1, . . . , 5), and αj (j = 1, 2) are smooth, real-
valued functions of t; U is an external real-valued, time-dependent scalar field; and A, A1

and A2 are distinct, external real-valued, time-dependent vector fields. Using the fact that
∇2ψ/ψ = iR1[ψ] + (1/2)R2[ψ]−R3[ψ]− (1/4)R5[ψ], it is straightforward that Eq.(1.4) reduces
to the usual, time-dependent linear Schrödinger equation

i�ψ̇ =
[−i�∇− (e/c)A(x, t)]2

2m
ψ + eΦ(x, t)ψ (1.5)

with external electromagnetic potentials A, Φ, when

ν1 = − �

2m
, ν2 = 0, A =

e

2mc
A,

µ1 = 0, µ2 = − �

4m
, µ3 =

�

2m
, µ4 = 0, µ5 =

�

8m
,

U =
e

�
Φ+

e2

2m�c2
A2, A1 = 0, A2 = − e

mc
A, α1 = α2 = 0.

(1.6)

Eq.(1.4) generalizes the class of nonlinear equations that Doebner and I first derived, to include
external electromagnetic potentials, two additional external vector fields that can act nonlinearly
(one of which was studied some time ago by Haag and Bannier [9]), and terms of the type
proposed by Kostin [10] and by Bialynicki–Birula and Micielski [11]. An exploration of the
relation of some of these terms with the separation property was begun in joint work with
Svetlichny [12]. Though obtained on fundamental grounds, Eq.(1.4) contains as special cases a
remarkable variety of independently-proposed nonlinear terms [13–19].

Since Re [ψ̇/ψ] = (1/2)[ρ̇/ρ], we see from inspection of the imaginary part of the right-hand
side of (1.4) that ρ̇ is the divergence of a vector field. As long as this falls off sufficiently rapidly
at infinity, we have that (d/dt)

∫
ρ(x, t) dx is zero – thus the interpretation of ρ as a conserved

probability density makes sense.
When the gauge transformations (1.1) is applied, we have

ρ ′ = ψ ′ψ ′ = ρ,

ĵ ′ =
1
2i

[ψ ′∇ψ ′ − (∇ψ ′)ψ ′] = Λĵ+
γ

2
∇ρ+ ρ∇θ.

(1.7)

Thus ρ is gauge-invariant, while ĵ is not. Furthermore, if ψ satisfies an equation in the family
defined by (1.4), then ψ ′ satisfies a transformed equation, with gauge-transformed coefficients
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ν ′
j , µ ′

j , α ′
j , and external fields A ′, U ′, A ′

j that can be expressed in terms of the unprimed
quantities. We have a gauge-invariant current (see below), and gauge-invariant expressions for
the usual, observable electric and magnetic fields. We also have formulas for independent gauge-
invariant combinations of the coefficients νj , µj , and αj , and the external vector fields. Here
“gauge invariant” refers to the group of nonlinear transformations specified by (1.1). Naturally
it is the gauge-invariant quantitities that must encode the physical content of a quantum theory
described by one of equations in our family. Details of these transformations, and discussions of
the gauge-invariant combinations, are published elsewhere.

2 Generalization of the Gauge Group

Next I shall describe and justify the idea for further generalization of this framework. It begins
with the observation that the combination

j gi = ν1ĵ+ ν2∇ρ+ ρA (2.1)

is invariant under the transformation (1.1), so that J = −2j gi is a gauge-invariant current
obeying ρ̇ = −∇ · J. This means that our original working hypothesis, that all observations
could be expressed as a succession of positional measurements at different times – i.e., in terms of
ρ(x, t) – together with the imposition of external physical fields, may be unnecessarily stringent.
Measurement procedures that detect J(x, t), whether or not they can be expressed exclusively in
terms of ρ and external fields, are equally compatible with (i.e., invariant under) the nonlinear
gauge transformations (1.1).

Note also that unlike the formula for ρ, the expression for J involving (2.1) depends explicitly
on two of the coefficients and one of the fields in Eq.(1.4). Indeed, there is no a priori reason
why the expression for ρ could not also depend on these quantities. The important properties
of the functions ρ and J are that they are invariant under the action of the group of nonlinear
gauge transformations, that ρ is positive definite, and that they are related by an equation of
continuity. Thus we might entertain the possibility of replacing the equation ρ = |ψ|2 by a more
general expression, that would have to be gauge invariant and reduce to ρ = |ψ|2 in the case of
the linear Schrödinger equation.

Now in standard, linear nonrelativistic quantum mechanics, the amplitude R and phase S
of the wave function describing a pure state have very different status. The former is gauge
invariant, and considered as physically observable; the latter is gauge dependent, and not ob-
servable. Likewise in the nonlinear quantum mechanics discussed in the previous section, R
is manifestly gauge invariant, while S is not. When one reflects on this asymmetry, it seems
increasingly extraordinary that we write a Schrödinger equation (linear or nonlinear) for the
time-evolution by relating the gauge fields S, U and A to the physical field R, via the complex
combination R exp [iS]. Why should we not be able to couple gauge fields to gauge fields, and
correspondingly, physical fields to physical fields? The purpose of this paper is to suggest a way
to do just that, using a natural generalization of the nonlinearity Doebner and I proposed. The
analysis applies even when the underlying physics is that of linear quantum mechanics!

If we return to Eqs.(1.1)–(1.4), we see that everything can be written very naturally in terms
of the variables lnR and S. In particular, setting T = lnR, Eq.(1.1) becomes(

S ′

T ′

)
=

(
Λ γ
0 1

) (
S
T

)
+

(
θ
0

)
, (2.2)

where Λ and γ depend on t and θ depends on x and t. The condition Λ �= 0 is just the requirement
that the determinant of the matrix be nonvanishing. If we like, we can also write ln ρ = 2T so
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that ∇ρ/ρ = 2∇T , and ĵ/ρ = ∇S. Then we can re-express the nonlinear functionals in (1.3) in
terms of ∇2S, ∇2T , (∇S)2, ∇S · ∇T , and (∇T )2; for example, R1 = ∇2S + 2∇S · ∇T , while
R3 = (∇S)2. Since ψ̇/ψ is just Ṫ + iṠ, Eq.(1.4) becomes a pair of coupled partial differential
equations for S and T . These logarithmic variables are familiar from earlier hydrodynamical
and stochastic versions of quantum theory [20, 21].

It is time to take the leap. Eq.(2.2) practically cries out to be generalized to affine transfor-
mations modeled on the general linear group GL(2,R):

(
S ′

T ′

)
=

(
Λ γ
λ κ

) (
S
T

)
+

(
θ
φ

)
, (2.3)

where Λ, γ, λ and κ are smooth, real-valued functions of t, and θ, φ are smooth, real-valued
functions of x and t. This is essentially equivalent to complexifying the coefficients in (1.1). We
can permit Λ = 0, but require that ∆ = κΛ− λγ �= 0.

Immediately it is evident that the family of NLSEs must also be generalized for it to remain
invariant under (2.3). The necessary (and natural) generalization is to introduce into the imag-
inary part of the right-hand side the terms ν3R3, ν4R4 and ν5R5, as well as external scalar and
vector fields, so that there is symmetry between the real and imaginary parts. Thus

i
ψ̇

ψ
= iṪ − Ṡ = i


 5∑

j=1

νjRj [ψ] + T (x, t) + ∇ · (A(x, t)ρ)
ρ

+
D(x, t) · ĵ

ρ
+ δ1 ln ρ+ δ2S




+


 5∑

j=1

µjRj [ψ] + U(x, t) +
∇ · (A1(x, t)ρ)

ρ
+

A2(x, t) · ĵ
ρ

+ α1 ln ρ+ α2S


 ,

(2.4)

where T is a new external scalar field, and D a new external vector field. Note that the heat
equation and other interesting equations of mathematical physics fall within this family; as well
as the linear Schrödinger equation, with ν3 = ν4 = ν5 = δ1 = δ2 = 0, T = 0, D = 0, and the
other values as in Eq.(1.6). Some equations with soliton-like solutions are also included [22].

As with the smaller family of nonlinear equations (1.4) and the smaller group of nonlinear
gauge transformations (1.1), if ψ solves an equation within the class (2.4), then the wave function
transformed under (2.3), ψ ′ = R ′ exp iS ′ with R ′ = lnT ′, solves another equation in the same
class, but with transformed coefficients and transformed external fields. The question now is
whether we can identify appropriate invariants under the group of transformations (2.3), in terms
of which all the quantum observables can be expressed. If so, we are justified in considering R (or,
alternatively, T ) and S both as gauge fields, obeying one or another NLSE from the class (2.4),
and deriving the physical fields from them as invariants under the enlarged nonlinear gauge
group. We will have succeeded in treating S and lnR on an equal footing. It will even be
possible to entertain quantum mechanics in a (nonlinear) gauge where lnR and S have been
exchanged.

3 Generalized Gauge Invariants

From this point on, it is more convenient to work using the variables S and T . Consider then
the coupled pair of general second-order quadratic partial differential equations,

Ṡ = a1∇2S + a2∇2T + a3(∇S)2 + a4∇S · ∇T + a5(∇T )2

+a6S + a7T + u0 + u1 · ∇S + u2 · ∇T,
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Ṫ = b1∇2S + b2∇2T + b3(∇S)2 + b4∇S · ∇T + b5(∇T )2

+b6S + b7T + v0 + v1 · ∇S + v2 · ∇T,
(3.1)

where the relation between (3.1) and (2.4) is given by

a1 = −µ1, a2 = −2µ2, a3 = −µ3, a4 = −2µ1 − 2µ4, a5 = −4µ2 − 4µ5,

a6 = −α2, a7 = −2α1, u0 = −U −∇ · A1, u1 = −A2, u2 = −2A1,

b1 = ν1, b2 = 2ν2, b3 = ν3, b4 = 2ν1 + 2ν4, b5 = 4ν2 + 4ν5,

b6 = δ2, b7 = 2δ1, v0 = T +∇ · A, v1 = D, v2 = 2A.

(3.2)

Now the coefficients aj , bj obey the following transformation laws under (2.3), with the
determinant ∆ = κΛ− λγ:



a ′

1

a ′
2

b ′1
b ′2


 = ∆−1




κΛ −λΛ κγ −λγ
−γΛ Λ2 −γ2 γΛ
κλ λ2 κ2 −κλ
−λγ λΛ −κγ κΛ






a1

a2

b1
b2


 , (3.3)




a ′
3

a ′
4

a ′
5

b ′3
b ′4
b ′5



= ∆−2M




a3

a4

a5

b3
b4
b5



, (3.4)

where

M =




κ2Λ −κλΛ λ2Λ κ2γ −κλγ λ2γ
−2κγΛ Λ(κΛ + λγ) −2λΛ2 −2κγ2 γ(κΛ + λγ) −2λγΛ
γ2Λ −γΛ2 Λ3 γ3 −γ2Λ γΛ2

κ2λ −κλ2 λ3 κ3 −κ2λ κλ2

−2κλγ λ(κΛ + λγ) −2λ2Λ −2κ2γ κ(κΛ + λγ) −2κλΛ
λγ2 −λγΛ −λΛ2 κγ2 −κγΛ κΛ2



,

and 

a ′

6

a ′
7

b ′6
b ′7


 = ∆−1




κΛ −λΛ κγ −λγ
−γΛ Λ2 −γ2 γΛ
κλ λ2 κ2 −κλ
−λγ λΛ −κγ κΛ






a6

a7

b6
b7


 +∆−1



κΛ̇− λγ̇
Λγ̇ − γΛ̇
κλ̇− λκ̇
Λκ̇− γλ̇


 . (3.5)

For brevity we omit the transformation laws for the external fields.
The final task for this paper is to suggest invariant combinations of S and T . For simplicity,

we consider only the matrix part of the transformation (2.3), i.e., we take θ = φ = 0. First
suppose that X and Y obey

(
X ′

Y ′

)
=

(
Λ γ
λ κ

) (
X
Y

)
= A

(
X
Y

)
, (3.6)

and c1, c2 are coefficients. Then c1X + c2Y is invariant under A if and only if [c1 c2]A−1 =
[c ′1 c ′2]. But one can verify from (3.4) that with d1 = 2a3 + b4 and d2 = a4 + 2b5, we have
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[d1 d2]A−1 = [d ′
1 d

′
2]. Hence d1S + d2T can serve as one of the desired invariant combinations.

Next let L1 = a1S + a2T and L2 = b1S + b2T . We have(
L ′

1

L ′
2

)
=

(
Λ γ
λ κ

) (
L1

L2

)
= A

(
L1

L2

)
. (3.7)

Therefore d1L1+d2L2 is also an invariant. In fact, we can consider d1(σL1+τS)+d2(σL2+τT )
as a general linear combination of the invariants we have found, where σ and τ are fully invariant
combination of the coefficients. For example, it is straightforward to verify that a1+b2 and a1b2−
a2b1, which were earlier identified as gauge invariants for (2.2), are also invariants under (2.3).
In short the desired invariant combinations of S and T exist, and we even have some flexibility
in our choice: we can choose combinations that reduce to the usual formulas in the case of the
linear Schrödinger equation!

This permits us to obtain a positive definite, gauge-invariant probability density and gauge-
invariant current. Finally, a large subfamily of the equations (2.4) have solutions for which the
gauge-invariant density and current obey a continuity equation. Details of these results are to
be presented elsewhere.

4 Conclusion

Consideration of nonlinear gauge transformations modeled on the general linear group GL(2,R)
leads to a beautiful, apparently unremarked symmetry or duality between the phase and the log-
arithm of the amplitude in quantum mechanics. Both can be treated as gauge fields, suggesting
the possibility of a fundamental reappraisal of the meaning of the wave function (and of gauge
transformation). In particular, the linear Schrödinger equation is embedded in a natural class of
nonlinear time-evolution equations, invariant as a class under nonlinear gauge transformations,
extending (necessarily) the family that I proposed earlier in joint work with H.-D. Doebner.
Formulas for gauge-invariant probability density and flux exist that apply across the whole class
of nonlinear equations. The usual expressions for these quantities, along with the Schrd̈inger
equation, are recovered for linearizable theories in a particular gauge.
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Supersymmetry and Supergroups

in Stochastic Quantum Physics
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Max Planck Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

Supersymmetry was first applied to high energy physics. In the early eighties, it found a
second and very fruitful field of applications in stochastic quantum physics. This relates to
Random Matrix Theory, the topic I focus on in this contribution. I review several aspects
of more mathematical interest, in particular, supersymmetric extensions of the Itzykson–
Zuber and the Berezin–Karpelevich group integral, supersymmetric harmonic analysis and
generalized Gelfand–Tzetlin constructions for the supergroup U(k1/k2). The consequences
for the representation theory for supergroups are also addressed.

1 Introduction

The spectral fluctuations of very different quantum systems show a remarkably high degree
of similarity: if one measures the eigenenergies of the system in units of the local mean level
spacing, the energy correlation functions of nuclei, atoms, molecules and disordered systems
become almost indistinguishable. In many cases, the distribution P (x) of the spacings x between
adjacent levels on the local scale is well described by the Wigner surmise

PWigner(x) =
π

2
x exp

(
−π

4
x2

)
. (1)

We notice that the probability for finding small spacings is suppressed and vanishes linearly.
This means that the levels are correlated and repel each other. A spectrum of uncorrelated
levels behaves very differently. Such a spectrum can easily be modeled by producing a sequence
of uncorrelated numbers with a random number generator. One then finds the Poisson law

PPoisson(x) = exp (−x) (2)

as the distribution of the spacings x. It is remarkable, that the wealth of conceivable correlations
due to different types of interactions leads in so many cases to the distribution (1). This sur-
prising universality is reflected in the simplicity of the phenomenological and statistical model,
Random Matrix Theory (RMT), that quantitatively describes these correlations, or, their ab-
sence. It is easy to model the latter: the Hamiltonian in the energy bases is written as a diagonal
matrix,

H = diag (E1, . . . , EN ) (3)

whose entries, the eigenvalues, are chosen as uncorrelated random numbers. To model the
presence of correlations, one has to add off-diagonal matrix elements,

H =


 H11 · · · H1N

...
...

HN1 · · · HNN


 , (4)
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such that the eigenvalues of H are correlated. It is convenient to chose the matrix elements Hnm

as Gaussian distributed random numbers.
RMT was founded by Wigner [1] about forty years ago and worked out mathematically by

Mehta [2] and Dyson [3] in the following decade. Due to the general symmetry constraints, a
time reversal invariant system with conserved or broken rotation invariance is modeled by the
Gaussian Orthogonal (GOE) of real-symmetric matrices or the Gaussian Symplectic Ensem-
ble (GSE) of self-dual matrices, respectively, while the Gaussian Unitary Ensemble (GUE) of
Hermitean matrices models the fluctuation properties of a system under broken time reversal
invariance. These generic fluctuation properties are referred to as Wigner–Dyson fluctuations.
In 1984, a conceptually new element was brought into the discussion when Bohigas, Gianonni
and Schmit [4] stated the following famous conjecture: The quantization of a classical, conserva-
tive and fully chaotic system is expected to show Wigner–Dyson fluctuations, i.e. P (x) is of the
form (1). On the other hand, the quantization of a classical, conservative, integrable and regular
system is expected to have significantly different spectral fluctuation properties, i.e. P (x) is often
of the form (2). Although not yet rigorously proven, the Bohigas conjecture is supported by an
overwhelming number of classical, semiclassical and quantal studies [5, 6].

It is now believed that RMT can be viewed as thermodynamics for spectral fluctuations and
related properties. Based on little more than symmetry constraints and the assumption of sheer
randomness, RMT grasps the crucial statistical features of a rich variety of systems. A detailed
review was recently given in Ref. [7].

Unfortunately, the mathematical difficulties encountered in random matrix models were so
serious that many interesting problems could only partially be solved. In 1983, Efetov [8] dis-
covered, in condensed matter physics, a connection of paramount importance between RMT
and supersymmetry in condensed matter physics. By supersymmetry we mean theories in-
volving commuting and anticommuting degrees of freedom. We emphasize that these bosons
and fermions have no direct physical interpretation as particles or so. They serve to map the
stochastic model, without approximation, onto a model in superspace. The great merit of super-
symmetry in stochastic quantum physics is a dramatic reduction of the number of integration
variables due to this exact mapping. This can be viewed as an irreducible representation of the
statistical system in question.

Verbaarschot, Weidenmüller and Zirnbauer [9] derived the same supersymmetric non-linear
σ model for the statistical discussion of compound nuclear scattering starting from a random
matrix model. Since then, the supersymmetric technique has experienced a burst of activities.
The treatment of numerous, previously inaccessible, problems became possible.

2 Graded Eigenvalue Method

The mathematical solution of Efetov’s supersymmetric non-linear σ models is still non-trivial.
For purely spectral fluctuations, an alternative technique, the Graded Eigenvalue Method, was
presented in Ref. [12], as a variant of Efetov’s original approach.

The main motivation for this method will be given in the following section. The essence
of the Graded Eigenvalue Method is the exact calculation of integrals over supergroups. The
supersymmetric version of the Harish-Chandra–Itzykson–Zuber integral [13, 14] was evaluated
in Ref. [12]. The Hermitean 2k × 2k supermatrix σ has k eigenvalues sp1, p = 1, . . . , k in the
boson boson and k eigenvalues isp2, p = 1, . . . , k in the fermion fermion sector ordered in the
diagonal matrix s, it is diagonalized by a unitary supermatrix u such that σ = u−1su. Moreover,
we introduce a second supermatrix ρ = v−1rv with the same symmetries. The supersymmetric
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version of the Harish-Chandra–Itzykson–Zuber integral can then be written in the form [12]∫
exp (i trgσρ) dµ(u) =

∫
exp

(
i trgu−1sur

)
dµ(u)

=
det [exp(isp1rq1)]p,q=1,...,k det [exp(isp2rq2)]p,q=1,...,k

Bk(s)Bk(r)
,

(5)

where trg stands for a properly defined trace in superspace. The function Bk(s) = det [1/(sp1−
isq2)]p,q=1,...,k is the square root of the Jacobian for the transformation of the volume element
of the Hermitean supermatrix σ to eigenvalue-angle coordinates s and u.

With the Graded Eigenvalue Method, a quick rederivation of all GUE k-level correlation
functions could be given [12].

3 Transitions towards Quantum Chaos

What is the merit of the Graded Eigenvalue Method for physics? – It is, for example, capable
of exactly solving a fundamental problem of chaos theory, the regularity-chaos transition [15].
Within Efetov’s original approach this problem can only asymptotically be studied. Consider
the Hydrogen atom in a magnetic field and its classical analogue. The classical system is fully
integrable for zero magnetic field, but becomes chaotic as the magnetic field grows because the
spherical symmetry is broken. Following the Bohigas–Giannoni–Schmitt conjecture, it is easi-
ly conceivable that P (x) undergoes a transition from the Poisson distribution to the Wigner
surmise. Indeed, as Fig. 1 shows, this was confirmed in the experiment and in numerical calcu-
lations [10].

Similar transitions are encountered in many physical situations. In heavy ion reactions,
a spreading of the electrical quadrupole transition strength has been observed which can be
understood in terms of a regularity chaos transition [11]. In condensed matter physics, the
phenomenon of localization can also be related to this crossover. Billiard systems [5] show
similar transitions as well.

Naturally, the statistical model for this transition is the weighted sum of the two limiting
Hamiltonians (3) and (4),

H(α) = H(0) + αH(1), (6)

where α is the dimensionless transition parameter. The matricesH(1) are drawn from a Gaussian
Ensemble. Although the regularity chaos transition is our main interest, we make no assumptions
yet for the probability distribution of the matrices H(0). Detailed numerical simulations of this
transition can be found in Ref. [11] for two different ensembles of matrices H(0).

The key to the exact solution is the observation that the generating functions of the spectral
correlators for the transition ensemble (6) obey an diffusive process. The fictitious time of
the diffusion is related to the transition parameter through τ = α2/2. The diffusion can be
formulated in the curved space of the eigenvalues r of a supermatrix which provide the fictitious
spatial coordinates. Moreover, this can be done not only for the GUE but for all three Gaussian
Ensembles. For the generating functions zβk(r, τ) the diffusive process reads

β

4
∆βr zβk(r, τ) =

∂

∂τ
zβk(r, τ), (7)

where β = 1, 2, 4 for the GOE, GUE and GSE, respectively. The operator ∆βr is the radial
part of the Laplacean in the space of supermatrices. It has 2k degrees of freedom for the
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Figure 1. The nearest neighbor spacing distribution for the Hydrogen atom in a magnetic field.

Since this system exhibits a certain scaling, the transition from regularity to chaos is governed by

one single parameter Ê which is a combination of energy and magnetic field. Taken from Ref. [10].

GUE and 4k for the GOE and the GSE. The initial condition is the generating function of the
arbitrary correlations, lim

τ→0
zβk(r, τ) = z

(0)
βk (r). The diffusion kernel is, apart from trivial factors,

the supersymmetric Harish-Chandra–Itzykson–Zuber integral for the three symmetry classes. It
should be emphasized that the explicit knowledge of this kernel is not necessary to derive the
diffusion process.

For the GUE, the k-level correlation functions can be expressed as a 2k-fold integral over the
eigenvalues s of a 2k × 2k Hermitean supermatrix by using the integral (5). We arrive at the
result

Xk(ξ1, . . . , ξk, τ) =
(−1)k

πk

∫
Gk(s− ξ, τ)�z(0)k (s)Bk(s)d[s] (8)

on the scale of the unfolded energies ξp, p = 1, . . . , k. Here, the transition parameter τ is rescaled
by the mean level spacing D such that τ → τ/D2. The pure GUE result is recovered in the
limit τ → ∞. The function Gk(s− ξ, τ) is a normalized Gaussian with variance τ . The integral
representation (8) is valid for an arbitrary ensemble of the matrices H(0). The function �z(0)k (s)
is the generating function of the corresponding correlations. In the case of two-level correlations,
i.e. k = 2, two of the four integrals in Eq.(8) can be performed due to translation invariance for
an arbitrary ensemble of the matrices H(0).

The regularity-chaos transition is obtained by choosing the matrices H(0) from the ensem-
ble (3). This case is also discussed in detail in Refs. [15, 16].
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4 Chiral Random Matrix Theory

While RMT was originally developed for non-relativistic quantum mechanics described by the
Schrödinger equation, Shuryak and Verbaarschot [17] showed that this concept also works very
well for relativistic systems where the Dirac equation applies. However, due to chiral symmetry,
the RMT ansatz has to be modified. This leads to chiral RMT (chRMT).

For massless fermions, the Euclidean Dirac operator has the form

iD/ = i∂/+ g
∑

a

ηa

2
A/a, (9)

where g is the coupling constant, ηa are the generators of the gauge group and A/a are the gauge
fields. Physically, the gauge fields represent the gluons, i.e. the exchange particles of the strong
interaction. The eigenfunctions of the Dirac operator are the constituent quarks which eventually
form pion, proton, neutron, etc. In the chiral basis, the Dirac operator has an off-diagonal matrix
structure, indicated in the relation (10). The main idea of chRMT is the replacement of the
operator iD/ in relation (10) by a random matrix W , such that

iD/ −→
[

0 iD/
(iD/)† 0

]
−→

[
0 W
W † 0

]
, (10)

whereW is a complex N×N matrix which has no further symmetries. The chirality of the Dirac
operator implies that all eigenvalues come in pairs (−λ,+λ). Thus, the center of the spectrum,
where the eigenvalues are zero is distinguished. The existence of this region of zero virtuality
states a fundamental difference to ordinary RMT.

What is the relevance of chRMT for QCD? – First, chRMT correctly reproduces low energy
sum rules of QCD. Second, detailed studies have shown that the spectra from lattice gauge
calculations indeed exhibit the correlations predicted by chRMT, see the review in Ref. [7]. To
calculate the spectral correlators in non-trivial cases, it is highly convenient to extend the Graded
Eigenvalue Method to chiral symmetry. The generating function is mapped onto superspace and
expressed as an integral over 2k×2k complex supermatrices σ. Due to chirality, and in contrast
to the cases discussed in the previous sections, σ has no further symmetries, in particular, it
is not Hermitean. We proceed by introducing polar coordinates σ = usv̄, where u ∈ U(k/k),
v̄ ∈ U(k/k)/U2k(1), and s = diag (s1, is2) with sj = diag (s1j , . . . , skj) for j = 1, 2. The spj are
real and non-negative. The transformation of the Cartesian volume element to radial and angular
coordinates involves the Jacobian B2

k(s
2). The integral over the supergroups is non-trivial. It is

the supersymmetric extension [18] of the Berezin–Karpelevich integral and reads

∫
dµ(u)

∫
dµ(v̄) exp (iRe trg usv̄r) =

1
22k2(k!)2

det[J0(sp1rp′1)] det[J0(sq2rq′2)]
Bk(s2)Bk(r2)

, (11)

where r is diagonal and where J0 is a Bessel function. We stress that this integral is not contained
in the supersymmetric analogue of the celebrated Harish-Chandra formula.

By using the supergroup integral (11), we succeeded in presenting exact calculations of the
spectral correlators in the presence of arbitrarily many Matsubara frequencies [19]. We found a
remarkable scaling property of all correlators near zero virtuality. Moreover, we also calculated
the correlators for the massive Dirac operator, i.e. if non-zero sea quark masses are taken into
account [20]. Recently, we managed to combine these two scenarios which is the physically
realistic case. Again, we could give an exact and complete solution [21].
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5 Representation Theory for Supergroups

The use of supersymmetric techniques in physical applications raises numerous non-trivial math-
ematical questions. Most of them lead directly to the representation theory of supergroups.
Interestingly, a previously unknown class of representations emerges as a natural consequence
of supersymmetry in stochastic quantum physics.

To begin with, we work out the simplest case of an harmonic analysis in a matrix space by
studying 2×2 Hermitean matrices [22]. First, we consider two ordinary matrices H and K with
eigenvalue matrices x and k, respectively. The expansion of the plane wave in this space reads
trivially

exp(i trHK) =
∑
LM

TL(x, k)Y ∗
LM (ΩH)YLM (ΩK), (12)

where L and M are the usual angular momentum and its magnetic projection. The function
TL(x, k) is related to the spherical Bessel function jL(z) and the YLM (Ω) are the usual spherical
harmonics depending on the solid angle Ω.

Surprisingly, a completely analogous expansion can be found in superspace. For two super-
matrices σ and ρ with eigenvalue matrices s and r, respectively, we find

exp(i trgσρ) =
∫
t|µ|(s, r)y∗µµ∗(ωσ)yµµ∗(ωρ)d[µ] (13)

such that the summation over L and M is replaced by an integral over an anticommuting
variable µ and its complex conjugate µ∗. The graded Bessel function t|µ|(s, r) depends only on
the length |µ|2 = µµ∗ of the anticommuting variable similar to the fact that TL(x, k) depends
only on L. The graded spherical harmonics yµµ∗(ω) depend on a solid angle ω consisting of
anticommuting variables which can be viewed as the analogue of Euler angles. Remarkably
and crucially, these functions span something like a Hilbert space whose states are labeled
by something like anticommuting angular momentum quantum numbers µ and µ∗. There are
orthogonality and completeness relations. This is of fundamental importance for an application
of the expansion (13), particularly for a Fourier–Bessel analysis in superspace.

The occurrence of this Hilbert-space like object spanned by the graded spherical harmonics
raises the question whether one can construct representation functions of the supergroup U(1/1)
which involve these anticommuting quantum numbers. The answer is affirmative [23]. Comp-
letely analogous to the Wigner representation functions of the ordinary group SU(2), graded
Wigner representation functions can be constructed for U(1/1). The anticommuting variables µ
and µ∗ label these representations.

For the general case of the supergroup U(k1/k2), the construction of something like Euler
angles is completely out of question. Thus, a method has to be devised which incorporates a
recursion in the dimension of the supergroup. For the ordinary unitary group U(k), Gelfand [25]
constructed such representations based on a recursive embedding in the group chain

U(k) ⊃ U(k − 1) ⊃ · · · ⊃ U(2) ⊃ U(1).

Moreover, Gelfand and Tzetlin [26, 27] constructed explicit coordinates on the manifold of U(k)
which are closely related to these representations. The recursive structure of the representations
is also reflected in the coordinates implying several most useful features. A detailed discussion
can be found in Ref. [28].

The original, more geometric construction [26, 27] for ordinary unitary matrices needs to be
modified to a more algebraic procedure in the case of supermatrices for reasons which will become



Supersymmetry and Supergroups in Stochastic Quantum Physics 453

clear in the following. We consider a Hermitean supermatrix σ with k1 bosonic and k2 fermionic
dimensions. Let u be a unitary supermatrix in the supergroup U(k1/k2) such that σ = u−1su
with the eigenvalues ordered in a diagonal matrix s. Define up, p = 1, . . . , k1 +k2 as the columns
of u. Since u1 is an unit vector, the number of independent variables is 2(k1 + k2)− 1, and the
elements of u1 cannot be used directly as independent variables. The idea is to project onto
the k1 + k2 − 1 dimensional subspace spanned by the vectors u2, . . . , uk1+k2 . The corresponding
projection (1 − u1u

†
1)s(1 − u1u

†
1) of the eigenvalue matrix s has has k1 + k2 − 1 eigenvalues

s
(1)
p , p = 2, . . . , k1 + k2. We refer to them as the generalized Gelfand–Tzetlin eigenvalues. The

ensuing system of equations involves a new type of singularity. It can be solved and yields
explicit, comparatively simple expressions for the elements of u1 in terms of the eigenvalues s,
the generalized Gelfand–Tzetlin eigenvalues s(1) and phases. The eigenvalues in the fermion
fermion block have the important property |ξ(1)p |2 = is

(1)
p2 − isp2, p = 1, . . . , k2 where ξ(1)p is a

complex anticommuting variable and ξ(1)∗p its complex conjugate. By making appropriate basis
rotations, this coordinate system is recursively continued to k1 + k2 levels with Gelfand–Tzetlin
eigenvalues s(m), m = 1, . . . , k1 + k2 and anticommuting variables ξ(m), m = 1, . . . , k1. On
each level, the number of Gelfand–Tzetlin eigenvalues is lowered by one. Thus, we arrive at a
complete, explicit coordinate system for U(k1/k2).

In view of the discussion in the previous section, we are led to conclude that the construction
of the representations of the unitary supergroup U(1/1) can now be generalized to the unitary
supergroup U(k1/k2). Analogously to the Gelfand–Tzetlin representations of the ordinary uni-
tary group U(k), we interpret the commuting Gelfand–Tzetlin eigenvalues s(m)

p1 and is(m)
p2 as

positive integers subject to a betweenness condition. Naturally, there is no interpretation of this
sort for the anticommuting variables ξ(m)

p and ξ(m)∗
p . We obtain the generalized Gelfand pattern

s11 s21 s31 · · · sk11

s
(1)
21 s

(1)
31 · · · s

(1)
k11

...
s
(k1−2)

(k1−1)1 s
(k1−2)
k11

s
(k1−1)
k11

|ξ(1)
1 |2 |ξ(1)

2 |2 · · · |ξ(1)
k2

|2
|ξ(2)

1 |2 |ξ(2)
2 |2 · · · |ξ(2)

k2
|2

...
...

|ξ(k1)
1 |2 |ξ(k1)

2 |2 · · · |ξ(k1)
k2

|2

is
(k1)
12 is

(k1)
22 is

(k1)
32 · · · is

(k1)
k22

is
(k1+1)
22 is

(k1+1)
32 · · · is

(k1+1)
k22

...
is

(k1+k2−2)

(k2−1)2 is
(k1+k2−2)
k22

is
(k1+k2−1)
k22

which labels representations of the unitary supergroup U(k1/k2). The generalized Gelfand pat-
tern consists of two triangular sub-patterns for the commuting and one rectangular sub-pattern
for the anticommuting variables. The two triangular sub-patterns label irreducible bases of the
ordinary unitary groups U(k1) and U(k2) and hence both together label irreducible bases for
the direct product U(k1)⊗ U(k2) which is a subgroup of the supergroup U(k1/k2). The remai-
ning coset U(k1/k2)/(U(k1)⊗U(k2)) is represented by the rectangular pattern of anticommuting
variables.
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From the construction, we may conclude that the generalized Gelfand pattern labels the basis
which corresponds to the supergroup chain

U(k1/k2) ⊃ U(k1 − 1/k2) ⊃ · · · ⊃ U(1/k2) ⊃ U(k2) ⊃ · · · ⊃ U(2) ⊃ U(1)

and that the basis functions are eigenfunctions of the complete set of commuting operators in
this chain.

There is already a theory [29] of finite-dimensional representations of the superalgebras
gl(k1/k2) and u(k1/k2) involving a Gelfand pattern. Although anticommuting variables do
not appear in those, there ought to be a connection to the generalized Gelfand pattern for the
supergroup U(k1/k2) which contains anticommuting variables explicitly. Moreover, Balantekin
and Bars [30] constructed representations of the unitary supergroup in terms of extended Young
supertableaux. Again, anticommuting variables do not appear explicitly in those tableaux and
it remains an open problem to find the relation to the generalized Gelfand pattern.

6 Summary and Outlook

The Graded Eigenvalue Method has proven to be a powerful technique for the exact calcula-
tion of various problems in stochastic quantum physics such as the regularity-chaos transition.
Importantly, this method could be extended to chiral RMT where it also made several exact cal-
culations feasible. The method is based on the computation of certain supergroup integrals, the
supersymmetric versions of the Harish-Chandra–Itzykson–Zuber and the Berezin–Karpelevich
integral.

Very naturally, these studies lead to a new representation theory for supergroups. A complete
harmonic analysis on the supergroup U(1/1) and a representation in terms of graded Wigner
functions are constructed involving anticommuting labels of the representations. The Gelfand–
Tzetlin method was generalized for the supergroup U(k1/k2) in arbitrary dimensions k1 and k2.

Work on various physical applications of these results is in progress. Moreover, some in-
teresting mathematical questions are still unanswered yet, such as the precise mathematical
interpretation of the anticommuting group labels. This will also be studied in the near future.
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Based upon the invariances under the nonlinear global supersymmetry (NL SUSY) and the
general coordinate transformation (GL(4, R)), a unified description of spacetime and matter
is proposed. Except the graviton all elementary particles accomodated in a single irreducible
representation of N = 10 extended super-Poincaré (SP) algebra are the composites of more
fundamental objects superons with spin 1/2, which are Nambu–Goldstone (N–G) fermions
accompnying the spontaneous breakedown of the global supertranslation of spacetime. The
electroweak standard model (SM) and SU(5) (SO(10)) grand unified model (GUTs) are
investigated systematically by using the superon diagrams. The stability of the proton, the
suppression of the flavour changing neutral currents (FCNC), K0−K

0
and B0−B

0
mixings,

CP-violation, the atmospheric νµ deficit, the charmless nonleptonic B decay and the absence
of the electroweak lepton-flavor-mixing are understood naturally in the superon pictures of
GUTs and some predictions are presented. The fundamental action of superon-graviton
model (SGM) for supersymmetric spacetime and matter is obtained.

1 Introduction

As a unified gauge field theory of all particles and all forces, the strong-electroweak standard
model (SM), the grand unified theories (GUT) like SU(5) (SO(10)) and their variants with
supersymmetry (SUSY) still leave many fundamental problems, for example, the lack of the
explanations of the generation structure of quarks and leptons and the absence of the electroweak
mixings only among the lepton generations, the stability of the proton and the missing of the
gravitational interaction, ... etc. The (local) supersymmetry (SUSY) [1], although unclear yet
in the low energy particle physics, is the most promising notion for explaining the rationale of
beings of all elementary particles including the graviton. As shown by Gell-Mann [2], SO(8)
maximally extended supergravity theory (SUGRA) is too small to accommodate all observed
particles as elementary fields within the framework of the local gauge field theory. However
it may be interesting, even at the risk of the local gauge field theory at the moment, from
the viewpoints of simplicity and beauty of nature to attempt the accomodation of all observed
elementary particles in a single irreducible representation of a certain group (algebra).

In ref. [3], by extending the group theoretical arguments beyond N = 8 we have shown that
among all SO(N) extended super-Poincaré (SP) symmetry, the massless irreducible representa-
tions of SO(10) SP algebra gives minimally and uniqely the framework for the unification of all
observed particles and forces. However the fundamental theory has left unknown.

In ref. [4], we have pointed out that the anticommutators of the supercharges of SO(10)
SP algebra in the light-cone frame (the massless irreducible representations) can be interpreted
as canonical anticommutators of creation and annihilation operators of spin 1/2 fermions and

∗Plenary talk given at the 3rd International Conference on Symmetry in Nonlinear Mathematical Physics,
Kyiv, Ukraine, July 12–18.
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that it may indicate the existence of certain fundamental objects which are the constituents of
all elementary particles except the graviton. We have identified the fundamental objects with
Nambu–Goldstone (N–G) fermions superons of the spontaneous breakdown of supertranslation
of spacetime. We have proposed superon-graviton model (SGM) as a fundamental theory for
supersymmetric structure of spacetime and matter by using Volkov–Akulov nonlinear (NL)
SUSY action for N–G fermion [5] in the curved spacetime. In this article, with a concise review
of ref. [3] and [4] for the selfcontained arguments we study SGM further from the viewpoints
of the internal structure of the quarks, leptons and gauge bosons except the graviton. The
symmetry breaking of SGM and its cosmological implications are discussed briefly.

2 SO(10) super-Poincaré algebra

In ref. [3] and [4], by noting that 10 generators QN (N = 1, 2, . . . , 10) of SO(10) SP algebra
are the fundamental represemtations of SO(10) internal symmetry and that SO(10) ⊃ SU(5) ⊃
SU(3) × SU(2) × U(1) we have decomposed 10 generators QN of SO(10) SP algebra as follows
with respect to SU(5)

10 = 5 + 5∗

=
{(

3, 1;−1
3
,−1

3
,−1

3

)
+ (1, 2; 1, 0)

}
+

{(
3∗, 1;

1
3
,
1
3
,
1
3

)
+ (1, 2∗;−1, 0)

}
,

(1)

where we have specified (SU(3), SU(2); electric charges). This assignment is the extention of
that of SO(8) SUGRA of Gell-Mann and interestingly coincides with 5 of SU(5) GUT of Georgi
and Glashow [6]. To obtain a smaller single irreducible representation we have studied the
massless representation. For massless case the little algebra for the supercharges in the light-like
frame Pµ = ε(1, 0, 0, 1) becomes after a suitable rescaling

{
QM

α , QN
β

}
=

{
Q̄M

α̇ , Q̄N
β̇

}
= 0,

{
QM

α , Q̄N
β̇

}
= δα1δβ̇1̇δ

MN , (2)

where α, β = 1, 2 and M,N = 1, 2, . . . , 5. Note that the spinor charges QM
1 , Q̄M

1̇
satisfy the

algebra of annihilation and creation operators respectively and can be used to construct a finite-
dimensional supersymmetric Fock space with positive metric. It is natural to identify the gravi-
ton with the Clifford vacuum | Ω(λ)〉 (SO(10) singlet but not necessarily the lowest energy state)
satisfying QM

α | Ω(λ)〉 = 0, for the adjoint representation with helicity ±1 appears automati-
cally. We obtain 2 · 210 dimensional irreducible representation of the little algebra (2) of SO(10)
SP algebra as follows:

[
1(+2), 10

(
+3

2

)
, 45(+1), 120

(
+1

2

)
, 210(0), 252

(−1
2

)
, 210(−1), 120

(−3
2

)
,

45(−2), 10
(−5

2

)
, 1(−3)

]
+ [CPT-conjugate], where d(λ) represent SO(10) dimension d and the

helicity λ.

3 Superon quintet model (SQM) for matter

3.1 Particles in SQM

By noting that the helicities of these states are automatically determined by SO(10) SP alge-
bra and that QM

1 and Q̄M
1̇

satisfy the algebra of the annihilation and the creation operators
for the spin 1

2 particle, we speculate boldly that these states spanned upon the mathemati-
cal (not the physical true vacuum with the lowest energy) Clifford vacuum | Ω(±2)〉 are the
relativistic (gravitationally induced) massless composite eigenstates made of the fundamental
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massless object QN superon with spin 1
2 . Therefore we regard (1) as a superon-quintet and an

antisuperon-quintet. The unfamiliar identification of the generators of SO(10) SP algebra with
the fundamental objects is discussed later. Now we envisage the Planck scale physics as follows.

Nature (spacetime and matter) have the symmetric structure described by SO(10) SP alge-
bra at (above) the Planck energy scale, where the gravity dominates and induces the sponta-
neous breakdown of the supertranslation of spacetime acompanying the pair production of N–G
formions (the superon-quintet and the antisuperon-quintet) from the vacuum in such a way as
all the possible nontrivial multiplicative combinations of superons span the massless irreducible
representations (i.e. eigenstates) of SO(10) SP algebra. As shown later, the interaction of
superons is highly nonlinear.

Now from the viewpoints of the superon-quintet model (SQM) for matter we can study more
concretely the physical meaning of the results obtained in ref. [3] and [4].

Hereafter we use the following symbols for superons QN (N = 1, 2, . . . .10).
For the superon-quintet 5:

[(
3, 1;−1

3 ,−1
3 ,−1

3

)
, (1, 2; 1, 0)

]
, we use

[Qa, Qm; a = 1, 2, 3;m = 4, 5] (3)

and for the antisuperon-quintet 5∗:
[(

3∗, 1; +1
3 ,+

1
3 ,+

1
3

)
, (1, 2∗;−1, 0)

]
, we use

[Q∗
a, Q

∗
m; a = 1, 2, 3;m = 4, 5] , (4)

i.e. Qa and Qm represent color- and electroweak-components of superon quintets respectively.
Accordingly all the states are specified explicitly with respect to (SU(3), SU(2); electric charges).
In order to see the low energy particle contents, suppose that through the symmetry breaking:

[SO(10) SP symmetry] −→ [· · ·] −→ [SU(3) × SU(2) × U(1)] −→ [SU(3) × U(1)]

which is discussed later, the states with higher helicities
(±3,±5

2 ,±2,±3
2 ,±1

)
of SO(10) SP

algebra absorb the lower helicity states
(±2,±3

2 ,±1,±1
2 , 0

)
in SU(3) × SU(2) × U(1) invariant

way and become massive as many as possible in so far as the SM with three generations of quarks
and leptons survive in the residual massless states. We have carried out the recombinations
among 2 · 210 helicity states and found surprisingly just three generations of quarks and leptons
of the SM appear in the surviving massless states of the fermions. At least one new spin 3

2
lepton-like (gravitino) electroweak doublet (νΓ,Γ−) with the mass of the electroweak scale is
predicted [3]. ((νΓ,Γ−) may be included in 5 of 10 = 5 + 5∗ of helicity ±3

2 state.)
Towards the construction of the fundamental theory of SQM and for surveying the physical

(phenomenological) implications of the superons for the unified gauge models (SM and GUTs)
it is very important to understand all the gauge and the Yukawa couplings of the unified gauge
models in terms of the superon pictures. For simplicity we neglect the mixing between superons
and take the following left-right symmetric assignment for quarks and leptons by using the
conjugate representations naively , i.e. (νl, l−)R = (ν̄l , l+)L, etc. [3].

For three generations of leptons [(νe, e), (νµ, µ), (ντ , τ)], we take

[(QmεlnQ
∗
l Q

∗
n), (QaQ

∗
aQ

∗
m), (QaQ

∗
aQbQ

∗
bQ

∗
m)] (5)

and the conjugate states respectively.
For three generations of quarks [(u, d), (c, s), (t, b)], we have uniquely

[(εabcQ
∗
bQ

∗
cQ

∗
m), (εabcQ

∗
bQ

∗
cQlεmnQ

∗
mQ∗

n), (εabcQ
∗
aQ

∗
bQ

∗
cQdQ

∗
m)] (6)

and the conjugate states respectively.
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For [SU(2) × U(1) gauge bosons], we have from 2 × 2∗[
−Q4Q

∗
5,

1√
2

(Q4Q
∗
4 −Q5Q

∗
5), Q5Q

∗
4;

1√
2

(Q4Q
∗
4 + Q5Q

∗
5)

]
.

For [SU(3) gluons], we have[
Q1Q

∗
3, Q2Q

∗
3, Q1Q

∗
2,

1√
2

(Q1Q
∗
1 −Q2Q

∗
2), Q2Q

∗
1,

−1√
6

(2Q3Q
∗
3 −Q2Q

∗
2 −Q1Q

∗
1), Q3Q

∗
2, Q3Q

∗
1

]
.

For [SU(2) Higgs Boson], we have [εabcQaQbQcQm] and the conjugate state.
For [(X,Y ) leptoquark bosons] in GUTs, we have [Q∗

aQm] and the conjugate state.
For [a color- and SU(2)-singlet neutral gauge boson] from 3 × 3∗ (which we call simply S

boson to represent the singlet) we have QaQ
∗
a.

The specification of (X,Y ) gauge boson is important for the proton decay in SU(5) GUT.
The specification of S boson may be interesting as an additional U(1) of the gauge structure
SU(3) × SU(2) × U(1) × U(1) of SUSY SM. As shown later S boson plays crucial roles in
the process concerning the third generation of quarks and leptons. We have considered only
two-superons states 45 of the adjoint representation of SO(10) SP algebra for the vector gauge
bosons.

3.2 Superon diagrams

Now in order to see the physical implications of SQM for SM (GUTs) for matter we try to
interpret the Feynman diagrams of SM (GUTs) in terms of the Feynman diagrams of SQM. The
superon-line Feynman diagrm of SQM is obtained by replacing the single line in the Feynman
diagram of the unified gauge models by the corresponding multiple superon lines. To translate
the vertex of the Feynman diagram of the unified gauge models into that of SQM, we assume
that the superon-antisuperon pair creation and pair annihilation within a single state for a
quark, a lepton and a (gauge) boson (i.e. within a single SO(10) SP eigenstate) are rigorously
forbidden. This rule seems natural because every state is an irreducible representation of SO(10)
SP algebra and is prohibitted from the decay without any remnants, i.e. without the interaction
between the superons contained in another state. As discussed later this means the absence of
the excited states of quarks, leptons, gauge bosons despite their compositeness. Here we just
mention that all the states necessary to the SM and GUTs with three genarations of quarks and
leptons appear up to five-superons states (i.e. one half of the full occupation ten-superons). As
mentioned later this observation may be crucial for the spontaneous symmetry breaking with a
large mass hierarchy. At the moment we naievely assume that all exotic states besides higher
spin states composed of more than five superons have large masses in the low energy.

Now the translation is unique and straightforward. We see that in the Yukawa coupling of
SQM the observed quark (lepton) interacts with the Higgs boson and a new quark(lepton) which
is exotic with respect to SU(2) and/or spin. Then the Yukawa coupling of SM (GUTs) can be
reproduced effectively only in the higher orders of the Yukawa couplings of SQM, which gives po-
tentially the Yukawa coupling of SM (GUTs) a small factor of the order of the inverse of the large
mass of the exotic quark and lepton. This mechanism may be the origin of CKM mixing matrix
for the quark sector but may be dangerous so far for the lepton sector because of the disastrous
violations of the lepton family quantum numbers by the lepton mixings. However we find that
at every gauge coupling vertex there is a stringent selection rule for generations which is char-
acteristic to SQM, for each generation is identical only with respect to SU(3) × SU(2) × U(1)
quantum numbers but has another superon content corresponding to the flavor quantum num-
ber. This selection rule is the matching of the superons, i.e. the superon number conservation,
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at the gauge coupling vertex. For the quark sector, surprisingly, the selection rule respects the
CKM mixing of the Yukawa coupling sector and maintains the successful gauge current structure
of SM. While for the lepton sector, remarkably the selection rule prohibits basically the lepton
flavor changing electroweak currents between lepton generations at the tree level and reproduces
the success of SM. We regard that SQM can explain the absence of the lepton-flavor-mixing in
the electroweak gauge interaction.

As a few examples of the gauge interactions and the selection rule at the gauge coupling
vertex we have discussed the following typical processes [4], i.e. (i) β decay: n −→ p + e− + ν̄e,
(ii) π0 −→ 2γ, (iii) the proton decay: p −→ e+ + π0, (iv) a flavor changing neutral current
process (FCNC): K+ −→ π+ +νe + ν̄e and (v) an advocated typical process of the (non-gauged)
compositeness: µ −→ e + γ.

Now the translation is unique and straightforward. For the processes (i) and (ii) we can
draw the corresponding similar tree-like superon line diagrams easily, where the triangle-like
superon diagram does not appear. For the process (iii) we examine the Feynman diagrams for
the proton decay of GUTs and find that the corresponding superon line diagrams do not exist
due to the selection rule, i.e. the mismatch of the superons contained in the quarks(u and d)
and the gauge bosons(X and Y ) at the gauge coupling vertices. This means that irrespective of
the massses of the gauge bosons the proton is stable at the tree level against p −→ e+ +π0. For
FCNC process (iv) the penguin-type and the box-type superon line diagrams are to be studied
corresponding to the penguin- and box-Feynmann diagrams for K+ −→ π+ + νe + ν̄e of GUTs.
Remarkablely the superon line diagrams which have only the u and c quarks for the internal
quark line exist due to the selection rule and GIM mechanism of the SM is reproduced. The
third generation t quark for the internal line is decoupled due to the selection rule. This is the
indication of the strong suppression of the FCNC process, K+ −→ π+ + νe + ν̄e. This simple
mechanism may hold in general for FCNC processes. For the process (v) the corresponding
tree-like superon line diagram does not exist due to the selection rule at the gauge coupling
vertex, i.e. µ −→ e+γ decay mode is absent at the tree-level in the superon (composite) model.
The process τ −→ e(µ) + γ is suppressed similarly.

As for the CP-violation, the mixing K0-K0 is natural in SQM, for remarkably K0 and K0

have the same superon contents (i.e. indistinguishable and superposing at the superon level) but
have the different superon combinations distinguished by the interactions which lead to mass
differences. GIM mechanism works for the superon picture of K0-K0 mixing box diagram of
SM but remarkably t quark (the third generation) decouples due to the selection rule at the
gauge coupling vertices. However in SQM there is another higher order box (ladder-like) dia-
gram contributing to K0-K0 mixing amplitude, where S gauge boson emitted by the transition
(u, d) ↔ (t, b) and t quark play crucial (dominant) roles besides W boson. The relative phase
of these two amplitudes may be an origin of CP-violation in the neutral K-meson decay. This
mechanism of CP-violation without requiring complex gauge coupling constants seem natural
from the viewpoint of the unification of all forces including gravity (which is a singlet, neutral
and universal force) in a (semi)simple gauge group with one universal gauge coupling constant.
It is interesting that t quark (the third generation of quarks) which appears automatically in
SQM is needed for CP-violation in SQM context. The mixings B0-B0 and D0-D0 are natural
in the same reason but the preliminary analyses suggest the similar new mechanisms for mixing
and CP-violation characteristic of the SQM. SQM explains qualitatively the Weinberg angle
(i.e. the mixing of the neutral electroweak gauge bosons) and predicts the mixing of a gluon and
S boson by the same reason. The low energy SU(3) color symmetry may be a residual gauge
symmetry like U(1) electromagnetic gauge symmetry in SM. As for the charmless nonleotonic B
decay [7] in SQM the transition (t, b) ↔ (c, s) occurrs not at the tree level of the weak charged
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current but at the higher orders of the gauge couplings due to the selection rule for the quark
sector, where the transition (t, b) ↔ (c, s) is achieved by the emissions of S boson and W boson
and may give an explanation of the excess of the charmless (or the suppression of the charm
mode) nonleotonic B decay. Furthermore for the lepton sector amazingly S gauge boson induces
the transition only νµ ↔ ντ (i.e. between the second and the third generation) at the tree level
due to the selection rule, which may solve simply and naturally the νµ deficit problem of the
atomospheric neutrino [8].

Next we just mention the excited states of quarks, leptons and gauge bosons. As stated
before these particles (i.e. the massless eigenstates of SO(10) SP symmetry) do not have the
low energy excited states in SQM, because each particle is a single (massless) eigenstates of
SO(10) SP symmetry composed of superons and transits to another eigenstate through the
interaction, i.e. through the absorption or the emission of superons (i.e. eigenstates).

4 Superon-graviton model (SGM) for spacetime and matter

4.1 Fundamental action for SGM

Finally we consider the fundamental theory of superon-graviton model (SGM) for supersym-
metric spacetime and matter. In carrying through the canonical quantization of the elementary
N–G spinor field ψ(x) of two dimensional Volkov–Akulov model [4] of the NL SUSY, we have
shown that the supercharges Q given by the supercurrents

Jµ(x) =
1
i
σµψ(x) − κ {the higher orders of κ, ψ(x) and ∂ψ(x)} (7)

obtained by the ordinary Noether procedures can satisfy the super-Poincaré algebra at the cnoni-
cally quantized level [9], where κ is a fundamental volume of the superspace of the NL SUSY with
the mass dimension -2 (for the two dimensional case). Remarkably (7) means the field-current
identity between the fundamental Nambu–Goldstone spinor ψ(x) field and the supercurrent,
which justify our basic assumption that the generator(supercharge) QN (N = 1, 2, . . . , 10) of
SO(10) SP algebra for the massless case represents the fundamental object superon with spin 1

2 .
And our qualitative arguments are valid in the leading order for the small κ and/or in the low
energy (momentum) as seen from (7). Therefore we speculate that the fundamental theory of
SQM for matter is SO(10) NL SUSY and that the fundamental theory of SGM for spacetime
and matter at (above) the Planck scale is SO(10) NL SUSY in the curved spacetime which
corresponds to the Clifford vacuum | Ω(±2)〉. We regard that all the helicity-states of SO(10)
SP algebra including the observed quarks, leptons and gauge bosons except the graviton are
the relativistic (gravitational) composite massless states of N–G fermion superons. SGM may
show that the relativistic version of the composite (quark) model [11] of matter is realized as
eigenstates of SO(10) SP algebra at the superon level.

We propose the following Lagrangian as the fudamental theory of SGM of spacetime and
matter.

LSGM = − c3

16πG
e(R + Λ)|W |, (8)

|W | = detW ν
µ = det

(
δν
µ + κT ν

µ

)
, T ν

µ =
1
2i

10∑
i,j=1

(
s̄iOijγµD

νsj −Dν s̄iγµOijs
j
)
, (9)

where κ is a fundamental volume of the superspace of the NL SUSY with the mass dimension
-4, e = det ea

µ, Dµ = ∂µ + 1
2ω

ab
µ σab and R and Λ are the scalar curvature and the cosmological
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constant, respectively. Oij is a 10 × 10 unitary matrix representing the mixing among the
superons, which may be probable but unpleasant from the elementary nature of the superon.
The multiplication of the Einstein-Hilbert action by SQM action |W | in (8) is essential and
unique for the fundamental theory if we require that (i) it should be reduced to SO(10) NL
SUSY a la Volkov–Akulov in the flat spacetime by taking only R → 0, (ii) also to the Einstein–
Hilbert action (i.e. Clifford vacuum action) by taking the superonless limit si → 0, (iii) except
the graviton all fields participating in the superHiggs(recombination) mechanism should be the
composites of superons and (iv) the action (8) should be invariant under the global SO(10) NL
SUSY,

δsM =
εM√
κ
− 2i

√
κ

(
εLγµsL

)
Dµs

M , (10)

δea
µ = i

√
κ

(
εLγρsL

)Dρe
a
µ, (11)

where εM (M = 1, 2, . . . , 10) is a constant spinor parameter with spin 1/2. (8) is manifestly
invariant at least under the general coordinate transformation and global SO(10). Furthermore
the all order invariance of (8) under the global SO(10) NL SUSY (10) and (11) in the similar sense
of ref. [12] and [13] can be anticipated, which may be included in the scope of ref. [12] and [13].
The states with helicity ±3, ±5

2 and ±2 (except the graviton) made of 10-, 9- and 8-superons
appear afetr specifying the contorsion in the spin conection ωµ

ab(e
µ
a , si) [10]. The fundamental

Lagrangian (8) can be rewritten in the following simple form LSGM = − c3

16πGn(R + Λ), where
n = detna

µ = det(ea
νW

ν
µ ).

4.2 Symmetry breaking of SGM

As for the abovementioned spontaneous symmetry breaking it is urgent to study the structure
of the true vacuum of (8). To see clearly the (low energy) mass spectrum of the particles
spanned upon the true vacuum, we should convert the highly nonlinear SGM Lagrangian (8)
into the equivalent linearized broken SUSY SO(10) (or SM) Lagrangian. The orders of the
mass scales of spontaneous SUSY and SO(10) breaking are given by κ and Λ. The low-energy
structure of the linearized broken SUSY Lagrangian should involve GUTs, at least the SM with
three generations. For carrying through the complicated scenario it is encouraging that the
linearlization of such a nonlinear fermionic system was already carried out explicitly [12, 13].
They investigated in detail the conversions between N = 1 NL SUSY (Volkov–Akulov) model
and the equivalent linear (broken) N = 1 SUSY Lagrangian in the flat spacetime. The extension
of the generic and the systematic arguments by using the superspace [13] may be useful for the
linerization of SGM. From the mathematical viewpoint an equivalent linear theory would exist.
It is a challenge to pursue the scenario. We expect that by taking non-perturbatively the true
vaccum of (8) the conversions into the linear representation is achieved, where SUSY is broken
spontaneously at the tree level and the bosonic and the fermionic high-spin massless states turn
out to be massive states. This may be only the possible way to circumvent the no-go theorem [14]
and to accomodate successfully high spin (massless) states in the local field theoretical GUTs.
The massless tensor fields (states) in the adjoint representation 45 of SO(10) may play important
roles in the early spontaneous symmetry breakings: [SO(10) SP] −→ [· · ·] −→ [SU(3)×SU(2)×
U(1)] −→ [SU(3) × U(1)].

By generalizing the idea of the strong gravity [15] all tensor fields of the adjoint repre-
sentation can have U(M) × U(N) × · · · invariant masses by the spontaneous symmetry break-
ing induced by the Higgs potential analogue gauge invariant self-interactions, provided these
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tensor fields are the gauge fields of the nonlinear realization of SL(2M,C) × SL(2N,C) × · · ·
with 45 = M2 + N2 + · · ·. GL(4, R) does not break spontaneously. SL(12, C) × SL(6, C) and
[SL(6, C) × SL(4, C) × SL(2, C)]3 which allow U(6) × U(3) and [U(3) × U(2) × U(1)]3 invari-
ant masses respectively are interesting from simplicity and may be relevant to SGM scenario.
Especially this mechanism of the spontaneous symmetry breaking is worthwhile to be studied in
detail to see whether it generates large masses spontaneously to all the states composed of more
than five superons that are irrelevant to the (low energy) GUTs as mentioned before. It is very
interesting if we can regard the yet hypothetical SGM (8) may be for the unified gauge models
(SM and GUTs) what the BCS (electron-phonon) theory is for the Landau–Ginzburg theory
of the superconductivity. The boundary condition (the global structure) of spacetime(universe)
may be crucial.

Alternatively, disregarding the linearlization it is interesting from the purely phenomenolog-
ical viewpoint to fit all the decay data of leptons and low lying hadrons in terms of the quark
model [16] analogue SO(10) superon current algebra including the higher order terms of (7),
which potentially gives all the transition matrix elements in terms of superon pictures and may
describe the nonlinear superon dynamics at the short ditance of the spacetime and may give a
qualitative test of SQM [4]. Also it is worth studying other assignment for quarks and leptons
than R = L∗ symmetric SQM ((5) and (6)). The left-right assymmetric assignment for quarks
and leptons is also possible from only group theoretical investigations.

The cosmological implications of SGM (8) is also worth studying. Because SGM (8) describes
a pre-history of quark-lepton era, i.e. N–G superons are created (i.e. pre-big bang is ignited)
by the spontaneous breakdown of the supertranslation of spacetime and SO(10) SP invariant
massless superon composite states (quark-lepton era) are spanned, which lead to the big bang of
the universe inducing the spontaneous breakedown of SO(10) SUSY by the interactions among
the massless composite states.

Finally we just mention that in SGM the singularities of the gravitational collapse may be
prohibitted by the phase transition to the N-G pahase achieved gravitationally. It is a challenge
to test these conjecture quantitatively by starting from the SGM action (8), where the higher
order terms of κ and momentum (derivatives) become dominant.

5 Conclusion

We have shown by the qualitative arguments that the unified gauge models (SM and GUTs) are
strengthened or revived by taking account of the topology of the superon diagram of SGM, while
drawing the superon diagram (i.e. extracting the low energy physical implications) of SGM is
guided by the Feynman diagram of SM (GUTs). We regard that these beautiful complimentality
between the gauge unified models (SM and GUTs) and SGM may be an evidence of SO(10)
SP symmetric structure of spacetime and matter behind the gauge models, i.e. an evidence
of the superon-quintet hypothesis for matter (SQM) and superon-graviton model (SGM) (8)
for spacetime and matter. The experimental searches for a predicted new spin 3

2 lepton-type
(gravitino) doublet (νΓ,Γ−) with the mass of the electroweak scale [3] and a new gauge boson S
are important. Also SQM predicts two doubly-charged, electroweak- and color-singlet (uncon-
fined) particles E2+ and M2+ with spin 1

2 [3]. Their masses are left unknown within this study.
From the present experimental data for τ− decay S boson mass seems much larger than the W
boson mass. The clear signals of (νΓ,Γ−) may be similar to the top-quark pair production event
without jets production, i.e. e + ē −→ l + l̄ + missing large PT (energy) [3]. The evidence of S
boson may be seen already and will become clear in the high energy B meson experiment.

Besides those interesting aspects of SGM (8), much more open questions are left.
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We aim to give useful integral criteria for smooth flows to be globally conjugate when their
infinitesimal generators are close to each other. We study and use the Möller wave operator
which is familiar in quantum mechanics. Theorems on smooth global straightening out of
nowhere zero vector fields and on smooth global linearization are given. The stability of
trajectories at perturbations and properties of the adjoint operators are studied.

1 Preliminaries

The problem of conjugacy of differentiable flows is equally the problem of equivalence of complete
vector fields or, as well, the problem of equivalence of differentiable dynamical systems. A part
of the latter is the question of normal forms for a system of autonomous differential equations
at a singular point.

The so far results, started by Poincaré and Siegel in the real analytic case, to those by Stern-
berg in the C∞ setting, have been concentrated on the linearization of dynamical systems. All
they have local character.

We wish to present a global treatment of the problem. If one also insist to work in the C∞ set-
ting, the Fréchet space calculus and relevant techniques seem to be adequate. In the noncompact
case we consider manifolds which are countable at infinity and are endowed with a Riemannian
metric. In Rn, having fixed a globally Lipschitz vector field X, perturbations X + Z are per-
formed only by vector fields Z which are globally bounded together with all derivatives. Such
vector fields are globally Lipschitz and consequently they are complete.

Let D be the induced Riemannian covariant derivative operator. ‖DkX‖ will mean the
operator norm of the k-th covariant derivative of X as a multilinear map on (TM)k valued
in the tangent bundle TM . When M = Rn it denotes the usual operator norm of the k-th
derivative of vector function X.

For a differentiable map f on M , Tf will mean the induced linear tangent map defined
on TM . A diffeomorphism f of M induces the adjoint linear operator

f∗X = (Tf.X) ◦ f−1

on the Lie algebra X of all C∞ vector fields on M .
Since the smoothness is a local property, and since the boundedness with respect to the time t

and the convergence of the considered improper time-integrals will be required to be uniform
in x only on compact subsets of M , we may perform calculations in Rn. Eventually, we may
glue the limits over different local charts. Therefore we assume M = Rn throughout the paper,
except the following basic definition

Definition 1. Let X be a smooth, globally Lipschitz vector field on a manifold M . Let E be a
subspace of X (M) equiped with a nondecreasing countable system of supremum seminorms ‖·‖k,
k ≥ 0, related to the Riemannian norm ‖ · ‖.



466 A. Zajtz

We shall say that the adjoint flow (φt)∗ decays on E (to infinite order) in a set Ω ⊂ M , if for
every integer k ≥ 0 there is lk ≥ k and a continuous function νk(t, x) > 0 defined on (0,∞)×Ω
such that for any vector field Z ∈ E it holds

‖DkφZ(x)‖ ≤ νk(t, x)‖Z‖lk (1)

and
∫ ∞

0
νk(t, x)dt (2)

converges uniformly with respect to x on compact subsets of Ω.
Alternatively, (φt)∗ in (1) can be replaced by φ∗

t := (φ−t)∗, depending on the asymptotic
behavior of the flow φt.

In particular φ decays exponentially if νk(t, x) ≤ e−cktMk(‖x‖) for some ck > 0 and a positive
continuous function Mk.

Example 1. Let Ω = Rn and E = {Z ∈ X∞(Rn); Z ∈ �n}, where � is the Schwartz space of
all functions on Rn which are fast falling together with all derivatives. The norms in �n are

‖Z‖r = max
i+k≤r

sup
x∈Rn

(1 + ‖x‖2)i/2‖DkZ(x)‖.

where ‖ · ‖ is the Euclidean norm. Take X = v(const), ‖v‖ = 1. Then φt = exp tv = id+ tv and
φZ(x) = Z(x− tv). We have

‖Dk(φZ)(x)‖ ≤ 1
1 + ‖x− tv‖2

‖Z‖k+2. (3)

Hence lk = k + 2 and

νk(t, x) =
1

1 + a(x) + (t− 〈x, v〉)2 for a(x) = ‖x‖2 − 〈x, v〉2 ≥ 0, (4)

where 〈x, v〉 means the scalar product. The convergence of (2) on compact sets is evident.
Thus φ decays on E but not exponentially.

Example 2. Let Ω = Rn and let C∞
b = C∞

b (Rn, Rn) be the space of vector fields in Rn with
globally bounded derivatives

E = {Z ∈ C∞
b (Rn, Rn), ‖Z(x)‖ = o(‖x‖) as x → 0}.

We equip E with the standard operator norms in the spaces of bounded symmetric multilinear
mappings.

Take X(x) = −cx with c > 0. Then φt(x) = e−ctx, φ∗
tZ(x) = ectZ(e−ctx) and

‖Dkφ∗
tZ(x)‖ = e(1−k)ct‖(DkZ)(e−ctx)‖ ≤ e(1−k)ct‖DkZ‖ ≤ e(1−k)‖Z‖k

for t > 0, x ∈ M and k ≥ 2.
For k = 0, 1 we have ‖φ∗

tZ(x)‖ ≤ e−ct‖x‖2‖Z‖2 and DφZ(x)‖ ≤ e−ct‖x‖‖Z‖2. The integ-
rals (2) are convergent for all k ≥ 0 uniformly for x in any ball {‖x‖ ≤ r}.
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2 Estimates of perturbations

The purpose of this section is to study the question of whether the property of decaying is
preserved under small perturbations of X. We assume M = Rn. Let Z ∈ E and let φ decay
on Z in Rn. We consider the perturbed vector field X + Z. As both the X, Z are globally
Lipschitz, the flow ψt = exp t(X + Z) is defined for all t ∈ R.

Lemma 1 (On orbital stability at perturbation). Suppose that ‖Z‖ < ∞ and for some
L ≥ 0, r > 0 and all x, y ∈ Rn such that ‖x− y‖ ≥ r we have

〈x− y,X(x)−X(y)〉 ≤ −L‖x− y‖2 (5)

If L > 0 then

‖φt(x)− ψt(x)‖ ≤ r1 = max{L−1‖Z‖, r} (6)

for all t ≥ 0 and x ∈ Rn.
If X = v �= 0 is a constant vector field, and Z is fast falling to order 2 at infinity with small

‖Z‖, then
‖φt(x)− ψt(x)‖ ≤ C (t ≥ 0) (7)

on compact sets (where C is constant).
For X = v and Z ∈ C1 with ‖Z‖ < ∞ one gets the (sharp) estimate

‖φt(x)− ψt(x)‖ ≤ ‖Z‖t. (8)

Proof. For the solutions of the Cauchy problems

x′ = X(x), y′ = X(y) + Z(y), x(0) = y(0)

the standard computation yields

1
2

(‖x− y‖2
)′ = 〈x− y, x′ − y′〉 = 〈x− y,X(x)−X(y)〉 − 〈x− y, Z(y)〉,

hence(‖x(t)− y(t)‖2
)′ ≤ 2(‖Z‖ − L‖x(t)− y(t)‖)‖x(t)− y(t)‖.

For L > 0 this is possible only if ‖x(t)− y(t)‖ ≤ r1, which translates into (6).
Now assume X(x) = v �= 0. Then it is easy to see that ‖x + tv − ψt(x)‖ ≤ ‖Z‖t. Thus for

small ‖Z‖ we have ‖ψt(x)‖ ≥ |‖x‖ − bt| for some b > 0. But on the other hand we have for
X = v

ψt(x)− (x+ tv) =
∫ t

o
Z(ψs(x))ds (9)

and (cf. Example 1)∫ ∞

o
‖Z(ψs(x))‖ds ≤ ‖Z‖2

∫ ∞

o

1
1 + (‖x‖ − bt)2

dt ≤ C < ∞

on compact sets. Therefore each trajectory t → ψt(x) has globally a finite distance from that of
φt(x) uniformly in x on compact sets. In the last case the estimate (8) follows directly from (9).
In particular, for Z = w constant, (8) is equality.

Thus we see that the falling at infinity of Z is essential for the global proximity of the
perturbation flow.



468 A. Zajtz

Remark. The assumption that both X and Z in Lemma 1 are globally Lipschitz can be relaxed.
As we see from the proof, in all the cases considered in the Lemma, if X is complete then ψt(x)
can not be unbounded in finite time. Thus it can be defined over R+ (i.e., the vector field X+Z
is positively semicomplete).

As a byproduct we obtain the following

Proposition 1. If a vector field X in Rn satisfies condition (5) with L > 0, X(xo) �= 0, then
it is positively semicomplete and for any fixed xo and x in Rn and all t ≥ 0

‖φt(x)− xo‖ ≤ max{L−1‖X(xo)‖, r}.
Moreover, if X(xo) = 0 and r = 0 then

‖φt(x)− xo‖ ≤ ‖x− xo‖e−Lt.

Proof. This time, for solutions of equation x′ = X(x), we have

1
2

(‖x− xo‖2
)′ = 〈x− xo, X(x)−X(xo)〉+ 〈x− xo, X(xo)〉.

Further arguments are analogous as in the proof of Lemma 1 or routine.

Definition 2. We shall say that the adjoint flow φ Cm-decays on a subspace E if it decays
on E and the functions νk(t, x) in (1) do not depend on x for 0 ≤ k ≤ m, so that ‖DkφZ(x)‖ ≤
νk(t)‖Z‖lk for all x, and νk(t) is integrable over R+.

We say that φ decays C∞ on E if it decays Cm for all integers m ≥ 0.

This definition will apply also for the flow φ∗
t (generated by −X).

Lemma 2. Suppose that φ generated by X decays on E and one of the following conditions is
satisfied.

(A.1) The vector field X fullfils the hypothesis (5) with L > 0, or
(A.2) X = v (const), or
(A.3) φ Co-decays on E.
Then also the adjoint flow ∂, where ψt = exp t(X+Z), decays on E provided Z is sufficiently

small in the seminorm ‖·‖l1. Moreover, if X fulfills (A.1) then so does X+Z, and if φ C1-decays
on E then ∂ decays Co on E.

A corresponding result is true for φ∗
t .

Proof. Put ft = φt ◦ ψ−t. Since Tφt.X = X ◦ φt, we get by differentiating in t

f ′
t = −(Tφt.Z) ◦ ψ−t = −(φZ) ◦ ft, fo = id, (10)

we can integrate (10) to obtain

ft = id−
∫ t

o
(φs) ∗ Z ◦ fsds. (11)

Now we aim to show that on compact subsets ft − id and all its derivatives Tn(ft − id) are
bounded uniformly in t ∈ (0,∞).

First, suppose that X satisfies (A.1) or (A.2). By substituting ψ−1
t (x) in place of (x) in (6)

or (7) we get ‖ft(x)− x‖ ≤ C for all t ≥ 0 uniformly for x in compact sets.
Similar result can be obtained when the condition (A.3) is satisfied. In fact, consider equation

x′ = F (t, x), where F (t, x) = −φZ(x). Putting u = ‖x‖ we have

u
du

dt
= xTF (t, x) ≤ ‖x‖‖φZ(x)‖ ≤ ν0(t)u‖Z‖l0 .
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Hence

u(t)− u(0) ≤
(∫ t

0
ν(s)ds

)
‖Z‖l0 ,

where the integral is bounded as t → ∞. Therefore u(t)− u(0) remains bounded over R+. For
x(t) = ft it gives that ‖ft(x)‖ − ‖x‖ is bounded for t ∈ R+. By the principle of the integral
continuity of solutions it also remains bounded when x runs over a compact set.

Next we are going to prove the boundedness of the first derivative Tft. For this we differen-
tiate (11) and take estimates

‖Tft(x)‖ ≤ 1 +
∫ t

o
‖D(φs)∗Z(fs(x))‖‖Tfs(x)‖ds ≤

∫ t

o
ν1(s, fs(x))‖Z‖l1‖Tfs(x)‖ds.

Using the Bellman’s lemma, we get

‖Tft(x)‖ ≤ exp
(∫ t

o
ν1(s, fs(x))‖Z‖l1ds

)
= eB‖Z‖l1 < ∞,

where we put B =
∫ ∞
o ν1(s, fs(x))ds. The integral is convergent since ‖fs(x)‖ differs from ‖x‖

by a constant, so they may be placed in the same compact set for all s ≥ 0.
In particular, if φ decays C1 on E then ν1 does not depend on x and then Tft(x) is bounded

globally for all t ≥ 0 and x ∈ M .
Now, assuming that Tn−1ft is bounded for n − 1 ≥ 1, we wish to show this for Tnft. We

make use of the standard formulae for higher order derivatives of composition maps. We have

Dn(φZ ◦ ft)(x)) = (DφZ)(ft(x)).Tnft(x) +Rn(t, x), (12)

where

Rn(t, x) =
n∑

k=2

∑
j1+···+jk=n

Ck,j1,...,jk
Dk(φZ)(ft(x)){T j1ft(x), . . . , T jkft(x)}

with j1, . . . , jk ≥ 1. Passing to the estimates we have

‖Dn(φZ(ft(x))‖ ≤ ‖DφZ‖‖Tnft(x)‖+ ‖Rn(t, x)‖,
where

‖Rn(t, x)‖ ≤ C
n∑

k=2

∑
j1+···+jk=n

νk(t, ft(x))‖Z‖lk‖T j1ft(x)‖ · · · ‖T jkft(x)‖

with 1 ≤ j1, . . . , jk ≤ n− 1. All this and (11) yields for the derivatives of order n ≥ 2

‖Tnft‖ ≤
∫ t

o
‖Rn(s)‖ds+ ‖Z‖l1

∫ t

o
ν1(s, fs(x))‖Tnft‖ds.

Again by Bellman’s inequality

‖Tnft‖ ≤
(∫ t

o
‖Rn(s, x)‖ds

)
· exp

(
‖Z‖l1

∫ t

o
ν1(s, fs(x))ds

)
< ∞

uniformly for t ≥ 0. Thus ‖Tnft(x)‖∞ is finite for n ≥ 1.
Now, by the definition of ft we have ψt = f−1

t ◦φt. Put gt = f−1
t . Then clearly ‖gt(x)‖−‖x‖

is also uniformly bounded in t ≥ 0. We wish to prove that gt − id has all x-derivatives unformly
bounded in t.

From (11) it follows

‖Tft − I‖ ≤
∫ t

o
‖D(φs)∗Z‖‖Tfs‖ds. (13)
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Put δ = ‖Z‖l1 . Then, by (12), ‖Tft‖ ≤ eBδ for t > 0. Now the estimate (13) can be written

‖Tft − I‖ ≤ BδeBδ.

For δ sufficiently small, and B being independent of Z, we shall have ‖Tft − I‖ < ε < 1. But if
‖Tft(x)− I‖ < ε then

‖Tgt(ft(x))‖ = ‖Tft(x)−1‖ ≤ 1
1− ε

< ∞
for all t > 0, uniformly in x in any compact set.

Now, since ft ◦ gt = id, the uniform boundedness of higher order derivatives of gt follows
recurently from the relations

Tngt(x) = −Tgt(x)
n∑

k=2

∑
j1+···+jk=n

Ck,j1,...,jk
T kft(gt(x))

{
T j1gt(x), . . . , T jkgt(x)

}
,

where j1, . . . , jk ≤ n− 1, and hence the estimate

‖Tngt‖ ≤ C
n∑

k=2

∑
j1+···+jk=n

‖T kft‖T j1gt‖ · · · ‖T jkgt‖ < ∞.

Having gt − id uniformly bounded in t to infinite order, we deduce easily that for any smooth
vector field Y with bounded derivatives it holds

‖Dn(gt)∗Y (x)‖ ≤ C
∑
k≤n

‖DkY ‖ (n ≥ 0)

for some constant C > 0 depending on n and independent of x in compact sets.
From ψt = gt ◦ φt it follows ∂Z = (gt)∗(φZ). In the above inequality we replace Y by φZ,

which decays on Z. Consequently, (ψt)∗ decays on Z.
Finally, suppose that X satifies condition (5) with L > 0. Then for X +Z we have whenever

‖x− y‖ > r

〈x− y, (X + Z)(x)− (X + Z)(y)〉
≤ −L‖x− y‖2 + ‖x− y‖||Z(x)− Z(y)‖ ≤ (−L+K)‖x− y‖2,

where K is the global Lipschitz constant of Z. If ‖Z‖l1 is small then so is K and −L+K < 0,
as required.

In the case where φ decays C1 on E, then Tft(x) and hence also Tgt(x) are bounded globally
in t and x. Therefore we have

‖∂Z(x)‖ = ‖(gt)∗(φt)∗Z(x)‖ ≤ C‖(φt)∗Z‖ ≤ Cνo(t)‖Z‖l1

for all x. This completes the proof of the Lemma.

3 Conjugacy of flows

Lemma 3. Let X, Z be Ck complete vector fields on a smooth manifold M . Suppose that the
integrals

f = id−
∫ ∞

0
(T exp tX).Z ◦ exp(−t(X + Z))dt (14)

converges to class Ck (k ≥ 1) and

g = id−
∫ ∞

0
(T exp t(X + Z)).Z ◦ exp(−tX)dt (15)

converges to class C1, both uniformly on compact subsets of M .
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Then f and g are Ck diffeomorphisms of M , g = f−1, and

f∗(X + Z) = X.

Note that the assumptions are satisfied if φt fulfills the hypothesis of Lemma 2 and Z is suffi-
ciently small.

Proof. In the proof we use the Möller wave operator [1] which is known in quantum mechanics.
Put as before φt = exp tX and ψt = exp t(X + Z). The idea is that if the diffeomorphisms
φt ◦ ψ−t have the limit

lim
t→∞φt ◦ ψ−t = f (wave operator) (16)

and f is invertible then f−1 ◦φt ◦f = ψt. This is so because from (16) it follows φt ◦f ◦ψ−t = f .
We introduce the integral formulae for the wave operator in order to simplify the proof of its

existence. For this again define

ft = φt ◦ ψ−t and gt = ψt ◦ φ−t = f−1
t . (17)

Hence

f ′
t = −(Tφt.Z) ◦ ψ−t, g′t = −(Tψt.Z) ◦ φ−t. (18)

The existence of both the limits f = lim
t→∞ ft and g = lim

t→∞ gt ensures the invertibility of f .

Thus, we can integrate (18) in the interval [0, t] and pass to limit as t → ∞. It results in
ψt = f−1 ◦ φt ◦ f , so the flows are conjugate by f . From this, by differentiating in t, we get
(f−1)∗X = X + Z or equivalently f∗(X + Z) = X. It is well known that if f is Ck and has a
C1 inverse, then its inverse is Ck. So, g is also Ck.

Remark. Alternatevaly, by reversing time, we may look for the wave operator of the form
f = lim

t→∞φ−tψt which satisfies φ−t ◦ f ◦ ψt = f . It can be calculated from the integral formulae

f = id+
∫ ∞

o
(T exp(−tX)).Z ◦ exp t(X + Z)dt,

g = id+
∫ ∞

o
(T exp−t(X + Z)).Z ◦ exp tXdt.

If the integrals converge then g = f−1 and f∗(X + Z) = X. This version may be used if the
asymptotic behavior of exp(−tX) is more suitable than that of exp(tX).

Definition 3. Let the subspace E ⊂ C∞
b (Rn, Rn) be closed in the standard supremum norms

‖ · ‖k (k ≥ 0). Let X be a globally Lipschitz vector field such that the X-flow φt leaves E
invariant, i.e., (φt)∗E ⊂ E for any t ∈ R. We say that E has a hyperbolic structure for φt if
there is a continuous splitting E = E1+E2, such that E2 is exp(X+E1) invariant, (φt)∗ fulfills
the hypothesis (A.1) or (A.3) of Lemma 2 on E1 and so does φ∗

t on E2.

Note that we do not assume any invariance of subspaces Ei individually.

Lemma 4. Suppose that E has a hyperbolic structure for the X-flow. Let Z = Z1 + Z2, where
Zi are sufficiently small. Then X + Z is C∞ conjugate to X.

Proof. By Lemma 3 for X and Z1, there is a diffeomorphism f such that f∗X = X +Z1. Since
φ∗

t fulfills (A.1) or (A.3) on E2, for small Z1 also (exp t(X + Z1))∗ fulfills (A.1) or (A.3) on E2.
Therefore, for small Z2 there exists a diffeomorphism h such that h∗(X+Z1) = (X+Z1)+Z2 =
X + Z. This completes the proof.
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4 Main results

With the notations of preceding sections the integrals (14) and (15) can be written in the form

f = id−
∫ ∞

0
φZ ◦ ftdt and g = id−

∫ ∞

0
(ψt)∗Z ◦ gtdt

with ft = φt ◦ ψ−t and gt = f−1
t .

Accordingly, we express the alternative formulae (14) and (15) by putting −t in place of t.
Now we can apply the results of previous sections and Examples 1, 2 to prove the convergence

of the integrals and of all their x-derivatives. This will result in the following theorems.

Theorem 1 (On conjugacy of perturbations). Let X ∈ X (Rn) be a globally Lipschitz vector
field and let E be a linear space of vector fields on Rn. Suppose that the adjoint flow generated
by X decays on E with respect to a collection of seminorms {‖ · ‖k, k ∈ N}. Assume also that
one of the conditions (A.1) to (A.3) is satisfied.

Then there is a neighborhood U = {Z ∈ E; ‖Z‖l1 < δ} such that for every Z ∈ U there exists
a C∞ diffeomorphism f of M which conjugate X to X + Z, that is f∗X = X + Z.

Theorem 2 (Global straightening out theorem). Let X be a non-zero constant vector field
on Rn. There is a δ > 0 such that for every fast falling vector field Z on Rn with ‖Z‖3 < δ the
vector fields X and X + Z are C∞ conjugate on Rn.

Thus, any sufficiently small perturbation (as above) of X = ∂
∂x1

can be transformed globally
to ∂

∂x1
by a C∞ change of coordinates.

Theorem 3. Let X(x) = −cx, c > 0, x ∈ Rn, and let Z be a vector field with globally bounded
derivatives and satisfying ‖Z(x)‖ = o(‖x‖) as x → 0. Then the perturbed vector field X + Z is
C∞ conjugate to X in Rn.

This theorem can be easily generalized to the case where X = Ax with negative real parts
of the eigenvalues of the matrix A and without the familiar resonance relations. Thus the
Sternberg [2] local linearization theorem for contractions can be given a global version.

Moreover, applying Lemma 4, we may also obtain the globalization of the Sternberg’s lin-
earization theorem for arbitrary hyperbolic point with no resonance. This will be subject to
another article.
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Classical description of relativistic pointlike particle with intrinsic degrees of freedom such
as isospin or colour is proposed. It is based on the Lagrangian of general form defined on
the tangent bundle over a principal fibre bundle. It is shown that the dynamics splits into
the external dynamics which describes the interaction of particle with gauge field in terms
of Wong equations, and the internal dynamics which results in a spatial motion of particle
via integrals of motion only. A relevant Hamiltonian description is built too.

1 Introduction

Wong equations of motion of classical pointlike relativistic particle with isospin or colour [1] per-
mit various Lagrangian and Hamiltonian formulations. Two of them [2, 3] known to the author
are based on geometric notions brought from gauge field theories. Namely, the configuration
space of particle is a principal fibre bundle with the structure group being the gauge group;
the interaction of particle with an external gauge field is introduced via the connection on this
bundle. The only difference between two approaches consists in the choice of Lagrangian func-
tion. That proposed in [2] is linear in gauge potentials (as in classical electrodynamics) while
the nonlinear Lagrangian [3, 2] arises naturally within the Kaluza–Klein theory. Nevertheless,
both of them lead to the same Wong equations.
In the present paper, starting from the mentioned above geometrical treatment of the kine-

matics of relativistic particle with isospin or colour (Section 2), we construct in Section 3 the
Lagrangian of a fairy general form. In particular cases this Lagrangian reduces to those of
Refs. [2, 3]. The generalization is not trivial since it leads to two types of dynamics, according
to what variables are used for the description of intrinsic degrees of freedom. The external
dynamics is described by the Wong equations which include gauge potentials, but the form of
which is indifferent to the choice of Lagrangian. On the contrary, the internal dynamics is gov-
erned by the particular choice of Lagrangian function while gauge potentials completely fall out
of this dynamics. This fact becomes more transparent within the framework of the appropriate
Hamiltonian formalism developed in Section 4. In Section 5 we sum up our results and discuss
the perspectives of quantization.

2 Kinematics on a principal fibre bundle

Following Refs. [2, 3] we take for a configuration space of relativistic particle with isospin or colour
the principal fibre bundle P over Minkowski space M with structure group G and projection
π : P → M (see Ref. [4] for these notions). A particle trajectory γ : R → P; τ �→ p(τ) ∈ P is
parameterized by evolution parameter τ . A state of particle is determined by (p, ṗ) ∈ TP .
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In this paper we are not interested in the global structure of P, and use its local coordina-
tization: P � p = (x, g) = (xµ, gi), µ = 0, 3, i = 1,dimG, where x = π(p) ∈ U ⊂ M (U is an
open subset of M), g = ϕ(p) ∈ G, and ϕ : P → G defines the choice of gauge. Respectively,
ṗ = (ẋ, ġ), where ẋ ∈ TxM and ġ ∈ TgG. We call (x, ẋ) and (g , ġ) the space and the intrinsic
(local) variables of particle respectively.
Let the principal fibre bundle P be endowed with a connection defined by 1-form ω on P

which takes values in Lie algebra G of G. Locally it can be represented as follows [4]:

ω = Adg−1π∗(Aµ(x)dxµ) + g−1dg ≡ g−1 (π∗(Aµ(x)dxµ)) g + g−1dg , (1)

where π∗ is the pull back mapping onto P, Ad denotes the adjoint representation of G in G, and
G-valued functions Aµ(x) are gauge potentials. Under a right action of G defined in P by

Rh : p �→ p′ ≡ Rh (x, g) = (x, gh), h ∈ G, (2)

the connection form transforms via a pull back mapping R∗
h and is equivariant, i.e., R∗

hω =
Adh−1ω, h ∈ G.
A gauge transformation arises in a geometrical treatment as a bundle automorphism defined

by

Φh (x) : p �→ p′ ≡ Φh (x)(x, g) = (x, h(x)g), h(x) ∈ G. (3)

It induces the transformation of the connection form defined by the inverse of the pull back
mapping (actually, a push forward mapping), ω → ω′ = [Φh−1

(x)
]∗ω, so that the value of the

connection form on each vector field is gauge-invariant by definition. The transformed form ω′

is also expressed by eqs.(1), but with new potentials

A ′
µ(x) = h(x)Aµ(x)h−1(x) + h(x)∂µ h−1(x). (4)

The Minkowski metrics η ≡ ηµνdx
µ ⊗ dxν , ‖ηµν‖ = diag (+,−,−,−) is defined on base

space M. It is invariant under the Poincaré group acting in M. Being pulled back by π∗ onto P
it becomes also right- and gauge-invariant, but appears degenerate.
Here we suppose that the Lie algebra G of structure group G is endowed with non-degenerate

Ad-invariant metrics 〈·, ·〉. The example is the Killing–Cartan metrics in the case of semi-simple
group. In terms of this metrics, the connection form, and the Minkowski metrics one can
construct a nondegenerate metrics on the bundle P [3],

Ξ = π∗η − a2〈ω,ω〉 (5)

(a is a constant), which is right- and gauge-invariant but not Poincaré-invariant (the latter is
broken by ω). In the case of bundle over a curved base space the Minkowski metrics on the
right-hand side (r.h.s.) of eq.(5) is replaced by the Riemanian one. In this form the metrics Ξ
arises in the Kaluza–Klein theory [5] which allows to unify the description of gravitational and
Yang–Mills fields.

3 Lagrangian dynamics of particle with isospin or colour

The dynamical description of the relativistic particle with isospin or colour should, at least,
satisfy the following conditions:
i) gauge invariance;
ii) invariance under an arbitrary change of evolution parameter;
iii) Poincaré invariance provided gauge potentials vanish.
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These requrements can be embodied in the action I =
∫

dτL(p, ṗ) with the following La-

grangian

L = |ẋ|F (w), (6)

where w ≡ ω(ṗ)/|ẋ|, |ẋ| ≡ √
ηµν ẋµẋν =

√
π∗η(ṗ, ṗ), and F : G → R is an arbitrary function.

We note that the quantities |ẋ|, ω(ṗ), and thus the variable w and the Lagrangian (6) are
gauge-invariant.
In order to calculate the variation δI of the action I it is convenient to use, instead of intrinsic

velocity ġ and variation δg , the following variables: v ≡ ġ g−1 and δg ≡ δg g−1. They take
values in Lie algebra G of group G. Then the argument w of F can be presented in the form

w = Adg−1(v + Aµẋ
µ)/|ẋ|. (7)

Using the formal technique (see Ref. [6] for rigorous substantiation)

δg−1 = −g−1δg g−1,

δv = δ( ġ g−1) = δġ g−1 + ġδg−1 =
d

dτ
δg − [v , δg ],

δ(Adg−1 V) = δ(g−1V g) = Adg−1(δV + [V , δg ])

(8)

etc., where [·, ·] are Lie brackets in G and V is an arbitrary G-valued quantity, we obtain the
following Euler–Lagrange equations:

ṗµ = q · (∂µAν)ẋν , (9)

q̇ = ad∗A ·ẋ q (10)

with

pµ ≡ ∂L

∂ẋµ
=

(
F − ∂F

∂w
· w

)
ẋµ

|ẋ| + q · Aµ, (11)

q ≡ ∂L

∂v
= Ad∗g−1

∂F

∂w
, (12)

where pµ are spatial momentum variables, and q is an intrinsic momentum-type variable which
takes values in co-algebra G∗. The linear operators ad∗ and Ad∗ define co-adjoint representations
of G and G respectively, dot “ · ” denotes a contraction.
First of all we show that the function

M(w) ≡ F − ∂F

∂w
· w (13)

is an integral of motion. For this purpose let us introduce the following G∗-valued variable:

s ≡ ∂F

∂w
= Ad∗g q . (14)

In contrast to q , it is gauge-invariant. Taking into account the equations (14) and (10) we
obtain after a bit calculation the equation:

ṡ = ad∗|ẋ|w s . (15)

Then Ṁ = − ṡ · w = −s · [w , w ]|ẋ| ≡ 0 q.e.d.
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Using this fact and (10) in (9) yields the equations of spatial motion

M
d

dτ

ẋµ

|ẋ| = q · Fµν ẋ
ν , (16)

where Fµν ≡ ∂µAν −∂ν Aµ+[Aµ, Aν ]. Equations (16) together with the equation (10) or (15)
of intrinsic motion determine the particle dynamics on a principal fibre bundle.
Now we suppose the existence in Lie algebra G of non-degenerate metrics 〈·, ·〉. It allows to

identify G∗ and G. In particular, for co-vector q ∈ G∗ we introduce the corresponding vector
q ∈ G, such that q = 〈q , ·〉. Then the equations of motion (16) and (10) take the form

M
d

dτ

ẋµ

|ẋ| = 〈q , Fµν〉ẋν , (17)

q̇ = [q , Aµ]ẋµ. (18)

Besides, if this metrics is Ad-invariant, the quantity 〈q , q〉 is an integral of motion.
At this stage we have obtained the well-known Wong equations (17)–(18) which describe the

dynamics of a relativistic particle with massM and isospin or colour q . Despite that we started
with the Lagrangian (6) of a fairy general form, this arbitrariness is obscured in the Wong
equations. The reason resides in definitions of M and q which are, in general, complicated
functions on TP. This feature is better understood by analyzing equations (16) and (10) which
are very similar to the Wong equations but do not involve the metrics in G.
In general, the set of eqs.(16) and (10) is of the second order with respect to configuration

variables x and g . In this regard it is quite equivalent to the set of eqs.(16) and (15). On the
other hand, the equations (16) and (10) form a self-contained set in terms of variables x and q .
They involve explicitly potentials of external gauge field, but their form is indifferent to a choice
of Lagrangian.
The equation (15) is the closed first-order equation with respect to w or, if eq.(14) is invert-

ible, with respect to s (the quantity |ẋ| is not essential because of a parametric invariance of
dynamics; we can put, for instance, |ẋ| = 1). In contrast to the set (16), (10), the equation (15)
is determined by a choice of the Lagrangian, but, in terms of w or s , it does not include gauge
potentials.
Hence, the dynamics of isospin particle splits into the external dynamics described by the

equations (16), (10) in terms of variables x and q , and the internal dynamics determined by
the equation (15) in terms of w or s . The only coupling of these realizations of dynamics is
provided via integrals of motion, namely, the particle mass M and (if Ad-invariant metrics is
involved) the isospin module |q | ≡ √〈q , q〉 = |s |.
In the following examples we show that the general description of isospin particle includes,

as particular cases, results known in the literature. Besides, we demonstrate some new features
concerning the internal dynamics.

1. Linear Lagrangian. Electrodynamics. The simplest choice of Lagrangian (6) leading
to non-trivial intrinsic dynamics corresponds to the following function F (w):

F (w) = m+ k · w , (19)

where m ∈ R and k ∈ G∗ are constants. Up to notation it coincides with the Lagrangian
proposed by Balachandran et al. in Ref. [2]. In this case the isospin q = Ad∗g−1 k is purely
configuration variable (it does not depend on velocities) and the equation (10) is truly the first-
order Euler–Lagrange equation. Besides, M and s are constants, i.e., M = m, s = k , thus the
internal dynamics completely degenerates.
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The Lagrangian (6), (19) is linear with respect to gauge potentials Aµ. In the case of one-
parametric gauge group U(1) it reduces to that of electrodynamics. Indeed, in this case we have
g = exp(iθ), v = iθ̇, Aµ = iAµ. Choosing k = −ie, where e is the charge of electron, one can
present the Lagrangian in the form:

L = m|ẋ|+ eAµẋ
µ + eθ̇. (20)

The third term on r.h.s. of (20) is a total derivative and thus it can be omitted. Hence, intrinsic
variables disappear in this Lagrangian, and the latter takes the standard form.
The similar situation occurs when considering an arbitrary Abelian gauge group.
2. Right-invariant Lagrangian. Kaluza–Klein theory. The following choice of the

function F (w):

F (w) = f(|w |), |w | ≡
√
〈w , w〉 = |v + Aµẋ

µ|/|ẋ|, (21)

where f : R → R is an arbitrary function of |w |, corresponds to Lagrangian which is invariant
under the right action of G. Following the Noether theorem there exist corresponding integrals of
motion. In the present case they form G∗-valued co-vector s defined by eq.(14) or, equivalently,
G-valued vector

s = |w |−1f ′(|w |)w , (22)

where f ′(|w |) ≡ d f/d |w |. We note that the integrals of motion s and M(w) are not indepen-
dent. Indeed, if f ′(|w |) is not constant, the massM can be presented as a function of |s | = |q |.
Otherwise both these quantities are constants. Thus the mass M and the isospin module |q |
are completely determined by the external dynamics.
The right-invariant Lagrangian of special kind arises naturally in the framework of Kaluza–

Klein theory [5]. It has the following form [3, 2]:

L = m
√
Ξ(ṗ, ṗ), (23)

where the metrics Ξ on a principle bundle P is introduced by eq.(5). In our notations this
Lagrangian corresponds to the choice:

f(|w |) = m
√
1− a2|w |2. (24)

This function determines the following relation between M and |q |:
M(|q |) =

√
m2 + |q |2/a2. (25)

3. Isospin top. In the above two examples the internal dynamics does not affect the
external dynamics. Here we consider a contrary example. Let

F (w) = f(ν), ν ≡
√
〈w , T w〉, (26)

where T is a self-adjoint (in the metrics 〈·, ·〉) linear operator. In this case we have
s = ν−1f ′(ν)T w , M = f(ν)− νf ′(ν). (27)

If the function f(ν) is not linear, the quantity ν turns out to be an integral of motion which
is independent of |q |. Then using the parameterization |ẋ| = 1 one can reduce eq.(15) to the
following equation of internal motion:

T ẇ = [T w , w ]. (28)

This is nothing but the compact form of Euler equations (i.e., the equations of motion of a free
top) generalized to the case of arbitrary group [7]. A solution of this equation is necessary for
evaluation of the observable mass of particle.
The relation between the external dynamics and the internal one becomes more transparent

within the Hamiltonian formalism which we consider in the next section.
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4 Transition to Hamiltonian description

The Lagrangian description on the configuration space P enables a natural transition to the
Hamiltonian formalism with constraints [8] on the cotangent bundle T∗P over P. Locally, T∗P �
T∗U × T∗G and, in turn, T∗G � G × G∗. The latter isomorphism is established by right or left
action of group G on T∗G (see, for instance, [9]). It is implicitly meant in our notation. Namely,
we coordinatize T∗G by variables (g , q) or (g , s).
Let us introduce basis vectors e i ∈ G satisfying the Lie-bracket relations [e i, e j ] = ck

ij ek,
where ck

ij are the structure constant of G, and basis co-vectors e i ∈ G∗ such that e j · e i = δj
i .

Then the standard symplectic structure on the cotangent bundle T∗P over the manifold P can be
expressed in terms of local coordinates xµ, pν , gi and qj ≡ q · e j by the following Poisson-bracket
relations:

{xµ, pν} = δµ
ν , {qi, qj} = ck

ijqk, {gi, qj} = ζi
j(g) (29)

(other brackets are equal to zero), where ζj
i (g) are components of right-invariant vector fields

on G. Equivalently, we can use variables sj ≡ s · e j instead of qj . Then the Poisson-bracket
relations take the form:

{xµ, pν} = δµ
ν , {si, sj} = −ck

ijsk, {gi, sj} = ξi
j(g), (30)

where ξj
i (g) are the components of left-invariant vector fields on G.

Once the Poisson brackets are defined, we can use in calculations both sets of variables. In
particular, taking into account the relation s = Ad∗g q we obtain:

{qi, sj} = 0. (31)

The transition from the Lagrangian description to the Hamiltonian one lies through the
Legendre transformation defined by eqs.(11) and (12) or (14). It is degenerate and leads to
vanishing canonical Hamiltonian, due to parametrical invariance. Instead, the dynamics is
determined by constraints.
In order to obtain constraints explicitly let us consider the relations (13) and (14). They

present, in fact, the Legendre mapping w �→ s and thus allow to consider the mass M as a
function of s only. Then eq.(11) reduces to

Πµ ≡ pµ − q · Aµ =M(s)ẋµ/|ẋ| (32)

which yields immediately the mass-shell constraint:

φ ≡ Π2 −M2(s) = 0. (33)

There are no more constraints if

det
∥∥∥∥∂2F (w)
∂wi∂wj

∥∥∥∥ �= 0. (34)

Otherwise, eq.(14) leads to additional constraints of the following general structure:

χr(s) = 0, r = 1, κ ≤ dimG (35)

which together with the mass-shell constraint (33) form the set of primary constraints. Hence,
the Dirac Hamiltonian is HD = λ0φ+λrχr, where λ0, λr are Lagrange multipliers. It is evident
from eqs.(33), (35) and (29), (30), (31) that secondary constraints (should they exist) are of the
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same general structure as in eq.(35). At the final stage of analysis the mass-shell constraint can be
considered as the first-class one. This is provided as soon the mass squared M2(s) is conserved.
If it is not, there exists another integral of motion M̃2(s) such that M̃2(s)|χ=0 =M2(s). Then
the first-class mass-shell constraint has the form (33) but with the function M̃2(s) instead of
M2(s).
The total set of constraints is gauge-invariant. This follows from the transformation properties

of gauge potentials (4) and variables:

xµ′ = xµ, pµ
′ = pµ − q · (h−1(x)∂µ h(x)

)
, q ′ = Ad∗

h−1
(x)

q , s ′ = s . (36)

In particular, the variables Πµ defined in eq.(32) are gauge-invariant.
At this stage the splitting of particle dynamics into the external and internal ones becomes

obvious. Indeed, the Hamiltonian equations

(ẋ, ṗ, q̇) = {(x, p, q), HD} ≈ λ0{(x, p, q),Π2}, (37)

where ≈ is Dirac’s symbol of weak equality, are closed with respect to variables (x, p, q). They
describe the external dynamics and can be reduced to the equations (16) and (10) by eliminating
the variables pµ and the multiplier λ0. The equation

ṡ = {s , HD} ≈ −λ0{s ,M2(s)}+ λr{s , χr(s)} (38)

is closed in terms of s and can be reduced to the equation (15) of the internal dynamics. We
note that the group variable g falls out of the equations (37) and (38) which is due to the
structure of Poisson-bracket relations (29), (30), (31) and constraints (33), (35). Thus in the
present formulation of isospin particle dynamics this variable can be considered as redundant
unobservable quantity.
The further treatment of Hamiltonian dynamics, i.e., the classification of constrains as first-

and second-class ones etc., demands a consideration of some specific examples.

5 Conclusions

In this paper we consider the formulation of classical dynamics of the relativistic particle in an
external Yang–Mills field. We have deduced the Wong equations from the Lagrangian of rather
general form defined on the tangent bundle over principle fibre bundle. Besides, we have shown
that this Lagrangian leads to some internal particle dynamics. The only quantities coupling this
dynamics with the Wong equations are the massM and isospin (or colour) module |q |, intrinsic
characteristics of particle. In the present description they are integrals of internal motion.
The physical treatment of internal dynamics should become better understood within an

appropriate quantum-mechanical description. It can be constructed on the base of Hamilto-
nian particle dynamics proposed in Section 4. Here we only suggest some features of such a
description.
Following the procedure of canonical quantization one replaces dynamical variables x, p, q , s

etc. by operators x̂, p̂, q̂ , ŝ , and Poisson brackets by commutators. Let us suppose that the
classical dynamics is determined by the only mass-shell constraint (33). Its quantum analogue
determines physical states of the system. Eigenvalues q and M of operators | q̂ |2 = | ŝ |2 and
M2( ŝ) which commute with mass-shell constraint and with one another can be treated as the
isospin (or colour) and the rest mass of particle. In the case of right-invariant dynamics (as in
Kaluza–Klein theory) M is unambiguous function of q. In the general case, the spectrum of
M2( ŝ) can consist of few levelsMqn which correspond to the same value of q. Thus it is tempting
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to relate the quantum number n with a flavour or generation. Of course, this supposition is by
no means substantiated and needs a following elaboration. It may suggest a phenomenological
quantum description of relativistic particles with intrinsic degrees of freedom type of isospin,
colour, flavour etc.

Acknowledgments

The author would like to thank Prof. V. Tretyak and Drs. R. Matsyuk, A. Panasyuk, V. Shpytko,
and Yu. Yaremko for stimulating discussions of this work.

References
[1] Wong S.K., Nuovo Cimento A, 1970, V.65, 689.

[2] Balachandran A.P., Marmo G., Skagerstam B.-S. and Stern A., Lecture Notes in Physics, Springer-Verlag,
1983, Vol.188.

[3] Vanhecke F.J., Revista Brasileira de Fisica, 1982, V.12, 343.

[4] Kobayashi S. and Nomizu K., Foundations of differential geometry, Vol.1, New York, Wiley, 1969;
Trautman A., Bull. Acad. Pol. Sci. Sér. Sci. Phys. et Astron., 1979, V.27, 7;
Daniel M. and Viallet C.M., Rev. Mod. Phys., 1980, V.52, 175.

[5] Kopchynski W., in Proceedings of the Conference on Differential Geometrical Methods in Mathematical
Physics, Salamanca 1979, p. 462;
Appelquist Th., Chodos A., Ereund P.G.O. (eds.), Modern Kaluza–Klein theories, Addison-Wesley, 1987.

[6] Richtmyer R.D., Principles of advanced mathematical physics, Vol.2, Springer-Verlag, Berlin, 1981.

[7] Hermann R., J. Math. Phys., 1972, V.13, 460.

[8] Dirac P.A.M., Can. J. Math., 1950, V.2, 129;
Sudarshan E.C.G. Mukunda N., Classical dynamics – a modern perspective, New York, Wiley, 1974;
Marmo G., Mukunda N. and Samuel J., Riv. Nuovo Cim., 1983, V.6, 1.

[9] Blazques C. and Llosa J., Rep. Math. Phys., 1991, V.30, 131.



Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 2, 481–488.

Crystal Basis Model of the Genetic Code:

Structure and Consequences

L. FRAPPAT †, A. SCIARRINO ‡ and P. SORBA †

† Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH CNRS, URA 1436,
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The main features of a model of genetic code based on the crystal basis of Uq→0(sl(2)⊕sl(2))
is presented. The experimentally observed correlation between the values of the codon usage
in quartets and sextets fits naturally in the model.

1 Introduction

Let us, briefly, remind how the DNA rules the synthesis of proteins, which constitute the most
abundant organic substances in living matter systems. The DNA macromolecule is made of two
linear chains of nucleotides wrapped in a double helix structure. Each nucleotide is characterized
by one of the four elementary bases: adenine (A) and guanine (G) deriving from purine, and
cytosine (C) and thymine (T) coming from pyrimidine. The DNA is localized in the nucleus of the
cell and the transmission of the genetic information in the cytoplasm is achieved , schematically
speaking, by the ribonucleic acid or RNA. This operation is called the transcription, the A, G,
C, T bases in the DNA being respectively associated in RNA to the U, C, G, A bases, U denoting
the uracile base. The correspondence law between triples of nucleotides, called codons, in the
desoxyribonucleic acid (DNA) sequence and the amino-acids is called the genetic code. As a
codon is an ordered sequence of three bases (e.g. AAG, AGA, etc.), obviously there are 43 = 64
and different codons. Except the three following triples UAA, UAG and UGA, each of the 61
others is related through a ribosome to an amino-acid (a.a). In the universal eukariotic code,
which constitutes the so called universal genetic code, the correspondence is given in Table 1.
Thus the chain of nucleotides in the RNA – and also in the DNA – can also be viewed as a
sequence of triples, each corresponding to aa a.a., except the three above mentioned codons.
These last codons are called Nonsense or Stop codons, and their role is to stop the biosynthesis.

One can distinguish 20 different amino-acids: Alanine (Ala), Arginine (Arg), Asparagine
(Asn), Aspartic acid (Asp), Cysteine (Cys), Glutamine (Gln), Glutamic acid (Glu), Glycine
(Gly), Histidine (His), Isoleucine (Ile), Leucine (Leu), Lysine (Lys), Methionine (Met), Pheny-
lalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophane (Trp), Tyrosine (Tyr),
Valine (Val). It follows that the different codons are associated to the same a.a., i.e. the genetic
code is degenerated.

For the eukariotic code (see Table 1), the codons are organized in the following pattern of
multiplets, each multiplet orresponding to a specific amino-acid:
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1. 3 sextets: Arg, Leu, Ser

2. 5 quadruplets: Ala, Gly, Pro, Thr, Val

3. 2 triplets: Ile, Stop

4. 9 doublets: Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr

5. 2 singlets: Met, Trp

It is natural, but not at all trivial, to ask if symmetry consideration can explain the existence
of such an intriguing degenerate pattern. In our approach [1, 2] we consider the 4 nucleotides as
elementary constituents of the codons. Actually, this approach mimicks the group theoretical
classification of baryons made out from three quarks in elementary particles physics, the building
blocks being here the A, C, G, T/U nucleotides. The main and essential difference stands in
the property of a codon to be an ordered set of three nucleotides, which is not the case for a
baryon. For example, there are three different codons made of the A, A, U nucleotides, namely
AAU, AUA and UAA, while the proton appears as a weighted combination of the two u quarks
and one d quark, that is |p〉 ∼ |uud〉 + |udu〉 + |duu〉. Constructing such pure states is made
possible in the framework of the crystal bases, which can be defined in the limit q → 0 of the
deformation Uq(G) of any (semi)-simple classical Lie algebra G.

2 The model

Introducing in Uq→0(G) the operators ẽi and f̃i (i = 1, . . . , rank G), whose action on the elements
of Uq(G)-module is well-defined in the limit q → 0, a particular kind of basis in a Uq(G)-module
can be defined [3]. Such a basis is called a crystal basis and carries the property to undergo in
a specially simple way the action of the ẽi and f̃i operators: as an example, for any couple of
vectors u, v in the crystal basis B, one gets u = ẽiv if and only if v = f̃iu. More interesting for
our purpose is the property that, in the crystal basis, the basis vectors of the tensor product of
two irreducible representations are pure states, [3]. Let us emphasize once more the motivation
for our choice of the crystal basis. It is an observed fact that in the codons the order of the
nucleotides is of fundamental importance (e.g. CCU → Pro, CUC → Leu, UCC → Ser). We
want to consider the codons as composite states of the (elementary) nucleotides, but this surely
cannot be done in the framework of Lie (super)algebras. Indeed in the Lie theory the composite
states, obtained by the tensor product of the fundamental irreducible rpresentations, are linear
combinations of the elementary states, with symmetry properties determined by the tensor
product (i.e. for sl(n) by the structure of the corresponding Young tableau). The crystal basis
on the contrary provides us with the mathematical structure to build composite states as pure
states, characterized by the order of the constituents. In order to dispose of such a basis, we
need to consider the limit q → 0. Note that in this limit we do not deal anymore with a Lie
algebra either with an universal deformed enveloping algebra.

We consider the four nucleotides as basic states of the (1
2 ,

1
2) representation of the Uq(sl(2)⊕

sl(2)) quantum enveloping algebra in the limit q → 0. A triplet of nucleotides will then be
obtained by constructing the tensor product of three such four dimensional representations.
The algebra G = su(2) ⊕ su(2)) appears the most natural for our purpose. First of all, it is
“reasonable” to represent the four nucleotides in the fundamental representation of G. Moreover,
the complementary rule in the DNA–RNA transcription may suggest to assign a quantum number
with opposite values to the couples (A,T/U) and (C,G). The distinction between the purine bases
(A,G) and the pyrimidine ones (C,T/U) can be algebraically represented in an analogous way.
Thus considering the representation

(
1
2 ,

1
2

)
of the group SU(2) × SU(2) and denoting ± the
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basis vector corresponding to the eigenvalues ±1
2 of the J3 generator in any of the two su(2)

corresponding algebras, we will assume the following “biological” spin structure:

su(2)H
C ≡ (+,+) ←→ U ≡ (−,+)
su(2)V � � su(2)V

G ≡ (+,−) ←→ A ≡ (−,−)
su(2)H

(1)

the subscripts H (:= horizontal) and V (:= vertical) being just added to specify the group
actions.

To represent a codon, we will have to perform the tensor product of three
(

1
2 ,

1
2

)
representa-

tions of Uq→0(sl(2)⊕ sl(2)). We get, using the Kashiwara theorem [3], the following tables

(
3
2 ,

3
2

) ≡




CCC UCC UUC UUU
GCC ACC AUC AUU
GGC AGC AAC AAU
GGG AGG AAG AAA




(
3
2 ,

1
2

)1 ≡
(

CCG UCG UUG UUA
GCG ACG AUG AUA

)

(
3
2 ,

1
2

)2 ≡
(

CGC UGC UAC UAU
CGG UGG UAG UAA

)

(
1
2 ,

3
2

)1 ≡




CCU UCU
GCU ACU
GGU AGU
GGA AGA


 (

1
2 ,

3
2

)2 ≡




CUC CUU
GUC GUU
GAC GAU
GAG GAA




(
1
2 ,

1
2

)1 ≡
(

CCA UCA
GCA ACA

) (
1
2 ,

1
2

)2 ≡
(

CGU UGU
CGA UGA

)

(
1
2 ,

1
2

)3 ≡
(

CUG CUA
GUG GUA

) (
1
2 ,

1
2

)4 ≡
(

CAC CAU
CAG CAA

)

3 The Reading (or Ribosome) operator R
Our model does not gather codons associated to one particular a.a. in the same irreducible
multiplet. However, it is possible to construct an operator R out of the algebra Uq→0(sl(2) ⊕
sl(2)), acting on the codons, that will describe the Evarious genetic codes in the following way:

Two codons have the same eigenvalue under R if and only if they are associated to the same
amino-acid. This operator R will be called the reading operator. It is possible to construct
a R for the various genetic codes. Here we limit orselves to present in detail only the Reading
operator for the Eukaryotic code

REC = 4
3c1CH + 4

3c2CV − 4c1 PH JH,3 − 4c2 PV JV,3 + (−8c1 PD + (8c1 + 12c2)PS)JV,3

+ (−4c1 + 14c2) PAG

(
1
2 − J

(3)
V,3

)

+
[
12c2 PAU + (6c1 + 6c2) PUG

](
1
2 − J

(3)
V,3

)(
1
2 − J

(3)
H,3

)
,

(2)
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where
• the operators Jα,3 (α = H,V ) are the third components of the total spin generators of the
algebra Uq→0(sl(2)⊕ sl(2));

• the operator Cα is a Casimir operator of Uq→0(sl(2)) in the crystal basis. It commutes
with Jα± and Jα,3 (where Jα± are the generators with a well-defined behaviour for q → 0)
and its eigenvalues on any vector basis of an irreducible representation of highest weight J
is J(J + 1), that is the same as the undeformed standard second degree Casimir operator
of sl(2). Its explicit expression is

Cα = (Jα,3)2 + 1
2

∑
n∈Z+

n∑
k=0

(Jα−)n−k(Jα+)n(Jα−)k; (3)

• PH , PV , PD, PS , PAG, PAU and PUG are projectors operators given by:

PH = Jd
H+ J

d
H− and PV = Jd

V + J
d
V −, (4)

PD =
(
1− Jd

V + J
d
V −

) (
Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

)
+

(
1− Jd

H+ J
d
H−

) (
1− Jd

V + J
d
V −

(
1− Jd

H− J
d
H+

))
,

(5)

PS =
(
Jd

H− J
d
H+

) [(
Jd

H+ J
d
H−

) (
1− Jd

V + J
d
V −

)
+

(
Jd

V + J
d
V −

) (
Jd

V − J
d
V +

) (
1− Jd

H+ J
d
H−

)]
,

(6)

PAG =
(
Jd

H+ J
d
H−)(J

d
H− J

d
H+

) (
1− Jd

V + J
d
V −

) (
Jd

V − J
d
V +

)
, (7)

PAU =
(
1− Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

) (
Jd

V + J
d
V −

) (
Jd

V − J
d
V +

)
, (8)

PUG =
(
Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

) (
1− Jd

V + J
d
V −

) (
1− Jd

V − J
d
V +

)
. (9)

We get the following eigenvalues of the reading operators for the amino-acids (after a rescaling,
setting c ≡ c1/c2):

a.a. value of R a.a. value of R a.a. value of R
Ala −c+ 3 Gly −c+ 5 Pro −c− 1

Arg −c+ 1 His −3c+ 1 Ser 3c− 1

Asn 9c+ 5 Ile 5c+ 9 Thr 3c+ 3

Asp 5c+ 5 Leu c− 1 Trp 3c− 5

Cys 3c+ 7 Lys 17c+ 5 Tyr c+ 1

Gln 5c+ 1 Met 5c− 3 Val c+ 3

Glu 13c+ 5 Phe −7c− 1 Ter 9c+ 1

(10)

Remark that the reading operators R(c) can be used for any real value of c, except a finite
set of rational values confering the same eigenvalue to codons relative to two different amino-
acids. Moreover from our algebra it is possible to construct a hamiltonian which gives a very
satisfactory fit of the 16 values of the free energy released in the folding of RNA [1].
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codon a.a. JH JV codon a.a. JH JV

CCC Pro 3/2 3/2 UCC Ser 3/2 3/2
CCU Pro (1/2 3/2)1 UCU Ser (1/2 3/2)1

CCG Pro (3/2 1/2)1 UCG Ser (3/2 1/2)1

CCA Pro (1/2 1/2)1 UCA Ser (1/2 1/2)1

CUC Leu (1/2 3/2)2 UUC Phe 3/2 3/2
CUU Leu (1/2 3/2)2 UUU Phe 3/2 3/2
CUG Leu (1/2 1/2)3 UUG Leu (3/2 1/2)1

CUA Leu (1/2 1/2)3 UUA Leu (3/2 1/2)1

CGC Arg (3/2 1/2)2 UGC Cys (3/2 1/2)2

CGU Arg (1/2 1/2)2 UGU Cys (1/2 1/2)2

CGG Arg (3/2 1/2)2 UGG Trp (3/2 1/2)2

CGA Arg (1/2 1/2)2 UGA Ter (1/2 1/2)2

CAC His (1/2 1/2)4 UAC Tyr (3/2 1/2)2

CAU His (1/2 1/2)4 UAU Tyr (3/2 1/2)2

CAG Gln (1/2 1/2)4 UAG Ter (3/2 1/2)2

CAA Gln (1/2 1/2)4 UAA Ter (3/2 1/2)2

GCC Ala 3/2 3/2 ACC Thr 3/2 3/2
GCU Ala (1/2 3/2)1 ACU Thr (1/2 3/2)1

GCG Ala (3/2 1/2)1 ACG Thr (3/2 1/2)1

GCA Ala (1/2 1/2)1 ACA Thr (1/2 1/2)1

GUC Val (1/2 3/2)2 AUC Ile 3/2 3/2
GUU Val (1/2 3/2)2 AUU Ile 3/2 3/2
GUG Val (1/2 1/2)3 AUG Met (3/2 1/2)1

GUA Val (1/2 1/2)3 AUA Ile (3/2 1/2)1

GGC Gly 3/2 3/2 AGC Ser 3/2 3/2
GGU Gly (1/2 3/2)1 AGU Ser (1/2 3/2)1

GGG Gly 3/2 3/2 AGG Arg 3/2 3/2
GGA Gly (1/2 3/2)1 AGA Arg (1/2 3/2)1

GAC Asp (1/2 3/2)2 AAC Asn 3/2 3/2
GAU Asp (1/2 3/2)2 AAU Asn 3/2 3/2
GAG Glu (1/2 3/2)2 AAG Lys 3/2 3/2
GAA Glu (1/2 3/2)2 AAA Lys 3/2 3/2

Table 1: The eukariotic code. The upper label denotes different IR.

Biological organism Type number of sequences number of codons

1 Homo sapiens v 14 529 7 168 914
2 Saccharomyces cerevisiae f 11 771 5 691 597
3 Caenorhabditis elegans i 12 638 5 514 021
4 Rattus norvegicus v 4 430 2 135 734
5 Arabidopsis Thaliana p 3 533 1 497 366
6 Drosophila melanogaster i 2 625 1 443 176
7 Schizosaccharomyces pombe f 2 289 1 093 794
8 Gallus gallus v 1 454 701 782
9 Xenopus laevis v 1 255 551 494

10 Bos taurus v 1 217 528 790
11 Oryctolagus cuniculus v 674 335 049
12 Sus scrofa v 589 238 579
13 Zea mays p 603 222 493

Table 2: v) Vertebrates – i) Invertebrata – p) Plants – f) Fungi
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Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,36 2,05 2,26 2,52 0,23 0,16 0,53 1,00

Saccharomyces c. 3,44 2,64 2,22 2,19 1,10 1,28 1,73 1,83

Caenorhabditis e. 3,17 2,78 2,48 1,88 0,74 0,69 2,82 7,80

Rattus Norveg. 2,45 2,18 2,34 2,34 0,22 0,17 0,62 1,04

Arabidopsis Thal. 1,93 1,97 2,03 1,95 0,53 0,96 1,29 2,45

Drosophila mel. 0,78 0,89 0,75 0,41 0,21 0,18 0,96 4,02

Schizosaccharomyces 2,74 2,94 2,12 2,25 1,49 1,39 2,63 3,66

Gallus gallus 1,82 1,92 1,97 1,90 0,25 0,14 0,51 1,02

Xenopus laevis 4,09 4,32 4,04 3,39 0,48 0,32 1,00 1,70

Bos taurus 1,88 1,62 1,77 2,03 0,19 0,13 0,51 0,95

Oryctolagus cun. 1,51 1,49 1,31 1,50 0,15 0,10 0,45 0,88

Sus scrofa 1,59 1,59 1,50 1,62 0,16 0,12 0,45 0,89

Zea mays 0,87 0,69 0,83 0,98 0,19 0,24 0,39 0,85

Table 3: Branching ratio BAG

Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,45 2,44 1,96 3,22 0,36 0,30 0,41 0,66

Saccharomyces c. 2,57 3,44 2,54 2,75 2,06 1,17 3,73 4,00

Caenorhabditis e. 1,07 3,14 2,38 1,58 1,85 1,97 2,78 2,67

Rattus Norveg. 2,67 2,84 1,99 3,28 0,32 0,28 0,48 0,71

Arabidopsis Thal. 2,21 3,34 2,46 2,78 1,53 2,48 2,06 2,30

Drosophila mel. 0,40 1,03 0,63 0,37 0,38 0,22 1,12 3,13

Schizosaccharomyces 4,75 5,70 3,52 3,85 3,58 4,08 5,48 5,18

Gallus gallus 1,72 2,24 1,62 2,32 0,42 0,27 0,57 0,66

Xenopus laevis 3,63 4,68 3,57 4,80 0,73 0,59 1,12 1,06

Bos taurus 1,96 2,10 1,52 2,72 0,32 0,26 0,38 0,65

Oryctolagus cun. 1,63 1,82 1,18 2,03 0,28 0,21 0,34 0,53

Sus scrofa 1,72 2,10 1,43 2,42 0,27 0,23 0,36 0,59

Zea mays 0,78 1,00 0,94 1,08 0,54 0,59 0,67 1,06

Table 4: Branching ratio BUG

Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,90 3,82 3,13 3,99 0,51 0,49 0,96 1,41

Saccharomyces c. 1,29 2,06 1,58 1,66 1,09 0,51 1,49 1,62

Caenorhabditis e. 0,49 1,65 1,25 0,93 0,98 1,29 1,22 1,43

Rattus Norveg. 2,93 4,12 3,25 4,20 0,54 0,50 1,00 1,47

Arabidopsis Thal. 0,66 1,24 1,45 1,25 0,74 1,65 0,80 0,90

Drosophila mel. 1,12 2,52 1,59 1,17 0,54 0,36 2,38 6,53

Schizosaccharomyces 1,80 2,23 1,67 1,51 1,35 1,18 2,08 1,99

Gallus gallus 2,29 2,73 2,33 3,03 0,50 0,43 1,25 1,29

Xenopus laevis 2,85 4,02 3,38 4,09 0,58 0,48 1,14 1,17

Bos taurus 2,70 3,76 2,84 3,76 0,53 0,48 1,00 1,46

Oryctolagus cun. 2,58 3,83 2,51 3,70 0,54 0,48 1,18 1,55

Sus scrofa 2,58 3,94 2,95 3,75 0,56 0,50 1,05 1,56

Zea mays 0,90 1,48 1,79 1,70 0,80 0,98 1,75 2,22

Table 5: Branching ratio BCG
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4 Correlations of codon usage

In the following the labels X, Y , Z, V represent any of the 4 bases C, U , G, A. Let XY Z be
a codon in a given multiplet, say mi, encoding an a.a., say Ai. We define the probability of
usage of the codon XY Z as the ratio between the frequency of usage nZ of the codon XY Z
in the biosynthesis of Ai and the total number N of synthetized Ai, i.e. as the relative codon
frequency, in the limit of very large N . The frequency rate of usage of a codon in a multiplet is
connected to its probability of usage P (XY Z → a.a.). We define the branching ratio BZV as

BZV =
P (XY Z → Ai)
P (XY V → Ai)

, (11)

where XY V is another codon belonging to the same multiplet mi. It sounds reasonable to argue
that in the limit of very large number of codons, for a fixed biological organism and amino-acid,
the branching ratio depends essentially on the properties of the codon. In our model this means
that in this limit BZV is a function, depending on the type of the multiplet, on the quantum
numbers of the codons XY Z and XY V , i.e. on the labels Jα, J3

α, and on an other set of quantum
labels leaving out the degeneracy on Jα; in Table 1 different irreducible representations with the
same values of Jα are distinguished by an upper label. Moreover we assume that BZV , in the
limit above specified, depends only on the irreducible representation (IR) of the codons, i.e.:

BZV = FZV (b.o.; IR(XY Z); IR(XY V )), (12)

where we have explicitly denoted by b.o. the dependence on the biological species. Let us point
out that the branching ratio has a meaning only if the codons XY Z and XY U are in the same
multiplet, i.e. if they code the same amino-acid.

In the following, we consider the quartets and the quartet sub-parts of the sextets, i.e. the
4 codons which differ only for the codon in third position. There are five quartets and three
sextets in the eukariotic code: that will allow a rather detailed analysis. We recall that the
5 amino-acids coded by the quartets are Pro, Ala, Thr, Gly ,Val and the 3 amino-acids coded
by the sextets are Leu, Arg, Ser. There are, for the quartets, 6 branching ratios, of which only
3 are independent. We choose as fundamental ones the ratios BAG, BCG and BUG. It happens
that we can define several functions BZV , considering ratios of probability of codons differing
for the first two nucleotides XY , i.e.

BZV = FZV (b.o.; IR(XY Z); IR(XY V )),

B′
ZV = FZV (b.o.; IR(X ′Y ′Z); IR(X ′Y ′V )).

(13)

Then if the codon XY Z (XY V ) and X ′Y ′Z (X ′Y ′V ) are respectively in the same irreducible
representation, it follows that

BZV = B′
ZV . (14)

The analysis was performed on a set of data retrieved (May 1999) from the data bank of
“Codon usage tabulated from GenBank” [4]. In particular in [5] we analyzed the data set with
more than 64.000 codons and we found 34 biological species (neglecting 3 biological species
belonging to protozoo, bacteries and mushrooms). This has to be compared with the result
of [2] where such a correlation has been remarked for 12 biological species belonging only to the
vertebrate series. Here we present th results only for the subset of 13 species with more than
200.000 codons, see Table 2.

In Table 3, 4 and 5 the BAG, BUG and BCG are reported for the 13 amino-acids coded by
the quartets and sextets showing:
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• a clear correlation between the four amino-acids Pro, Ala, Thr and Ser. From Table 1
we see that for these amino-acids the irreducible representation involved in the numerator
of the branching ratios (see (11)) is always the same: (1/2, 1/2)1 for BAG, (1/2, 3/2)1

for BUG, (3/2, 3/2) for BCG, while the irreducible representation in the denominator is
(3/2, 1/2)1 for the whole set.

• a clear correlation between the two amino-acids Val and Leu. From Table 1 we see that
also for these two amino-acids the irreducible representation in the numerator of (11) is the
same: (1/2, 1/2)3 for BAG, (1/2, 3/2)2 for BUG, (1/2, 3/2)2 for BCG, and the irreducible
representation in the denominator is (1/2, 1/2)3.

• no correlation of the Arg and also of the Gly with the others amino-acids, in agreement
with the irreducible representation assignment of Table 1.

5 Conclusion

The model we propose is based on symmetry principles. The symmetry algebra Uq→0(sl(2) ⊕
sl(2)) that we have chosen has two main characteristics. First it encodes the stereochemical
property of a base, and also reflects the complementarity rule, by confering quantum numbers
to each nucleotide. Secondly, it admits representation spaces or crystal bases in which an
ordered sequence of nucleotides or codon can be suitably characterized. Let us add that it
is a remarkable property of a quantum algebra in the limit q → 0 to admit representations,
obtained from the tensorial product of basic ones, in which each state appears as a unique
sequence of ordered basic elements. In this framework, the correspondence codon/amino-acid is
realized by the operator Rc, constructed out of the symmetry algebra, and acting on codons: the
eigenvalues provided by Rc on two codons will be the same or different following the two codons
are associated to the same or to two different amino-acids. The model does not necessarily
assign the codons in a multiplet (in particular the quartets, sextets and triplet) to the same
irreducible representation. This feature is relevant as it may explain the different codon usage
between codons encoding the same a.a.. Indeed, as we have shown in this paper, it fits very well
with our model the observed fact that for any biological organism, in the limit of large number of
biosynthetized amino-acids, the ratios BAG, BUG and BCG for, Pro, Ala, Thr, Ser, in one side,
and Val, Leu, in other side, are very close. Let us remark that obviously these ratios depend on
the biological organism and we are unable to make any prevision on their values, but only that
their values should be correlated.
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The relativistic wave equations proposed by Moshinsky and Smirnov [1] are analysed. It is
proved that these equations are causal. A simple algorithm for solving of these equations for
particles interacting with a constant magnetic fields proposed.

1 Introduction

Let us consider the wave equation for particle with arbitrary spins proposed by Moshinsky and
Smirnov [1]. For s = 1 these equations have the form

p0ψ = Hψ, H =
(
ᾱ(1) + ᾱ(2)

)
p̄ +

(
β(1) + β(2)

)
m, (1)

where ᾱ(1), ᾱ(2), β(1), β(2) are 16 × 16 matrices which can be written in the form

α(i)
a = γ

(i)
0 γ(i)

a , β(i) = γ
(i)
0 , i = 1, 2, a = 1, 2, 3 (2)

and the matrices γ
(1)
µ , γ(2)

µ are connected to Dirac matrices γµ as

γ(1)
µ = γµ ⊗ I4, γ(2)

µ = I4 ⊗ γµ. (3)

The matrices βµ = 1
2(γ(1)

µ + γ
(2)
µ ) satisfy the Kemmer–Duffin relations

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ. (4)

Using (4), equation (1) can be rewritten as

p0ψ = H̄ψ, H̄ = [β0, βa]pa + β0m. (5)

2 Transformation to the quasidiagonal form

Now let us show that equation (5) can be reduced to the system of three uncoupled equations.
To do this, we transform βµ using the unitary transformation βµ → β̂µ = UβµU

†, where [3]

U =
1 − i

2
(e1,1 + e1,13 + e2,2 + e2,14 + e3,3 + e3,15 − e10,8 + e10,12 − e11,4 − e11,16

+ e13,15 − e13,9 + e14,6 − e14,10 + e15,7 − e15,11)

+
1 + i

2
(−e4,5 − e4,9 − e5,6 − e5,10 − e6,7 − e6,11 − e7,1 + e7,13 − e8,2 + e8,14

− e9,3 + e9,15 − e12,4 + e12,16 + e16,8 + e16,12).

(6)
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Here ei,j stand for the square matrices, whose only nonzery entry, equal to unity, is located at
the intersection of i-th row and j-th column.

As a result we obtain

β̂µ =


 β

(10)
µ · ·

· β
(5)
µ ·

· · 0


 , µ = 0, 1, 2, 3, (7)

where β
(10)
µ , β(5)

µ are Kemmer–Duffin 5 × 5 and 10 × 10 matrices correspondingly:

β
(10)
0 = i(e1,7 + e2,8 + e3,9 − e7,1 − e8,2 − e9,3), β

(5)
0 = −i(e1,2 − e2,1),

β
(10)
1 = −i(e1,10 − e5,9 + e6,8 + e8,6 − e9,5 + e10,1), β

(5)
1 = i(e1,3 + e3,1),

β
(10)
2 = −i(e2,10 + e4,9 − e6,7 − e7,6 + e9,4 + e10,2), β

(5)
2 = i(e1,4 + e4,1),

β
(10)
3 = −i(e3,10 − e4,8 + e5,7 + e7,5 − e8,4 + e10,3), β

(5)
3 = i(e1,5 + e5,1).

(8)

Then equation (5) will be reduced to the system of three equations

p0ψ(10) =
(
[β(10)

0 , β(10)
a ]pa + β

(10)
0 m

)
ψ(10), (9.a)

p0ψ(5) =
(
[β(5)

0 , β(5)
a ]pa + β

(5)
0 m

)
ψ(5), (9.b)

p0ψ(1) = 0. (9.c)

Equation (9.c) is not hyperbolic and hence system (5) is not causal.
Equations (9.a), (9.b) can be represented in the form

p0ψ(k) = Ĥψ(k), Ĥ =
1
n1

(Sa4pa + S45m), k = 5, 10, (13)

where S0a = [β0, βa], Sab = i[βa, βb], S45 = β4, S4a = −iβa are matrices which belong to
algebra AO(5). The irreducible representations of AO(5) are labelled by pairs of numbers (n1, n2)
(simultaneously integer or half-integer). Any of equations proposed in [1] can be reduced to a
system of uncoupled equations, corresponding to these irreducible representations.

3 Analysis of hyperbolicity

The Hamiltonian Ĥ can be reduced to the diagonal form using operator

U1 = exp
(
i
Si5pi

p
arctan

p

m

)
= exp(iA), where p =

√
p2
1 + p2

2 + p2
3. (14)

Taking into account the Campbell–Hausdorff formula

exp(−iA)B exp(iA) = B − i[A,B] − 1
2!

[A, [A,B]] + · · ·

and the commutation relations of AO(4)

[Sµν , Sρσ] = i(δµρSνσ + δνσSµρ − δµσSνρ − δνρSµσ),
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we find H̄ = U1ĤU−1
1 = 1

n1
S45

√
p2 + m2. Thus we come to the equations

p0ψ
′ = H̄ψ′, H̄ =

1
n1

S45

√
p2 + m2, (15)

where ψ′
(k) = eiAψ(k) (k = 5, 10).

Form (15) is suitable for studying of hyperbolicity of equation (1). Let us take the matrix
S45 in the diagonal form and consider two cases: n1, n2 are half-integer and n1, n2 are integer.

For the first case the reduction of O(5) to O(4) and O(4) to O(3) shows that system (15) is
hyperbolical.

Indeed, bearing in mind that the eigenvalues of the matrix S45 are

s =
n1 + n2

2
,
n1 + n2 − 1

2
,
n1 + n2 − 2

2
, . . . , 0

and their multiplicity is given by the formula [2]

Ms =

{
(n1 − n2 + 1)(n1 + n2 + 1 − 2s), s ≥ (n1 − n2)/2,

(2n1 + 1)(2s + 1), s < (n1 − n2)/2,

we find that Ψ′ satisfies the equation∏
s

(
p2
0 −

1
s
c2p2

)Ms

Ψ′ = 0. (16)

It follows from (16) that system (15) is hyperbolical and the velocity of waves described by
this system can have different values c̃s and c̃s ≤ c. So the velocity of propagation does not
exceed the velocity of light and the causality is not broken.

For n1, n2 integer we have equation (9.c), and hence the causality is broken.

4 Equation for particle interacting with constant magnetic field

Consider the generalized equation (13) which describes a particle interacting with constant
magnetic field which is directed along x3.

In accordance with the principle of minimal coupling we change

pµ → πµ = pµ − eAµ, (17)

where A0 = A2 = A3 = 0, A1 = eHx2.
It is straightforward to check that H satisfies the following relations

Ĥ3 − Ĥξ ∓MH = 0, (18)

where ξ = π2
1 + π2

2 − 2S12H + M2, M2 = m2 + p2
3.

Inasmuch as the operators H, S12H, π2 − 2S12H commute, relations (17) can be replaced by
the relations for eigenvalues of these operators

E3 − E
(
(2n + 1)ω ± ω + m2 + p2

3

) ∓ (
m2 + p2

3

)
H = 0, (19)

where ω = (eH)1/2.
In [1] Moshinsky and Smirnov obtained sixth order algebraic equations for the eigenvalues

of H. We show that these equations can be factorized into the product of two third order
equations.

For the case of spin 3/2 the authors of [1] found tenth order algebraic equations for the
eigenvalues of H. Using our approach, it is possible to show that in fact these equations also
can be factorized into the product of sixth and fourth order equations.
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5 Problem of complex energies

Analysing equation (19), we see that for

H >
M2

4
(20)

the eigenvalues of Hamiltonian become complex.
The appearance of complex energies in the problem of interaction of a particle with the

constant magnetic field is typical for the equations with higher spins [3]. Thus, the equations
which were proposed in [1] also have nonphysical solutions corresponding to complex energies.

Let us note that the magnetic field, satisfying (20), is exteremely strong one, and hardly can
be encountered in practice. Therefore, the appearance of complex energy eigenvalues should not
be considered as an obstacle for application of the equation in question.

6 Conclusions

Analysing the equations for arbitrary spin given above, we found that

1. For the case of half-integer spin these equations are hyperbolical.

2. For the case of integer spin the hyperbolicity is broken in view of appearing of the solutions
which correspond to zero energies and these solutions must be rejected.

3. Hyperbolical solutions of equation (13) describe waves having velocity less than c.

4. The equation for energy eigenvalues of (13) with magnetic field can be reduced to algebraic
equations, whose order is less than that of the equations given in paper [1].

5. This equation, like other equations with higher spins, has solutions with complex energies.
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Using the self-consistent renormalization (SCR), a careful study of complicated tangle of
problems associated with renormalizations, symmetries conservation, their breaking and
anomalies is performed for some set of UV-divergent Feynman amplitudes (FA’s) connected
with mass-anysotropic AVV- and AAA-triangles in the space-time n = 4. Most general
quantum corrections (QC’s) to the canonical Ward identities (WI’s) and some nontrivial
“daughter reduction identities” (DRI’s) are obtained. The results are new both for a nonde-
generate case and for the chiral case. For a nondegenerate case (m1 �= m2 �= m3, ml �= 0),
the QC’s are the zero degree homogeneous functions of masses and are expressed in terms
of the Appel hypergeometric functions F1. For the chiral case (m = 0) and the chiral limit
(m → 0) the behaviour of the AVV- and AAA-amplitudes depends crucially on the discrete
symmetry of these amplitudes in the cases m = 0 and m → 0. In the chiral case the QC’s
to “left-handed” WI’s vanish. This may give some insight into why just the left-handed
neutrino exists in Nature.

1. Symmetries of quantum field theories (QFT) often manifest themselves via certain formal
relations between UV-divergent FA’s known as the canonical WI’s (CWI’s). Anomalies of QFT’s
occur as breakdown of the CWI’s at the level of regular (finite) values of FA’s [1–3]. We hope to
clarify some obscure points in these violations by employing the SCR [4] to spinor triangle FA’s,
as the most important subject in such investigations, and to illustrate possibilities of the SCR.
Recall that the SCR is an effective realization of the Bogoliubov–Parasiuk R-operation [5] which
is complemented with recurrence, compatibility and differential relations fixing a renormalization
arbitrariness of the R-operation in some universal way based on mathematical properties of FA’s
only.

2. The main Feynman amplitude corresponding to the triangle spinor graph of the most
general kind (different masses, arbitrary Clifford structure of vertices, the n-dimensional space-
time with the (q, p)-signature) looks as follows:

Iγ1γ2γ3(m, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr[γ1(m1 + p̂1)γ2(m2 + p̂2)γ3(m3 + p̂3)](

m2
1 − p2

1 − iε1
) (
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) ,
(dnp) := dnp1d

np2d
np3, p̂l := γµplµ, m := (m1,m2,m3), k := (k1, k2, k3),

δ(p, k) := δ(−k1 + p3 − p1) δ(−k2 + p1 − p2) δ(−k3 + p2 − p3).

(1)

The matrices γi, γµ, Ig act in the Ng-dimensional space of the faithful representation πg of lowest
dimension for the Clifford algebra Cl(g)K, K = R or C, with γµ ∈ Λ1(g), µ = 1, . . . , n, being
the generating elements of the Cl(g)K-algebra in its matrix representation πg; also γi ∈ Λk(g),
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i = 1, 2, 3, are some k-degree (k = 0, 1, . . . , n) homogeneous elements of the Cl(g)K-algebra
in the πg-representation; Ig is Ng-dimensional unit matrix. The natural analog of the Dirac
γ5-matrix is γ∗ := γ1γ2 · · · γn ∈ Λn(g), with properties

γµγ∗ = (−1)n+1γ∗γµ, µ = 1, . . . , n, γ2
∗ = ε(g)Ig, ε(g) := (−1)q(−1)n(n−1)/2. (2)

3. The UV-divergent FA’s (1) satisfy formally the canonical WI’s (CWI’s):

k1µI
(γµγ)γ2γ3(m, k) = Dγ̇γ2γ3

1 (m, k) =

= (−1)π1P γγ2γ3
1 (m, k)− P γγ2γ3

3 (m, k) + (m3 − (−1)π1m1) Iγγ2γ3(m, k),

k2αI
γ1(γαγ)γ3(m, k) = Dγ1γ̇γ3

2 (m, k) =

= (−1)π2P γ1γγ3
2 (m, k)− P γ1γγ3

1 (m, k) + (m1 − (−1)π2m2) Iγ1γγ3(m, k),

k3βI
γ1γ2(γβγ)(m, k) = Dγ1γ2γ̇

3 (m, k) =

= (−1)π3P γ1γ2γ
3 (m, k)− P γ1γ2γ

2 (m, k) + (m2 − (−1)π3m3) Iγ1γ2γ(m, k).

(3)

Here the quantities Dγ̇γ2γ3
1 (m, k), Dγ1γ̇γ3

2 (m, k), Dγ1γ2γ̇
3 (m, k), P γ1γ2γ3

l (m, k) are similar to the
main amplitude Iγ1γ2γ3 and differ from it only in polynomials of the integrand:

Dγ̇γ2γ3
1 (m, k)←→ (p3 − p1)µ tr [γµγ(m1 + p̂1)γ2(m2 + p̂2)γ3(m3 + p̂3)],

Dγ1γ̇γ3
2 (m, k)←→ (p1 − p2)α tr [γ1(m1 + p̂1)γαγ(m2 + p̂2)γ3(m3 + p̂3)],

Dγ1γ2γ̇
3 (m, k)←→ (p2 − p3)β tr [γ1(m1 + p̂1)γ2(m2 + p̂2)γβγ(m3 + p̂3)];

(4)

P γ1γ2γ3
1 (m, k)←→ tr [γ1(m2

1 − p2
1)γ2(m2 + p̂2)γ3(m3 + p̂3)],

P γ1γ2γ3
2 (m, k)←→ tr [γ1(m1 + p̂1)γ2(m2

2 − p2
2)γ3(m3 + p̂3)],

P γ1γ2γ3
3 (m, k)←→ tr [γ1(m1 + p̂1)γ2(m2 + p̂2)γ3(m2

3 − p2
3)].

(5)

In Eqs.(3) the vector CWI’s (γ = Ig) and the axial-vector CWI’s (γ = γ∗) are represented in
the uniform manner. The factors (−1)πi stem from the commutation relations γσγ = (−1)πγγσ,
s = 1, . . . , n, and are equal: (−1)πi = 1 if γ = Ig, ∀n, or γ = γ∗, n = 2r + 1; (−1)πi = −1 if
γ = γ∗, n = 2r.

4. The reduction identities (RI’s) is a name given to the obvious identities:

P γ1γ2γ3

lε (m, k) = P
γ1γ2γ3

lε (m(l), k), l = 1, 2, 3,

m(1) ≡ (m2,m3), m(2) ≡ (m1,m3), m(3) ≡ (m1,m2),
(6)

in which we use the simple idea of cancelling the equal factors in factorized polynomials in
numerators and the denominator of integrands. For example, for l = 1,

P γ1γ2γ3
1ε (m, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr

[
γ1

(
m2

1 − p2
1 − iε1

)
γ2 (m2 + p̂2) γ3 (m3 + p̂3)

](
m2

1 − p2
1 − iε1

) (
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) , (7)

P
γ1γ2γ3

1ε (m2,m3, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr [γ1γ2 (m2 + p̂2) γ3 (m3 + p̂3)](
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) . (8)

The RI’s (6) naturally induce primitive daughter RI’s (DRI’s) via decompositions involving:
i) the Clifford tensors tr(γ1γ2m2γ3m3), tr(γ1γ2m2γ3γσ), tr(γ1γ2γσγ3m3), tr(γ1γ2γσγ3γτ ), for
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l = 1; ii) the symmetric and antisymmetric parts 1
2(p

σ
ap

τ
b ± pσ

b p
τ
a) of the p

σ
ap

τ
b ; iii) the tensor

structures 1, kσ
i , g

στ , (ki, kj)στ := (kσ
i k

τ
j + kσ

j k
τ
i ), [ ki, kj ]στ := (kσ

i k
τ
j − kσ

j k
τ
i ), with independent

external momenta (e.g., k2, k3, or k1, k2, or k1, k3). There are 10 primitive DRI’s, ∀ l = 1, 2, 3.
The difference between P γ1γ2γ3

l (m, k) involved in Eqs.(3) and P γ1γ2γ3

lε (m, k) results from iεl-terms
in polynomials of numerators.

5. The amplitude Iγ1γ2γ3(m, k) has the divergence index ν = n− 3, whereas the amplitudes
Dγ̇γ2γ3

1 (m, k), Dγ1γ̇γ3
2 (m, k), Dγ1γ2γ̇

3 (m, k), P γ1γ2γ3

l (m, k), P γ1γ2γ3

lε (m, k), P γ1γ2γ3

lε (m(l), k), l =
1, 2, 3, have the divergence index ν + 1 = n− 2. The regular values for all of them are obtained
according to [4] and are given in [6] in the most general form (for arbitrary Clifford structure
of vertices and for n-dimensional space-time with the (q, p)-signature). It turns out that so
calculated regular values satisfy the identities:

k1µ(RνI)(γ
µγ)γ2γ3(m, k) = (Rν+1D1)γ̇γ2γ3(m, k)

= (−1)π1(Rν+1P1)γγ2γ3 − (Rν+1P3)γγ2γ3 + (m3 − (−1)π1m1) (Rν+1I)γγ2γ3 ,

k2α(RνI)γ1(γαγ)γ3(m, k) = (Rν+1D2)γ1γ̇γ3(m, k)

= (−1)π2(Rν+1P2)γ1γγ3 − (Rν+1P1)γ1γγ3 + (m1 − (−1)π2m2) (Rν+1I)γ1γγ3 ,

k3β(RνI)γ1γ2(γβγ)(m, k) = (Rν+1D3)γ1γ2γ̇(m, k)

= (−1)π3(Rν+1P3)γ1γ2γ − (Rν+1P2)γ1γ2γ + (m2 − (−1)π3m3) (Rν+1I)γ1γ2γ ,

(9)

which are referred to as the regular analog (RA) of the CWI’s [6]. It is important to note that
the last terms in the identities (9) are calculated by the renormalization index ν + 1, although
their proper divergence index is ν. It is this peculiarity that permits the RA of the CWI’s (9)
both to imitate the CWI’s (3) and to differ from them simultaneously. It is this peculiarity that
permits to obtain some effective formulae for calculating of the quantum corrections (QC’s) to
the CWI’s in the most general nonchiral case [6].

6. The primitive DRI’s stemming from tensors tr(γ1γ2γσγ3γτ ), tr(γ1γσγ2γ3γτ ), tr(γ1γσγ2γτγ3),
1
2(p

σ
ap

τ
b − pσ

b p
τ
a), and

1
2 [k2, k3]στ are as follows:

(
Rν+1Plε[a,b]

)στ (m, k) =
(
Rν+1P lε[a,b]

)στ (m(l), k), a, b �= l, a < b, l = 1, 2, 3, (10)

(
Rν+1Plε[a,b]

)στ (m, k) = (2π)nδ(k)b(g)tr(·)1
2
[k2, k3]στ (−1)l−1

(
Rν+1P

[2,3]
lε

)
(m, k), (11)

(
Rν+1P

[2,3]
lε

)
(m, k) :=

∫
Σ2

dµ(α)
∆n/2

{αl

∆
(m2

l − iεl)
(
Rν+1F)

20
− αl

∆
Y 2

l

(
Rν+1F)

40

+
[αl

∆

(n
2
+ 1

)
− 1

]
∆−1

(
Rν+1F)

41

}
= 0.

(12)

The zero result in Eq.(12) is due to
(
Rν+1P lε[a,b]

)στ (m(l), k) = 0, which in turn follows
from the antisymmetry of the 1

2 (p
σ
ap

τ
b − pσ

b p
τ
a) and from the special external momentum de-

pendence in this case (independent momenta are: k3 or k1 + k2 for l = 1, etc.). Here-

after the integration measure is dµ(α) := δ

(
1−

3∑
l=1

αl

)
dα1 dα2 dα3, the integration region

is Σ2 :=
{
αl|αl ≥ 0, l = 1, 2, 3,

3∑
l=1

αl = 1
}
, overall δ-function is δ(k) := δ(−k1 − k2 − k3),

and the metric dependent constant is b(g) :=
(
πn/2ip

)
/(2π)n, where p is the number of positive
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squares in the space-time metric g. The basic functions (Rν+1F)sj and the determining numbers
ν1

sj , λ
1
sj , and ω appearing in them are defined as:

(
Rν+1F)

sj
:=M ω+j

ε Z
1+ν1

sj
ε Γ(λ1

sj)/Γ(2 + ν1
sj) 2F1

(
1, λ1

sj ; 2 + ν1
sj ; Zε

)
,

ν1
sj := [(ν + 1− s)/2] + j, λ1

sj := 1 + ν1
sj − ω − j, ω := n/2− 3.

(13)

The [(ν+1−s)/2] in Eqs.(13) is the integral part of the number (ν+1−s)/2. The α-parametric
functions Zε, Mε, A, ∆, Yl, involved in Eqs.(11)–(13) have the form:

Zε := A/Mε, Mε :=
3∑

l=1

αl(m2
l − iεl), ∆ := α1 + α2 + α3,

A := ∆−1
[
α1(α2 + α3)k2

2 + α3(α2 + α1)k2
3 + 2α1α3(k2 · k3)

]
,

Y1 := ∆−1[(α2 + α3)k2 + α3k3], Y2 := ∆−1[−α1k2 + α3k3],

Y3 := ∆−1[−α1k2 − (α1 + α2)k3].

(14)

7. Now let us consider the AVV (γ1 = γµγ∗, γ2 = γα, γ3 = γβ) and the AAA (γ1 = γµγ∗,
γ2 = γαγ∗, γ3 = γβγ∗) spinor amplitudes for n = 4 [7]. There is the relation

Iµαβ(AAA)(m1,m2,m3, k) = ε(g)Iµαβ(AV V )(m1, −m2,m3, k) (15)

between them. Therefore, in the chiral case (ml = 0, ∀ l) they may differ only by the sign.
Using Eqs.(12) and the compatibility relations (RνF)sj =

(
Rν+1F)

s+1,j
one finds that the

regular values of the main triangle amplitudes (1) after calculating nonzero traces have the
followimg representation (here ν = 1 and ω = −1):

(RνI)µαβ(···) (m1,m2,m3, k) = (2π)4δ(k)C(···)(g)
∫

Σ2

dµ(α)
∆2

×
{
εµαβτk2τ (RνI1)

(···) (m,α, k) + εµαβτk3τ (RνI2)
(···) (m,α, k)

+εµαστk2σk3τ (RνI3)β(m,α, k) + εµβστk2σk3τ (RνI4)α(m,α, k)
}
,

(16)

where integrands (RνIl)(···)(m,α, k), etc., and constants C(···)(g) are given as follows:

(RνI1)
(···) :=−

[
±m2m3

α2 + α3

∆
+ (m3 ∓m2)m1

α1

∆
+ µ1

α1

∆

]
(RνF)10

+
[
k2

2

α1(α2 + α3)
∆2

− k2
3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI2)
(···) :=

[
±m2m1

α2 + α1

∆
+ (m1 ∓m2)m3

α3

∆
+ µ3

α3

∆

]
(RνF)10

+
[
k2

2

α1(α2 + α3)
∆2

− k2
3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI3)
β :=− 2

[
kβ

2

α1α3

∆2
+ kβ

3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI4)
α :=2

[
kα

2

α1(α2 + α3)
∆2

+ kα
3

α1α3

∆2

]
(RνF)30 , µl := (m2

l − iεl),

(17)
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C(AAA)(g) := ε(g)C(AV V )(g), C(AV V )(g) := ε(g) tr (Ig)
(
π2ip

)
/(2π)4. (18)

The basic functions (RνF)sj , along with the determining numbers νsj , λsj , are defined as:

(RνF)sj :=M ω+j
ε Z

1+νsj
ε Γ(λsj)/Γ(2 + νsj) 2F1(1, λsj ; 2 + νsj ; Zε),

νsj := [(ν − s)/2] + j, λsj := 1 + νsj − ω − j, ω := n/2− 3.
(19)

In Eqs.(16)–(17), the notation (· · ·) means (AVV) or (AAA). Hereafter the upper signs in (±)
or (∓) correspond to the AVV-amplitudes while the lower ones to the AAA-amplitudes. The
relation (15) and its chiral (ml = 0, ∀ l) form are obeyed at the regular level as well.

8. The first and second amplitudes in the first lines of Eqs.(9) take the form:



k1µ(RνI)µαβ(···)(m, k)

k2α(RνI)µαβ(···)(m, k)

k3β(RνI)µαβ(···)(m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τ

(
Rν+1D

[2,3]
1

)(:..)

εµβστk2σk3τ

(
Rν+1D

[2,3]
2

)(.:.)

εµαστk2σk3τ

(
Rν+1D

[2,3]
3

)(..:)


 , (20)

(
Rν+1D

[2,3]
l

)(···)
(m, k) :=

∫
Σ2

dµ(α)
∆2

(
Rν+1D[2,3]

l

)(···)
(m,α, k), l = 1, 2, 3, (21)

(
Rν+1D[2,3]

1

)(:..)
(m,α, k) :=

[
(m3 +m1)m

(:..)
20 + i

(
ε1
α1

∆
+ ε3

α3

∆

)] (
Rν+1F)

20
,

(
Rν+1D[2,3]

2

)(.:.)
(m,α, k) :=

[
(m1 ∓m2)m

(.:.)
20 − i

(
ε1
α1

∆
+ ε2

α2

∆

)] (
Rν+1F)

20
,

(
Rν+1D[2,3]

3

)(..:)
(m,α, k) :=

[
(m2 ∓m3)m

(..:)
20 + i

(
ε2
α2

∆
+ ε3

α3

∆

)] (
Rν+1F)

20
,

(22)

m
(:..)
20 (m,α) := −( m1α1 ±m2α2 +m3α3)∆−1,

m
(.:.)
20 (m,α) := −(−m1α1 ±m2α2 +m3α3)∆−1,

m
(..:)
20 (m,α) := −(±m1α1 +m2α2 ∓m3α3)∆−1.

(23)

The notations: (: ..) := (ȦVV) or (ȦAA), (. : .) := (AV̇V) or (AȦA), (.. :) := (AVV̇) or (AAȦ)
are used in Eqs.(20)–(23) and further on.

9. The first and second amplitudes in the second lines of Eqs.(9) are as follows:

[ (
Rν+1P1

)αβ(:..) (m, k)(
Rν+1P3

)αβ(:..) (m, k)

]
= (2π)4δ(k)C(···)(g)εαβστk2σk3τ


 −

(
Rν+1P

[2,3]
1

)
−

(
Rν+1P

[2,3]
3

)

 ,

[ (
Rν+1P2

)µβ(.:.) (m, k)(
Rν+1P1

)µβ(.:.) (m, k)

]
= (2π)4δ(k)C(···)(g)εµβστk2σk3τ


 ∓

(
Rν+1P

[2,3]
2

)
(
Rν+1P

[2,3]
1

)

 ,

[ (
Rν+1P3

)µα(..:) (m, k)(
Rν+1P2

)µα(..:) (m, k)

]
= (2π)4δ(k)C(···)(g)εµαστk2σk3τ


 ±

(
Rν+1P

[2,3]
3

)
−

(
Rν+1P

[2,3]
2

)

 .

(24)
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The
(
Rν+1P

[2,3]
l

)
(m, k) in Eqs.(24) are almost the same as the

(
Rν+1P

[2,3]
lε

)
(m, k) in Eq.(12) in

which the (m2
l − iεl) must be replaced by the m2

l in the braces. Notice that Eq.(12) is the only
nontrivial primitive DRI, ∀ l = 1, 2, 3, in the AVV- and AAA-cases, n = 4. Taking into account
the vanishing r.h.s. of Eq.(12), one obtains the important result:

(
Rν+1P

[2,3]
l

)
(m, k) =

∫
Σ2

dµ(α)
∆2

iεl
αl

∆
(
Rν+1F)

20
, l = 1, 2, 3. (25)

Due to properties of the hypergeometric function 2F1 it follows (for l = 1, 2, 3) that

(
Rν+1P

[2,3]
l

)
(m, k) =

{
0, if (εs → 0, ms �= 0 or ms = m → 0, ∀ s);
1/6, if (ms → 0, εs = ε → 0, ∀ s). (26)

10. The third amplitudes in the second lines of Eqs.(9) calculated by the renormalization
index ν + 1 = 2 are as follows:


(
Rν+1I

)αβ(:..) (m, k)(
Rν+1I

)µβ(.:.) (m, k)(
Rν+1I

)µα(..:) (m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τ

(
Rν+1I [2,3]

)(:..)

εµβστk2σk3τ

(
Rν+1I [2,3]

)(.:.)

εµαστk2σk3τ

(
Rν+1I [2,3]

)(..:)


 , (27)

where(
Rν+1I [2,3]

)(:..)
(m, k) :=

∫
Σ2

dµ(α)
∆2

m
(:..)
20 (m,α)

(
Rν+1F)

20
, etc., (28)

and the quantities m(:..)
20 (m,α), etc., are defined in Eq.(23).

11. As a result the regular analogs of the CWI’s (9) take the form:

(
Rν+1D

[2,3]
1

)(:..)
=

(
Rν+1P

[2,3]
1

)
+

(
Rν+1P

[2,3]
3

)
+ (m3 +m1)

(
Rν+1I [2,3]

)(:..)
,(

Rν+1D
[2,3]
2

)(.:.)
= −

(
Rν+1P

[2,3]
2

)
−

(
Rν+1P

[2,3]
1

)
+ (m1 ∓m2)

(
Rν+1I [2,3]

)(.:.)
,(

Rν+1D
[2,3]
3

)(..:)
=

(
Rν+1P

[2,3]
3

)
+

(
Rν+1P

[2,3]
2

)
+ (m2 ∓m3)

(
Rν+1I [2,3]

)(..:)
.

(29)

Limiting values of quantities in Eqs.(29) depend strongly on the limit employed.
12. Let us first consider a nonchiral case. Here, due to Eqs.(25)–(26), the r.h.s. of Eqs.(24)

and terms in Eqs.(20)–(22) containing εl are zero for εl → 0, l = 1, 2, 3. The quantum corrections
(anomalous contributions) to the CWI’s appear as


aαβ(:..)(m, k)

aµβ(.:.)(m, k)

aµα(..:)(m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τa

(:..)(m1,m2,m3)

εµβστk2σk3τa
(.:.)(m1,m2,m3)

εµαστk2σk3τa
(..:)(m1,m2,m3)


 , (30)

where the mass functions a(...)(m1,m2,m3) have the integral representation:

a(:..)(m1,m2,m3) :=
∫

Σ2

dµ(α)
∆2

m
(:..)
20 (m,α)

[
(Rν+1F)20 − (RνF)20

]
, etc., (31)

[
(Rν+1F)20 − (RνF)20

]
= −M−1

ε , as for n = 4, ν20 = −1, λ20 = 1, ω = −1;
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for a nonchiral nondegenerate case they are expressed in terms of the Appel hypergeometric
functions F1 of two variables (e.g., x := m1/m2, y := m3/m2 if m2 �= 0) [6, 7]:

a(:..)(m1,m2,m3) =
y + x

6

[
xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
± F1

(
1, 1, 1; 4; 1− x2, 1− y2

)
+ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
,

a(.:.)(m1,m2,m3) =
x∓ 1
6

[
−xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
± F1

(
1, 1, 1; 4; 1− x2, 1− y2

)
+ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
,

a(..:)(m1,m2,m3) =
1∓ y

6

[
±xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
+ F1

(
1, 1, 1; 4; 1− x2, 1− y2

) ∓ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
.

(32)

This confirms the Frampton’s conjecture [8] about a possibility of a mass dependence of the
axial-vector anomaly. But the nature of such a dependence revealed here is strongly different
from the Frampton’s one. Actually it is closely tied with a mass spectrum of fermions and with
flavor current structures producing non-conserved vector currents. The Frampton’s mechanism
appeals to prorerties of the dimensional regularization.
For the degenerate nonchiral case (m1 = m2 = m3 ≡ m �= 0), the Eqs.(32) display the famous

mass-independent Adler–Bell–Jackiw result [1, 2]:

a(ȦV V )(m,m,m) = 1, a(AV̇ V )(m,m,m) = a(AV V̇ )(m,m,m) = 0,

a(ȦAA)(m,m,m) = −a(AȦA)(m,m,m) = a(AAȦ)(m,m,m) = 1/3,
(33)

about the axial-vector anomaly (trivial QC’s to the CWI’s in our terminology).
13. Now we turn to the chiral behaviour. Let us consider two ways leading to the chiral

state in renormalized amplitudes at hand: (i) the (ε,m)-limit, when first εl → 0 and then
ml = m → 0, l = 1, 2, 3; (ii) the (m, ε)-limit, when first ml → 0 and then εl = ε → 0, l = 1, 2, 3.
In the (ε,m)-limit, all the amplitudes for AVV- and AAA-cases inherit the behaviour of those in
the degenerate nonchiral case considered in [6]; the QC’s to CWI’s are the same as in Eqs.(33).
In the (m, ε)-limit all amplitudes for the AVV- and AAA-cases coincide with each other (apart
from the factor ε(g) = (−1)q of course). Here the QC’s to CWI’s are caused by the nonzero
contributions of the amplitudes

(
Rν+1P

[2,3]
l

)(···)
(m, k). The results are summarized in Table 1.

Thus, the chiral limit (m → 0) and the chiral case (m = 0) are equivalent for the AAA-
amplitude and differ for the AVV-amplitude. This reflects the different kind of discrete sym-
metries (DS) of these amplitudes for m �= 0 and m = 0. The AAA-amplitude has the DS of
equilaterial triangle both for m �= 0 and for m = 0, in contrast to the AVV-amplitude having
the DS of isosceles triangle for m �= 0 which at m = 0 enlarges abruptly to the DS of equilaterial
triangle.

14. For the complex Clifford algebra Cl(g)C, the matrix γ∗ in Eq.(2) may be always redefined
as γ∗ := i(1−ε(g))/2γ1γ2 · · · γn and, hence, γ2∗ = Ig. Therefore, from the Table 1 it follows that
the QC’s to “left-handed” WI’s are zero in the chiral case. This may give some insight into why
just the left-handed neutrino exists in Nature. This also requires a revision of the conventional
viewpoint about an impact of anomalies on the renormalizability of unified field theories in which
gauge fields are coupled to left-handed fermions.
The presence of a mass spectrum of constituent fermions in general QC’s (see Eqs.(30)–(32))

increases the predictive power of formulas (which involves the axial-vector anomaly) widely
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used in the low energy phenomenological physics, e.g., for describing the elementary particle
decays [1, 2].

Table 1. The chiral behaviour of amplitudes appearing in the regular analogs of the CWI’s (29) for
AVV- and AAA-cases, n = 4; here

(
Rν+1P

[2,3]
0

)
≡

(
Rν+1P

[2,3]
3

)
.

Feynman amplitudes (ȦVV) (AV̇V) (AVV̇) (ȦAA) (AȦA) (AAȦ)

(ε,m)−lim ≡ chiral limit:(
Rν+1D

[2,3]
i

)(···)
(m, k) = 1 0 0 1/3 −1/3 1/3

= (−1)i−1
[(
Rν+1P

[2,3]
i

)(···)
(m, k)+

+
(
Rν+1P

[2,3]
i−1

)(···)
(m, k)

]
+

0 0 0 0 0 0

+


 (m3 +m1)
(m1 ∓m2)
(m2 ∓m3)


 (Rν+1I [2,3])(···)(m, k) 1 0 0 1/3 −1/3 1/3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(m, ε)−lim ≡ chiral case:(
Rν+1D

[2,3]
i

)(···)
(m, k) = 1/3 −1/3 1/3 1/3 −1/3 1/3

= (−1)i−1
[(
Rν+1P

[2,3]
i

)(···)
(m, k)+

+
(
Rν+1P

[2,3]
i−1

)(···)
(m, k)

]
+

1/3 −1/3 1/3 1/3 −1/3 1/3

+


 (m3 +m1)
(m1 ∓m2)
(m2 ∓m3)


(Rν+1I [2,3])(···)(m, k) 0 0 0 0 0 0

Acknowledgements

The author is sincerely grateful to the colleagues of the Department of the Mathematical Meth-
ods in Theoretical Physics for valuable discussions, comments, and stimulating criticism. This
research was supported by the Ukrainian State Foundation of Fundamental Researches Grant
No. 1.4/206.

References
[1] Adler S.L., in Lectures on Elementary Particles and Quantum Field Theory, eds. S. Deser, M. Grisaru and

H. Pendleton, MIT Press, Cambridge, Mass., 1970, Vol.2, 1–164.

[2] Jackiw R., in Lectures on Current Algebra and its Applications, eds. S.B. Trei-man, R. Jackiw and D.J. Gross,
Princ. Univ. Press, Princeton, N.J.,1972, 97–254.

[3] Morozov A.Yu., Uspehi Fiz. Nauk, 1986, V.150, 337–416.

[4] Kucheryavy V.I., Theor. Math. Phys., 1982, V.51, 355–365; 1974, V.20, 29–47; Nucl. Phys. B, 1977, V.127,
66–86; Dopovidi AN Ukr. SSR, Ser. A, 1983, N 5, 62–65; 1983, N 7, 59–63; Ukr. J. Phys., 1991, V.36,
1769–1785.

[5] Bogoliubov N.N. and Parasiuk O.S., Izv. AN SSSR, Ser. mat., 1956, V.20, 585–610;
Parasiuk O.S., Izv. AN SSSR, Ser. mat., 1956, V.20, 843–852;
Bogoliubov N.N. und Parasiuk O.S., Acta Math., 1957, V.97, 227–266;
Parasiuk O.S., Ukr. Math. J., 1960, V.12, 287–307.

[6] Kucheryavy V.I., ITP preprint ITP–87–130R, Kyiv, 1987; in Nonlinear World, eds. V.G. Bar’yakhtar et al,
World Scientific, Singapore, 1990, Vol.2, 1454–1465; Yad. Fiz., 1991, V.53, 1150–1163; Ukr. J. Phys., 1992,
V.37, 140–146; 1994, V.39, 517–525; 645–653.

[7] Kucheryavy V.I., Ukr. Math. J., 1991, V.43, 1445–1457;

[8] Frampton P.H., Phys. Rev. D, 1979, V.20, 3372–3377.



Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 2, 501–506.

Quantum Mechanism of Generation

of the SU(N) Gauge Fields

T.Yu. KUZMENKO

Bogolyubov Institute for Theoretical Physics, 14 b Metrologichna Str., Kyiv, Ukraine
E-mail: tanya@ap3.bitp.kiev.ua

A generation mechanism for non-Abelian gauge fields in the SU(N) gauge theory is studied.
We show that SU(N) gauge fields ensuring the local invariance of the theory are generated
at the quantum level only. It is demonstrated that the generation of these fields is related to
nonsmoothness of the scalar phases of the fundamental spinor fields, but not to the simple
requirement of gauge symmetry locality. The expressions for the gauge fields are obtained
in terms of the nonsmooth scalar phases. From the viewpoint of the described scheme of the
gauge field generation, the gauge principle is an “automatic” consequence of field trajectory
nonsmoothness in Feynman path integral.

All known fundamental interactions possess the property of local gauge invariance. The
principle central to quantum field theory is the gauge principle. This principle stakes that the
fundamental fields involved in Lagrangian allow the local transformations which do not modify
Lagrangian. The gauge principle was first used by Weyl [1] who discovered the local U(1) gauge
symmetry in quantum electrodynamics. The non-Abelian local SU(2) gauge symmetry and cor-
responding gauge fields were introduced by Yang and Mills [2]. Based on this approach, later on
the structure of weak and strong interactions was established [3, 4]. Einstein’s General Relativity
can also be considered as the gauge theory with Lorentz or Poincaré gauge groups [5, 6].
It is generally agreed that the existence of gauge fields must necessarily be a consequence of

the requirement of the gauge symmetry locality. However, this statement is not quite correct.
Ogievetski and Polubarinov [7] showed that within the framework of classical field theory, the
local gauge invariance can be ensured without introduction of nontrivial gauge fields, i.e., vector
fields with nonzero field strengths. It suffices to introduce only gradient vector field ∂µB(x), as a
“compensative field”, with zero strength (∂µ∂ν − ∂ν∂µ)B(x) = 0. Such field does not contribute
to dynamics [7]. From the viewpoint of the classification of fields by spin, the scalar field B(x)
corresponds to spin of zero and gradient vector field ∂µB(x) is longitudinal. True vector gauge
fields Aµ are transversal fields corresponding to spin of unity. Gauge invariance of theory means
that the longitudinal part of vector gauge fields does not contribute to dynamics.
If so, what is the real cause of the existence of gauge fields and interactions? Early in Ref. [8]

the “quantum gauge principle” was formulated in the context of quantum electrodynamics. This
principle states that the Abelian U(1) gauge fields are generated at the quantum level only and
the generation of these fields is related to nonsmoothness of the field trajectories in the Feynman
path integrals, by which the field quantization is determined. In this paper, we investigate the
generation mechanism for non-Abelian SU(N) gauge fields. It is shown that the non-Abelian
nontrivial vector fields are generated due to nonsmoothness of the field trajectories for the scalar
phases of the spinor fields in the SU(N) gauge theory.
Let us consider a Lagrangian for free spinor fields

L = iψ
j
γµ∂µψ

j −mψ
j
ψj , (1)

where j = 1, 2, . . . , N . In what follows the index j will be omitted.
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The Lagrangian (1) is invariant under global non-Abelian SU(N)-transformations

ψ′(x) = eitaωaψ(x), ψ ′(x) = ψ(x)e−itaωa , (2)

where ta are SU(N) group generators, ωa = const, a = 1, 2, . . . , N2−1. This invariance generates
the conserved currents Jµ

a :

Jµ
a = −ψγµtaψ, ∂µJ

µ
a = 0. (3)

In the framework of classical field theory, physical fields are known to be described by suf-
ficiently smooth functions. Considering a smooth local infinitesimal SU(N)-transformation at
the classical level

ψ′(x) = (I + itaωa(x))ψ(x), ψ ′(x) = ψ(x)(I − itaωa(x)), (4)

we obtain that the transformed Lagrangian differs from the original one by the term:

�L = Jµ
a ∂µωa(x). (5)

In consequence of the conservation of currents (3) the term (5) reduces to 4-divergence and does
not contribute to dynamics. In the case of local non-infinitesimal SU(N)-transformations, it
was shown [7] that the local gauge invariance of the transformed Lagrangian can be ensured by
introducing scalar fields Ba(x). In other words, the Lagrangian

L = iψγµ∂µψ + iψ(x)e−itaBa(x)γµ(∂µe
itbBb(x))ψ(x)−mψψ

is invariant under the local non-infinitesimal SU(N)-transformations provided the fields Ba(x)
transform as:

eitaB′
a(x) = eitaBa(x)e−itbωb(x).

The introduced scalar fields Ba(x) do not contribute to dynamics, since they do not give rise to
nonzero strengths and can be eliminated by means of the smooth point transformations of the
field variables ψ → exp(itaBa)ψ [7]. Thus we need not compensate the term (5) by introducing
nontrivial vector fields Aa

µ that do not reduce to gradients of scalar functions.
The situation changes in the quantum approach. In the Feynman formulation of quantum

field theory the transition amplitudes are expressed by the path integrals that are centered on
nonsmooth field trajectories [9]:

〈Φ2, t2|Φ1, t1〉 = N

Φ2∫

Φ1

(DΦ) exp


 i

�

t2∫

t1

d4xL(Φ, ∂Φ)


 .

In this context the Lagrangian (1) and its symmetries are determined on the class of nonsmooth
functions ψ(x), corresponding to nonsmooth trajectories in path integrals. In the strict sense, the
derivatives involved in the Lagrangian (1) are discontinuous functions. From physics standpoint,
field trajectory nonsmoothness is related to fluctuations of the local fields. Feynman integrals, as
a rule, are additionally specified by the implicit switch to “smoothed-out” approximations [10].
In this case the degrees of freedom corresponding to gauge vector fields are lost. Here we show
that, as in quantum electrodynamics [8], in the non-Abelian SU(N) gauge theory these degrees
of freedom can be explicitly taken into account when “smoothing” of nonsmooth fields is more
carefully carried out.
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Let us approximate nonsmooth functions θa(x) by smooth functions ωa(x):

θa(x) = ωa(x) + · · · .
In order to write down the next term of the “smoothed-out” representation of the nonsmooth
functions θa(x) it is necessary to consider the behaviour of the first derivatives of θa(x). The
derivatives ∂µθ

a(x) at nonsmoothness points of θa(x) are discontinuous functions. Since the
derivatives ∂µω

a(x) are continuous functions, they badly approximate the behaviour of the
derivatives of the “smoothed-out” θa(x). Let us denote a difference between them by θa

µ(x) and
write ∂µθ

a(x) as follows:

∂µθ
a(x) = ∂µω

a(x) + θa
µ(x). (6)

Since the nonsmooth fields θa
µ(x) do not reduce to gradients of smooth scalar fields, they are the

nontrivial vector fields that give rise to nonzero field strengths:

∂µθ
a
ν(x)− ∂νθ

a
µ(x) �= 0.

Therefore the fields ∂µθ
a(x) involve the additional degrees of freedom which are related to

nonsmoothness of the θa(x). It should be noted that the fields θa
µ(x) are ambiguously determined

due to ambiguity of choice of ωa(x).
Let us now consider θa(x) as scalar phases of the spinor fields ψ(x) realizing the fundamental

representation of the SU(N) gauge group and separate out these phase degrees of freedom in
an explicit form:

ψ(x) = eitaθa(x)ψ0(x), (7)

where the spinor fields ψ0 are representatives of the class of gauge-equivalent fields [11], eit
aθa

is a unitary N × N matrix. Then, provided the Lagrangian (1) is determined on the class of
nonsmooth functions ψ(x), using Eq.(7) we obtain:

L = iψ0γ
µ∂µψ0 + iψ0e

−itaθaγµ(∂µe
itbθb)ψ0 −mψ0ψ0. (8)

Represent the matrix eitaθa as a superposition of the unit matrix I and SU(N) group genera-
tors ta:

eitaθa = CI + iSat
a. (9)

Since ta are traceless matrices normalized by Tr (tatb) = 1
2δ

ab, the coefficients C and Sa in Eq.(9)
are given by:

C =
1
N
Tr(eitaθa), Sa = −2iTr(taeitbθb). (10)

It is easy to verify that Tr(e−itaθa∂µe
itbθb) = 0. Then taking into account the commutation rules

for SU(N) group generators [12] we can write down:

e−itaθa∂µe
itbθb = itaAa

µ, (11)

Aa
µ = C̄∂µS

a − S̄a∂µC + (fabc − idabc)S̄b∂µSc, (12)

where dabc (fabc) are totally symmetric (antisymmetric) structural constants of SU(N)-group,
the overline denotes complex conjugation.
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Since the matrix eitaθa is unitary, the following equation is valid:

C̄Sa − S̄aC + (fabc − idabc)S̄bSc = 0. (13)

Differentiating the left and right sides of Eq.(13) and using the property of antisymmetry of fabc

we derive:

Aa
µ − Āa

µ = 0,

whence it follows that the expression (12) is a real function. Thus Aa
µ can be identified with the

gauge fields. Unlike the gauge field in electrodynamics [6], these fields are nonlinear functions of
θa(x). As a consequence of nonsmoothness of the phases θa(x) the fields Aa

µ are also not smooth.
If we take into account only the first term in the right hand side of relation (6) we obtain that
the fields Aa

µ do not contribute to the dynamics, as in classical field theory [5], and the degrees
of freedom corresponding to gauge vector fields are lost. The account of θa

µ(x) enables us to
interpret the fields Aa

µ as nontrivial vector fields that give rise to nonzero field strenghths:

∂µA
a
ν(x)− ∂νA

a
µ(x) �= 0.

By the way of illustration let us consider the Yang–Mills SU(2) gauge group. In consequence
of anti-commutativity of the SU(2) group generators the coefficients C and Sa (see Eq.(10)) are
given by:

C = cos(θ/2), Sa = 2na sin(θ/2), (14)

where

θ =
√
θaθa, na = θa/θ, a = 1, 2, 3. (15)

From Eqs.(14) and (15) it follows that the gauge fields Aa
µ can be written as:

Aa
µ = na∂µθ + sin θ(∂µn

a) + sin2(θ/2)[n × ∂µn]a. (16)

Expression (16) demonstrates explicitly the relation between the Yang–Mills gauge fields and
the nonsmooth scalar phases of the spinor fields.
Let us obtain the transformation law for the vector fields (12). For this purpose we consider

the infinitesimal smooth local transformations for the spinor fields:

ψ′
0(x) = eitaωa(x)ψ0(x), ψ ′

0(x) = ψ0(x)e
−itaωa(x). (17)

Then the Lagrangian (8) can be written as:

L = iψ ′
0γ

µ∂µψ
′
0 + iψ

′
0e

itaωae−itbθbγµ∂µ(eitcθce−itlωl)ψ′
0 −mψ ′

0ψ
′
0. (18)

Defining the gauge fields Aa
µ
′(x) similarly to Eqs.(11) and (12) by the following equation:

itaA
a
µ
′(x) = eitaωae−itbθb∂µ(eitcθce−itlωl), (19)

we find that the transformed gauge fields Aa
µ
′(x) are related to the fields (12) as follows:

Aa
µ
′(x) = Aa

µ(x)− ∂µω
a(x)− fabcω

b(x)Ac
µ(x). (20)

Hence, in the framework of considered scheme of the gauge field generation we derive the usual
transformation law for the SU(N) gauge fields, with the local gauge invariance of the La-
grangian (8) being not necessary.
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Using Eqs.(11) and (12) we obtain that the Lagrangian (8) takes the form:

L = iψ0γ
µD̂µψ0 −mψ0ψ0, (21)

where D̂µ ≡ ∂µ + iAa
µta is the covariant derivative. It is easy to verify that the Lagrangian (21)

is invariant under the transformations (17) and (20).
Therefore the gauge fields Aa

µ ensuring the local SU(N) gauge invariance of the Lagran-
gian (21) are generated because of nonsmoothness of the field trajectories in Feynman path
integral. The nonsmoothness of the fields Aa

µ corresponds to their quantum nature and means
that these fields should also be quantized, i.e., continual integration is to be carried out over the
variables Aa

µ(x). However the fields A
a
µ in the Lagrangian (21) do not exhibit all the properties

of physical fields since they cannot propagate in space because of the absence of the kinetic
term.
An expression similar to the kinetic term can be obtained by the calculation of the effective

action for the spinor fields described by the Lagrangian (21). Using the results of the calculations
performed in Ref.[13], we find the following expression for the kinetic term in the one-loop
approximation

Leff = κ ln
Λ
µ0
tr F̂ 2

µν , F̂µν = [D̂µ, D̂ν ], (22)

where Λ and µ0 are the momentum of the ultraviolet and infrared cut-off respectively; κ is the
numerical coefficient.
The formula (22) takes the usual form [12]

Leff =
�c

8g2
trF 2

µν

upon identifying

g2 =
�c

8κ ln Λ
µ0

. (23)

The last equation relates the charge g with the parameters Λ and µ0 as well as with the universal
constants � and c, and thus demonstrates explicitly quantum origin of the charge.
Let us discuss the results obtained. We show that the “compensating” gauge fields need

not be artificially introduced for the local gauge invariance of the theory to be ensured. As
a result of conservation of currents (3), the Lagrangian for classical spinor fields is invariant
under local SU(N) gauge transformations. The generation of gauge fields is purely quantum
phenomenon. The vector gauge fields are generated through nonsmoothness of the scalar phases
of the fundamental spinor fields. From the viewpoint of the described scheme of the gauge field
generation, the gauge principle is an “automatic” consequence of field trajectory nonsmoothness
in Feynman path integral.
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We find 4-parameter non-hermitean N = 1 transformations, under which the first-order
equations of motion for N = 2 supersymmetric Yang–Mills (YM) theory in N = 1 superspace
are invariant.

One of the essential features of non-Abelian gauge theories is the existence of classical so-
lutions with non-trivial topological properties (monopoles, instantons). Their importance en-
courages mathematical and physical community to further investigations in this domain. But
searching the solutions of YM equations is very difficult task because of their non-linearity. As
usual, to gain the goal one tries by finding the solutions of simpler equations, for example,
first-order equations, which satisfy the second-order equations of motion. Thus the problem of
finding corresponding first-order equations arises.

In pure YM theory they usually deal with self-duality equation. In YM theories with scalar
fields the first-order equations are mainly generalizations of self-duality equation. One of such
generalizations, quasi-self-duality equation, was introduced by V.A. Yatsun [1]. He proposed
the additional term in the equation of self-duality have to be added, which is properly chosen
combination of scalar fields. In the case of vanishing scalar fields the quasi-self-duality equation
boils down to self-duality equation. The quasi-self-duality equation together with constraints
on scalar fields form the system of quasi-self-duality equations.

In this report first we deal with N = 2 YM theory in N = 1 superspace with the Lagran-
gian [2]:

L = Tr
{
−1

4
FmnFmn − iλ̄σmDmλ − 1

2
(DmA)2 − 1

2
(DmB)2 − iψ̄σmDmψ

+ ig(A + iB){λα, ψα}+ ig(A − iB){λ̄α̇, ψ̄α̇}+ igD[A, B] +
1
2
D2 +

1
2
F 2 +

1
2
G2

}
.

(1)

The theory (1) is invariant under N = 1 supersymmetry transformations:

δξ(A − iB) = 2ξψ, δξ(A + iB) = 2ξ̄ψ̄, δξVαα̇ = −2i(ξαλ̄α̇ + ξ̄α̇λα),

δξD = −ξαDαα̇λ̄α̇ + ξ̄α̇Dαα̇λα, δξ(F + iG) = 2iξ̄β̇

(
Dαβ̇ψα + g[λ̄β̇ , A − iB]

)
,

δξ(F − iG) = 2iξα
(
Dαβ̇ψβ̇ + g[λα, A + iB]

)
, δξλα =

1
2
ξβ(fαβ + 2iεαβD),

δξλ̄α̇ =
1
2
ξ̄β̇(fα̇β̇ − 2iεα̇β̇D), δξψα = iξ̄α̇Dαα̇(A − iB) + ξα(F + iG),

δξψ̄α̇ = −iξαDαα̇(A + iB) + ξ̄α̇(F − iG),

(2)

where ξα, ξ̄α̇ are 4 parameters of the transformations.
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It was found that the equations of motion, corresponding to Lagrangian (1), are satisfied by
the following system of first-order equations [3] (they are first–order quasi-self-duality equations):

fαβ = 2gcαβ [A, B], (cαβ − εαβ)Dββ̇(A − iB) = 0, (cαβ + εαβ)Dββ̇(A + iB) = 0,

D + ig[A, B] = 0, F = G = 0, Dαβ̇λ̄β̇ − g[ψα, A + iB] = 0,

Dαβ̇ψα + g[λ̄β̇ , A − iB] = 0, (cαβ − εαβ)ψβ = 0, λα = ψ̄α̇ = 0,

(3)

where cαβ are complex constant coefficients, satisfying the conditions

cαβ = cβα, det ‖cαβ‖ ≡ c11 · c22 − c2
12 ≡ 1

2
cαβcαβ = −1. (4)

The system (3) is not invariant under transformations (2). But it is invariant when the following
constraints on the parameters of these transformations are imposed

(cαβ + εαβ)ξβ = 0. (5)

In other words, the system (3) is invariant in 3-dimensional subspace of 4-dimensional space of
parameters of transformations (2). Our aim is to find such N = 1 transformations depending
on four parametrs under which the system (3) to be invariant.

The N = 2 supersymmetric YM theory in N = 2 superspace, given by the Lagrangian [4]

L = Tr
(
−1

4
FmnFmn − iλ̄α̇iσ

mα̇βDmλi
β − 2DmCDmC∗ − 1

2
�C2

+igC{λ̄α̇i, λ̄
α̇i} + igC∗{λi

α, λα
i } + 4g2C[C, C∗]C∗) ,

(6)

is invariant under N = 2 supersymmetry transformations [5]:

δξC = −ξα
i λi

α, δξC
∗ = −ξ̄α̇iλ̄

α̇i, δξVαα̇ = 2i(ξi
αλ̄α̇i + ξ̄α̇iλ

i
α),

δξλ
i
α = −1

2
ξβifαβ + 2igξi

α[C , C∗ ]− ξαj
�C�τ ij + 2iξ̄α̇iDαα̇C,

δξλ̄α̇i = −1
2
ξ̄β̇
i fα̇β̇ − 2igξ̄α̇i[C, C∗] + ξ̄j

α̇
�C�τij + 2iξα

i Dαα̇C∗,

δξ
�C = −iξαi(Dαβ̇λ̄β̇j + 2g[λj

α, C∗])�τij + ξ̄i
α̇(Dαβ̇λj

α − 2g[λ̄β̇j , C])�τij ,

(7)

where ξi
α, ξ̄α̇i are 8 parameters of N = 2 supersymmetry transformations, and �τ j

i are Pauli
matrices.

The theory (1) can be obtained from (6) by the replacement

C =
1
2
(A − iB), C∗ =

1
2
(A + iB), g[C, C∗] = −1

2
D,

C1 = −iG, C2 = −iF, C3 = 0,

λ1
α = λα, λ2

α = ψα, λ̄α̇1 = λ̄α̇, λ̄α̇2 = ψ̄α̇.

(8)

Using (8) we rewrite the system (3) in terms of N = 2 fields

fαβ = 4igcαβ [C∗, C], (cαβ − εαβ)Dββ̇C = 0, (cαβ + εαβ)Dββ̇C∗ = 0,

�C = 0, Dαβ̇λ2
α − 2g[λ̄β̇2, C] = 0, Dαβ̇λ̄β̇2 + 2g[λ2

α, C∗] = 0,

(cαβ − εαβ)λα
i=1 = 0, λ1

α = λ̄α̇2 = 0.

(9)
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The system (9) is invariant under N = 2 transformations (7) only in 4-dimensional subspace of
8-dimensional space of parameters of transformations. This subspace is defined by

ξi=1
1 = 0, ξi=1

2 = 0, ξ̄α̇2 = 0. (10)

We can identify these four N = 2 parameters that survived with four N = 1 parameters

ξ1 = ξi=2
1 , ξ2 = ξi=2

2 , ξ̄α̇ = ξ̄α̇1. (11)

Now in transformations (7) we make the substitution of parameters (10), (11) and the substi-
tution of component fields (8) and obtain

δξ(A − iB) = 2ξλ, δξ(A + iB) = 2ξ̄ψ̄,

δξVαα̇ = 2i(ξαψ̄α̇ − ξ̄α̇λα), δξD = ξαDαα̇ψ̄α̇ + ξ̄α̇Dαα̇λα,

δξ(F + iG) = 2iξα
(
Dαβ̇λ̄β̇ − g[ψα, A + iB]

)
+ 2iξ̄β̇

(
Dαβ̇ψα + g[λ̄β̇ , A − iB]

)
,

δξ(F − iG) = 0, δξλα = ξα(F − iG),

δξλ̄α̇ = 1
2 ξ̄β̇(fα̇β̇ − 2iεα̇β̇D)− iξαDαα̇(A + iB),

δξψα = −1
2ξβ(fαβ + 2iεαβD) + iξ̄α̇Dαα̇(A − iB), δξψ̄α̇ = ξα̇(F − iG).

(12)

The transformations (12) are non-hermitean transformations depending on four N = 1 parame-
ters. These transformations form Lie algebra. The equations of motion of the theory (1) as well
as the first-order equations of motion (3) are invariant under transformations (12).
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Sagdeev’s Quasipotential approach is extremely suitable for studying large amplitude soli-
tary waves in plasma. One can derive all the one soliton results of perturbation methods
and can compare it with the exact results obtained by the Quasipotential (also called the
pseudopotential) method. However comparatively fewer works in relativistic plasma and
plasma with trapped electrons have used this method. In this paper the pseudopotential is
derived for a relativistic plasma with non-isothermal electrons and finite temperature ions.
Expanding the quasipotential different types of solitons are obtained which agree with the
perturbation results. Also the relativistic effect and finite ion temperature appear to restrict
the region of existence of solitary waves.

1 Introduction

Theoretical studies on soliton dynamics were made very early in the frame work of Korteweg-
de Vries (K-dV) equation using the reductive perturbative method in fluid dynamics. It was
later extended to plasma dynamics [1, 2]. However the pertubation methods were mainly valid
for small amplitude solitary waves. Sagdeev’s pseudopotential approach [3] is appropriate for
studying large amplitude solitary waves. Though this approach was rather widely used in
obtaining travelling solitary waves solutions in simple non-relativistic plasmas, the applications
to relativistic plasmas or plasmas with trapped electron are few and far between. But relativistic
effects play an important part in the formation of solitary waves for particles with very high
velocities which are comparable to that of light (for experimental and other details see references
[4–11]).
Again most of the studies concerning solitary waves in both relativistic and non-relativistic

plasmas did not consider the resonant particles which interact strongly with the wave during its
evolution. These particles have to be treated in a way differant from what is done in the case
of the free particles. Schamel [12, 13] made a theoretical study on ion-acoustic waves due to
resonant electrons in a frame work of KdV and M KdV equations.
In this paper our aim is to study large amplitude solitary waves in a relativistic plasma with

warm ions and with two differant distribution function for the electrons, one for the trapped
and another for the free electrons. In this case the electron density is defined from the Vlasov
equations consisting of free and trapped electrons as

ne(φ) = k0


eφ erfc (φ)1/2 + |β|−1/2



exp(βφ) erf (βφ)1/2

1√
2
w

(
−βφ1/2

)



−β ≥ 0
β < 0


 , (1)

where k0 is some constant and

β = Tef/Tet, (2)
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Tef, Tet being the temperatures for the free electrons and the trapped electron respectively, where

erf (x) is given by erf (x) =
2√
π

∫ x

0
e−t2dt.

In the present paper the case β ≥ 0 will be considered and the case β < 0 which gives a dip
in the distribution function can be treated in a similar manner. The organization of the paper
is as follows.
In Section 2 the exact pseudopotential is derived from the basic equations. In Section 3

solitary wave solutions are discussed. Small amplitude-approximations are derived in Section 4.

2 Basic equations and derivation of Sagdeev’s potential

The basic system of equations governing the ion motion in plasma dynamics in unidirectional
propagation is given by

∂n

∂t
+

∂

∂x
(nu) = 0, (3)

(
∂

∂t
+ u

∂

∂x

)
γu+

σ

n

∂p

∂x
= −∂φ

∂x
, (4)

(
∂

∂t
+ u

∂

∂x

)
p+ 3p

∂u

∂x
= 0, (5)

where n, u, p denote the density, velocity and pressure respectively for the ion species. γ is
given by γ =

√
1− u2/c2, c being the speed of light.

The above equations are supplemented by the Poisson’s equation

∂2φ

∂x2
+ n− ne = 0, (6)

where we take

ne = eφ erfc (φ1/2) + β−1/2eβφ erf (βφ)1/2 (7)

with β > 0. β and erf (x) are defined earlier.
Also σ = Ti/Teff, Ti being the ion-temperature and Teff is defined below. The above equations

are normalized in the following way.

The velocities are normalized to the ion-acoustic speed cs =
(

kTeff
m

)1/2
, k being the Boltzmann

constant and mi the ion mass.

The distance and time t are normalized to the Deby length
(

ε0kTeff
n0 e2

)1/2
and ion plasma

period
(

ε0m
n0r2

)1/2
respectively, ε0 being the dielectric constant. The ion pressure is normalized

to (n0kTi)
−1 and the electrostatic potential φ is normalized to kTeff

e , e being the electron charge.
Here Teff is given by Teff = Tef Tet/(nefTef+netTet), nef, net being the initial densities of the free
and trapped electrons respectively and nef + net = 1.
To obtain the solitary wave solution we make the dependent variables depend on a single

independent variable ξ = x− V t, where V is the velocity of the solitary wave.
Equations (3)–(6) can now be written as

−V dn

dξ
+

d

dξ
(nu) = 0, (8)
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−V d

dξ
(γu) + u

d

dξ
(γu) +

σ

n

dp

dξ
= −dφ

dξ
, (9)

−V dp

dξ
+ u

dp

dξ
+ 3p

du

dξ
= 0, (10)

d2φ

dξ2
= ne − n. (11)

Equation (10) is consistent with

p = n3p0, (12)

i.e. we consider the adibatic case and hence forth we shall take p0 = 1.
From the above equations one can eliminate, n, ne, u and p to obtain a differential equation

involving φ which can be written as Newton’s equation in the following way

d2φ

dξ2
= −∂ψ

∂φ
, (13)

where ψ is the so called Sagdeev’s potential which is in general a transcendental function of φ.
The exact form of ψ(φ) is given by

ψ(φ) = ψe(φ) + ψi(φ), (14)

where

ψe(φ) = eφ erfc
(√

φ
)
+

1
β
√
β
eβφ erf

(√
βφ

)
+

2
β
√
π
φ1/2(β − 1) (15)

and

ψi(φ) = V uγ − V u0γ0 + σv3

[
1

(V − u0)3
− 1
(V − u)3

]
. (16)

In deriving equations (15) and (16) the following boundary conditions were used. As ξ → ∞,
φ → 0, u → u0, p → 1, n → 1. Also the relation between φ and u is given by

φ =
(
vu− c2

)
γ − (

vu0 − c2
)
γ0 +

3σ
2
V 2

[
1

(V − u0)2
− 1
(V − u)2

]
, (17)

where

γ0 =
1√

1− u2
0/c

2
.

3 Solitary waves solution

The form of the pseudopotential would determine whether soliton like solutions of equation (13)
may exist or not.
The condition for the existence of solitary waves are the following

(i)
d2ψ

dφ2

∣∣∣
φ=0

< 0.
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This is the condition for the existence of potential well another conditions

(ii) ψ(φm) > 0,

where φm is the maximum (magnitude wise) value of φ beyond which ψ becomes imaginary. In
this case ψ crosses the φ axis from below at the point φ = φm.
In Fig. 1 ψ(φ) is plotted against φ for different values of β ranging from 0.03 to 0.2 the ohter

parameters are V = 1.5, σ = 0.001, u0 = 0, c/cs = 100.
It is seen that for β ≥ 0.2 the amplitude of the soliton becomes very small and for a much

larger value of β soliton solutions will disappear. Again for values of β < 0.044 solutions would
cease to exist. In Fig. 2 the solitory wave solution φ(ξ) is plotted against φ for β = 0.045 and
β = 0.1 other parameters are same as those in Fig. 1. It is found that both the height and of
the width of the soliton decrease as β increases.

Figure 1 Figure 2
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4 Small amplitude approximation

To obtain KdV (Korteweg de Vries) type soliton we obtain here small amplitude approximation
of ψ(φ).
Expanding ψ(φ) from (15) and (16) we have

d2φ

dξ
= −∂ψ

∂φ
= A1φ−A2φ

3/2 +A3φ
2 −A4φ

5/2 + · · · , (18)

where

A1 = 1− 3σ
(V − u0)4

− 1
(V − u0)2

[
1− 3u2

0

2c2

]

+
3σ

16c2(V − u0)2

[
40

(
3u4

0 − 4V u3
0

)
(V − u0)4

− 15V 4

(V − u0)4
+

18V 2

(V − u0)2
− 3

]
,

(19)

A2 =
4b1
3
, (20)
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and

A3 =
1
2

[
1− 30σ

(V − u0)6
− 3
(V − u0)4

(
1 +

40(V + 2u0)
c2

)

+
9σ

16c2(V − u0)4

(
−630

(
3u4

0 − 4V u3
0

)
(V − u0)4

)
+

35V 4

(V − u0)4
− 30V 2

(V − u0)2
+ 3

]
,

(21)

while

A4 =
8
15
b2. (22)

Neglecting A3 and A4 solution of (20) is

φ(ξ) =
(
5A1

4A2

)2

sech4

(
ξ

∂

)
, where ∂ =

4√
A1

. (23)

To get a shock wave solution we include A3 term and put φ = Y 2 to get

2
(
dY

dξ

)2

=
A1

2
Y 2 − 2A2

5
Y 3 +

A3

3
Y 4. (24)

For a shock wave like solution dY
dξ should vanish both at Y = 0 and at a value Y = Ym, Ym

being the amplitude of the solitory wave type solution. (24) can then be written as

dY

dξ
= kY (Ym − Y ) , (25)

where we take

Ym =
3
5
A2

A3
, 25A1A3 = 6A2

2 and k = ±
(
A3

6

)1/2

, (26)

putting

∂ =
(
k

2
φm

)−1

(27)

the final solution becomes

φ =
φm

4

(
1± tanh ξ

∂

)2

,

where

φm = Y 2
m. (28)

Other types of solitons viz, spiky type solitary waves collapsible waves etc. can be obtained
by taking higher order terms and using the so called ‘tanh’ method [14, 15].
Since the expression for ψ(φ) derived in equations (14), (15) and (16) is exact, one can expand

it up to any order in φ and obtain all the different types of solitary waves depending on the
non-isothermality parameter β, obtained by perturbation methods.
For example if we include the A4 term and write

d2ψ(φ)
dξ2

= A1φ−A2φ
3/2 +A3φ

2 −A4φ
3/2. (29)
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Equation (29) for the spiky type solitary wave can be studied by transforming the equation as(
dΦ
dη

)2

= a1Φ2 (φ0 − Φ)3 , where φ = Φ2 (30)

given below Eq.(20) and we take a1 = A4
7 , φ0 = 7

18
A3
A4
, A2 = 35

108
A2

3
A4
, and A1 A4 = 7

270A2A3.
The Eq.(30) can be solved for soliton profile and the solution φS(η) can be obtained only as

an implicit function of η in the following way.

φS(η) = φ2
0 sech

4




(
φ0

φ0 −
√
φS(η)

)1/2

± 1
2

√
a1φ3

0(η − η0)− C1


 , (31)

where C1 =
(

φ0

φ0−
√

φm

)1/2 − sech−1
(√

φm

φ0

)1/2
and φm is the optimal amplitude of the acoustic

mode. Note that φS(η) occurs on both left and right hand sides of Eq.(31). The solution
(Eq.(31)) gives a profile of spiky solitary wave defined in the region 0 < φ(η) <

√
φ0. While for

other region defined as φ < 0, the soliton solution can be obtained in a similar manner and is
given by

φE(η) = φ2
0 cosech

4




(
φ0

φ0 −
√
φE(η)

)1/2

± 1
2

√
a1φ3

0(η − η0)− C2


 , (32)

where C2 =
(

φ0

φ0−
√

φm

)1/2 − cosech−1
(√

φm

φ0

)1/2
, and this is to be recognised as the explosive

solitary wave in the plasma-acoustic dynamics. Thus one can proceed taking the nonlinear
term to any order in φ and could derive different natures of the solitary waves under different
approximations.
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Quantization of canonical realization of the Poincaré algebra p(1, 1) corresponding to N -
particle interacting system in the two-dimensional space-time M2 in the front form of dy-
namics is considered. Hermitian operators corresponding to the Lie algebra of the group
P(1, 1) are obtained by means of the set of Weyl-type quantization rules. The requirement
of preservation of the Lie algebra of this group restricts the set of quantization rules but does
not by itself remove the ambiguity of the quantization procedure. The partition of the set
of quantizations into equivalence classes is proposed. The quantization rules from the same
equivalence class give the same mass spectrum, and the same evolution of the quantized
system.

1 Introduction

Quantization – the problem of construction of the quantum description on the basis of classical
theory – occupies a prominent place in the theoretical physics in 20th century.
The basic structure of the classical Hamiltonian mechanics for an unconstrained system is a

2N -dimensional phase space P � R
2N (in general case a symplectic manifold) with symplectic

form ω. The state of a classical system is described by a point in P. Observable quantities are
identified with smooth functions on P. They form the space C∞(P). Symplectic form determines
on C∞(P) the structure of Lie algebra (Poisson algebra) by means of the Poisson bracket [1].
In the quantum mechanics a state is described by a vector |ψ〉 in some Hilbert space H and
physical observables are self-adjoint operators in H. Correspondence between the classical and
quantum pictures is established within the framework of certain quantization procedure which
is meant as a linear map Q : f �→ f̂ of the Poisson algebra into the set of self-adjoint operators
in the Hilbert space H [2, 3].
For every symmetry group, which is some Lie group G, the classical Hamiltonian description

provides a canonical realization of this group. It is well known that quantization procedure can
violate commutation relations of the Lie algebra of G [2]. Thus, we cannot a priori be sure
that any classical symmetry leads after quantization to the quantum one. Moreover, different
quantization rules may preserve some types of symmetries and break out other ones. It is
natural to demand the preservation of physically important symmetries. Therefore, we shall
require for the quantization procedure the fulfilment of the condition Q({f, g}) = i[f̂ , ĝ] only
for some subalgebra of the Poisson algebra. It is clear that canonical generators corresponding
to physically important symmetries have to belong to this subalgebra.
In the relativistic mechanics the main algebraic structure is the Lie algebra p(1, 3) of the

Poincaré group P(1, 3), and the description of a system of N interacting particles must be
Poincaré invariant in the classical case as well as in the quantum one. Therefore, after quantiza-
tion canonical generators of the Poincaré group have to be transformed into Hermitian operators
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which satisfy commutation relations of p(1, 3). In the relativistic case, the quantization problem
is of special interest because Poincaré invariance conditions lead to the complicated dependence
of interaction potentials on canonical coordinates and momenta. In most cases classical rela-
tivistic Hamiltonians depend on the products of non-commutative (in terms the of the Poisson
bracket) quantities. This raises the question of symmetrization of non-commutative operators
in the quantum description. Different ordering methods may result in different expressions for
physical observable quantities [4]. Starting from certain classical system different quantization
procedures may result in non-equivalent quantum systems.
In the two-dimensional space-timeM2 the front form of relativistic dynamics [5, 6] corresponds

to the foliation of M2 by isotropic hyperplanes [7]: x0+x = t. The Poincaré group P(1, 1) is the
automorphism group of this foliation. Only one generator of p(1, 1) contains an interaction and
mechanical description is in some sense similar to the nonrelativistic one. The two-dimensional
variant of the front form permits the construction of the number of exactly solvable classical and
quantum relativistic models [8, 9, 10, 11, 12]. Due to the certain simplicity of the relativistic
description in the front form in M2, we are able to elucidate the peculiarities of the quantization
procedure in the relativistic case [8, 9, 10, 11].
The aim of this article is quantization of the canonical realization of the Poincaré algebra

p(1, 1) corresponding to N -particle relativistic system with an interaction (Section 2) within
the framework of the two-dimensional variant of the front form of dynamics. Using the set of
Weyl-type quantization rules we construct in Section 3 symmetric operators satisfying quantum
commutation relations of p(1, 1). We study the influence of different quantization rules on
quantized system and propose some classification method of non-equivalent quantizations of the
canonical realization of the Lie algebra of P(1, 1). We demonstrane the obtained results by the
example of N -particle relativistic system with oscillator-like interaction.

2 Hamiltonian description in the front form of dynamics in M2

The classical Hamiltonian description of the system of N structureless particles with masses ma

(a = 1, N) in the two-dimensional Minkowski spaceM2 in the framework of the front form of dy-
namics leads to the canonical realization of the Lie algebra of P(1, 1) with generatorsH, P ,K [7].
They correspond to energy, momentum, and boost integral. Due to the positiveness of the mo-
mentum variables (pa > 0) [6, 7] in the front form of dynamics, the phase space of N -particle
Hamiltonian system is P = R

N
+ × R

N with standard Poisson bracket

{f, g} =
N∑

a=1

(∂f/∂xa∂g/pa − ∂g/∂xa∂f/∂pa) .

The generators P± = H ± P satisfy the following Poisson bracket relations of the Poincaré
algebra p(1, 1)

{P+, P−} = 0, {K,P±} = ±P±. (2.1)

They are determined in terms of particle canonical variables xa, pa [7] as follows:

P+ =
N∑

a=1

pa, K =
N∑

a=1

xapa, P− =
N∑

a=1

m2
a

pa
+
1
P+
V (rpb, r1c/r). (2.2)

Only one generator, namely P−, depends on interaction. The Poincaré-invariant function V
describes the particles interaction and depends on 2N − 1 indicated arguments, where rac =
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xa − xc; r = r12; a, b = 1, N , c = 2, N . Generators (2.2), determine the square of the mass
function of the system

M2 = P+P− = P+

N∑
a=1

m2
a

pa
+ V (rpb, r1c/r). (2.3)

The description of the motion of a system as a whole may be performed by choosing P+ and
Q = K/P+ as new (external) variables. There exist a lot of possibilities of the choice of inner
variables. One of the possible choices of inner canonical variables is [9]:

ηa = (Pa+ − pa+1)/(2P(a+1)+), qa = P(a+1)+(Qa − xa+1); (2.4)

where a, b = 1, N − 1 and we use the following notations Pa+=
a∑

i=1
pi, Qa=P−1

a+

a∑
i=1
xipi, PN+ =

P+, QN = Q. In the two-particle case variables (2.4) coincide with the variables proposed in
Ref. [6].

3 Quantization of canonical realization
of the Poincaré algebra in M2

To quantize the classical generators we have first to determine quantum operators corresponding
to the particular canonical variables xa, pa. Then for a given set of classical observables a =
a(x, p) we construct corresponding quantum operators Â. Let x̂a, p̂a be Hermitian operators
corresponding to the classical particle coordinates and momenta with the following commutation
relations: [x̂a, p̂b] = iδab. The original Weyl application [13] is a basis for the whole set of
quantization rules WF : a �→ Â, which map bijectively a family of classical real functions
a(x, p) ∈ C∞(P) to a family of Hermitian operators Â in some Hilbert space H. For P ≈ R

2N ,
the formal definition is given in the explicit form [14] as follows

Â =
∫
(dk)(ds)ã(k, s)F(k, s) exp

[
i
∑

a

(kax̂a + sap̂a)

]
, (3.1)

where ã(k, s) is the Fourier transform of the function a(p, q). Function F(k, s) determines the
type of quantization. Different choices of F(k, s) correspond to different ordering conventions.
We shall call the elements of the family of quantizations (3.1) Weyl-type quantization rules.
For the original Weyl quantization F(k, s) = 1. Let us restrict ourselves to real functions
F(k, s) ∈ C∞(R2N ), i.e. F(k, s) = F∗(k, s). Every quantization rule must obey the following
condition: Q(1) = 1̂. As a result, for the family of quantizations (3.1) we obtain F(0, 0) = 1.
Hermiticity condition means: F(k, s) = F(−k,−s).
In the momentum representation the wave functions ψ(p) = 〈p|ψ〉 describing the physi-

cal (normalized) states in the front form of dynamics constitute the Hilbert space HF
N =

L2(RN
+ , dµ

F
N ) with the inner product [8]

(ψ1, ψ) =
∫
dµF

N (p)ψ
∗
1(p)ψ(p), dµF

N (p) =
N∏

a=1

dpa
2pa
Θ(pa), (3.2)

where dµF
N (p) is the Poincaré-invariant measure and Θ(pa) is Heaviside step function. Operators

act on wave functions ψ(p) ∈ HF
N as integral operators:

(Âψ)(p) =
∫
dµF

N (p
′)Ã(p, p′)ψ(p′). (3.3)
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The kernel corresponding to operator (3.1) has the form

Ã(p, p′) =
1

(2π)N

∫
(dx)(dz) exp

(
i

N∑
a=1

(
p′a − pa

)
xa

)

×
(

N∏
a=1

δ

(
za − pa + p

′
a

2

)
2
√
pap′a

)
F

(
i
∂

∂x
, i
∂

∂z

)
a(x, z).

(3.4)

Now let us consider the quantization procedure of classical canonical generators (2.2) of
p(1, 1). Substituting expressions (2.2) of the generators K, P+ into (3.4) we obtain the following
operators

P̂+ = P+, K̂ = i
N∑

a=1

pa
∂

∂pa
−

N∑
a=1

∂2F(0, 0)
∂ka∂sa

. (3.5)

The generator P− is transformed into integral operator (3.3) with the kernel

P̃−(p, p′) =
1

(2π)N

∫
(dx)(dz) exp

(
i

N∑
a=1

(
p′a − pa

)
xa

)

×
(

N∏
a=1

δ

(
za−pa+p

′
a

2

)
2
√
pap′a

)
F

(
i
∂

∂x
, i
∂

∂z

) 
N∑

a=1

m2
a

za
+
V (rzb, r1c/r)

N∑
a=1
za

 .
(3.6)

To obtain a unitary representation of the group P(1, 1), we must construct first and foremost
such symmetric operators that satisfy the quantum commutation relations of p(1, 1)

[P̂+, P̂−] = 0, [K̂, P̂±] = ±iP̂±. (3.7)

The second task is the construction of self-adjoint extensions (if they exist). Here we consider
only the first part of the problem.
The last term in the expression (3.5) of the boost operator K̂ has no influence on commutation

relations (3.7). Thus, the quantization problem reduces in fact to the construction of quantum
operator P̂−. That in its turn determines the form of the function F .
Proposition 1. So that operators (3.5), (3.6) could satisfy the commutation relations (3.7),
the function F has to be of the following form:

F = F(ks), (3.8)

where the function F on the right-hand side depends on the all possible products of arguments:
k1s1, . . . , k1sN , k2s1, . . . , k2sN , . . ..

Proof. In order to satisfy relations (3.7) the kernel P̃−(p, p′) must be homogeneous function
of the order −1. To satisfy this condition the function F must obey the following homogeneity
equation: F(βk, β−1s) = F(k, s). The only possibility to satisfy this equation is (3.8).
In the classical case the square of total mass functionM2 is an invariant of the group P(1, 1).

Thus, to obtain in the quantum case the algebraic structure which is most closely related to
the classical one, the quantum Kasimir operator M̂2 = P̂+P̂− should be a quantization result of
the classical function M2 = P+P−. Unfortunately not every Weyl-type quantization rule with
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the arbitrary function F of the form (3.8) will transform the product P+P− =M2 ({P+, P−} =
0) of classical functions into the corresponding product of quantum (commutating) operators
P̂+P̂− = M̂2. This means that not every quantization rule WF , preserving the structure of Lie
algebra of the group P(1, 1), preserves commutability of the following diagram

P+, P−
M2=P+P−

✲ M2

❄WF ❄WF (3.9)

P̂+, P̂−
M̂2=P̂+P̂−

✲ M̂2 .

Proposition 2. If the function F has the following form

F=F(∆1,∆2), ∆1=
N∑

a=1

kasa, ∆2=
N∑

a=1

N∑
b=1

a �=b

kasb,

then diagram (3.9) is commutative.

Proof. The proposition follows from the translation invariance of P−.
It is obvious that for partial cases with

F = F(∆1, 0) = F1(∆1), F = F(0,∆2) = F2(∆2). (3.10)

diagram (3.7) is commutative too. WF1-quantization has been considered, for example, in
Ref. [15].
If F = F(∆0) = F0, ∆0 = ∆1 + ∆2, then for arbitrary translation invariant function f we

have:

F(∆̂0)f = f. (3.11)

As follows from (3.11), (3.5), (3.6) the WF0-quantization leads to the same operators P̂−,
P̂+ as well as the original Weyl quantization does. Moreover, quantization rules WF and WFF0

give us the same realization of commutative ideal h = span (P̂+, P̂−). The quantizations WF
and WFF0 may lead to different boost operators: K̂, K̂

′. But these operators generate Lorentz
transformations which distinguish on phase factor:

(
e−iλK̂′

ψ
)
(p) = eiα

(
e−iλK̂ψ

)
(p). Thus,

exp (−iλK̂ ′)ψ(p) and exp (−iλK̂)ψ(p) belong to the some ray.
In the front form of dynamics the evolution of the quantum system is described by the

Schrödinger-type equation

i
∂Ψ
∂t
= ĤΨ, (3.12)

where Ψ ∈ HF
N and Ĥ = (P̂++ P̂−)/2 = (P̂++M̂2/P̂+)/2. Putting Ψ = χ(t, P+)ψ, where ψ is a

function of some Poincaré-invariant inner variables, we obtain the stationary eigenvalue problem
for the operator M̂2:

M̂2ψ = P̂+P̂−ψ =M2
n,λψ. (3.13)

The ideal h generates by means of the Eqs. (3.12), (3.13) the evolution of the system and the
mass spectrum. Therefore, it is natural to introduce the following
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Definition 1. Quantizations WF , WF ′ which lead to the same realization of the ideal h are
called equivalent:

WF �WF ′ . (3.14)

Proposition 3. Quantization rules WF , WF ′ preserving the commutation relations of p(1, 1),
where F = F(ks,∆0), F ′ = F(ks, 0), are equivalent:

WF(ks,∆0) �WF(ks,0). (3.15)

Proof. This follows immediately from (3.11) and translation invariance of P−.

Corollary 1.

WF(ks)F0
�WF(ks). (3.16)

For the special class of quantization rules which preserve, in addition to the commuta-
tion relation of p(1, 1), the commutability of the diagram (3.9) we have WF1(∆1) � WF2(−∆2),
WF2(∆2) � WF1(−∆1). Hence, we see that the Weyl-type quantization rules which preserve the
commutation relation of the Poincaré algebra p(1, 1) fall apart into equivalence classes. Rules
from different classes can give non-equivalent unitary representations of the group P(1, 1) and
may result in different expressions for such important observable quantity as the mass spec-
trum of the system. We shall demonstrate this fact by the example of N -particle system with
oscillator-like interaction.
Let us choose the interaction function V in the following form

V = ω2
∑ ∑

a<b

r2abpapb, ω2 > 0. (3.17)

The function (3.17) describes N -particle oscillator-like interaction [9]. In the nonrelativistic limit
such a system is reduced to the nonrelativistic oscillator system. The system with interaction
(3.17) has N − 2 additional integrals of motion λj in involution: {λi, λk} = 0, i, k = 2, N − 1.
In terms of the variables (2.4) they have the form

λ2
j+1 =

j∑
d=1

m2
d

1/2− ηd−1

j∏
i=d

(1/2 + ηi)−1 +
m2

j+1

1/2− ηj

+ ω2
j−1∑
d=1

(
1/4− η2d

)
q2d

j∏
i=d+1

(1/2 + ηi)−1 + ω2
(
1/4− η2j

)
q2j ,

(3.18)

where λ2
N =M

2, j = 1, N − 1.
Quantum mechanical description for the system with interaction (3.17) was constructed by

means of the ordinary Weyl quantization in Ref. [9]. Here we consider WF1-quantization (see
(3.10)). One can show that WF1-quantization transforms the classical integrals into quantum
ones ([λ̂i, λ̂j ]) and we obtain the following mass spectrum of the system:

M2
n=

[
N∑

a=1

√
m2

a− (ωF ′
1(0))

2+ω
N−1∑
b=1

(nb+1/2)

]2

+ω2

[
(N−1)

(
1
4
−NF ′′

1 (0)
)
+

(
NF ′

1(0)
)2

]
.

(3.19)
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The discrete spectrum exists only if ω|F ′
1(0)| ≤ min{ma}, a = 1, N . This gives additional

restriction for the type ofWF1-quantization. We see that the mass spectrum depends essentially
on the choice of quantization rule. In the case F1 = 1 we come to the spectrum of the system
with the interaction (3.17) which has been obtained by the original Weyl quantization in Ref. [9].
In this work the generalization of the pure oscillator-like interaction has been considered too.
This new interaction function contains also the terms which are linear in the coordinates: V →
Ṽ = V + α

∑ ∑
a<b

rab(pa − pb). The original Weyl quantization gives the following result (see
Ref. [9]):

M2
n =

[
N∑

a=1

√
m2

a−
α2

4ω2
+ ω

N−1∑
b=1

(nb+1/2)

]2

+
N−1
4
ω2+

α2N2

4ω2
. (3.20)

Comparing the equalities ((3.19)), ((3.20)) we see that the quantizations WF1 , F ′
1(0) �= 0,

F ′′
1 (0) = 0 of the classical system with the pure oscillator-like interaction (3.17) gives the terms
in the expression for mass spectrum ((3.19)) which one can treat as a presence of the linear
interaction with α = −2ω2F ′

1(0). Then such a quantum system is equivalent to those which
is obtained from the classical system with the interaction Ṽ by means of the original Weyl
quantization. Thus, the use of different quantization rules may lead to essentially different
quantum results. Moreover different quantizations may lead to quantum systems with physically
different interactions!
In the nonrelativistic case all the ambiguities in the mass spectrum ((3.19)) vanish and we

obtain well known energy spectrum of nonrelativistic system with the oscillator interaction. But
the first relativistic correction to the nonrelativistic energy depends on the type of quantization:

E ≈ �ω
N−1∑
b=1

(nb + 1/2) +
�

2ω2

2c2

 1m
(

N−1∑
b=1

(nb + 1/2)

)2

−(F ′
1(0))

2
N∑

a=1

1
ma
+
1
m

[
(N − 1)

(
1
4
−NF ′′

1 (0)
)
+

(
NF ′

1(0)
)2

]}
.

(3.21)

Here we renewed the constants �, c.
Let us note that for the quantization of the oscillator-like interaction we used only quantiza-

tions preserving the commutability of the diagram (3.9). Using the quantization rulesWF (3.8),
which preserve only the commutation relations of the Poincaré algebra p(1, 1), we could obtain
more ambiguous results for the mass spectrum.

4 Conclusions

We have considered the problem of the quantization of the classical canonical realization of the
Poincaré algebra p(1, 1) corresponding to N -particle relativistic system with an interaction. It
has been demonstrated that for Weyl-type quantization rules (3.1) the requirement of preserva-
tion of the Lie algebra p(1, 1) restricts the set of quantization rules but does not by itself remove
the ambiguity of the quantization procedure.
In the classical case the square of total mass functionM2 = P+P− is an invariant of the group

P(1, 1). To obtain in the quantum case the algebraic structure which is most closely related
to the classical one, the quantum Kasimir operator M̂2 = P̂+P̂− must be the quantization
result of the classical expression M2 = P+P−. This additional requirement imposes additional
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restriction on the family of the Weyl-type quantization rules. Thus we see, that if one require
the quantization to preserve at least some of the associative algebra structure of C∞(P) then one
can restrict abbiguties of quantization procedure. But it does not fully eliminate the ambiguity
of the quantization either.
We also demonstrated that the Weyl-type quantization rules are split into equivalence classes.

Quantization rules from the same equivalence class lead to the same realization of the ideal
h and therefore give the same mass spectrum and the evolution of quantized system. The
quantizations which belong to different classes lead to non-equivalent quantum systems. We
have demonstrated the last fact by the example of the N -particle system with the oscillator-like
interaction. Therefore, if we start with the classical description of a mechanical system then
quantization rule seems to be an essential part of the definition of the corresponding quantum
system.
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We prove integrability, i.e the existence of the full set of commuting integrals, of the quantized
generalized rigid body in the case when inertia tensor possesses additional symmetry.

1 Introduction

In the present paper we deal with the quantum systems that are direct higher-rank generalization
of the standard so(3) Eulers top.

Integrability of their classical counterparts was originally proved by Manakov [1] for the case
of so(n) and by Mishchenko and Fomenko [2, 3] for the case of arbitrary semisimple Lie algebras.
They constructed the algebra of the mutually commuting with respect to the Lie–Poisson brack-
ets integrals of these systems, which we will call Mishchenko–Fomenko algebra, with the help
of the so-called procedure of the “shift of the argument”. This procedure has the Lie-algebraic
explanation that was given by Reyman and Semenov-Tian-Shansky [4, 5] in the framework of
the so called Kostant–Adler scheme [6]. But in the quantum case the analogous scheme fails.
This fact has again purely algebraic nature. Indeed, Kostant–Adler scheme, that was used by
Reyman and Semenov-Tian-Shansky involves loop algebras and their invariant functions. In the
quantum case corresponding invariant operators (symmetrized invariant functions) are badly
defined due to infinite-dimensionality of the loop algebra.

Nevertheless Vinberg proved [8] that a subalgebra of the Mishchenko–Fomenko algebra con-
sisting of the elements of the second order in the generators of semisimple Lie algebra is commu-
tative also on the quantum level (i.e. in the universal enveloping algebra). This fact indicates
that Mishchenko–Fomenko algebra should have commutative quantum counterpart.

In the presented paper we made one more step in proving this conjecture. We prove com-
mutativity in the universal enveloping of the other subalgebra of Mishchenko–Fomenko algebra.
Contrary to the case of Vinberg our subalgebra LA ⊂ A(gA) is not homogeneous in the coordi-
nates of the underlying Lie algebra, but is of the order not higher than one in the coefficients of
the inertia tensor A. Although this is not enough for proving the integrability of the quantum
Euler top in the case of the inertia tensor of the general position, but we show, that if the inertia
tensor possesses additional symmetries one could construct the full set of “quantum integrals”
using the symmetry algebra. Indeed it is known [10], that if the inertia tensor is symmetric
with the symmetry group GA and the symmetry algebra gA then Mishchenko–Fomenko algebra
MFA ⊂ P (g∗) is centralized by gA. From the Chevalley isomorphism between P (g∗) and A(g)
as g modules follows that the same fact holds true also for the quantum case. So, for the set of
commuting quantum integrals one could take independent integrals of the Mishchenko–Fomenko
algebra along with some commutative elements from A(gA). Taking into account the number
of the independent operators in the algebra LA (equal to 2rank g − 1) and the maximal possi-
ble number of the independent commuting operators in A(gA) (equal to 1/2(ind gA + dim gA))
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one could verify that for obtaining with their help a complete set of commuting quantum inte-
grals one should have the following restrictions on the degeneracy of the matrix A. In the case
when the underlying Lie algebra g is equal to gl(n), so(n) or sp(n) algebra gA should contain
subalgebra gl(n− 2), so(n− 2) or sp(n− 1) correspondingly1.

Using the “duality” in the dependence of the generators of Mishchenko–Fomenko algebra in
the generators of g and parameters of the “shift” A along with the result of Vinberg [8] we
also prove the integrability of quantum systems that correspond to some strongly degenerated
orbits in g∗ which are characterized as such that their stabilizers include Lie groups Gl(n− 2),
SO(n− 2) or Sp(n− 1).

2 Generalized Euler top

In this section we briefly remind several facts from the theory of classical finite-dimensional
integrable systems.

As it is known, equation of the motion of rigid body could be written in the form of Puanso [7]:

I1Ω̇1 = (I2 − I3)Ω2Ω3, I2Ω̇2 = (I3 − I1)Ω1Ω3, I3Ω̇3 = (I1 − I2)Ω1Ω2,

where �Ω is a vector of the angular velocity. Making the replacement of variables Mi = IiΩi we
will have Poinsot equations in the form:

Ṁi = εijkMk
∂H

∂Mj
,

where H =
∑

i=1,3
M2

i /Ii. They also could be rewritten as:

Ṁi = {Mi, H},

where { , } is Lie Poisson brackets defined in the following way:

{Mi,Mj} = εijkMk.

The key observation that was made by Arnold [7] is that this equations could be generalized to
arbitrary Lie algebra. In this general case they will have the following form:

Ṁi = Ck
ijMk

∂H

∂Mj
, (1)

where Ck
ij are the structure constants of some Lie algebra g and Mi-coordinate functions on the

dual space g∗. These equation are so called Euler–Arnold equations. Of course not for every
function H ∈ g∗ these equations are integrable. Mishchenko and Fomenko [2] found quadratic
hamiltonian that provides integrability of equation (1) for arbitrary semisimple Lie algebra. It
has the following form:

H = (M, ad−1
A adBM),

1Note, that without knowledge of the commutativity of subalgebra LA ⊂ A(g) one can only state integrability
of quantum Eulers top in the cases of the Lie algebras gl(n) and so(n) when inertia tensor A is symmetric with
respect to the Lie subalgebra gl(n − 1) and so(n − 1) correspondingly. In this cases the algebra of commuting
quantum integrals will simply coincide with the well-known Gelfand–Tsetlin algebra.
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where A,B ∈ g are any constant covectors, ( , ) is Killing–Kartan form. Corresponding Euler–
Arnold equations are:

dM

dt
= [M, (adA)−1(adB)M ]. (2)

It is evident, that these equations are nonlinear. But, as it was shown in [2], they are integrable
with the algebra of integrals constructed by the method of the shift of the argument. Let
{Cmk

(M) ⊂ P (g∗)}, where mk is exponents of g, be a full set of the independent polynomial
generators of IG(g∗). Then functions CA

l,mk
(M) obtained from the decomposition:

Cmk
(M + λA) =

mk∑
l=0

λlCA
l,mk

(M)

are mutually commuting integrals of equations (2). Moreover, in the case of the generic covector
A they form a full set of the independent integrals of Euler–Arnold equations. If the covector A
is nongeneric, then, in order to obtain complete set of mutually commuting integrals one should
take along with the set {CA

l,mk
(M)} any complete set of commuting functions in P (g∗A) [10].

Here gA is centralizer of A in g.

3 Quantization and integrability

3.1 Generalities

Quantization is the map from set of coordinates in the phase space into the set of Hermitian
operators in some Hilbert space H, so that the following relations holds:

̂{Mi,Mj} =
�

i
[M̂i, M̂j ].

In other words quantization is the homomorphism from the Lie algebra g, realized as Lie sub-
algebra in P (g∗) (with respect to the Lie–Poisson brackets) into the Lie algebra g, realized as
the subalgebra in the Lie algebra of Hermitian operators in some Hilbert space H. Due to the
well known fact that every representation of the arbitrary Lie algebra could be lifted to the
representation of its universal enveloping algebra, one could present quantization as the map:

P (g∗) ←↩ g→̂A(g).

This map could not be extended to the isomorphism of the algebras (P (g∗), { , }) and (A(g), [ , ]).
From the point of view of integrable systems the latter fact means that, generally speaking,

quantum counterparts of the Poisson-commuting classical polynomial integrals are not necessary
commutative operators:

[Îi, Îj ] 	= {̂Ii, Ij}.

By other words, proof of the quantum integrability of the classically integrable hamiltonian
systems is additional, separated from the process of quantization problem.
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3.2 Quantum Euler tops

Let us at last consider the problem of quantum integrability of the generalized Eulers tops. In
the standard so(3) case one has only two independent integrals – Hamiltonian and the square
of a vector �M : H =

∑
i=1,3

M2
i /Ii, M2 =

∑
i=1,3

M2
i .

Due to the simple fact that M2 is an invariant function no problems with the quantum
integrability arises in the so(3) case. Indeed, operator M̂2 is a second order Casimir operator,
which commutes with the whole Lie algebra A(so(3)). Hence, evidently:

[Ĥ, M̂2] = 0.

In the case of the Lie algebras of the higher rank situation is more complicated. Indeed to prove
quantum integrability of the described above systems one should prove that

[ ̂CA
p,mk

(M), ̂CA
s,mn

(M)] = 0.

Due to the fact that operators ̂CA
0,mk

(M) ≡ ̂Cmk
(M) , k = 1, . . . , rank g are Casimir operators

(i.e. analogs of the square of a vector �M) one obtains that

[ ̂CA
0,mk

(M), ̂CA
s,mn

(M)] = 0

for every s,mn. By other words Casimir operators are always “quantum integrals”.
Let us consider other subalgebra in the Mishchenko–Fomenko algebra, namely the algebra

generated by the integrals {CA
1,mk

(M), k = 2, . . . , rank g}.
Next theorem states the commutativity of this algebra in A(g).

Theorem 3.1. Let g be a classical simple Lie algebra over the field K, with the basis {M̂i}. Let
A(g) be its universal enveloping algebra, Z(A(g)) its center. Let { ̂Cmk

(M), k = 1, . . . , rank g}
be a full set of the generators of Z(A(g)):

̂Cmk
(M) =

dim g∑
i1,i2,...,ik=1

ci1i2···ikM̂i1M̂i2 · · · M̂ik ,

where ci1i2···ik is some invariant tensor. Let us consider decomposition:

̂Cmk
(M + λA1) =

dim g∑
i1,i2,...,ik=1

ci1i2···ik(M̂i1 +Ai11)(M̂i2 +Ai11) · · · (M̂ik +Ai11) =
mk∑
l=0

λlĈA
l,mk

,

where Ai ∈ K, i ∈ 1, · · · ,dim g. Let LA be the subalgebra in A(g) generated by the elements
{CA

0,mk
(M̂)CA

1,mk
(M̂), k = 1, . . . , rank g}.

Then subalgebra LA is commutative.

Proof of the theorem follows from the results of paper [11]. Indeed as it is easy to prove, from
the parts (i) of the theorems 1 and 2 of paper [11] follows the commutativity of the subalgebra
LA ⊂ A(g) in the case of the special choice of the Casimir operators. On the other hand LA

does not depend on the choice of the generating set of Casimir operators. Indeed it could be
easily proved, using the fact that every other set of Casimir operators could be expressed as a
polynomials in the elements ̂Cmk

(M) and vice versa. From the latter fact follows that different
choice of the set of Casimir elements leads just to the other choice of the generators of LA.
Under such correspondence new set of Casimir elements are expressed by the polynomials in the
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̂Cmk
(M). New set of integrals linear in the tensor of inertia A will be expressed polynomially

in the Ĉmk
and linearly in CA

1,mk
(M̂), (k = 1, . . . , rank g).

Example. g = gl(n,K). Let M̂i,j , i, j ∈ I, where I = (1, 2, . . . , n), be the basis in this algebra
with the commutation relations:

[M̂i,j , M̂k,l] = δk,jM̂i,l − δi,lM̂k,j .

Universal enveloping algebra U(gl(n)) consists of formal polynomials in the elements M̂i,j . Let
us define the following elements of U(gl(n)):

(M̂m)i,j =
∑

i1,...,im−1∈I

M̂i,i1M̂i1,i2 · · · M̂im−1,j .

It is known [9], that the elements: ̂Cmk
(M) = (M̂m) =

∑
i∈I

(M̂m)i,i, m ∈ (1, 2, . . . , n) generate

the center of the universal enveloping algebra. For the generalized inertia tensor one can take
arbitrary matrix A ∈ Mat (n,K). It is not difficult to check, that

CA
1,m =

m−1∑
l=0

(M̂ l)i,jAjk(M̂m−l)k,i.

In this case, instead of the elements CA
1,m one can chose another generators of LA, which have

more simple form:

(ÂMm) =
∑
i,j∈I

Aj,i(M̂m)i,j .

Indeed, using the commutation relation one can easily express CA
1,m linear in the terms of (ÂMm)

and (M̂n) (and vice versa).
To prove the complete quantum integrability of the generalized Eulers top with the generic

inertia tensor A associated with the generic (co)adjoint orbit in the Lie algebra g one have
to prove the commutativity of the whole Mishchenko–Fomenko algebra in A(g). But, if one
consider the case of the nongeneric inertia tensor A or the nongeneric (co)adjoint orbit in g then
for proving quantum integrability only some commutative subalgebras from the Mishchenko–
Fomenko algebra are needed.

Let us consider the case of nongeneric inertia tensor first. We will essentially use the following

Lemma 3.1. Let gA be a centralizer of matrix A in g. Then gA centralize LA in g.

Proof. It follows from the parts (ii) of theorems 1 and 2 [11] along with the fact that LA does
not depend on the choice of the full set of independent Casimir operators.

Example. Let g = gl(n), A ∈ Mat (n,K). Then

gA =
{
(BM̂) =

∑
i,j∈I

Bj,iM̂i,j | B ∈ Mat (n,K), [B,A] = 0
}
.

This lemma enables us to construct full set of commuting quantum integrals of the generalized
Euler’s top in the case when inertia tensor is not generic, i.e., possesses additional symmetries.
in this case Hamiltonian and all other integrals commute with the generators of this symmetries.
That is why one can take for the full set of the integrals (both classical and quantum) some
set of independent integrals from the Mishchenko–Fomenko algebra along with some full set of
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commuting integrals from the A(gA). One has only find out under what conditions on the ma-
trix A the number of independent generators of LA plus the maximal number of the commuting
integrals from A(gA) is equal to (dim g + ind g)/2.

Answer to this question gives the following theorem.

Theorem 3.2. Let g be Lie algebra of the type gl(n), so(n) or sp(n). Let centralizer of the
numerical matrix A ∈ g ⊂ Mat (n,K) contain Lie subalgebra of the type gl(n− 2), so(n− 2) or
sp(n− 1) respectively. Then quantum Eulers top with the inertia tensor A is integrable.

Let us consider the “dual” case when the inertia tensor is generic, but the Euler–Arnold
equations are restricted to the symplectic leaf of low dimension – strongly degenerated coadjoint
orbit Odeg  G/K . Due to the fact that the number of mutually commuting integrals should
be equal to the one half of the dimension of the phase space it will be in this case substantially
smaller. This enables us to state the following theorem.

Theorem 3.3. Let Odeg  G/K be the degenerated coadjoint orbit in the Lie algebra of the type
gl(n), so(n) or sp(n). Let its stabilizer K contains Lie subgroup of the type Gl(n−2), SO(n−2)
or Sp(n − 1) respectively. Then quantum Eulers top associated with this orbit is integrable for
the arbitrary inertia tensors A.

Proof. From the results of [12] follows that after restriction of the generators of Mishchenko-
Fomenko algebra to the orbits of the described in the theorem type, independent generators
could be chosen among the generators of the first and second orders in the coordinates of
algebra. Hence the statement of the theorem follows from the results of [8].
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The invariance properties of equations of motion and symmetric bifurcations of stationary
and periodic solutions of codimensionality 1 and 2 corresponding to polarization symmetry
breaking and restoration were analyzed in a single-mode standing-wave class-A gas laser with
linear phase anisotropy of the cavity at j → j + 1 transition between the working levels.

1 Introduction

The account of vectorial nature of electromagnetic field in nonlinear dynamics of laser systems,
besides additional equations compared to the scalar field approach, assumes the appearance
of radically new properties of dynamical systems inherent in polarized radiation. One of these
properties is invariance (symmetry) of the system with respect to the transformation of the state
of polarization. In spite of the fact that in optics transformations of polarization accompanied by
polarization symmetry breaking are known (see, for example, [1]) their mathematical description
in the language of singular (symmetric) bifurcations is absent.

The aim of the present work is to study the invariance properties of the equations of motion
of a single-mode class-A gas laser with linear phase anisotropy of the cavity, operating at jb = 1
→ ja = 2 transition and to analyze symmetric bifurcations of codimension 1 and 2 of stationary
and periodic solutions resulting in polarization symmetry breaking and restoration phenomena.

2 Theoretical model

The theoretical analysis is based on the model of a single-mode (two-frequency) anisotropic-
cavity gas laser with a longitudinal magnetic field on the active medium, derived and explored
in [2, 3]. In the case of linear phase anisotropy of the cavity at the line center tuning the equations
of motion can be reduced to a system of three ODEs which takes the following form [3]:

dI1
dτ

= 2I1

{
P1

P
+
∆W ′

P
tanh 2β1 − q

(
1− cos 2Φ1

cosh 2β1

)
− I1

(
θ′1 + θ′′2 tanh

22β1

)}
, (1)

dΦ1

dτ
= −(qS1 + rS2)− ∆W ′′

P
+ θ′′2 tanh 2β1I1, (2)

dβ1

dτ
= rS1 − qS2 +

∆W ′

P
− θ′2 tanh 2β1I1. (3)

Here I1 = I ′1/k0lP is the dimensionless intensity, f1 = Φ1+iβ1, ξ1 = tanhβ1 is the ellipticity; Φ1

is the azimuth of the wave 1, the characteristics of the waves 1 and 2 are interrelated: I2 = I1,
Φ2 = Φ1 + π/2, ξ2 = −ξ1; W (x ± ∆, y) = U(x ± ∆, y) + iV (x ± ∆, y) is the complex error
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function, W̄ = Ū + iV̄ = [W (x−∆, y)+W (x+∆, y)]/2, ∆W = [W (x−∆, y)−W (x+∆, y)]/2;
x1 ±∆ = (ω1 − ω0 ± gµBH)/Ku is the detuning of the lasing frequency ω1 from the line center
ω0, relative to Ku; θ1 = b1+a12− b12, θ2 = d1−d12+ b12; a, b, d are the coefficients of nonlinear
interaction which as well as the other parameters are determined in [3]; S1 = sin 2Φ1 cosh 2β1,
S2 = cos 2Φ1 sinh 2β1, q = (1 − cos 4ψ)/2τ0, r = sin 4ψ/2τ0, ∆W = ∆W ′ + i∆W ′′, ∆ = ∆0 +
∆1 sin fτ , ωf/2π(KHz) = 103fτ0c/2πL, ∆ = gµBH/Ku, ∆0 = gµBH0/Ku, ∆1 = gµBH1/Ku,
H0 and H1 are the strength of constant and sinusoidal magnetic field, respectively 2ψ is the
linear phase anisotropy of the cavity;

∆W = ∆W ′ + i∆W ′′

≈ 2∆
{
δx

(
1− 4y√

π

)
+ i

[
y − 1√

π
+

2√
π

(
∆2

3
− y2 + δx2 +

δxy

∆

)]}
,

(4)

δx = (x1 − x2)/2.
Stability analysis of the stationary and periodic solutions was carried out on the basis of the

numerical methods of the theory of bifurcation [4, 5].

3 Pitchfork bifurcation of the stationary solution

Assuming the amplitude of the longitudinal magnetic field on the active medium equal to zero:
(H0 = H1 = 0), let us consider the transformation of the state of polarization of the emitted
field at transition from isotropic (ψ = 0), to anisotropic cavity, when ψ �= 0.

Under the assumptions that the changes in intensity with time can be neglected (I1 = I2 =
I0) the stationary solutions to equations (2), (3) for polarization characteristics can be found
analytically (see, for example, [3]):

Φ1 = 0,±π/2, ξ1 = 0, (5)

Φ1 = ±π/4, sinh 2β1 = ±
{
−α/2r′ − (

α2/4r′2 − 1
)1/2

}
, (6)

Φ1 = ±π/4, sinh 2β1 = ±
{
−α/2r′ + (

α2/4r′2 − 1
)1/2

}
, (7)

where α = 2τ0θ2I0, r′ = sin 4ψ.
Stability analysis of these solutions, carried out numerically in [6], showed that for j → j

transitions for all values of ψ the two orthogonal linearly polarized waves, described by (5), are
stable. For j → j + 1 transitions in a region of ψ : α/4 < sin 2ψ < (α/4)1/2, a steady-state
regime with periodic oscillations of the intensity, ellipticity and azimuth of the emitted field is
found. The limit cycle appears at ψ∗ = 1/2 arcsin(α/4)1/2 due to the Hopf bifurcation and is
destroyed at point ψ∗∗ = 1/2 arcsin(α/4) due to the appearance of a saddle-node point (see, for
example, [5]).

The expressions (6) describe the stable solutions (the state of equilibrium is the node), the
expressions (7) describe the unstable solutions (the state of equilibrium is the saddle), existing
in the region ψ∗∗ < 1/2 arcsin(α/4). The detailed bifurcation analysis of the system under
consideration requires more complicated model, it was carried out in [3]. Here we consider only
the symmetry-breaking bifurcations.

At ψ = 0 (isotropic cavity) two steady-state solutions (6), corresponding to the (±) signs,
coincide. Each of them describes two waves with orthogonal circular states of polarization
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and zero frequency difference, which give one wave with linear polarization. This result is in
agreement with previous studies (see, for example, [6]).

When the cavity anisotropy ψ is infinitesimal so that the isotropic cavity is transformed
into an anisotropic cavity, the solutions (6) give two different two-frequency regimes. Each of
these regimes is represented by two orthogonal elliptically polarized waves with high ellipticities
(practically circular) and different frequencies. A particular regime of lasing is determined by
the initial conditions.

This bistability reflects the invariance properties of equations (1)–(3) with respect to the
transformation of variables:

G = {I1,Φ1, ξ1} → {I1,−Φ1,−ξ1} (8)

and corresponds to the symmetric pitchfork bifurcation (see, for example, [8]) which takes place
in the vicinity of the point ψ = 0. As a result of this bifurcation the initial solution (one
linearly polarized wave) loses its stability, and two new stationary two-frequency elliptically
polarized solutions with high ellipticities (practically circular) appear. These new solutions can
be obtained from each other by the transformation G. Pitchfork bifurcation of the stationary
solution and polarization symmetry breaking phenomenon is shown schematically in Fig. 1.

ψ = 0 ψ �= 0

Φ1

Φ1

−π/4

+π/4

Fig. 1. Pitchfork bifurcation of the stationary solution resulting in spontaneous polarization sym-
metry breaking at transition from isotropic to anisotropic cavity.

Due to the bistability of these two-frequency regimes, which are connected with each other
by the transformation G, and due to the fact that the choice of solution is fully determined
by the initial conditions, we can say that the decomposition of one linearly polarized wave into
two orthogonal elliptically polarized (with high values of ellipticities, practically circular) waves
with different frequencies which occurs at transition from an isotropic to an anisotropic cavity
is a spontaneous polarization symmetry breaking.

4 Symmetry-breaking bifurcation of periodic solutions
of equations of motion

Let us consider the invariance properties of equations (1)–(3) in the presence of a sinusoidal
magnetic field on the active medium (H0 = 0, H1 �= 0) and analyze the bifurcations of periodic
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solutions of codimensionality 1 and 2, reflecting these properties. Let us choose the range of
control parameter ψ where in the system a stable limit cycle of the first kind is realized [2, 3].

It is easy to see that when the longitudinal magnetic field is imposed on the medium, the
system of equations (1)–(3) is invariant with respect to the following transformation:

G = {I1,Φ1, ξ1, H1} → {I1,−Φ1,−ξ1,−H1}. (9)

Reversing of the sign of H1 is equivalent to the shift of the phase of the external force signal
on π. Analogous symmetry properties are intrinsic for some dynamical systems, in particular, for
those, describing by the Duffing equations (see, for example, [9]). In these systems the periodic
solutions are possible whose bifurcations occur by a different way than bifurcations of periodic
solutions in systems without symmetry (see, for example, [10]).

Let X(t) be the periodic solution of the system (1)–(3), and X̃ be the trajectory of this
solution in the phase space. Then in accordance with classification of symmetric limit cycles
(see, for example, [10]), the following solutions are possible:

F -cycle is the solution, invariant with respect to the transformation G:

GX(t) = X(t); (10)

S-cycle is the solution which is not invariant with respect to the transformation G, but the
trajectories of the both cycles coincide, i.e. the phase trajectory of the cycle consists of two
congruent parts. The solution is invariant with respect to the transformation G + shift of the
time series on a half of period of a cycle T :

GX(t) �= X(t), GX(t) = X̃, GX(t) = X(t+ T/2); (11)

M -cycle is the asymmetric solution which at the transformation G turns into the second asym-
metric solution:

GX1(t) = X2(t). (12)

M -cycles always originate in pair and undergo simultaneously the same sequence of bifurcations,
intrinsic for systems without symmetry. In the system under consideration S- andM -cycles were
found.

Fig. 2 shows the upper part of the diagram on the plane of parameters H1, ωf inside the
resonance (1/1), calculated at the following parameters of the He − Ne (λ = 0.63µm) laser:
ψ = 0.001 rad, η1 = η2 = 1.9, c/L = 612 MHz, y1 = 0.011, y2 = 0.005, y = 0.2, k0l = 0.025,
Ku = 870 MHz.

Detailed study of the dynamics of this nonautonomous system has been carried out in [11],
where the evolution of solutions in the region of resonance (1/1) at large values of H1 is shown
schematically.

In the region 1, bounded by the lines l0, on which the Neimark–Sacker bifurcation takes
place (a pair of complex-conjugate multipliers crosses the unit circle: |µ1| = |µ2| = 1), the
resonance S-cycle exists. On going out of the resonance region across these lines, softly, with
zero amplitude on the second frequency in the power spectrum, a two-dimensional S-torus is
originated, which exists in the region 2.

With increasing parameter H1 the lines l0 are ended at the points F of codimension 2, where
both of the multipliers of the cycle 1 become unit: µ1 = µ2 = +1), which corresponds to the
strong resonance condition (1/1) [12]. Through points F the line l11 is passing on which the
resonance S-cycle loses its stability as a result of the saddle-node bifurcation for a system with
symmetric properties and instead of it a pair of stable asymmetric M -cycles with period of the
driving force T originates.
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Fig. 2. A part of the bifurcation diagram on the
plane of parameters (H1, ωf ) in the region of the
resonance (1/1).

Fig. 3. Pitchfork bifurcation of the limit cycle. Phase
projections reflecting the invariance with respect to the
transformation G of symmetric S-cycle calculated at
H1 = 0.88.4 Oe, ωf = 381 KHz (a) and asymmetric M -
cycles calculated at H1 = 90.8 Oe, ωf = 381 KHz (b).

In the region 3 one of the two possible asymmetric solutions is realized; the switch to the other
solution occurs at exchange of the signs of the initial conditions and magnetic field strength.
Fig. 3 reflects changes of the phase projections of the S (a) and M (b) cycles with respect to
the transformation G.

As it can be seen from Fig. 3, as a result of the transformation G, the phase trajectory of the
S-cycle remains unaltered, while the M -cycles are transformed into each other. Thus, on the
line l11 polarization symmetry breaking phenomenon for periodic solutions of the equations of
motion takes place. This bifurcation is an analog to the pitchfork bifurcation of the stationary
solutions.

Above the points F the lines of formation of a new two-dimensional S-torus with complicated
form of oscillations are fixed. At so doing, both of the asymmertic M -cycles simultaneously lose
their stability as a result of the saddle-node bifurcation and form the symmetric long-period
oscillation on torus, which exists in the region 4. Complication of the form and increase of the
period of oscillation on torus in the region 4, originated inside of the region of synchronization
(1/1), is due to appearance of the high order (p > 5) resonances [12]. Inside these resonances
symmetric periodic oscillations are fixed whose period is p times larger than the period of the
driving force T . In the system under consideration long-periodic oscillations with period 7T and
9T have been found [11]. The dashed lines in the diagram separate approximately the region
of the torus 2, originated from the initial cycle and torus 4, originated from the long-periodic
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cycle inside the locking zone. When these lines intersect, a torus with long-periodic oscillations
appears as a result of a long-term intermediate process, so in the Poincare section it is possible to
observe simultaneously the destruction of the old and the creation of a new torus. The behavior
of the dynamical system in the vicinity of the points F of codimension 2 corresponds to the
suggestion 5S [10], namely, this is the case of resonance (1/2) in a system without symmetry.
To elucidate this statement one should take into account that the behavior of symmetric S-cycles
is characterized not by the eigenstates of the linearization matrix in the Poincare map P , which
describes the shift of the solution for the period of cycle T , but by the eigenstates of the matrix
Q = P 1/2, describing the transformation of the periodic solution during one half of the period T .

At the strong resonance conditions (1/1) for matrix P , depending on the symmetry properties
of the matrix Q, its eigenstates can be multiple and equal to +1 (resonance (1/1) in systems
without symmetry), multiple and equal to −1 (resonance (1/2)), as well as equal to ±1. As
mentioned above, in the system under consideration the resonance (1/2 ) conditions for system
without symmetry are realized.

When constant longitudinal magnetic is added, the phase space become cylindrical [11].
Equations (1)–(3) are invariant with respect to the transformation G given by (9), where H1

should be replaced by H = H0+H1. This invariance results in the bistability of M -cycles of the
first and the second kind and in the experimentally observed effect of sign reversal of azimuth
rotation. Bistability of the asymmetric M -cycles with period of the external force T is shown
in Fig. 4.

Fig. 4. Bistability of the asymmetric M -cycles of the second kind; the arrows mark the direction of
azimuth rotation: right rotation (a), left rotation (b).

Conclusions

Analysis of the invariance properties of the equations of motion of a single-mode standing-wave
class-A gas laser with linear phase anisotropy of the cavity at the j → j + 1 transition between
the working levels has revealed a series of polarization symmetry breaking phenomena. Spon-
taneous polarization symmetry breaking, corresponding to pitchfork bifurcation of stationary
solution, occurs at transition from an isotropic to an anisotropic cavity and destruction of the
laser modes degeneracy. In the vicinity of the bifurcation point one wave with linear state of
polarization is decomposed into two elliptically polarized waves with high values of ellipticity,
and bistability of these two-wave solutions arises. In the presence of a sinusoidal magnetic field
on the active medium polarization symmetry breaking has been found which corresponds to
pitchfork bifurcation of periodic solution: symmetric S-cycle is decomposed into two asymmet-
ricM -cycles. Then S-type symmetry is restored through appearance of S-torus which undergoes
high-order resonances.
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In the presence of a constant longitudinal magnetic field on the active medium bistability has
been found of asymmetric M -cycles of the first and the second kind resulting in the experimen-
tally observed effect of sign reversal of azimuth rotation.

At present the polarization symmetry breaking and the restoration phenomena are becoming
the subject of intensive studies due to their possible application in the optical processing of
information for making devices based on novel physical principles.
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Using discrete symmetries of the Kemmer–Duffin–Petiau (KDP) equation the exact Foldy–
Wouthuysen transformation (FWT) was found. It is required that the vector-potential of
an external field has definite parities. We also described reduction of the KDP equation to
uncoupled subsystems which can be solved independently.

The FWT [1] provides several advantages for the understanding and interpretation of the
physical properties of the Dirac equation. It permits to reduce of this equation to a two-com-
ponent equation of the Pauli type. But its main achievement consist in separating of the solution
of Dirac equation corresponding to a definite sign of the energy eigenvalues. There are great
number of papers are devoted to the construction of FWT for spin-0 [2] and spin-1 [3] particle.

In the presence of interaction the FWT has not, in general, a closed form and one usually
uses series expansion methods. There are classes of interaction represented for instance by the
static magnetic potentials [4], by the static electric and the pseudo-scalar potentials [5] which
admit the exact FWT. The FWT for a two-body equation with oscillator-like interaction [6], for
systems composed of one fermion and one boson, and one fermion and one antifermion in the
presence of special classes of interactions [7] was also constructed in a closed form.

In this paper we investigate the KDP equation for scalar and vector particle in an electromag-
netic field. In order to construct exact FWT we used discrete symmetries of the corresponding
equations. The idea to use discrete symmetries (space reflections, time inversion and charge con-
jugation) for reductions of the Dirac and Schrödinger–Pauli equation to uncoupled subsystems
was proposed in [8, 9].

Let us consider KDP equation for scalar (s = 0) and vector (s = 1) particles minimally
interacting with external electromagnetic field. These equations in the Schrödinger form read [10]

i
∂

∂t
Ψ(x) = H1(A0, 	π)Ψ(x),

H1 = σ2m+ (iσ1 + σ2)
π2

2m
+ eA0, s = 0;

(1)

i
∂

∂t
Ψ(x) = H2(A0, 	π)Ψ(x),

H2 = σ2m+ (iσ1 + σ2)
(π2 − e	S · 	H)

2m
− iσ1

(	S · 	π)2

m
+ eA0, s = 1,

(2)
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where

πa = pa − eAa, pa = −i ∂

∂xa
, a = 1, 2, 3,

π2 = π2
1 + π2

2 + π2
3, A0 = A0(t, 	x), Aa = Aa(t, 	x),

	H = i[	p× 	A], σ1 =
(

0 I
I 0

)
, σ2 = i

(
0 −I
I 0

)
,

I is a (2s + 1)-dimensional unit matrix, Sa are 6-dimensional matrices realizing a direct sum
of the AO(3)-representations D(1), D(1), Ψ(x) is a wave function which has 2(2s+ 1) physical
components.

We note that for physical reasons it is preferable to consider another form of (1), (2). It is
connected with our consideration by unitary transformation U = 1

2(1 + iσ1), H ′
1,2 = UH1,2U

−1.
In order to construct FWT for Hamiltonians of (1), (2) we will use a method proposed in [11].
Let us define an unitary involution operator I anticommuting with H of (1), (2):

I+I = II+ = I2 = 1, IH +HI ≡ [I,H]+. (3)

We seek the involution I in the form

I = MD, (4)

where M is a numeric matrix, D are operators of the discrete transformation:

D = 〈Ra, T,RaT 〉, a = 1, 2, 3, 12, 23, 31, 123,

RaΨ(t, 	x) = raΨ(t, ra	x), ra : xa → −xa,

TΨ(t, 	x) = r0Ψ(r0t, 	x), r0 : t→ −t,
ra = ±1, r0 = ±1, R123 ≡ R, r123 ≡ r,

rarb : xa → −xa, xb → −xb, a 	= b,

rarbrc : xa → −xa, xb → −xb, xc → −xc, a 	= b, b 	= c, a 	= c.

Theorem 1. I. All possible involutions (up to equivalence) of form (4) anticommuting with (1)
have the form

1. I1 = σ3R, (5.1)

2. I2 = σ3T, (5.2)

3. I3 = σ3RT, (5.3)

4. I4 = σ3Ra, a = 1, 2, 3, (5.4)

5. I5 = σ3Rab, a 	= b, (5.5)

6. I6 = σ3RaT, (5.6)

7. I7 = σ3RabT (5.7)

if the corresponding parities of vector-potential Aµ(t, 	x) (µ = 0, 1, 2, 3) are given by the relations

1. A0(t, 	x) = −A0(−t, 	x),

Aa(t, 	x) = −Aa(t, r	x).
(6.1)



On Exact Foldy–Wouthuysen Transformation of Bozons 539

2. A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x).
(6.2)

3. (there are four subcases of parities of Aµ):

a) A0(t, 	x) = −A0(−t, 	x), A0(t, 	x) = A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x), Aa(t, 	x) = −Aa(t, r	x);

b) A0(t, 	x) = −A0(−t, 	x), A0(t, 	x) = A0(t, r	x),

Aa(t, 	x) = −Aa(−t, 	x), Aa(t, 	x) = Aa(t, r	x);

c) A0(t, 	x) = A0(−t, 	x), A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = −Aa(−t, 	x), Aa(t, 	x) = Aa(t, r	x);

d) A0(t, 	x) = A0(−t, 	x), A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x), Aa(t, 	x) = −Aa(t, r	x).

(6.3)

4. A0(t, 	x) = −A0(t, ra	x),

Aa(t, 	x) = −Aa(t, ra	x) (no sum over a),

Aa(t, 	x) = Aa(t, rb	x), a 	= b.

(6.4)

5. A0(t, 	x) = −A0(t, rarb	x), a 	= b,

Aa(t, 	x) = −Aa(t, rarb	x) a 	= b,

Aa(t, 	x) = Aa(t, rbrc	x), a 	= b, b 	= c, c 	= a.

(6.5)

6. In this case the parities of Aµ are the same as in the case 3 (formula (6.3)) up to the
replacement of r by ra. In addition, Aµ should satisfy the following relations:

Aa(t, 	x) = −Aa(t, ra	x),

Aa(t, 	x) = Aa(t, rb	x), a 	= b,
for a) and d);

Aa(t, 	x) = Aa(t, ra	x),

Aa(t, 	x) = −Aa(t, rb	x), a 	= b,
for b) and c).

(6.6)

7. In this case the parities of Aµ are the same as in the case 3 (formula (6.3)) up to the
replacement of r by rbrc, b 	= c, a 	= b, a 	= c. In addition, Aµ should satisfy the following
relations (b 	= c, a 	= b, a 	= c)

Aa(t, 	x) = Aa(t, rbrc	x), for a) and d),

Aa(t, 	x) = −Aa(t, rbrc	x), for b) and c).

II. All possible involutions (up to equivalence) of form (4) anticommuting with (2) have the
form (5.1), (5.2), (5.3) if the vector-potential Aµ has the parities (6.1), (6.2), (6.3), correspon-
dingly.

Proof. Requiring the anticommutativity of operator (4) with the Hamiltonian of (1), we obtain
the following conditions for M and D:

[σ2,M ]+ = 0, [σ1,M ]+ = 0, (7.1)
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[A0, D]+ = 0, [π2, D] = 0. (7.2)

It follows from (7.1) that

M = σ3 =
(

1 0
0 −1

)
.

Conditions (7.2) lead us to (5), (6). In a similar way we can find the involutions for Hamiltonian
of (2). Theorem is proved.

Theorem 2. The exact FWT for Hamiltonians of (1), (2) which have no zero eigenvalues have
the form

U =
1
2

(1 + σ1Ia)(1 + Iaε), U+ = U−1, ε =
H√
H2

, (8)

a = 1, 7 for Hamiltonian of (1), a = 1, 3 for Hamiltonian of (2).

Proof. Let us consider the case a = 1. Then

U =
1
2

(1 − iσ2R)(1 + σ3Rε). (9)

The straightforward computation yields

H ′
1 = UH1U

−1 = σ3

√
H2

0 ≡

≡ σ3

(
m2 + π2(1 + σ1R) + e2A2

0 +
ie

2m
[A0, π

2]+(R + σ1) +
π4

m2
(1 + σ1R)

)1/2

,

(10)

H ′
2 = UH2U

−1 = σ3

(
H2

0 +
2
m2

{
2(	S · 	π)4 + (	S · 	H)2 + [(	S · 	π)2, 	S · 	H]+

}

+ 2	S · 	HR + 2σ1

[
2(	S · 	π)2 + 	S · 	H

]
− ieσ1R

m

[
A0, 2(	S · 	π)2 + 	S · 	H

]
+

+
ie

m
[A0, 	S · 	H]+ +

2(σ1 +R)
m2

{
2π2(	S · 	π)2 + [π2, 	S · 	H]+

}

+
2σ1R

m2

{
(	S · 	H)2 + [(	S · 	π)2, 	S · 	H]+

})1/2

.

(11)

We can see that transformation (9) reduces Hamiltonians of (1), (2) to the diagonal form (10),
(11). Theorem is proved.

Finally, let us consider relativistic KDP equation for spin-1 particle with minimal and anoma-
lous interaction with electromagnetic field [12]:[

βµπµ −m+
e

2m
(
1 − β2

5

)
SµνF

µν
]

Ψ(x) = 0, (12)

Sµν = i[βµ, βν ], Fµν = ∂µAν − ∂νAµ, ∂µ =
∂

∂xµ
,

β0 = i(e1,7 + e2,8 + e3,9 − e7,1 − e8,2 − e9,3),

β1 = −i(e1,10 − e5,9 + e6,8 + e8,6 − e9,5 + e10,1),

β2 = −i(e2,10 + e4,9 − e6,7 − e7,6 + e9,4 + e10,2),

β3 = −i(e3,10 − e4,8 + e5,7 + e7,5 − e8,4 + e10,3),

β5 = i(e4,1 + e5,2 + e6,3 − e1,4 − e2,5 − e3,6),

(13)
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where we use the notations ei,j for 10 by 10 matrices, whose only nonzero elements are ones at
the intersection of the i-th line and j-th column which are equal to unity.

Substituting the explicit form of βµ-matrices (13) into (12) and expressing nonphysical com-
ponents (1−β2

0)Ψ via 2(2s+1) physical components β2
0Ψ, we come to the equation in Schrödinger

form i∂tΨ = HΨ, where Ψ is a 6-component wave function and the Hamiltonian has the form

H = mI3 ⊗ σ2 +
π2

2m
I3 ⊗ (σ2 + iσ1) − i

m

3∑
a,b=1

πaπb(SaSb ⊗ σ1)

+
e2

2m3

3∑
a=1

(F0a)2I3 ⊗ (σ2 − iσ1) − e2

2m3

3∑
a,b=1

F0aF0bSaSb ⊗ (σ2 − iσ1)

+
ie

m2

3∑
a,b=1

F0aπbSaSb ⊗ σ3 − ie

m2

3∑
a=1

(F0aπa)2I3 ⊗ σ3 +
ie

2m2
M ⊗ (1 − σ3)

+
e

2m
(S1F23 − S2F31 + S3F12) ⊗ (σ2 − iσ1) + eA0,

(14)

where we refer to direct products between 3 by 3 unit I3 and Sa (a = 1, 2, 3) matrices belonging
to the D(1)-representation of AO(3) with the usual Pauli matrices and M is a matrix with
matrix elements mab = −i∂F0b

∂xa
.

Requiring that (14) and (4) satisfy (3) we find the involutions of Hamiltonian (14):

Ĩ1 =
[
(2S2

1 − 1) ⊗ σ3

]
P23T, (15.1)

Ĩ2 =
[
(2S2

2 − 1) ⊗ σ3

]
P31T, (15.2)

Ĩ3 =
[
(2S2

3 − 1) ⊗ σ3

]
P12T (15.3)

and the following conditions for Aµ and Ea (Ea are components of electric field strength):

Aµ(t, 	x) = Aµ(−t, 	x), A0(t, 	x) = −A0(t, rarb	x),

A1(t, 	x) = α1A1(t, rarb	x), A2(t, 	x) = α2A2(t, rarb	x),

A3(t, 	x) = α3A3(t, rarb	x),
∂Ea

∂xa
= 0, no sum over a,

α1 = −α2 = −α3 = 1, a = 2, b = 3 for (15.1),

−α1 = α2 = −α3 = 1, a = 1, b = 3 for (15.2),

−α1 = −α2 = α3 = 1, a = 1, b = 2 for (15.3).

The exact FWT of (14) has the form:

U1 =
1
2

(
1 + S2 ⊗ Î2 · Ĩ1

) (
1 + Ĩ1ε

)
,

U2 =
1
2

(
1 + S3 ⊗ Î2 · Ĩ2

) (
1 + Ĩ2ε

)
,

U3 =
1
2

(
1 + S1 ⊗ Î2 · Ĩ3

) (
1 + Ĩ3ε

)
,

Î2 is a 2 × 2 unit matrix.
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Another problem that we explore in this note is a reduction of KDP equation to uncoupled
subsystems. Let us show how it is possible to make such reduction using discrete symmetries of
corresponding equations.

It is easy to verify that the involutions I2, I3, I6, I7 (see formulae (5)) are the discrete
symmetries of (1) if vector-potential Aµ(t, 	x) has parities (6.2), (6.3), (6.6), (6.7) correspondingly.
Indeed, these operators satisfy the invariance condition [Q,L]Ψ = 0, where Q = 〈I2, I3, I6, I7〉,
L = i∂t −H1, Ψ is an arbitrary solution of equation LΨ(x) = 0. In analogy with the above we
can find that equation (2) admits discrete symmetries I2 and I3, (formulae (5.2) and (5.3)) for
the vector-potential (6.2) and (6.3) respectively.

In order to reduce (1) and (2) to uncoupled subsystems it suffices to construct unitary oper-
ators that diagonalize the discrete symmetries of these equations [8].

Let the vector-potential Aµ(t, 	x) satisfy relations (6.2). In this case equation (1) admits the
symmetry Q1 = σ3T .

Constructing the operator

U1 = (T+ − iσ2T−), U−1
1 = (T+ + iσ2T−), T± =

1 ± T

2
(16)

we reduce Q1 to the block diagonal form

U1Q1U
−1
1 = σ3.

The equation (1) is transformed as

L′
1Ψ′ = 0,

L′
1 = U1LU

−1
1 = U1(i∂t −H1)U−1

1 , Ψ′ = U1Ψ.
(17)

Multiplying L′
1 by nonzero matrix −iσ2 on the left and by T on the right we obtain

L̃1 = p0 − eA0 − imT − i
π2

2m
(T + σ3) (18)

and the corresponding uncoupled equations{
p0 − eA0 − imT − i

π2

2m
(T + 1)

}
Ψ+ = 0,

{
p0 − eA0 − imT − i

π2

2m
(T − 1)

}
Ψ− = 0,

where Ψ± are one-component functions.
If the vector-potential Aµ(t, 	x) satisfies relations (6.3) then equation (1) admits the symmetry

Q2 = σ3RT . We find diagonalizing operator in the form:

U2 = (T+ − iσ2T−)(R+ − iσ2R−), U−1
2 = (R+ + iσ2R−)(T+ + iσ2T−),

R± =
1 ±R

2
, U2Q2U

−1
2 = σ3.

Corresponding reduced equation have the form

L̃2Ψ′ = 0,

L̃2 = p0 − eA0 − imT − i
π2

2m
(σ3R+ T ).
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In analogy with (1) we make a reduction of (2). As a result we obtain

L̃1Ψ′ = 0,

L̃1 = p0 − eA0 − imT + iσ3
(	S	π)2

m
− i

(π2 − e	S · 	H)
2m

(T + σ3),

where Aµ(t, 	x) satisfy relations (6.2);

L̃2Ψ′ = 0,

L̃2 = p0 − eA0 − imT + iσ3
(	S	π)2

m
R− i

(π2 − e	S · 	H)
2m

(T + σ3R),

where Aµ(t, 	x) satisfy relations (6.3).
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A tangent Lie group with elements and group operations which are tangent prolongations of
those corresponding to another Lie group is examined. An action of such extended Lie group
on differentiable manifold and its tangent bundle is defined by using contact transformations.
It turned out that a tangent Lie symmetrical Lagrangian describes a dynamical system with
first-class constraints. Geometrical aspects of the reduction procedure are considered.

Introduction

We propose to analyse dynamical systems with first-class constraints by using of the tangent
Lie groups [1]. In our opinion, this approach explains the genesis of Dirac systems of this type
and offers the conceptual clarity.

1 Second-order tangent group of a Lie group

Let G be an R-dimensional Lie group. The tangent bundle TG and the second tangent bundle
T 2G are also the Lie groups with elements and group operations which are tangent prolongations
of those corresponding to the original Lie group G [1, 2, 3].

Let us consider the curves ν : I → G and λ : I → G where I is open neighbourhood of the
zero point 0 ∈ R. We introduce the coordinate system (U, g) in G. Henceforth Greek symbols
να(a) := (gα ◦ ν)(0), λβ(b) := (gβ ◦λ)(0) etc. denote the local coordinates of group elements a, b
etc. in manifold G. These coordinates are chosen so that εκ(e) = 0, κ = 1, . . . ,R := 1,R, for
identity element e. We also use the induced coordinate systems (U1, g1) and (U2, g2) on the 1-st
and 2-nd order tangent bundles TG and T 2G, respectively. Greek indices are meant to run from
1 to R throughout the paper; the summation convention is used for dummy indices. We denote
t1a, t2a etc. the elements tν(0) and t2ν(0) of tangent Lie groups TG and T 2G, respectively.
Their coordinates are

(
να, ν

1
α

)
and

(
να, ν

1
α, ν

2
α

)
where νi

α = di(gα ◦ ν)/dti∣∣
0
, i = 0, 1, 2.

Starting with a group multiplication

µ : G×G → G, (1.1)

we construct the multiplication law for TG [1, 2]

Tµ : TG× TG → TG

defined by

Tµ(tλ(0), tν(0)) = t(µ(λ, ν))(0).
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We obtain R expressions in local coordinates

η1
α = dTµα(λβ(b), νγ(a)) = λ1

β

∂µα(b, a)
∂λβ(b)

+ ν1
γ

∂µα(b, a)
∂νγ(a)

, (1.2)

in addition to the relations

ηα = µα(λβ , νγ), (1.3)

which illustrate the law (1.1) locally. Here dT is the Tulczyjew differential operator [4].
As it follows from eqs.(1.2), the identity element t1e has zero-valued derivative coordinates:

ε1
κ

(
t1e

)
= 0 for all κ = 1,R.

In analogy with Tµ we construct the second order prolongation T 2µ : T 2G× T 2G → T 2G of
the multiplication law (1.1):

T 2µ
(
t2λ(0), t2ν(0)

)
= t2(µ(λ, ν))(0),

where on the right side is the second tangent prolongation of the curve η = µ(λ, ν) : I → G
taken at zero point. On the local level we have R relations

η2
α = d2

Tµα(λβ , νγ), (1.4)

in addition to eqs.(1.3) and (1.2).
Now we consider the embedding ι1 : G → TG, locally given by (να) �→ (να, 0). The submani-

fold ι1(G) ⊂ TG is a slice [5] of the coordinate system
(
U1, g1

)
. According to ref.[1], ι1 is a

group homomorphism and (G, ι1) is a closed subgroup of a Lie group TG. Similarly we construct
a closed subgroup ι2(G) ⊂ T 2G where the inclusion map ι2 : G → T 2G is the embedding locally
written as (να) �→ (να, 0, 0).

Note that the bundle projections τG : TG → G and τ2
G : T 2G → G are also the group

homomorphisms. The projection τ2,1
G is the homomorphism from group T 2G to group TG.

Therefore, an original Lie group is a Lie subgroup and a submanifold of its own first- and
second-order tangent groups [1]. (More exactly, we consider the slices ι1(G) ⊂ TG and ι2(G) ⊂
T 2G on which all the derivative coordinates are equal to zero.) Moreover, the constants of
structure of these tangent Lie groups are determined by the structure constants of G. To
demonstrate it we study the involutive distribution XL(T 2G) of all left invariant vector fields on
T 2G and its dual space X ∗

L(T
2G) of all left invariant one-forms.

Taking into account an exclusive role of Tulczyjew differential operator in prolongation al-
gorithm (see eqs.(1.2) and (1.4)), we deal with X ∗

L(T
2G). We write the local expressions for

canonical left invariant one-forms [5, 6] which constitute the basis for X ∗
L(T

2G) at a point t2a:

θγk =
[

∂

∂νi
α(t2a)

d k
Tµγ(b, a)

]
t2b=t2a−1

dνi
α. (1.5)

Small roman indices run from 0 to 2. The exterior derivatives of the θγk are given by the
Maurer–Cartan equation

dθγk = −1
2
CΓ

ABθ
αi ∧ θβj . (1.6)

We use multi-index notation in structure constants {CΓ
AB} of T 2G, where multi-indices A, B

and Γ are the 2-tuples of natural numbers, e.g. A = (αi). Particularly, for subgroup ι2(G) ⊂ T 2G
we have

dθγ = −1
2
cγαβθ

α ∧ θβ,
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where {cγαβ} are structure constants of the original Lie group G (zero-valued roman indices are
omitted). Left-invariant one-forms θα are given by eqs.(1.5) if integer k is equal to zero.

Tulczyjew operator dT is the derivation of type d∗ of zero degree which acts on the 0-forms
as a total time derivative [4]. Having used the commutation d ◦ dT = dT ◦ d and the expressions
dT νβ

i = νβ
i+1, after short calculations we establish the following relations between the “higher-

order” one-forms (1.5) and the original ones:

θγ1 = dT θ
γ , θγ2 = d 2

T θ
γ .

Thanks to commutation of Tulczyjew operator with an exterior derivative and positively signed
Leibniz’ rule for wedge product [3] we arrive at

dθγ1 = −1
2
cγαβθ

α1 ∧ θβ − 1
2
cγαβθ

α ∧ θβ1,

dθγ2 = −1
2
cγαβθ

α2 ∧ θβ − cγαβθ
α1 ∧ θβ1 − 1

2
cγαβθ

α ∧ θβ2.

When comparing these expressions with the Maurer–Cartan equation (1.6) we deduce the con-
stants of structure {CΓ

AB}. It is convenient to write them as the following block matrices:

Ĉ(γ0) =


 ĉγ 0 0

0 0 0
0 0 0


 , Ĉ(γ1) =


 0 ĉγ 0

ĉγ 0 0
0 0 0


 , Ĉ(γ2) =


 0 0 ĉγ

0 2ĉγ 0
ĉγ 0 0


 .

Here symbol ĉγ denotes the skew-symmetric matrix ‖cγαβ‖ with fixed integer γ.
Similarly we obtain the structure constants of a Lie group TG:

Ĉ(γ0) =
[
ĉγ 0
0 0

]
, Ĉ(γ1) =

[
0 ĉγ

ĉγ 0

]
.

The basis for XL(T 2G) consists of the left invariant vector fields [2, 5, 6], say X
(2)
B , locally

given by

X
(2)
(β0) = Lα

β

∂

∂gα
+ dT (Lα

β)
∂

∂gα
1
+ d 2

T (L
α
β)

∂

∂gα
2
,

X
(2)
(β1) = Lα

β

∂

∂gα
1
+ 2dT (Lα

β)
∂

∂gα
2
,

X
(2)
(β2) = Lα

β

∂

∂gα
2
.

Here Lα
β(g) are the components of the left invariant vector fields Xβ which form the basis for

XL(G).
Vector field X

(2)
(β0) is the 2-lift of corresponding one Xβ to tangent bundle T 2G, i.e. X(2)

(β0) =

X
(2,2)
β (see refs. [1, 9]). The former belongs to the basis of the sub distribution XL(ι2(G)) ⊂

XL(T 2G). The others X(2)
(β1) and X

(2)
(β2) are intimately connected with the 1-st and 0-th lifts [1, 9]

of Xβ to T 2G, respectively. Namely, we have X
(2)
(β1) = J1X

(2,2)
β and X

(2)
(β2) = (1/2)(J1)2X

(2,2)
β ,

where J1 is the canonical almost tangent structure [10] of order 2 on T 2G.
Let X(1)

(βi), i = 0, 1, be the canonical left-invariant vector fields on XL(TG). If τ2
1 : T 2G → TG

is the canonical projection, then X
(2)
(βi) and X

(1)
(βi) are τ2

1 -related, i.e. Tτ2
1 (X

(2)
(βi)) = X

(1)
(βi). Each

of homomorphism of groups, mentioned in this Section, corresponds the Lie algebra homomor-
phism which describes its effect on left invariant vector fields, as well as the mapping which
relates the dual algebras. The former are then nothing but the differential of originating group
homomorphism and the latter is precisely the transpose of this differential [5].
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2 An action of the tangent Lie group on a smooth manifold

When considering the group parameters as constants, an action r : Q×G → Q of a Lie group G
on anN -dimensional smooth manifold Q lifts to an action r1 : TQ×G → TQ of G on the tangent
bundle TQ as follows [6, 11, 9]:

(
r1

)
a
: TQ → TQ, where

(
r1

)
a
= Tra for any fixed a ∈ G.

Treatment of group parameters via the time-dependent variables makes the notion of lift of a
group action quite different from mentioned above. The desired map is Tr : TQ×TG → TQ [1].
It defines the transformation (Tr)t1a : TQ → TQ for any fixed t1a ∈ TG.

We introduce the coordinate system (V, q) in Q and we also use the induced charts
(
V 1, q1

)
in TQ. The action of TG on TQ induces a Lie algebra homomorphism of Lie (TG) := Tt1e(TG)
into vector space X (TQ). To each vector field ξ

(1)
(αi) := X

(1)
αi

(
t1e

)
, i = 0, 1, we assign the vector

field Y
(1)
(αi) on TQ:

Y
(1)
(α0) = Y b

α

∂

∂qb
+ dT (Y b

α)
∂

∂qb
1
, Y

(1)
(α1) = Y b

α

∂

∂qb
1
. (2.1)

Symbol Y b
α(qa), a, b = 1,N , denotes the component of the fundamental vector field Yα cor-

responding to ξα ∈ Lie (G). Actually
{
Y

(1)
(αi)|α = 1,R; i = 0, 1

}
is a Lie subalgebra of the set

X (TQ) of all vector fields on TQ.
Let us compare these results with standard situation where coordinates of the group ele-

ments are meant to be constants. In such a case the transformations of TQ are generated by
fundamental vector fields which are complete lifts of their prototypes, acting on Q [9]. Since
dimTG = 2dimG, we have double number of infinitesimal generators, namely Y

(1)
(α0) and Y

(1)
(α1),

which are then nothing but the complete and vertical lifts [7] of the original one Yα. Therefore,
it is reasonable to say that we deal with the total 1-st lift of an action of G on Q.

We may lift an action of TG on Q to the action T 2G on TQ in similar circumstances. We
introduce a smooth map

r(0,1) : Q× TG → Q,

(y(0), tν(0)) �→ x(0),
(2.2)

which is an action of a Lie group TG on manifold Q on the right [6]. The bracketed and separated
by comma integers (0, 1) up to letter r are associated with the orders of tangent bundles over Q
and G, respectively. The curve y : R → Q runs across a point y(0) ∈ V with coordinates{
ya|a = 1,N}

and the curve x : R → Q passes through a point x(0) ∈ V with coordinates{
xa|a = 1,N}

. In local coordinates (2.2) is written as

xa = fa(yb, ν
i
α(t

1a)).

An action of TG on Q induces a Lie algebra homomorphism of the Lie algebra Lie (TG) into
vector space X (Q) [6]. To each vector field ξ

(1)
(αi) ∈ Lie (TG), i = 0, 1 , we assign the following

fundamental vector field on Q:

Y
(0,1)
(αi) =

∂fa(qb, t
1a)

∂να
i

∣∣∣∣
t1a=t1e

∂

∂qa
. (2.3)

Each of them is the infinitesimal generator of an 1-parameter group of transformations of Q.
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The map (2.2) lifts to the right action r(1,2) : TQ × T 2G → TQ of group T 2G on tangent
bundle TQ by composition of the tangent mapping Tr(1,0) : T (Q×TG) → TQ with the canonical
embedding

i1,0 : TQ× T 2G → T (Q× TG),

(ty(0), t2ν(0)) �→ t(y, tν)(0).

The tangent prolongation ty(0) is represented in TV by (yb, yb
1), where yb = (qb ◦ y)(0), and

yb
1 = d(qb ◦ y)/dt|0. In local coordinates we obtain the following transformational law for first-

order derivative coordinates: xa
1 = dT fa, where xa

1 = d(qa ◦ x)/dt|0.
The fundamental vector fields which correspond to ξ

(2)
(αi) ∈ Lie (T 2G) may be expressed in

terms of both complete and vertical lifts [7] of vector fields (2.3):

Y
(1,2)
(α0) =

(
Y

(0,1)
(α0)

)c
, Y

(1,2)
(α1) =

(
Y

(0,1)
(α1)

)c
+

(
Y

(0,1)
(α0)

)v
, Y

(1,2)
(α2) =

(
Y

(0,1)
(α1)

)v
. (2.4)

They constitute an involutive distribution [2] on TQ.

3 Dynamical system with first-class constraints

In ref. [8] the degenerate Lagrangian system was examined in which the action integral is invari-
ant with respect to the so-called gauge transformation. (By this is meant that the coordinate
transformation of the configuration manifold is specified by some time-dependent parameters.)
The theorem was proved that a necessary and sufficient condition of such invariance is the
existence of relations linking the expressions for Euler–Lagrange equations together. It was
shown that a Hamiltonian system with first-class constraints is derived from this degenerate
Lagrangian. Conversely, a Dirac system with first-class constraints admits the symmetry of this
type.

In geometrical approach [12, 13] a first-class constraint set C is the co-isotropic submanifold
of phase space P . The symplectic polar T ¶C ⊂ TC is the integrable distribution on C which is
called the characteristic distribution of C. This distribution induces the characteristic foliation
of C. The necessary and sufficient condition for the Dirac system to possess the solutions is that
the Hamiltonian H : C → R takes a constant value on leaves of the characteristic foliation of C
(see refs. [12, 13, Theorem 1]). This theorem can be coordinated with the results obtained in [8]
as follows.

Let P = T ∗Q and let Q admits the foliation caused by an integrable distribution E. A vec-
tor field Y ∈ E induces the transformation FlYt : Q → Q of the configuration manifold. This
flow should be identified with the gauge transformation introduced in [8]. The parameters of
gauge transformation distinguish the points of an individual leaf of foliation. We interpret this
transformation as the invertible contact transformation [14]:

y′a = fa(yb, να, να
1),

ν ′α = να , α = 1,R,
(3.1)

which leaves a Lagrangian L : TQ → R invariant. Since the transformed Lagrangian does not
depend on the variables να and their time derivatives να

1, corresponding Jacobi–Ostrogradski
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momenta η̂α,0 and η̂α,1 [10]

η̂α,1 =
∂(L ◦ f1)

∂ν2
α

=
(
∂L

∂ẏ′a
◦ f1

)
∂fa

∂ν1
α

,

η̂α,0 =
∂(L ◦ f1)

∂ν1
α

− dT η̂α,1 =
(
∂L

∂ẏ′a
◦ f1

)
∂fa

∂να

,

are equal to zero. Symbol f1 denotes the first holonomic prolongation [14] of the map (3.1).
Taking the να → 0 limits we obtain the constraint manifold

C =
{
(yc, πc) ∈ T ∗Q; πb Y

b
αk(yc) = 0

}
, (3.2)

where the index k = 1, 0 enumerates steps of iterative constraint algorithm [13]. So, the initial
constraint set is

C0 =
{
(yc, πc) ∈ T ∗Q; πb Y

b
α1(yc) = 0

}
.

Note that Y b
αk(yc) are the components of vector fields Yαk ∈ E which generate the gauge trans-

formations (3.1).
The characteristic distribution T ¶C of the constraint manifold (3.2) is spanned by the vector

fields

Y ∗
αk = Y b

αk(yc)
∂

∂yb

− πb
∂Y b

αk

∂yc

∂

∂πc

,

which are complete lifts of vector fields from the distribution E to the phase manifold T ∗Q [9].
The tangent manifold TQ admits the foliation caused by the distribution Ec involving both the
complete, Y c, and the vertical, Y v, lifts [7] of the original vector fields Y ∈ E:

Ẏα0 = Y b
α0(yc)

∂

∂yb
+ dT

(
Y b

α0(yc)
) ∂

∂yb
1 = Y c

α0,

Ẏα1 = Y b
α1(yc)

∂

∂yb
+

(
Y b

α0(yc) + dT

(
Y b

α1(yc)
)) ∂

∂yb
1 = Y c

α1 + Y v
α0,

Ẏα2 = Y b
α1(yc)

∂

∂yb
1 = Y v

α1,

(3.3)

(cf. eqs.(2.4)). From the theorem about the local structure of foliation [2] we see that an invariant
Lagrangian (Hamiltonian) depends on the coordinates of points of plaque and their derivatives
(conjugates) only. The momentum canonically conjugated to leaf’s coordinate variable is equal
to zero. All the momenta of this type constitute the first-class constraint set, i.e. the co-isotropic
submanifold of T ∗Q. Thus, the distinguished chart [2] for the distribution (3.3) is the key to
the reduction procedure here.

The primary first-class constraints only hold the independent degrees of freedom [8]. Whence
the reduction procedure leads to the constrained Hamiltonian system which does not involve
the secondary ones. This Dirac system is derived from a degenerate Lagrangian which does not
depend explicitly on some variables.
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Concluding remarks

The requirement of invariance of a Lagrangian function under the action of a tangent Lie group
leads to degeneracy of this Lagrangian. Fundamental vector fields corresponding to such group
constitute the involutive distributions which are important particular cases of the integrable dis-
tributions associated with the characteristic distribution of constraint manifold. Distinguished
charts for the foliations induced by these involutive distributions may help to explain the geo-
metrical essence of gauge theories.
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