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“When integrating the differential equations the most diffi-
cult task is the introduction of suitable variables, which may
not be found by the general rule. That’s why we have to
go in reverse order. After finding a splendid substitution,
we should look for such problems, where it might be adopted

with success.”
Karl Jacobi

The method of exact linearization nonlinear ordinary differential equations (ODE) of order n
suggested by one of the authors is demonstrated in [1, 2]. This method is based on the
factorization of nonlinear ODE through the first order nonlinear differential the operators,
and is also based on using both point and nonpoint, local and nonlocal transformations.
Exact linearization of autonomous the third, the fourth and the fifth orders ODE is presented
in this paper. For the first time general form of autonomous fourth [3] and fifth order
equations, admitting exact linearization with using nonpoint transformation is found by
second of the authors. We obtain the formulas in quadratures for finding general and partial
solutions of investigated classes of equations. For the realization of transformations and
construction of the considered equations we used the computer algebra system MAPLE.

1 Preliminary informations

The following result plays an important role in this paper:

Proposition 1.1 [1]. The equation

y™ = (y,yC . ,y(”_”) . ()=d/dx (1.1)
by means of the invertible transformation
y=v(y)z  dt =u(y)dz, (1.2)

where v(y) and u(y) are smooth functions in domain (z,y), reduces to linear autonomous form
2 (1) + ; <Z> bz "R () + ¢ = 0, by, c = const, (1.3)
if and only if (1.1) admits the factorization of the form

n 1 %
H [ZD_ Z—uy'—rk} y+cv=0, D =d/dz, (x)=d/dy (1.4)
k=1
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via nonlinear first order differential operators (commutative factorization) or

1

11 [D— (U—*+(k—1)%*) y/—rku}y—kcunvzo (1.5)

v
k=n

(noncommutative factorization), where ry are distinct roots of the characteristic equation

r’t+ Z <Z> b F = 0. (1.6)
k=1

In what follows we shall sequentially consider the corresponding class of ODE for the cases
n =3, n =4, and n = 5. Although first two cases are known [1-3], they are considered here
because they form the base of investigation of 5th order ODE.

For finding the transformation (1.2) we use also the proposition about the structure of basis
of solutions of linear ODE with variable coefficients.

Proposition 1.2 [2]. The second order nonlinear nonautonomous equation

2 2 2 2 u* 2 2 u* 1
U**__U*z+<__wu__f>v*+(wu_+f>_UZO
Y U 2n U

has the solution

v(y) =y (a + ﬁ/u"223+2 exp (/ fdy> dy> o

2 Linearization of the third order equations

Let us consider the equation

y" =F(y,y.y"). (2.1)
By virtue of Proposition 1.1, it can be reduced to the linear ODE

Z 4+3b12+3b2z + b3z +c=0 (2.2)

by transformation (1.2), if and only if, it admits the factorization (up to the term cu3v):

[D — (U— + QU—) — T3U:| [D — (v_ + u_> y — rgu] [D - U—y’ — rlu} y+cou® = 0.(2.3)
v u v v

We obtain the differential equation

* *ok * * * *
v (1= 5) o e (=) (55 450 [ | (- )
(% v [ (% u v

*2 Lo 3 *2 k% k% k k% k) k% k% kokk
v u*v u v u v*v u*v v v
><<6 +6 +3— —2 - >+4 5y +3 Yy — — y]
u v v
(2.4)

v2 uUv U

—u(ry +rep+r3) {y” <1 — —y> —y? [ Y+ <1 - —y) <2— + —>] }
v (% v v u

*

+(r17rg + r17r3 4 Tor3)u’y’ <1 - —y) — rrarsudy + cou® = 0.
v
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For the sake of determination of the explicit form of transformation (1.2), let us introduce
the notation

N [3“;*y + (6% + 4“{) <1 - %yﬂ = 3£(y) (1 - %y) , (2.5)

from where we’ll obtain the equation for the transformation factor v(y) in (1.2):

*2

2 4u* 1 /4u*
v**—QUU +<§—§%—f>v*+§(§%+f>v:0, f=fly). (2.6)

Proposition 2.1. Equation (2.6) has general solution, expressed through quadratures
Y

v(y) = )
a+ﬁ/u4/3exp </fdy> dy

where a, B are integration constants.

The formulas (2.6) and (2.7) could be obtained from Proposition 1.2 and [2].

Proposition 2.2. Equation (2.1) can be linearized by means of the transformation of type (1.2),
if and only if it has the following form:

l¢**_§<p*2
3 9¢?

+3bo%y + /3 [bg exp < / fdy) / 3 exp ( / fdy> dy + %} — 0,

Such an equation can be linearized by means of the transformation

z = ﬁ/«p4/3 exp </ fdy) dy, dt = pdzx, (2.9)

where (8 is normalizing factor.

1 * *
y" +3fy'y" + ( - gf% + 2+ f*) Y + 3b1oy” + bip <3f - %) Yy

(2.8)

For ¢ = 0 we shall obtain the one-parameter solutions sets

/901/3 exp (/ fdy) dy
/904/3 exp (/ fdy> dy

where ry, are the simple roots of characteristic equation (2.11):

=rx + C, (2.10)

rs -+ 3b1T2 + 3bar + b3 = 0. (2.11)

Transforming (2.3) with the aid of (2.4), (2.7) (where a = 0), assuming u = ¢(y) and
assuming that rp, kK = 1,2,3 are the distinct roots of the characteristic equation (2.11), we
shall arrive at (2.8).

3
The special case of equation (2.8) is obtained for ¢ = exp <_Z / fdy> .

Remark 1. Thus, the equations of type

3
v+ Y+ ey’ + Dyt =0 (2.12)
k=0

may be tested by the method of exact linearization.
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Example 1. The equation

!,

y/// vy

1 c
+ 3b1yy” + 3bay?y + §bzy4 + 51/2 =0 (2.13)

by the substitution
z =y, dt = ydz (2.14)

is reducible to the linear equation of the form (2.2) and has one-parameter set of solutions of
the form

y=—-2/(rgx+ C), (2.15)
where ry, are simple roots of the characteristic equation (2.11).

Example 2. The elementary nontrivial system of hydrodynamic type (so-called the
triplet). It was shown in [4] that corresponding system can be transformed into the set of Euler
equations (the Euler—Poinsot case of a rigid body dynamics), which can be written in in terms
of energy variables as

U1 = augus, o = bugu, U3 = cuiug, a+b+c=0. (2.16)

Eliminating the variables of the coupled system (2.16), we obtained decoupled system

Uy — il — Abcu2iy = 0, Us — —gily - deausiy = 0,
1 2
(2.17)

ug ——7usgiiy — 4bcu§u3 =0.
u3

The equations (2.17) are factorizables:

i

<Dt - % - Tgiui> (Dt - rgiul-) <Dt - & - Tgiui) U; = O, 1= 1, 3,

where ry;, k = 1,3, are roots of corresponding characteristic equations. After the transformations

u? = 2;, d7; = w;dt the system (2) reduces to the linear one (see also [1]):

2 (1) — 4bez (1) = 0, 24 (1) — daczh (1) = 0, 24 (13) — 4abzi(13) = 0.

3 Linearization of the fourth-order equations
Let us consider the autonomous nonlinear fourth—order differential equation

vV =F (y,v,v"y"). (3.1)
Equation (3.1) could be linearized by the transformation (1.2) to the form

2 44by Z +6byz + 4bsz + byz + ¢ = 0, (3.2)

according to Proposition 1.1, if and only if it admits the factorization (up to the term cvu?)

[D — <U— + 3u_) y — 7“4u] [D - <v_ + 2u_> y — mu}
v u v u

* * *
X [D— (U—+u—>y’—TQU] [D—U—y'—r1u]y+cvu4=0-
v u (%

(3.3)
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Proposition 3.1. If equation (3.1) can be linearized by means of (1.2), then it admits the
factorization

(s 45 ) () e )
v v v v u v v

2

* * * *2 kk k) %k * kok
X <6”— +4“—)] + oy [(1 - ”—y> (36” S T VI A I, LA )
u v

v v2 v Uv u2 U
FI8—5—y + 22— —y — 6— y]—y"‘[ . y—<2 —y 6 y> <27+3;)
kk k)%, 3k kk ) kk * kkk kk ok * * ) kk
6y + 15—y — 4% y+<1——y) (4” S VELE VI
v v v uv
(3.4)
436 430 gt 0t g5t 4 by (1- Ty
uv? uv uw u2 u3 v

—yy [3“—;; + (1 - ”—y> (6”— + 4“—)] } + 6byu {y” (1 - ”—y)
v v v u v

—y” [U Y+ (1 = v—y) (u— + 2”—)] } + 4bsu®y’ (1 - U—y> +byu'y + cou! = 0.
v (% u v (%

* u*

Applying the differential operator [D — <v_ + 3—> y — r4u} to (2.4) and adding to the
v u

4

obtained expression term cvu®, we shall arrive at the formula (3.4), where r satisfy the charac-

teristic equation

4+ dbyr3 + 6bor? + 4dbsr + by = 0. (3.5)
ko * * * *
Introducing the notation 4v—y + (1 — U—y) (SU— + 7u_> = —4f(y) (1 — v—y), we shall
v v v u v
arrive at the equation

T G S f) o + (g% +f> =0, f=f) (3.6)

Proposition 3.2. Equation (3.6) has general solution of the form

v(y) Y (3.7)

) a+ﬁ/u7/4exp </fd,y> aly7

where «, B are arbitrary constants.

The formulas (3.6) and (3.7) could be obtained from Proposition 1.2 and [2].

Proposition 3.3. The equation (3.1) can be linearized by means of transformation (1.2) if and
only if it has the following form:

v A )Yy + " (Z% + 3f) +y%y" <—¢— -5 - PRI ))
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64 o3 16 2 4 o

195 o*° BT o*p™ 3 pr 50 33oF 21 *
ZY e e e
Ty ( iy w2 ) (

50" 150%° 3™
A Al RS TORER SVLNEYOVLY (Y i YL G .
1o 1y (3.8)

1" 3"
T ) ol (B4 ) b angty
@ 49
—}—Sp%e_jfdy |:b4/¢%effdydy+;:| = 0.
It can be reduced to (3.2) by means of the transformation

z= ﬁ/w”“ exp </ f(y)dy) dy,  dt =p(y)de. (3.9)
Transforming (3.3) with the aid of (3.4), (3.6) (where a = 0, assuming that ¢ = u(y) and
that ry, k = 1,4 are distinct roots of the characteristic equation (3.5), we shall arrive at (3.8).

4
Equation (3.8) is recovered as the particular case of the above for ¢ = exp <—? / f (y)dy).

Remark 2. Thus, the equations of the type

/M 12 12,11

U+ YY"+ ey + oy + 't ey + osy'y" + eay” + 3y + oy + fiy' + fo=0
may be tested by the method of exact linearization.

Example 3. The equation

v 3 1 3 1 1
yIV _ Zy/y/// _ &yﬂ + Ey&y” + 4b1yy"' _ 4b1y'y” + 6b2y2y” + 4b3y3y' + §b4y5 + §C?/4 =0

is reduced to (3.2) by means of the substitution (2.14) and admits for ¢ = 0 one-parameter set
of solutions (2.15), where 7, are different characteristic roots of the equation (3.5).

4 Linearization of the fifth-order equation

Let us consider the autonomous nonlinear fifth-order differential equation

yv —F (y,y’,y”,y’”,yiv) ) (4_1)

Equation (4.1) can be reduced by means of transformation (1.2) to the linear equation of the
form

200 (1) 4 5b1 20 (£) + 10b22" () 4 10b32" () + 5byz’ (t) + bsz(t) + ¢ = 0, (4.2)
by virtue of Proposition 1.1 if and only if it admits the factorization (up to the term cou®)
N PR [ A e
v u v u v u

(4.3)

*

* *
X [D— <v—+u—> y’—mt] [D—v—y’—HU}yﬂchuf’:O-
v u v
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Proposition 4.1. If equation (4.1) can be linearized with the aid of (1.2), then there exists the

factorization
<1 — U_y> Y’ — y/yiv [5“ Y+ <1 _ U_y> <10U_ 4 11“_)] — 5y/y" [QU—y
v v v v U "
2

* * * * *2 k% * 0k
=Ty (a5 3T ) 2y (1 Ly (605 —30%— + 908" 602
v v U v v2 v uv u2
2

—14Y )+30” Y+ 45—y — 102 y] y'y" [(1—”—3/) <9o”2 457
v uv v v v v

U
kK *2 kk kk ok k) kK kkk kookosk ok
+1205" 4+ 7055 — 18“—) + 455y + 60—y — 15° y] _ g3y [10” y
uw u u v uw v v
—10( y—3—5 y) <4—+7—>—60 5y +195———y — 45 Yy
v v v U v VU uw
+ 11— —y 40 — 240 — + 240 T — 210 + 420 5+ 390 3
v v v v U uw uv
*k %k * *k *3 *kkok skskoskokok kkokk kksk ) ok
—90— — 12550 42105 + 112 )]—y'5 [” y—5(” y— 42—y
uw U U U v v v
12 y—6 y) (&2 ) 160 y— 20 y—10 y
v3 wuv v u v3 v2 vu
v v vy v oty v v
-5 60 45 —135—————y — 105 11— —
va VT YT wv 7 a2 Y v U ( v y) (4.4)
x (5“ — 4055 — 305 41805 —— — 1205 — 30— —40%"
v v v v v uv uw
i Kok ko K e %2 %2 %, kK, K *3 %
F1355—— + 240 4 60— — — 2705 + 120 —— — 210°—"
uv uw uw u?v u?v udv
kkok )k *3 * **2 * kkok *2 k% *4 *kkoksk
T V) LA AT LA LIS V(Y. LA 1)), e
uv v3u u2 u? u3 ut u
N T R =
v v v v u v
w365 —180— yaa™? o5 7% ) g Ty 122 Yy
V2 v uv u? U v?2 uv v

e () (6 ) e ()
v v v u v v v
* * **2 *k *2 kxk o ksk * kksk *k ok
x<2”—+3“—>—6v2y+15“ Sy -4 y—i—(l—v—y) (4” —ul
v u v VU uv v v v

*3 k) kK * *2 *2 * k3% ok k) kk *3 kokck

v uv u-v u v u v u u u u

7 —18—— + 36— +30— — — 8 — 10— + 15— + )”
v uv uv u=v uv u u u

+10byu’ {y’” <1 - —y> 'y’ [3—3/ + <1 - —y> <6— + 4—)] —y"° [—y -3 y
v v v v u v uv

+24
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kk ) K * kok *2 k0% *2 kk *
3y (1-Sy) (35 6l — 6 st )| b0ty (1- Ly
02 v v v2 uv u? u v
—y? [U—y + <1 - U—y) <2U— + u—)} } + 5byuty’ <1 - v—y> +bsu’y + cvu® = 0.
v v v u v

* *

Applying the differential operator [D — (U— + 4Y
v

—) y — r5u] to (3.3) (up to the term cvu?)
U
and adding to the obtained expression the term cvu®, we arrive at (4.4), where 7 satisfy char-

acteristic equation

7° 4 5by7t + 10bgr® 4 106372 + 5byr + bs = 0. (4.5)

Introducing the notation y+ <1 — —y) (10— + 11—> = —5f(y) (1 — —y), we shall
v v v u v

arrive at the equation

2 2 2 1lu* 11 uw* 1
kok _ = * - _ - _ * - - - — — . 4.6
e ) L R L N 1) (1.6
Proposition 4.2. Equation (4.6) has general solution of the form
Y

v(y) = :
a+ﬁ/u11/5exp (/fdy) dy
a, B are arbitrary constants.
The formulas (4.6) and (4.7) could be obtained from Proposition 1.2 and [2].
5
Equation (4.4)is the particular case of the above for ¢ = exp (_ﬁ / fdy).

Proposition 4.3. Equation (4.1) can be linearized by means of the transformation of the form
(1.2) if and only if it has the form:

. * kok 63 *2 *
y(v) + 5f(y)y/y(1v) Toylly <7£ + 10f> 2y 890_ . _90_2 _ Sp_f +10 (f2 + f*)
® e D @
2 3
v | 11297 ©" 2 | 3o | 98T 9" 244 "™ e
B - =2 46 f+15 —r_ _== 11
+y'y [ 5@2+¢f+ (P +7y %5 2 T

90_**_@80_*2 _ ('0_* 2 * 3 * s
+<21¢ . ¢2>f 4(p(f + )+ 10 (f243F 5+ )

5| 8064 ¢
625 ot

_2946 QD*Q QO** % (,0**2 @ QO*SO*** B 990**** B (1989 @*3 458 SO*(P** 9 (,0***) f (4 8)

125 3 25 2 | 25 2 5 o 125 @3 25 2 5

25 @2 5 o

(E . SO**) (F2+ ) + g% (£ 430+ ) = (Fr 62 357 ag e

31p*  189¢* 22 o*
— T a3 _|___f
5 @ 25 5 @

. 9 o
1 5bg {y(1v)+y/y/// <4f+g%> +y/2y//

+6 (£2 + f¥)

5 ¢

1 * *3
+y,,2(3f+_3g)+ " [@so

5 ¢ 125 3 25 2 5 ¢
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13 o*
} + 1062(,02 {y/// +y/y// <3f + ® >

5 0
6 o™ 24@*2 7" 2 * 3 YA 4 1
- = - 10b - 5b
52 25@2+5(pf+(f+f) +10b3¢" Sy +y 5¢+f + Bbypty

+o'% exp <—/fdy> [b5/¢11/5 exp </ fdy> dy + %} =0.

By means of the transformation

87y
25 @2

) S (P ) (P 3+ )

+y/3

z= ﬁ/(pll/5 exp </ fdy> dy, dt = pdzx (4.9)
it reduces to the linear equation
2V 4+ 5b12" 4+ 10b92™ + 10b32" + 5byz’ + bsz + ¢ = 0. (4.10)

The equation (4.8) admits for ¢ = 0 one-parameter set of solutions

/w6/5 exp (/ fdy> dy
/50”/5 exp </ fdy) dy

where 1y, are roots of the characteristic equation

7® 4 5byrt + 10bgr® 4 106372 + 5byr + b = 0. (4.12)

= rpx + C, (4.11)

Remark 4. Thus, the equations of the type
i 12, 111 /1,012 13,11 !, 01

Y+ FYYY + oy + ooy 4 o3y + oayy" + oy + osy'y" + pey”?

5
+ory?y" + oy + o'y + 109" + > fryF =0

k=0

may be tested by the method of exact linearization.

Example 4. Equation

6, 5 15 10 15 .
yv _ gy/ylv _ ;y”y/” + ?yIQy/// + ?y/yIIQ _ Ey/f}y// _"_ 5b1yylv _ 15b1y/y/// _ 5b1y//2
(4.13)

15 1 1
+zb1y'2y" + 10b2y2y/// _ 10b2yy'y” + 10b3y3y” + 5b4y4y' + 5[)53/6 + §cy5 =0
by the substitution (2.14) is reduced to (4.2) and admits for ¢ = 0 one-parameter set of solutions

(2.15), where r, are distinct characteristic roots of the equation (4.5).
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