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The symmetry reduction of the equation u0 = ∇ [uµ∇u] + δu to ordinary differential equa-
tions with respect to all subalgebras of rank three of the invariance algebra of this equation
is performed. Some exact solutions of this equation are obtained.

1 Introduction

Symmetry reduction of nonlinear heat conduction equations without a source is investigated in
references [1–7]. In this paper, we investigate the equation

∂u

∂x0
= ∇ [uµ∇u] + δu, (1)

where u = u(x0, x1, x2, x3), ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
; µ, δ are real numbers, µ �= 0 and |δ| = 1.

The substitution u = v
1
µ transforms equation (1) into the equation

∂v

∂x0
= v∆v +

1
µ
(∇v)2 + δµv. (2)

Let L be the maximal invariance algebra of equation (2). If µ �= −4
5 , then L is the direct sum

of the extended Euclidean algebras AẼ(1) = 〈P0, D1〉 and AẼ(3) = 〈Pa, Jab, D2 : a, b = 1, 2, 3〉,
generated by the vector fields [8]:

P0 = e−δµx0

(
∂

∂x0
+ δµv

∂

∂v

)
, D1 =

1
δµ

∂

∂x0
, Pa =

∂

∂xa
,

Jab = xa
∂

∂xb
− xb

∂

∂xa
, D2 = xa

∂

∂xa
+ 2v

∂

∂v

(3)

with a, b = 1, 2, 3. If µ = −4
5 , then L decomposes [8] into the direct sum of AẼ(1) and the

conformal algebra AC(3) = 〈Pa, Ka, Jab, D2 : a, b = 1, 2, 3〉, where P0, Pa, Jab, D2 are vector
fields (3), and

Ka =
(
x2

1 + x2
2 + x2

3

) ∂

∂xa
− 2xaD2, a = 1, 2, 3.

In this paper, the symmetry reduction of equation (2) is performed with respect to all subal-
gebras of rank three of the algebra L, up to conjugacy with respect to the group AdL of inner
automorphisms.

Let u = f(x1, x2, x3) be a solution of equation (1). If µ+1 �= 0, then ∆uµ+1 + δ(µ+1)u = 0,
and if µ+1 = 0, then ∆ lnu+ δu = 0. Hence, the search for stationary solutions to equation (1)
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is reduced to a search for relevant solutions of the d’Alembert equation or Liouville equation. Let
u = u(x0, x1, x2, x3) be a solution of equation (1) invariant under P0. In this case, if µ + 1 �= 0,
then u = eδx0ϕ(x1, x2, x3)

1
µ+1 , where ∆ϕ = 0. If µ + 1 = 0, then

u = eδx0+ψ(x1,x2,x3),

where ∆ψ = 0. In this connection, let us restrict ourselves to those subalgebras of L that do
not contain P0 and D1. The list of I-maximal subalgebras of rank 3 is obtained in [4, 6, 7].

2 Reduction of equation (2) for an arbitrary µ
to ordinary differential equations

Up to the conjugacy under the group of inner automorphisms, the algebra AẼ(1)⊕AẼ(3) has 12
I-maximal subalgebras of rank three, which do not contain P0 and D1 [4, 7]:

L1 = 〈P1, P2, P3, J12, J13, J23〉;
L2 = 〈P0 + P1, P2, P3, J23〉;
L3 = 〈P2, P3, J23, D1 + αD2〉 (α ∈ R, α �= 0);

L4 = 〈P0 + P1, P3, D1 + D2〉;
L5 = 〈P3, J12, D1 + αD2〉 (α ∈ R, α �= 0);

L6 = 〈P0 + P3, J12, D1 + D2〉;
L7 = 〈P3, J12 + αP0, D2 + βP0〉 (α = 1, β ∈ R or α = 0 and β = 0,±1);
L8 = 〈P2, P3, J23, D1 + P1〉;
L9 = 〈P2, P3, J23, D2 + αP0〉 (α = 0,±1);
L10 = 〈P3, D1 + αJ12, D2 + βJ12〉 (α, β ∈ R and α > 0);

L11 = 〈J12, J13, J23, D1 + αD2〉 (α ∈ R, α �= 0);

L12 = 〈J12, J13, J23, D2 + αP0〉 (α = 0,±1).
For each of the subalgebras L1, . . . , L12 we indicate the corresponding ansatz ω′ = ϕ(ω)

solved for v, where ω and ω′ are functionally independent invariants of a subalgebra, as well
as the reduced equation which is obtained by means of this ansatz. In cases when the reduced
equation can be solved, we indicate the corresponding invariant solutions of equation (2).

2.1. L1 : v = ϕ(ω), ω = x0, ϕ̇ = δµϕ.

In this case

v = Ceδµx0 ,

where C is an arbitrary constant.

2.2. L2 : v = eδµx0ϕ(ω), ω =
1
δµ

eδµx0 − x1, ϕϕ̈ +
1
µ

ϕ̇2 − ϕ̇ = 0.

Integrating the reduced equation, we obtain ϕ = C ′ or∫
dϕ

µ + C|ϕ|− 1
µ

= ω + C ′,
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where C, C ′ are arbitrary constants and C �= 0. Corresponding invariant solutions to equation (2)
are of the form

v = C−1e−δx0 [1 + C̃ exp(−δCe−δx0 − Cx1)], if µ = −1;

v = Ae−
1
2
δx0 tan

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)
, if µ = −1

2
, C = − 1

2A2
;

v = Ae−
1
2
δx0 tanh

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)

and

v = Ae−
1
2
δx0 coth

(
δ

A
e−

1
2
δx0 +

x1

2A
+ B

)
, if µ = −1

2
, C =

1
2A2

.

2.3. L3 : v = x1
2ϕ(ω), ω = αδµx0 − lnx1,

ϕϕ̈ +
1
µ

ϕ̇2 − 3µ + 4
µ

ϕϕ̇ − αδµϕ̇ +
2µ + 4

µ
ϕ2 + δµϕ = 0.

If µ = −2, α = −1
2 , then ϕ = −2δω + C is a solution of the reduced equation. By means of

ϕ we obtain the exact solution

v = x2
1(−2x0 + 2δ lnx1 + C)

of equation (2).

2.4. L4 : v = x2e
δµx0ϕ(ω), ω =

δµx1 − eδµx0

x2
,

µ(µ2 + ω)ϕϕ̈ + µ2ϕ̇2 + (ϕ − ωϕ̇)2 + δµ2ϕ̇ = 0.

The function ϕ = Aω + B, where A and B are constants, satisfies this reduced equation if and
only if B2 = −(δA+A2)µ2. The corresponding invariant solution of equation (2) is of the form

v = A
(
δµx1e

δµx0 − e2δµx0

)
+ Bx2e

δµx0 .

2.5. L5 : v =
(
x2

1 + x2
2

)
ϕ(ω), ω = αδµx0 − 1

2
ln

(
x2

1 + x2
2

)
,

ϕϕ̈ +
µ + 1

µ
(2ϕ − ϕ̇)2 − ϕ̇2 − αδµϕ̇ + δµϕ = 0.

2.6. L6 : v =
(
x2

1 + x2
2

) 1
2 eδµx0ϕ(ω), ω = (δµx3 − eδµx0)

(
x2

1 + x2
2

)− 1
2 ,

(
ω2 + µ2

)
ϕϕ̈ −

(
1 +

2
µ

)
ωϕϕ̇ +

(
µ +

ω2

µ

)
ϕ̇2 + δµϕ̇ +

(
1 +

1
µ

)
ϕ2 = 0.

For µ = −1, this equation has the solution ϕ = −δω. In this case

v = δe−2δx0 + x3e
−δx0

is the corresponding solution of (2).

2.7. L7 : v = eδµx0
(
x2

1 + x2
2

)
ϕ(ω), ω = αδµ arctan

x1

x2
− βδµ

2
ln

(
x2

1 + x2
2

)
+ eδµx0 ,

(
α2 + β2

)
µ2ϕϕ̈ +

(
α2 + β2

)
µϕ̇2 − 4βδ(1 + µ)ϕϕ̇ − δµϕ̇ +

4(µ + 1)
µ

ϕ2 = 0. (4)
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For α = β = 0, µ �= −1, the reduced equation takes the form

−δµϕ̇ +
4(µ + 1)

µ
ϕ2 = 0.

It’s general solution is

ϕ =
µ2

C − 4δ(µ + 1)ω
,

and the corresponding invariant solution of equation (2) is

v = µ2
(
x2

1 + x2
2

)
eδµx0 [C − 4δ(µ + 1)eδµx0 ]

−1
.

If µ = −1, α2 + β2 �= 0, then equation (4) takes the form
(
α2 + β2

)
ϕϕ̈ − (

α2 + β2
)
ϕ̇2 + δϕ̇ = 0.

In this case, ϕ = C ′ or

ϕ =
1
C

[
C ′ exp

(
Cω

α2 + β2

)
− δ

]
,

and, therefore,

v = C ′e−δx0
(
x2

1 + x2
2

)
or

v =
1
C

(
x2

1 + x2
2

)
e−δx0

{
C ′ exp

[
C

α2 + β2

(
−αδ arctan

x1

x2

+
βδ

2
ln

(
x2

1 + x2
2

)
+ e−δx0

)]
− δ

}
,

where C, C ′ are arbitrary constants and C �= 0.

2.8. L8 : v = ϕ(ω), ω = δµx0 − x1, ϕϕ̈ +
1
µ

ϕ̇2 + δµ(ϕ − ϕ̇) = 0.

For µ = −1, the reduced equation has the solution ϕ = Ceω, where C is an arbitrary constant.
The corresponding invariant solution of the equation (2) is of the form v = C exp(−δx0 − x1).

2.9. L9 : v = x2
1e

δµx0ϕ(ω), ω = α lnx1 − 1
δµ

eδµx0 ,

α2ϕϕ̈ +
α2

µ
ϕ̇2 +

(
3α +

4α
µ

)
ϕϕ̇ + ϕ̇ +

(
2 +

4
µ

)
ϕ2 = 0.

For α = 0, µ �= −2, we obtain ϕ = µ[(2µ + 4)ω + C̃]−1, therefore,

v =
µ2x2

1e
δµx0

C − δ(2µ + 4)eδµx0
.

If α = 0, µ = −2, then
v = Cx2

1e
−2δx0 .
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For α �= 0, µ = −2, the reduced equation has the solution ϕ = 1
α + Ce−2αω. The corresponding

invariant solution of equation (2) is of the form

v = α−1x2
1 exp(−2δx0) + C exp[−2δx0 − αδ exp(−2δx0)].

2.10. L10 : v =
(
x2

1 + x2
2

)
ϕ(ω), ω = arctan

x1

x2
+ αδµx0 +

β

2
ln

(
x2

1 + x2
2

)
,

(
1 + β2

)
ϕϕ̈ +

1 + β2

µ
ϕ̇2 + 4β

(
1 +

1
µ

)
ϕϕ̇ − αδµϕ̇ + 4

(
1 +

1
µ

)
ϕ2 + µδϕ = 0.

2.11. L11 : v =
(
x2

1 + x2
2 + x2

3

)
ϕ(ω), ω = αδµx0 − 1

2
ln

(
x2

1 + x2
2 + x2

3

)
,

ϕϕ̈ −
(
5 +

4
µ

)
ϕϕ̇ +

1
µ

ϕ̇2 − αδµϕ̇ +
(
6 +

4
µ

)
ϕ2 + δµϕ = 0.

For α = 3
2 , µ = −2

3 , the reduced equation has the solution ϕ = 2
3δω +C, and the corresponding

solution of (2) is of the form

v =
(
x2

1 + x2
2 + x2

3

) [
C − 2

3
x0 − 1

3
δ ln

(
x2

1 + x2
2 + x2

3

)]
.

2.12. L12 : v =
(
x2

1 + x2
2 + x2

3

)
eδµx0ϕ(ω), ω = eδµx0 − αδµ

2
ln

(
x2

1 + x2
2 + x2

3

)
,

α2µ2ϕϕ̈ − (5µ + 4)αδϕϕ̇ + α2µϕ̇2 − δµϕ̇ +
(
6 +

4
µ

)
ϕ2 = 0.

If α = 0, then ϕ = µ2[C − (6µ + 4) δω]−1, where C �= 0 or 6µ + 4 �= 0. Therefore,

v =
µ2

(
x2

1 + x2
2 + x2

3

)
eδµx0

C − (6µ + 4)δeδµx0
.

For µ = −2
3 , α �= 0, the reduced equation has the solution

∫
dϕ

Cϕ
3
2 − 3

αδϕ + 1
α2δ

= ω + C ′.

If C = 0, then

ϕ =
1
3α

+ Ae−
3

αδ
ω,

where A is an arbitrary constant. In this case,

v =
1
3α

(
x2

1 + x2
2 + x2

3

)
exp

(
−2
3
δx0

)
+ A exp

[
−2
3
δx0 − 3

αδ
exp

(
−2
3
δx0

)]
.
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3 Complementary reduction of equation (2) for µ = −4
5

to ordinary differential equations

Let F be an I-maximal subalgebra of rank three of the algebra AẼ(1)⊕AC(3) and P0, D1 /∈ F .
If a projection of F onto AC(3) is not conjugate to any subalgebra of the algebra AẼ(3) under
the group AdAC(3), then F is conjugate under the group Ad(AẼ(1) ⊕ AC(3)) to one of the
following subalgebras [6, 7]:

F1 = 〈P1 + K1, P2 + K2, J12, K3 − P3〉;
F2 = 〈Pa + Ka, Jab : a, b = 1, 2, 3〉;
F3 = 〈P1 + K1, P2 + K2, J12, K3 − P3 + αD1〉 (α ∈ R, α > 0);

F4 = 〈P1 + K1, P2 + K2, J12, K3 − P3 + P0〉;
F5 = 〈Ka − Pa, Jab : a, b = 1, 2, 3〉.

3.1. F1 : v =
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

]
ϕ(ω), ω = x0, ϕ̇ = −4ϕ2 − 4

5
δϕ.

The general solution of the reduced equation is ϕ = Cδ
[
e

4
5
δω − 5C

]−1
, where C is an arbitrary

constant. The corresponding invariant solution of equation (2) is of the form

v = Cδ
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

] (
e

4
5
δx0 − 5C

)−1
.

3.2. F2 : v =
(
x2

1 + x2
2 + x2

3 − 1
)2

ϕ(ω), ω = x0, ϕ̇ = −12ϕ2 − 4
5
δϕ.

In this case, ϕ = Cδ
15

[
e

4
5
δω − C

]−1
, therefore,

v =
Cδ

15
(
x2

1 + x2
2 + x2

3 − 1
)2

(
e

4
5
δx0 − C

)−1
.

3.3. F3 : v =
[(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

]
ϕ(ω), ω = arctan

x2
1 + x2

2 + x2
3 − 1

2x3
− 8

5αδ
x0,

4ϕϕ̈ − 5ϕ̇2 +
8

5αδ
ϕ̇ − 4ϕ2 − 4

5
δϕ = 0.

3.4. F4 : v = e−
4
5
δx0

[(
x2

1 + x2
2 + x2

3 − 1
)2 + 4x2

3

]
ϕ(ω),

ω = arctan
x2

1 + x2
2 + x2

3 − 1
2x3

− 5δ
2

e−
4
5
δx0 ,

4ϕϕ̈ − 5ϕ̇2 − 2ϕ̇ − 4ϕ2 = 0.

3.5. F5 : v =
(
x2

1 + x2
2 + x2

3 + 1
)2

ϕ(ω), ω = x0, ϕ̇ = 12ϕ2 − 4
5
δϕ.

Integrating this equation, we obtain ϕ = δ
[
15− Ce

4
5
δω

]−1
, and, therefore,

v = δ
(
x2

1 + x2
2 + x2

3 + 1
)2

(
15− Ce

4
5
δx0

)−1
.
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