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A tangent Lie group with elements and group operations which are tangent prolongations of
those corresponding to another Lie group is examined. An action of such extended Lie group
on differentiable manifold and its tangent bundle is defined by using contact transformations.
It turned out that a tangent Lie symmetrical Lagrangian describes a dynamical system with
first-class constraints. Geometrical aspects of the reduction procedure are considered.

Introduction

We propose to analyse dynamical systems with first-class constraints by using of the tangent
Lie groups [1]. In our opinion, this approach explains the genesis of Dirac systems of this type
and offers the conceptual clarity.

1 Second-order tangent group of a Lie group

Let G be an R-dimensional Lie group. The tangent bundle TG and the second tangent bundle
T 2G are also the Lie groups with elements and group operations which are tangent prolongations
of those corresponding to the original Lie group G [1, 2, 3].

Let us consider the curves ν : I → G and λ : I → G where I is open neighbourhood of the
zero point 0 ∈ R. We introduce the coordinate system (U, g) in G. Henceforth Greek symbols
να(a) := (gα ◦ ν)(0), λβ(b) := (gβ ◦λ)(0) etc. denote the local coordinates of group elements a, b
etc. in manifold G. These coordinates are chosen so that εκ(e) = 0, κ = 1, . . . ,R := 1,R, for
identity element e. We also use the induced coordinate systems (U1, g1) and (U2, g2) on the 1-st
and 2-nd order tangent bundles TG and T 2G, respectively. Greek indices are meant to run from
1 to R throughout the paper; the summation convention is used for dummy indices. We denote
t1a, t2a etc. the elements tν(0) and t2ν(0) of tangent Lie groups TG and T 2G, respectively.
Their coordinates are

(
να, ν

1
α

)
and

(
να, ν

1
α, ν

2
α

)
where νi

α = di(gα ◦ ν)/dti∣∣
0
, i = 0, 1, 2.

Starting with a group multiplication

µ : G×G → G, (1.1)

we construct the multiplication law for TG [1, 2]

Tµ : TG× TG → TG

defined by

Tµ(tλ(0), tν(0)) = t(µ(λ, ν))(0).
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We obtain R expressions in local coordinates

η1
α = dTµα(λβ(b), νγ(a)) = λ1

β

∂µα(b, a)
∂λβ(b)

+ ν1
γ

∂µα(b, a)
∂νγ(a)

, (1.2)

in addition to the relations

ηα = µα(λβ , νγ), (1.3)

which illustrate the law (1.1) locally. Here dT is the Tulczyjew differential operator [4].
As it follows from eqs.(1.2), the identity element t1e has zero-valued derivative coordinates:

ε1
κ

(
t1e

)
= 0 for all κ = 1,R.

In analogy with Tµ we construct the second order prolongation T 2µ : T 2G× T 2G → T 2G of
the multiplication law (1.1):

T 2µ
(
t2λ(0), t2ν(0)

)
= t2(µ(λ, ν))(0),

where on the right side is the second tangent prolongation of the curve η = µ(λ, ν) : I → G
taken at zero point. On the local level we have R relations

η2
α = d2

Tµα(λβ , νγ), (1.4)

in addition to eqs.(1.3) and (1.2).
Now we consider the embedding ι1 : G → TG, locally given by (να) �→ (να, 0). The submani-

fold ι1(G) ⊂ TG is a slice [5] of the coordinate system
(
U1, g1

)
. According to ref.[1], ι1 is a

group homomorphism and (G, ι1) is a closed subgroup of a Lie group TG. Similarly we construct
a closed subgroup ι2(G) ⊂ T 2G where the inclusion map ι2 : G → T 2G is the embedding locally
written as (να) �→ (να, 0, 0).

Note that the bundle projections τG : TG → G and τ2
G : T 2G → G are also the group

homomorphisms. The projection τ2,1
G is the homomorphism from group T 2G to group TG.

Therefore, an original Lie group is a Lie subgroup and a submanifold of its own first- and
second-order tangent groups [1]. (More exactly, we consider the slices ι1(G) ⊂ TG and ι2(G) ⊂
T 2G on which all the derivative coordinates are equal to zero.) Moreover, the constants of
structure of these tangent Lie groups are determined by the structure constants of G. To
demonstrate it we study the involutive distribution XL(T 2G) of all left invariant vector fields on
T 2G and its dual space X ∗

L(T
2G) of all left invariant one-forms.

Taking into account an exclusive role of Tulczyjew differential operator in prolongation al-
gorithm (see eqs.(1.2) and (1.4)), we deal with X ∗

L(T
2G). We write the local expressions for

canonical left invariant one-forms [5, 6] which constitute the basis for X ∗
L(T

2G) at a point t2a:

θγk =
[

∂

∂νi
α(t2a)

d k
Tµγ(b, a)

]
t2b=t2a−1

dνi
α. (1.5)

Small roman indices run from 0 to 2. The exterior derivatives of the θγk are given by the
Maurer–Cartan equation

dθγk = −1
2
CΓ

ABθ
αi ∧ θβj . (1.6)

We use multi-index notation in structure constants {CΓ
AB} of T 2G, where multi-indices A, B

and Γ are the 2-tuples of natural numbers, e.g. A = (αi). Particularly, for subgroup ι2(G) ⊂ T 2G
we have

dθγ = −1
2
cγαβθ

α ∧ θβ,
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where {cγαβ} are structure constants of the original Lie group G (zero-valued roman indices are
omitted). Left-invariant one-forms θα are given by eqs.(1.5) if integer k is equal to zero.

Tulczyjew operator dT is the derivation of type d∗ of zero degree which acts on the 0-forms
as a total time derivative [4]. Having used the commutation d ◦ dT = dT ◦ d and the expressions
dT νβ

i = νβ
i+1, after short calculations we establish the following relations between the “higher-

order” one-forms (1.5) and the original ones:

θγ1 = dT θ
γ , θγ2 = d 2

T θ
γ .

Thanks to commutation of Tulczyjew operator with an exterior derivative and positively signed
Leibniz’ rule for wedge product [3] we arrive at

dθγ1 = −1
2
cγαβθ

α1 ∧ θβ − 1
2
cγαβθ

α ∧ θβ1,

dθγ2 = −1
2
cγαβθ

α2 ∧ θβ − cγαβθ
α1 ∧ θβ1 − 1

2
cγαβθ

α ∧ θβ2.

When comparing these expressions with the Maurer–Cartan equation (1.6) we deduce the con-
stants of structure {CΓ

AB}. It is convenient to write them as the following block matrices:

Ĉ(γ0) =


 ĉγ 0 0

0 0 0
0 0 0


 , Ĉ(γ1) =


 0 ĉγ 0

ĉγ 0 0
0 0 0


 , Ĉ(γ2) =


 0 0 ĉγ

0 2ĉγ 0
ĉγ 0 0


 .

Here symbol ĉγ denotes the skew-symmetric matrix ‖cγαβ‖ with fixed integer γ.
Similarly we obtain the structure constants of a Lie group TG:

Ĉ(γ0) =
[
ĉγ 0
0 0

]
, Ĉ(γ1) =

[
0 ĉγ

ĉγ 0

]
.

The basis for XL(T 2G) consists of the left invariant vector fields [2, 5, 6], say X
(2)
B , locally

given by

X
(2)
(β0) = Lα

β

∂

∂gα
+ dT (Lα

β)
∂

∂gα
1
+ d 2

T (L
α
β)

∂

∂gα
2
,

X
(2)
(β1) = Lα

β

∂

∂gα
1
+ 2dT (Lα

β)
∂

∂gα
2
,

X
(2)
(β2) = Lα

β

∂

∂gα
2
.

Here Lα
β(g) are the components of the left invariant vector fields Xβ which form the basis for

XL(G).
Vector field X

(2)
(β0) is the 2-lift of corresponding one Xβ to tangent bundle T 2G, i.e. X(2)

(β0) =

X
(2,2)
β (see refs. [1, 9]). The former belongs to the basis of the sub distribution XL(ι2(G)) ⊂

XL(T 2G). The others X(2)
(β1) and X

(2)
(β2) are intimately connected with the 1-st and 0-th lifts [1, 9]

of Xβ to T 2G, respectively. Namely, we have X
(2)
(β1) = J1X

(2,2)
β and X

(2)
(β2) = (1/2)(J1)2X

(2,2)
β ,

where J1 is the canonical almost tangent structure [10] of order 2 on T 2G.
Let X(1)

(βi), i = 0, 1, be the canonical left-invariant vector fields on XL(TG). If τ2
1 : T 2G → TG

is the canonical projection, then X
(2)
(βi) and X

(1)
(βi) are τ2

1 -related, i.e. Tτ2
1 (X

(2)
(βi)) = X

(1)
(βi). Each

of homomorphism of groups, mentioned in this Section, corresponds the Lie algebra homomor-
phism which describes its effect on left invariant vector fields, as well as the mapping which
relates the dual algebras. The former are then nothing but the differential of originating group
homomorphism and the latter is precisely the transpose of this differential [5].
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2 An action of the tangent Lie group on a smooth manifold

When considering the group parameters as constants, an action r : Q×G → Q of a Lie group G
on anN -dimensional smooth manifold Q lifts to an action r1 : TQ×G → TQ of G on the tangent
bundle TQ as follows [6, 11, 9]:

(
r1

)
a
: TQ → TQ, where

(
r1

)
a
= Tra for any fixed a ∈ G.

Treatment of group parameters via the time-dependent variables makes the notion of lift of a
group action quite different from mentioned above. The desired map is Tr : TQ×TG → TQ [1].
It defines the transformation (Tr)t1a : TQ → TQ for any fixed t1a ∈ TG.

We introduce the coordinate system (V, q) in Q and we also use the induced charts
(
V 1, q1

)
in TQ. The action of TG on TQ induces a Lie algebra homomorphism of Lie (TG) := Tt1e(TG)
into vector space X (TQ). To each vector field ξ

(1)
(αi) := X

(1)
αi

(
t1e

)
, i = 0, 1, we assign the vector

field Y
(1)
(αi) on TQ:

Y
(1)
(α0) = Y b

α

∂

∂qb
+ dT (Y b

α)
∂

∂qb
1
, Y

(1)
(α1) = Y b

α

∂

∂qb
1
. (2.1)

Symbol Y b
α(qa), a, b = 1,N , denotes the component of the fundamental vector field Yα cor-

responding to ξα ∈ Lie (G). Actually
{
Y

(1)
(αi)|α = 1,R; i = 0, 1

}
is a Lie subalgebra of the set

X (TQ) of all vector fields on TQ.
Let us compare these results with standard situation where coordinates of the group ele-

ments are meant to be constants. In such a case the transformations of TQ are generated by
fundamental vector fields which are complete lifts of their prototypes, acting on Q [9]. Since
dimTG = 2dimG, we have double number of infinitesimal generators, namely Y

(1)
(α0) and Y

(1)
(α1),

which are then nothing but the complete and vertical lifts [7] of the original one Yα. Therefore,
it is reasonable to say that we deal with the total 1-st lift of an action of G on Q.

We may lift an action of TG on Q to the action T 2G on TQ in similar circumstances. We
introduce a smooth map

r(0,1) : Q× TG → Q,

(y(0), tν(0)) �→ x(0),
(2.2)

which is an action of a Lie group TG on manifold Q on the right [6]. The bracketed and separated
by comma integers (0, 1) up to letter r are associated with the orders of tangent bundles over Q
and G, respectively. The curve y : R → Q runs across a point y(0) ∈ V with coordinates{
ya|a = 1,N}

and the curve x : R → Q passes through a point x(0) ∈ V with coordinates{
xa|a = 1,N}

. In local coordinates (2.2) is written as

xa = fa(yb, ν
i
α(t

1a)).

An action of TG on Q induces a Lie algebra homomorphism of the Lie algebra Lie (TG) into
vector space X (Q) [6]. To each vector field ξ

(1)
(αi) ∈ Lie (TG), i = 0, 1 , we assign the following

fundamental vector field on Q:

Y
(0,1)
(αi) =

∂fa(qb, t
1a)

∂να
i

∣∣∣∣
t1a=t1e

∂

∂qa
. (2.3)

Each of them is the infinitesimal generator of an 1-parameter group of transformations of Q.
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The map (2.2) lifts to the right action r(1,2) : TQ × T 2G → TQ of group T 2G on tangent
bundle TQ by composition of the tangent mapping Tr(1,0) : T (Q×TG) → TQ with the canonical
embedding

i1,0 : TQ× T 2G → T (Q× TG),

(ty(0), t2ν(0)) �→ t(y, tν)(0).

The tangent prolongation ty(0) is represented in TV by (yb, yb
1), where yb = (qb ◦ y)(0), and

yb
1 = d(qb ◦ y)/dt|0. In local coordinates we obtain the following transformational law for first-

order derivative coordinates: xa
1 = dT fa, where xa

1 = d(qa ◦ x)/dt|0.
The fundamental vector fields which correspond to ξ

(2)
(αi) ∈ Lie (T 2G) may be expressed in

terms of both complete and vertical lifts [7] of vector fields (2.3):

Y
(1,2)
(α0) =

(
Y

(0,1)
(α0)

)c
, Y

(1,2)
(α1) =

(
Y

(0,1)
(α1)

)c
+

(
Y

(0,1)
(α0)

)v
, Y

(1,2)
(α2) =

(
Y

(0,1)
(α1)

)v
. (2.4)

They constitute an involutive distribution [2] on TQ.

3 Dynamical system with first-class constraints

In ref. [8] the degenerate Lagrangian system was examined in which the action integral is invari-
ant with respect to the so-called gauge transformation. (By this is meant that the coordinate
transformation of the configuration manifold is specified by some time-dependent parameters.)
The theorem was proved that a necessary and sufficient condition of such invariance is the
existence of relations linking the expressions for Euler–Lagrange equations together. It was
shown that a Hamiltonian system with first-class constraints is derived from this degenerate
Lagrangian. Conversely, a Dirac system with first-class constraints admits the symmetry of this
type.

In geometrical approach [12, 13] a first-class constraint set C is the co-isotropic submanifold
of phase space P . The symplectic polar T ¶C ⊂ TC is the integrable distribution on C which is
called the characteristic distribution of C. This distribution induces the characteristic foliation
of C. The necessary and sufficient condition for the Dirac system to possess the solutions is that
the Hamiltonian H : C → R takes a constant value on leaves of the characteristic foliation of C
(see refs. [12, 13, Theorem 1]). This theorem can be coordinated with the results obtained in [8]
as follows.

Let P = T ∗Q and let Q admits the foliation caused by an integrable distribution E. A vec-
tor field Y ∈ E induces the transformation FlYt : Q → Q of the configuration manifold. This
flow should be identified with the gauge transformation introduced in [8]. The parameters of
gauge transformation distinguish the points of an individual leaf of foliation. We interpret this
transformation as the invertible contact transformation [14]:

y′a = fa(yb, να, να
1),

ν ′α = να , α = 1,R,
(3.1)

which leaves a Lagrangian L : TQ → R invariant. Since the transformed Lagrangian does not
depend on the variables να and their time derivatives να

1, corresponding Jacobi–Ostrogradski
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momenta η̂α,0 and η̂α,1 [10]

η̂α,1 =
∂(L ◦ f1)

∂ν2
α

=
(
∂L

∂ẏ′a
◦ f1

)
∂fa

∂ν1
α

,

η̂α,0 =
∂(L ◦ f1)

∂ν1
α

− dT η̂α,1 =
(
∂L

∂ẏ′a
◦ f1

)
∂fa

∂να

,

are equal to zero. Symbol f1 denotes the first holonomic prolongation [14] of the map (3.1).
Taking the να → 0 limits we obtain the constraint manifold

C =
{
(yc, πc) ∈ T ∗Q; πb Y

b
αk(yc) = 0

}
, (3.2)

where the index k = 1, 0 enumerates steps of iterative constraint algorithm [13]. So, the initial
constraint set is

C0 =
{
(yc, πc) ∈ T ∗Q; πb Y

b
α1(yc) = 0

}
.

Note that Y b
αk(yc) are the components of vector fields Yαk ∈ E which generate the gauge trans-

formations (3.1).
The characteristic distribution T ¶C of the constraint manifold (3.2) is spanned by the vector

fields

Y ∗
αk = Y b

αk(yc)
∂

∂yb

− πb
∂Y b

αk

∂yc

∂

∂πc

,

which are complete lifts of vector fields from the distribution E to the phase manifold T ∗Q [9].
The tangent manifold TQ admits the foliation caused by the distribution Ec involving both the
complete, Y c, and the vertical, Y v, lifts [7] of the original vector fields Y ∈ E:

Ẏα0 = Y b
α0(yc)

∂

∂yb
+ dT

(
Y b

α0(yc)
) ∂

∂yb
1 = Y c

α0,

Ẏα1 = Y b
α1(yc)

∂

∂yb
+

(
Y b

α0(yc) + dT

(
Y b

α1(yc)
)) ∂

∂yb
1 = Y c

α1 + Y v
α0,

Ẏα2 = Y b
α1(yc)

∂

∂yb
1 = Y v

α1,

(3.3)

(cf. eqs.(2.4)). From the theorem about the local structure of foliation [2] we see that an invariant
Lagrangian (Hamiltonian) depends on the coordinates of points of plaque and their derivatives
(conjugates) only. The momentum canonically conjugated to leaf’s coordinate variable is equal
to zero. All the momenta of this type constitute the first-class constraint set, i.e. the co-isotropic
submanifold of T ∗Q. Thus, the distinguished chart [2] for the distribution (3.3) is the key to
the reduction procedure here.

The primary first-class constraints only hold the independent degrees of freedom [8]. Whence
the reduction procedure leads to the constrained Hamiltonian system which does not involve
the secondary ones. This Dirac system is derived from a degenerate Lagrangian which does not
depend explicitly on some variables.



550 Yu. Yaremko

Concluding remarks

The requirement of invariance of a Lagrangian function under the action of a tangent Lie group
leads to degeneracy of this Lagrangian. Fundamental vector fields corresponding to such group
constitute the involutive distributions which are important particular cases of the integrable dis-
tributions associated with the characteristic distribution of constraint manifold. Distinguished
charts for the foliations induced by these involutive distributions may help to explain the geo-
metrical essence of gauge theories.
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