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Using discrete symmetries of the Kemmer–Duffin–Petiau (KDP) equation the exact Foldy–
Wouthuysen transformation (FWT) was found. It is required that the vector-potential of
an external field has definite parities. We also described reduction of the KDP equation to
uncoupled subsystems which can be solved independently.

The FWT [1] provides several advantages for the understanding and interpretation of the
physical properties of the Dirac equation. It permits to reduce of this equation to a two-com-
ponent equation of the Pauli type. But its main achievement consist in separating of the solution
of Dirac equation corresponding to a definite sign of the energy eigenvalues. There are great
number of papers are devoted to the construction of FWT for spin-0 [2] and spin-1 [3] particle.

In the presence of interaction the FWT has not, in general, a closed form and one usually
uses series expansion methods. There are classes of interaction represented for instance by the
static magnetic potentials [4], by the static electric and the pseudo-scalar potentials [5] which
admit the exact FWT. The FWT for a two-body equation with oscillator-like interaction [6], for
systems composed of one fermion and one boson, and one fermion and one antifermion in the
presence of special classes of interactions [7] was also constructed in a closed form.

In this paper we investigate the KDP equation for scalar and vector particle in an electromag-
netic field. In order to construct exact FWT we used discrete symmetries of the corresponding
equations. The idea to use discrete symmetries (space reflections, time inversion and charge con-
jugation) for reductions of the Dirac and Schrödinger–Pauli equation to uncoupled subsystems
was proposed in [8, 9].

Let us consider KDP equation for scalar (s = 0) and vector (s = 1) particles minimally
interacting with external electromagnetic field. These equations in the Schrödinger form read [10]

i
∂

∂t
Ψ(x) = H1(A0, 	π)Ψ(x),

H1 = σ2m+ (iσ1 + σ2)
π2

2m
+ eA0, s = 0;

(1)

i
∂

∂t
Ψ(x) = H2(A0, 	π)Ψ(x),

H2 = σ2m+ (iσ1 + σ2)
(π2 − e	S · 	H)

2m
− iσ1

(	S · 	π)2

m
+ eA0, s = 1,

(2)
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where

πa = pa − eAa, pa = −i ∂

∂xa
, a = 1, 2, 3,

π2 = π2
1 + π2

2 + π2
3, A0 = A0(t, 	x), Aa = Aa(t, 	x),

	H = i[	p× 	A], σ1 =
(

0 I
I 0

)
, σ2 = i

(
0 −I
I 0

)
,

I is a (2s + 1)-dimensional unit matrix, Sa are 6-dimensional matrices realizing a direct sum
of the AO(3)-representations D(1), D(1), Ψ(x) is a wave function which has 2(2s+ 1) physical
components.

We note that for physical reasons it is preferable to consider another form of (1), (2). It is
connected with our consideration by unitary transformation U = 1

2(1 + iσ1), H ′
1,2 = UH1,2U

−1.
In order to construct FWT for Hamiltonians of (1), (2) we will use a method proposed in [11].
Let us define an unitary involution operator I anticommuting with H of (1), (2):

I+I = II+ = I2 = 1, IH +HI ≡ [I,H]+. (3)

We seek the involution I in the form

I = MD, (4)

where M is a numeric matrix, D are operators of the discrete transformation:

D = 〈Ra, T,RaT 〉, a = 1, 2, 3, 12, 23, 31, 123,

RaΨ(t, 	x) = raΨ(t, ra	x), ra : xa → −xa,

TΨ(t, 	x) = r0Ψ(r0t, 	x), r0 : t→ −t,
ra = ±1, r0 = ±1, R123 ≡ R, r123 ≡ r,

rarb : xa → −xa, xb → −xb, a 	= b,

rarbrc : xa → −xa, xb → −xb, xc → −xc, a 	= b, b 	= c, a 	= c.

Theorem 1. I. All possible involutions (up to equivalence) of form (4) anticommuting with (1)
have the form

1. I1 = σ3R, (5.1)

2. I2 = σ3T, (5.2)

3. I3 = σ3RT, (5.3)

4. I4 = σ3Ra, a = 1, 2, 3, (5.4)

5. I5 = σ3Rab, a 	= b, (5.5)

6. I6 = σ3RaT, (5.6)

7. I7 = σ3RabT (5.7)

if the corresponding parities of vector-potential Aµ(t, 	x) (µ = 0, 1, 2, 3) are given by the relations

1. A0(t, 	x) = −A0(−t, 	x),

Aa(t, 	x) = −Aa(t, r	x).
(6.1)



On Exact Foldy–Wouthuysen Transformation of Bozons 539

2. A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x).
(6.2)

3. (there are four subcases of parities of Aµ):

a) A0(t, 	x) = −A0(−t, 	x), A0(t, 	x) = A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x), Aa(t, 	x) = −Aa(t, r	x);

b) A0(t, 	x) = −A0(−t, 	x), A0(t, 	x) = A0(t, r	x),

Aa(t, 	x) = −Aa(−t, 	x), Aa(t, 	x) = Aa(t, r	x);

c) A0(t, 	x) = A0(−t, 	x), A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = −Aa(−t, 	x), Aa(t, 	x) = Aa(t, r	x);

d) A0(t, 	x) = A0(−t, 	x), A0(t, 	x) = −A0(t, r	x),

Aa(t, 	x) = Aa(−t, 	x), Aa(t, 	x) = −Aa(t, r	x).

(6.3)

4. A0(t, 	x) = −A0(t, ra	x),

Aa(t, 	x) = −Aa(t, ra	x) (no sum over a),

Aa(t, 	x) = Aa(t, rb	x), a 	= b.

(6.4)

5. A0(t, 	x) = −A0(t, rarb	x), a 	= b,

Aa(t, 	x) = −Aa(t, rarb	x) a 	= b,

Aa(t, 	x) = Aa(t, rbrc	x), a 	= b, b 	= c, c 	= a.

(6.5)

6. In this case the parities of Aµ are the same as in the case 3 (formula (6.3)) up to the
replacement of r by ra. In addition, Aµ should satisfy the following relations:

Aa(t, 	x) = −Aa(t, ra	x),

Aa(t, 	x) = Aa(t, rb	x), a 	= b,
for a) and d);

Aa(t, 	x) = Aa(t, ra	x),

Aa(t, 	x) = −Aa(t, rb	x), a 	= b,
for b) and c).

(6.6)

7. In this case the parities of Aµ are the same as in the case 3 (formula (6.3)) up to the
replacement of r by rbrc, b 	= c, a 	= b, a 	= c. In addition, Aµ should satisfy the following
relations (b 	= c, a 	= b, a 	= c)

Aa(t, 	x) = Aa(t, rbrc	x), for a) and d),

Aa(t, 	x) = −Aa(t, rbrc	x), for b) and c).

II. All possible involutions (up to equivalence) of form (4) anticommuting with (2) have the
form (5.1), (5.2), (5.3) if the vector-potential Aµ has the parities (6.1), (6.2), (6.3), correspon-
dingly.

Proof. Requiring the anticommutativity of operator (4) with the Hamiltonian of (1), we obtain
the following conditions for M and D:

[σ2,M ]+ = 0, [σ1,M ]+ = 0, (7.1)
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[A0, D]+ = 0, [π2, D] = 0. (7.2)

It follows from (7.1) that

M = σ3 =
(

1 0
0 −1

)
.

Conditions (7.2) lead us to (5), (6). In a similar way we can find the involutions for Hamiltonian
of (2). Theorem is proved.

Theorem 2. The exact FWT for Hamiltonians of (1), (2) which have no zero eigenvalues have
the form

U =
1
2

(1 + σ1Ia)(1 + Iaε), U+ = U−1, ε =
H√
H2

, (8)

a = 1, 7 for Hamiltonian of (1), a = 1, 3 for Hamiltonian of (2).

Proof. Let us consider the case a = 1. Then

U =
1
2

(1 − iσ2R)(1 + σ3Rε). (9)

The straightforward computation yields

H ′
1 = UH1U

−1 = σ3

√
H2

0 ≡

≡ σ3

(
m2 + π2(1 + σ1R) + e2A2

0 +
ie

2m
[A0, π

2]+(R + σ1) +
π4

m2
(1 + σ1R)

)1/2

,

(10)

H ′
2 = UH2U

−1 = σ3

(
H2

0 +
2
m2

{
2(	S · 	π)4 + (	S · 	H)2 + [(	S · 	π)2, 	S · 	H]+

}

+ 2	S · 	HR + 2σ1

[
2(	S · 	π)2 + 	S · 	H

]
− ieσ1R

m

[
A0, 2(	S · 	π)2 + 	S · 	H

]
+

+
ie

m
[A0, 	S · 	H]+ +

2(σ1 +R)
m2

{
2π2(	S · 	π)2 + [π2, 	S · 	H]+

}

+
2σ1R

m2

{
(	S · 	H)2 + [(	S · 	π)2, 	S · 	H]+

})1/2

.

(11)

We can see that transformation (9) reduces Hamiltonians of (1), (2) to the diagonal form (10),
(11). Theorem is proved.

Finally, let us consider relativistic KDP equation for spin-1 particle with minimal and anoma-
lous interaction with electromagnetic field [12]:[

βµπµ −m+
e

2m
(
1 − β2

5

)
SµνF

µν
]

Ψ(x) = 0, (12)

Sµν = i[βµ, βν ], Fµν = ∂µAν − ∂νAµ, ∂µ =
∂

∂xµ
,

β0 = i(e1,7 + e2,8 + e3,9 − e7,1 − e8,2 − e9,3),

β1 = −i(e1,10 − e5,9 + e6,8 + e8,6 − e9,5 + e10,1),

β2 = −i(e2,10 + e4,9 − e6,7 − e7,6 + e9,4 + e10,2),

β3 = −i(e3,10 − e4,8 + e5,7 + e7,5 − e8,4 + e10,3),

β5 = i(e4,1 + e5,2 + e6,3 − e1,4 − e2,5 − e3,6),

(13)
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where we use the notations ei,j for 10 by 10 matrices, whose only nonzero elements are ones at
the intersection of the i-th line and j-th column which are equal to unity.

Substituting the explicit form of βµ-matrices (13) into (12) and expressing nonphysical com-
ponents (1−β2

0)Ψ via 2(2s+1) physical components β2
0Ψ, we come to the equation in Schrödinger

form i∂tΨ = HΨ, where Ψ is a 6-component wave function and the Hamiltonian has the form

H = mI3 ⊗ σ2 +
π2

2m
I3 ⊗ (σ2 + iσ1) − i

m

3∑
a,b=1

πaπb(SaSb ⊗ σ1)

+
e2

2m3

3∑
a=1

(F0a)2I3 ⊗ (σ2 − iσ1) − e2

2m3

3∑
a,b=1

F0aF0bSaSb ⊗ (σ2 − iσ1)

+
ie

m2

3∑
a,b=1

F0aπbSaSb ⊗ σ3 − ie

m2

3∑
a=1

(F0aπa)2I3 ⊗ σ3 +
ie

2m2
M ⊗ (1 − σ3)

+
e

2m
(S1F23 − S2F31 + S3F12) ⊗ (σ2 − iσ1) + eA0,

(14)

where we refer to direct products between 3 by 3 unit I3 and Sa (a = 1, 2, 3) matrices belonging
to the D(1)-representation of AO(3) with the usual Pauli matrices and M is a matrix with
matrix elements mab = −i∂F0b

∂xa
.

Requiring that (14) and (4) satisfy (3) we find the involutions of Hamiltonian (14):

Ĩ1 =
[
(2S2

1 − 1) ⊗ σ3

]
P23T, (15.1)

Ĩ2 =
[
(2S2

2 − 1) ⊗ σ3

]
P31T, (15.2)

Ĩ3 =
[
(2S2

3 − 1) ⊗ σ3

]
P12T (15.3)

and the following conditions for Aµ and Ea (Ea are components of electric field strength):

Aµ(t, 	x) = Aµ(−t, 	x), A0(t, 	x) = −A0(t, rarb	x),

A1(t, 	x) = α1A1(t, rarb	x), A2(t, 	x) = α2A2(t, rarb	x),

A3(t, 	x) = α3A3(t, rarb	x),
∂Ea

∂xa
= 0, no sum over a,

α1 = −α2 = −α3 = 1, a = 2, b = 3 for (15.1),

−α1 = α2 = −α3 = 1, a = 1, b = 3 for (15.2),

−α1 = −α2 = α3 = 1, a = 1, b = 2 for (15.3).

The exact FWT of (14) has the form:

U1 =
1
2

(
1 + S2 ⊗ Î2 · Ĩ1

) (
1 + Ĩ1ε

)
,

U2 =
1
2

(
1 + S3 ⊗ Î2 · Ĩ2

) (
1 + Ĩ2ε

)
,

U3 =
1
2

(
1 + S1 ⊗ Î2 · Ĩ3

) (
1 + Ĩ3ε

)
,

Î2 is a 2 × 2 unit matrix.
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Another problem that we explore in this note is a reduction of KDP equation to uncoupled
subsystems. Let us show how it is possible to make such reduction using discrete symmetries of
corresponding equations.

It is easy to verify that the involutions I2, I3, I6, I7 (see formulae (5)) are the discrete
symmetries of (1) if vector-potential Aµ(t, 	x) has parities (6.2), (6.3), (6.6), (6.7) correspondingly.
Indeed, these operators satisfy the invariance condition [Q,L]Ψ = 0, where Q = 〈I2, I3, I6, I7〉,
L = i∂t −H1, Ψ is an arbitrary solution of equation LΨ(x) = 0. In analogy with the above we
can find that equation (2) admits discrete symmetries I2 and I3, (formulae (5.2) and (5.3)) for
the vector-potential (6.2) and (6.3) respectively.

In order to reduce (1) and (2) to uncoupled subsystems it suffices to construct unitary oper-
ators that diagonalize the discrete symmetries of these equations [8].

Let the vector-potential Aµ(t, 	x) satisfy relations (6.2). In this case equation (1) admits the
symmetry Q1 = σ3T .

Constructing the operator

U1 = (T+ − iσ2T−), U−1
1 = (T+ + iσ2T−), T± =

1 ± T

2
(16)

we reduce Q1 to the block diagonal form

U1Q1U
−1
1 = σ3.

The equation (1) is transformed as

L′
1Ψ′ = 0,

L′
1 = U1LU

−1
1 = U1(i∂t −H1)U−1

1 , Ψ′ = U1Ψ.
(17)

Multiplying L′
1 by nonzero matrix −iσ2 on the left and by T on the right we obtain

L̃1 = p0 − eA0 − imT − i
π2

2m
(T + σ3) (18)

and the corresponding uncoupled equations{
p0 − eA0 − imT − i

π2

2m
(T + 1)

}
Ψ+ = 0,

{
p0 − eA0 − imT − i

π2

2m
(T − 1)

}
Ψ− = 0,

where Ψ± are one-component functions.
If the vector-potential Aµ(t, 	x) satisfies relations (6.3) then equation (1) admits the symmetry

Q2 = σ3RT . We find diagonalizing operator in the form:

U2 = (T+ − iσ2T−)(R+ − iσ2R−), U−1
2 = (R+ + iσ2R−)(T+ + iσ2T−),

R± =
1 ±R

2
, U2Q2U

−1
2 = σ3.

Corresponding reduced equation have the form

L̃2Ψ′ = 0,

L̃2 = p0 − eA0 − imT − i
π2

2m
(σ3R+ T ).
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In analogy with (1) we make a reduction of (2). As a result we obtain

L̃1Ψ′ = 0,

L̃1 = p0 − eA0 − imT + iσ3
(	S	π)2

m
− i

(π2 − e	S · 	H)
2m

(T + σ3),

where Aµ(t, 	x) satisfy relations (6.2);

L̃2Ψ′ = 0,

L̃2 = p0 − eA0 − imT + iσ3
(	S	π)2

m
R− i

(π2 − e	S · 	H)
2m

(T + σ3R),

where Aµ(t, 	x) satisfy relations (6.3).
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