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A generation mechanism for non-Abelian gauge fields in the SU(N) gauge theory is studied.
We show that SU(N) gauge fields ensuring the local invariance of the theory are generated
at the quantum level only. It is demonstrated that the generation of these fields is related to
nonsmoothness of the scalar phases of the fundamental spinor fields, but not to the simple
requirement of gauge symmetry locality. The expressions for the gauge fields are obtained
in terms of the nonsmooth scalar phases. From the viewpoint of the described scheme of the
gauge field generation, the gauge principle is an “automatic” consequence of field trajectory
nonsmoothness in Feynman path integral.

All known fundamental interactions possess the property of local gauge invariance. The
principle central to quantum field theory is the gauge principle. This principle stakes that the
fundamental fields involved in Lagrangian allow the local transformations which do not modify
Lagrangian. The gauge principle was first used by Weyl [1] who discovered the local U(1) gauge
symmetry in quantum electrodynamics. The non-Abelian local SU(2) gauge symmetry and cor-
responding gauge fields were introduced by Yang and Mills [2]. Based on this approach, later on
the structure of weak and strong interactions was established [3, 4]. Einstein’s General Relativity
can also be considered as the gauge theory with Lorentz or Poincaré gauge groups [5, 6].
It is generally agreed that the existence of gauge fields must necessarily be a consequence of

the requirement of the gauge symmetry locality. However, this statement is not quite correct.
Ogievetski and Polubarinov [7] showed that within the framework of classical field theory, the
local gauge invariance can be ensured without introduction of nontrivial gauge fields, i.e., vector
fields with nonzero field strengths. It suffices to introduce only gradient vector field ∂µB(x), as a
“compensative field”, with zero strength (∂µ∂ν − ∂ν∂µ)B(x) = 0. Such field does not contribute
to dynamics [7]. From the viewpoint of the classification of fields by spin, the scalar field B(x)
corresponds to spin of zero and gradient vector field ∂µB(x) is longitudinal. True vector gauge
fields Aµ are transversal fields corresponding to spin of unity. Gauge invariance of theory means
that the longitudinal part of vector gauge fields does not contribute to dynamics.
If so, what is the real cause of the existence of gauge fields and interactions? Early in Ref. [8]

the “quantum gauge principle” was formulated in the context of quantum electrodynamics. This
principle states that the Abelian U(1) gauge fields are generated at the quantum level only and
the generation of these fields is related to nonsmoothness of the field trajectories in the Feynman
path integrals, by which the field quantization is determined. In this paper, we investigate the
generation mechanism for non-Abelian SU(N) gauge fields. It is shown that the non-Abelian
nontrivial vector fields are generated due to nonsmoothness of the field trajectories for the scalar
phases of the spinor fields in the SU(N) gauge theory.
Let us consider a Lagrangian for free spinor fields

L = iψ
j
γµ∂µψ

j −mψ
j
ψj , (1)

where j = 1, 2, . . . , N . In what follows the index j will be omitted.
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The Lagrangian (1) is invariant under global non-Abelian SU(N)-transformations

ψ′(x) = eitaωaψ(x), ψ ′(x) = ψ(x)e−itaωa , (2)

where ta are SU(N) group generators, ωa = const, a = 1, 2, . . . , N2−1. This invariance generates
the conserved currents Jµ

a :

Jµ
a = −ψγµtaψ, ∂µJ

µ
a = 0. (3)

In the framework of classical field theory, physical fields are known to be described by suf-
ficiently smooth functions. Considering a smooth local infinitesimal SU(N)-transformation at
the classical level

ψ′(x) = (I + itaωa(x))ψ(x), ψ ′(x) = ψ(x)(I − itaωa(x)), (4)

we obtain that the transformed Lagrangian differs from the original one by the term:

�L = Jµ
a ∂µωa(x). (5)

In consequence of the conservation of currents (3) the term (5) reduces to 4-divergence and does
not contribute to dynamics. In the case of local non-infinitesimal SU(N)-transformations, it
was shown [7] that the local gauge invariance of the transformed Lagrangian can be ensured by
introducing scalar fields Ba(x). In other words, the Lagrangian

L = iψγµ∂µψ + iψ(x)e−itaBa(x)γµ(∂µe
itbBb(x))ψ(x)−mψψ

is invariant under the local non-infinitesimal SU(N)-transformations provided the fields Ba(x)
transform as:

eitaB′
a(x) = eitaBa(x)e−itbωb(x).

The introduced scalar fields Ba(x) do not contribute to dynamics, since they do not give rise to
nonzero strengths and can be eliminated by means of the smooth point transformations of the
field variables ψ → exp(itaBa)ψ [7]. Thus we need not compensate the term (5) by introducing
nontrivial vector fields Aa

µ that do not reduce to gradients of scalar functions.
The situation changes in the quantum approach. In the Feynman formulation of quantum

field theory the transition amplitudes are expressed by the path integrals that are centered on
nonsmooth field trajectories [9]:

〈Φ2, t2|Φ1, t1〉 = N

Φ2∫

Φ1

(DΦ) exp


 i

�

t2∫

t1

d4xL(Φ, ∂Φ)


 .

In this context the Lagrangian (1) and its symmetries are determined on the class of nonsmooth
functions ψ(x), corresponding to nonsmooth trajectories in path integrals. In the strict sense, the
derivatives involved in the Lagrangian (1) are discontinuous functions. From physics standpoint,
field trajectory nonsmoothness is related to fluctuations of the local fields. Feynman integrals, as
a rule, are additionally specified by the implicit switch to “smoothed-out” approximations [10].
In this case the degrees of freedom corresponding to gauge vector fields are lost. Here we show
that, as in quantum electrodynamics [8], in the non-Abelian SU(N) gauge theory these degrees
of freedom can be explicitly taken into account when “smoothing” of nonsmooth fields is more
carefully carried out.
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Let us approximate nonsmooth functions θa(x) by smooth functions ωa(x):

θa(x) = ωa(x) + · · · .
In order to write down the next term of the “smoothed-out” representation of the nonsmooth
functions θa(x) it is necessary to consider the behaviour of the first derivatives of θa(x). The
derivatives ∂µθ

a(x) at nonsmoothness points of θa(x) are discontinuous functions. Since the
derivatives ∂µω

a(x) are continuous functions, they badly approximate the behaviour of the
derivatives of the “smoothed-out” θa(x). Let us denote a difference between them by θa

µ(x) and
write ∂µθ

a(x) as follows:

∂µθ
a(x) = ∂µω

a(x) + θa
µ(x). (6)

Since the nonsmooth fields θa
µ(x) do not reduce to gradients of smooth scalar fields, they are the

nontrivial vector fields that give rise to nonzero field strengths:

∂µθ
a
ν(x)− ∂νθ

a
µ(x) �= 0.

Therefore the fields ∂µθ
a(x) involve the additional degrees of freedom which are related to

nonsmoothness of the θa(x). It should be noted that the fields θa
µ(x) are ambiguously determined

due to ambiguity of choice of ωa(x).
Let us now consider θa(x) as scalar phases of the spinor fields ψ(x) realizing the fundamental

representation of the SU(N) gauge group and separate out these phase degrees of freedom in
an explicit form:

ψ(x) = eitaθa(x)ψ0(x), (7)

where the spinor fields ψ0 are representatives of the class of gauge-equivalent fields [11], eit
aθa

is a unitary N × N matrix. Then, provided the Lagrangian (1) is determined on the class of
nonsmooth functions ψ(x), using Eq.(7) we obtain:

L = iψ0γ
µ∂µψ0 + iψ0e

−itaθaγµ(∂µe
itbθb)ψ0 −mψ0ψ0. (8)

Represent the matrix eitaθa as a superposition of the unit matrix I and SU(N) group genera-
tors ta:

eitaθa = CI + iSat
a. (9)

Since ta are traceless matrices normalized by Tr (tatb) = 1
2δ

ab, the coefficients C and Sa in Eq.(9)
are given by:

C =
1
N
Tr(eitaθa), Sa = −2iTr(taeitbθb). (10)

It is easy to verify that Tr(e−itaθa∂µe
itbθb) = 0. Then taking into account the commutation rules

for SU(N) group generators [12] we can write down:

e−itaθa∂µe
itbθb = itaAa

µ, (11)

Aa
µ = C̄∂µS

a − S̄a∂µC + (fabc − idabc)S̄b∂µSc, (12)

where dabc (fabc) are totally symmetric (antisymmetric) structural constants of SU(N)-group,
the overline denotes complex conjugation.
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Since the matrix eitaθa is unitary, the following equation is valid:

C̄Sa − S̄aC + (fabc − idabc)S̄bSc = 0. (13)

Differentiating the left and right sides of Eq.(13) and using the property of antisymmetry of fabc

we derive:

Aa
µ − Āa

µ = 0,

whence it follows that the expression (12) is a real function. Thus Aa
µ can be identified with the

gauge fields. Unlike the gauge field in electrodynamics [6], these fields are nonlinear functions of
θa(x). As a consequence of nonsmoothness of the phases θa(x) the fields Aa

µ are also not smooth.
If we take into account only the first term in the right hand side of relation (6) we obtain that
the fields Aa

µ do not contribute to the dynamics, as in classical field theory [5], and the degrees
of freedom corresponding to gauge vector fields are lost. The account of θa

µ(x) enables us to
interpret the fields Aa

µ as nontrivial vector fields that give rise to nonzero field strenghths:

∂µA
a
ν(x)− ∂νA

a
µ(x) �= 0.

By the way of illustration let us consider the Yang–Mills SU(2) gauge group. In consequence
of anti-commutativity of the SU(2) group generators the coefficients C and Sa (see Eq.(10)) are
given by:

C = cos(θ/2), Sa = 2na sin(θ/2), (14)

where

θ =
√
θaθa, na = θa/θ, a = 1, 2, 3. (15)

From Eqs.(14) and (15) it follows that the gauge fields Aa
µ can be written as:

Aa
µ = na∂µθ + sin θ(∂µn

a) + sin2(θ/2)[n × ∂µn]a. (16)

Expression (16) demonstrates explicitly the relation between the Yang–Mills gauge fields and
the nonsmooth scalar phases of the spinor fields.
Let us obtain the transformation law for the vector fields (12). For this purpose we consider

the infinitesimal smooth local transformations for the spinor fields:

ψ′
0(x) = eitaωa(x)ψ0(x), ψ ′

0(x) = ψ0(x)e
−itaωa(x). (17)

Then the Lagrangian (8) can be written as:

L = iψ ′
0γ

µ∂µψ
′
0 + iψ

′
0e

itaωae−itbθbγµ∂µ(eitcθce−itlωl)ψ′
0 −mψ ′

0ψ
′
0. (18)

Defining the gauge fields Aa
µ
′(x) similarly to Eqs.(11) and (12) by the following equation:

itaA
a
µ
′(x) = eitaωae−itbθb∂µ(eitcθce−itlωl), (19)

we find that the transformed gauge fields Aa
µ
′(x) are related to the fields (12) as follows:

Aa
µ
′(x) = Aa

µ(x)− ∂µω
a(x)− fabcω

b(x)Ac
µ(x). (20)

Hence, in the framework of considered scheme of the gauge field generation we derive the usual
transformation law for the SU(N) gauge fields, with the local gauge invariance of the La-
grangian (8) being not necessary.
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Using Eqs.(11) and (12) we obtain that the Lagrangian (8) takes the form:

L = iψ0γ
µD̂µψ0 −mψ0ψ0, (21)

where D̂µ ≡ ∂µ + iAa
µta is the covariant derivative. It is easy to verify that the Lagrangian (21)

is invariant under the transformations (17) and (20).
Therefore the gauge fields Aa

µ ensuring the local SU(N) gauge invariance of the Lagran-
gian (21) are generated because of nonsmoothness of the field trajectories in Feynman path
integral. The nonsmoothness of the fields Aa

µ corresponds to their quantum nature and means
that these fields should also be quantized, i.e., continual integration is to be carried out over the
variables Aa

µ(x). However the fields A
a
µ in the Lagrangian (21) do not exhibit all the properties

of physical fields since they cannot propagate in space because of the absence of the kinetic
term.
An expression similar to the kinetic term can be obtained by the calculation of the effective

action for the spinor fields described by the Lagrangian (21). Using the results of the calculations
performed in Ref.[13], we find the following expression for the kinetic term in the one-loop
approximation

Leff = κ ln
Λ
µ0
tr F̂ 2

µν , F̂µν = [D̂µ, D̂ν ], (22)

where Λ and µ0 are the momentum of the ultraviolet and infrared cut-off respectively; κ is the
numerical coefficient.
The formula (22) takes the usual form [12]

Leff =
�c

8g2
trF 2

µν

upon identifying

g2 =
�c

8κ ln Λ
µ0

. (23)

The last equation relates the charge g with the parameters Λ and µ0 as well as with the universal
constants � and c, and thus demonstrates explicitly quantum origin of the charge.
Let us discuss the results obtained. We show that the “compensating” gauge fields need

not be artificially introduced for the local gauge invariance of the theory to be ensured. As
a result of conservation of currents (3), the Lagrangian for classical spinor fields is invariant
under local SU(N) gauge transformations. The generation of gauge fields is purely quantum
phenomenon. The vector gauge fields are generated through nonsmoothness of the scalar phases
of the fundamental spinor fields. From the viewpoint of the described scheme of the gauge field
generation, the gauge principle is an “automatic” consequence of field trajectory nonsmoothness
in Feynman path integral.
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