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Using the self-consistent renormalization (SCR), a careful study of complicated tangle of
problems associated with renormalizations, symmetries conservation, their breaking and
anomalies is performed for some set of UV-divergent Feynman amplitudes (FA’s) connected
with mass-anysotropic AVV- and AAA-triangles in the space-time n = 4. Most general
quantum corrections (QC’s) to the canonical Ward identities (WI’s) and some nontrivial
“daughter reduction identities” (DRI’s) are obtained. The results are new both for a nonde-
generate case and for the chiral case. For a nondegenerate case (m1 �= m2 �= m3, ml �= 0),
the QC’s are the zero degree homogeneous functions of masses and are expressed in terms
of the Appel hypergeometric functions F1. For the chiral case (m = 0) and the chiral limit
(m → 0) the behaviour of the AVV- and AAA-amplitudes depends crucially on the discrete
symmetry of these amplitudes in the cases m = 0 and m → 0. In the chiral case the QC’s
to “left-handed” WI’s vanish. This may give some insight into why just the left-handed
neutrino exists in Nature.

1. Symmetries of quantum field theories (QFT) often manifest themselves via certain formal
relations between UV-divergent FA’s known as the canonical WI’s (CWI’s). Anomalies of QFT’s
occur as breakdown of the CWI’s at the level of regular (finite) values of FA’s [1–3]. We hope to
clarify some obscure points in these violations by employing the SCR [4] to spinor triangle FA’s,
as the most important subject in such investigations, and to illustrate possibilities of the SCR.
Recall that the SCR is an effective realization of the Bogoliubov–Parasiuk R-operation [5] which
is complemented with recurrence, compatibility and differential relations fixing a renormalization
arbitrariness of the R-operation in some universal way based on mathematical properties of FA’s
only.

2. The main Feynman amplitude corresponding to the triangle spinor graph of the most
general kind (different masses, arbitrary Clifford structure of vertices, the n-dimensional space-
time with the (q, p)-signature) looks as follows:

Iγ1γ2γ3(m, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr[γ1(m1 + p̂1)γ2(m2 + p̂2)γ3(m3 + p̂3)](

m2
1 − p2

1 − iε1
) (
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) ,
(dnp) := dnp1d

np2d
np3, p̂l := γµplµ, m := (m1,m2,m3), k := (k1, k2, k3),

δ(p, k) := δ(−k1 + p3 − p1) δ(−k2 + p1 − p2) δ(−k3 + p2 − p3).

(1)

The matrices γi, γµ, Ig act in the Ng-dimensional space of the faithful representation πg of lowest
dimension for the Clifford algebra Cl(g)K, K = R or C, with γµ ∈ Λ1(g), µ = 1, . . . , n, being
the generating elements of the Cl(g)K-algebra in its matrix representation πg; also γi ∈ Λk(g),
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i = 1, 2, 3, are some k-degree (k = 0, 1, . . . , n) homogeneous elements of the Cl(g)K-algebra
in the πg-representation; Ig is Ng-dimensional unit matrix. The natural analog of the Dirac
γ5-matrix is γ∗ := γ1γ2 · · · γn ∈ Λn(g), with properties

γµγ∗ = (−1)n+1γ∗γµ, µ = 1, . . . , n, γ2
∗ = ε(g)Ig, ε(g) := (−1)q(−1)n(n−1)/2. (2)

3. The UV-divergent FA’s (1) satisfy formally the canonical WI’s (CWI’s):

k1µI
(γµγ)γ2γ3(m, k) = Dγ̇γ2γ3

1 (m, k) =

= (−1)π1P γγ2γ3
1 (m, k)− P γγ2γ3

3 (m, k) + (m3 − (−1)π1m1) Iγγ2γ3(m, k),

k2αI
γ1(γαγ)γ3(m, k) = Dγ1γ̇γ3

2 (m, k) =

= (−1)π2P γ1γγ3
2 (m, k)− P γ1γγ3

1 (m, k) + (m1 − (−1)π2m2) Iγ1γγ3(m, k),

k3βI
γ1γ2(γβγ)(m, k) = Dγ1γ2γ̇

3 (m, k) =

= (−1)π3P γ1γ2γ
3 (m, k)− P γ1γ2γ

2 (m, k) + (m2 − (−1)π3m3) Iγ1γ2γ(m, k).

(3)

Here the quantities Dγ̇γ2γ3
1 (m, k), Dγ1γ̇γ3

2 (m, k), Dγ1γ2γ̇
3 (m, k), P γ1γ2γ3

l (m, k) are similar to the
main amplitude Iγ1γ2γ3 and differ from it only in polynomials of the integrand:

Dγ̇γ2γ3
1 (m, k)←→ (p3 − p1)µ tr [γµγ(m1 + p̂1)γ2(m2 + p̂2)γ3(m3 + p̂3)],

Dγ1γ̇γ3
2 (m, k)←→ (p1 − p2)α tr [γ1(m1 + p̂1)γαγ(m2 + p̂2)γ3(m3 + p̂3)],

Dγ1γ2γ̇
3 (m, k)←→ (p2 − p3)β tr [γ1(m1 + p̂1)γ2(m2 + p̂2)γβγ(m3 + p̂3)];

(4)

P γ1γ2γ3
1 (m, k)←→ tr [γ1(m2

1 − p2
1)γ2(m2 + p̂2)γ3(m3 + p̂3)],

P γ1γ2γ3
2 (m, k)←→ tr [γ1(m1 + p̂1)γ2(m2

2 − p2
2)γ3(m3 + p̂3)],

P γ1γ2γ3
3 (m, k)←→ tr [γ1(m1 + p̂1)γ2(m2 + p̂2)γ3(m2

3 − p2
3)].

(5)

In Eqs.(3) the vector CWI’s (γ = Ig) and the axial-vector CWI’s (γ = γ∗) are represented in
the uniform manner. The factors (−1)πi stem from the commutation relations γσγ = (−1)πγγσ,
s = 1, . . . , n, and are equal: (−1)πi = 1 if γ = Ig, ∀n, or γ = γ∗, n = 2r + 1; (−1)πi = −1 if
γ = γ∗, n = 2r.

4. The reduction identities (RI’s) is a name given to the obvious identities:

P γ1γ2γ3

lε (m, k) = P
γ1γ2γ3

lε (m(l), k), l = 1, 2, 3,

m(1) ≡ (m2,m3), m(2) ≡ (m1,m3), m(3) ≡ (m1,m2),
(6)

in which we use the simple idea of cancelling the equal factors in factorized polynomials in
numerators and the denominator of integrands. For example, for l = 1,

P γ1γ2γ3
1ε (m, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr

[
γ1

(
m2

1 − p2
1 − iε1

)
γ2 (m2 + p̂2) γ3 (m3 + p̂3)

](
m2

1 − p2
1 − iε1

) (
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) , (7)

P
γ1γ2γ3

1ε (m2,m3, k) :=

∞∫
−∞

(dnp) δ(p, k)
tr [γ1γ2 (m2 + p̂2) γ3 (m3 + p̂3)](
m2

2 − p2
2 − iε2

) (
m2

3 − p2
3 − iε3

) . (8)

The RI’s (6) naturally induce primitive daughter RI’s (DRI’s) via decompositions involving:
i) the Clifford tensors tr(γ1γ2m2γ3m3), tr(γ1γ2m2γ3γσ), tr(γ1γ2γσγ3m3), tr(γ1γ2γσγ3γτ ), for
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l = 1; ii) the symmetric and antisymmetric parts 1
2(p

σ
ap

τ
b ± pσ

b p
τ
a) of the p

σ
ap

τ
b ; iii) the tensor

structures 1, kσ
i , g

στ , (ki, kj)στ := (kσ
i k

τ
j + kσ

j k
τ
i ), [ ki, kj ]στ := (kσ

i k
τ
j − kσ

j k
τ
i ), with independent

external momenta (e.g., k2, k3, or k1, k2, or k1, k3). There are 10 primitive DRI’s, ∀ l = 1, 2, 3.
The difference between P γ1γ2γ3

l (m, k) involved in Eqs.(3) and P γ1γ2γ3

lε (m, k) results from iεl-terms
in polynomials of numerators.

5. The amplitude Iγ1γ2γ3(m, k) has the divergence index ν = n− 3, whereas the amplitudes
Dγ̇γ2γ3

1 (m, k), Dγ1γ̇γ3
2 (m, k), Dγ1γ2γ̇

3 (m, k), P γ1γ2γ3

l (m, k), P γ1γ2γ3

lε (m, k), P γ1γ2γ3

lε (m(l), k), l =
1, 2, 3, have the divergence index ν + 1 = n− 2. The regular values for all of them are obtained
according to [4] and are given in [6] in the most general form (for arbitrary Clifford structure
of vertices and for n-dimensional space-time with the (q, p)-signature). It turns out that so
calculated regular values satisfy the identities:

k1µ(RνI)(γ
µγ)γ2γ3(m, k) = (Rν+1D1)γ̇γ2γ3(m, k)

= (−1)π1(Rν+1P1)γγ2γ3 − (Rν+1P3)γγ2γ3 + (m3 − (−1)π1m1) (Rν+1I)γγ2γ3 ,

k2α(RνI)γ1(γαγ)γ3(m, k) = (Rν+1D2)γ1γ̇γ3(m, k)

= (−1)π2(Rν+1P2)γ1γγ3 − (Rν+1P1)γ1γγ3 + (m1 − (−1)π2m2) (Rν+1I)γ1γγ3 ,

k3β(RνI)γ1γ2(γβγ)(m, k) = (Rν+1D3)γ1γ2γ̇(m, k)

= (−1)π3(Rν+1P3)γ1γ2γ − (Rν+1P2)γ1γ2γ + (m2 − (−1)π3m3) (Rν+1I)γ1γ2γ ,

(9)

which are referred to as the regular analog (RA) of the CWI’s [6]. It is important to note that
the last terms in the identities (9) are calculated by the renormalization index ν + 1, although
their proper divergence index is ν. It is this peculiarity that permits the RA of the CWI’s (9)
both to imitate the CWI’s (3) and to differ from them simultaneously. It is this peculiarity that
permits to obtain some effective formulae for calculating of the quantum corrections (QC’s) to
the CWI’s in the most general nonchiral case [6].

6. The primitive DRI’s stemming from tensors tr(γ1γ2γσγ3γτ ), tr(γ1γσγ2γ3γτ ), tr(γ1γσγ2γτγ3),
1
2(p

σ
ap

τ
b − pσ

b p
τ
a), and

1
2 [k2, k3]στ are as follows:

(
Rν+1Plε[a,b]

)στ (m, k) =
(
Rν+1P lε[a,b]

)στ (m(l), k), a, b �= l, a < b, l = 1, 2, 3, (10)

(
Rν+1Plε[a,b]

)στ (m, k) = (2π)nδ(k)b(g)tr(·)1
2
[k2, k3]στ (−1)l−1

(
Rν+1P

[2,3]
lε

)
(m, k), (11)

(
Rν+1P

[2,3]
lε

)
(m, k) :=

∫
Σ2

dµ(α)
∆n/2

{αl

∆
(m2

l − iεl)
(
Rν+1F)

20
− αl

∆
Y 2

l

(
Rν+1F)

40

+
[αl

∆

(n
2
+ 1

)
− 1

]
∆−1

(
Rν+1F)

41

}
= 0.

(12)

The zero result in Eq.(12) is due to
(
Rν+1P lε[a,b]

)στ (m(l), k) = 0, which in turn follows
from the antisymmetry of the 1

2 (p
σ
ap

τ
b − pσ

b p
τ
a) and from the special external momentum de-

pendence in this case (independent momenta are: k3 or k1 + k2 for l = 1, etc.). Here-

after the integration measure is dµ(α) := δ

(
1−

3∑
l=1

αl

)
dα1 dα2 dα3, the integration region

is Σ2 :=
{
αl|αl ≥ 0, l = 1, 2, 3,

3∑
l=1

αl = 1
}
, overall δ-function is δ(k) := δ(−k1 − k2 − k3),

and the metric dependent constant is b(g) :=
(
πn/2ip

)
/(2π)n, where p is the number of positive
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squares in the space-time metric g. The basic functions (Rν+1F)sj and the determining numbers
ν1

sj , λ
1
sj , and ω appearing in them are defined as:

(
Rν+1F)

sj
:=M ω+j

ε Z
1+ν1

sj
ε Γ(λ1

sj)/Γ(2 + ν1
sj) 2F1

(
1, λ1

sj ; 2 + ν1
sj ; Zε

)
,

ν1
sj := [(ν + 1− s)/2] + j, λ1

sj := 1 + ν1
sj − ω − j, ω := n/2− 3.

(13)

The [(ν+1−s)/2] in Eqs.(13) is the integral part of the number (ν+1−s)/2. The α-parametric
functions Zε, Mε, A, ∆, Yl, involved in Eqs.(11)–(13) have the form:

Zε := A/Mε, Mε :=
3∑

l=1

αl(m2
l − iεl), ∆ := α1 + α2 + α3,

A := ∆−1
[
α1(α2 + α3)k2

2 + α3(α2 + α1)k2
3 + 2α1α3(k2 · k3)

]
,

Y1 := ∆−1[(α2 + α3)k2 + α3k3], Y2 := ∆−1[−α1k2 + α3k3],

Y3 := ∆−1[−α1k2 − (α1 + α2)k3].

(14)

7. Now let us consider the AVV (γ1 = γµγ∗, γ2 = γα, γ3 = γβ) and the AAA (γ1 = γµγ∗,
γ2 = γαγ∗, γ3 = γβγ∗) spinor amplitudes for n = 4 [7]. There is the relation

Iµαβ(AAA)(m1,m2,m3, k) = ε(g)Iµαβ(AV V )(m1, −m2,m3, k) (15)

between them. Therefore, in the chiral case (ml = 0, ∀ l) they may differ only by the sign.
Using Eqs.(12) and the compatibility relations (RνF)sj =

(
Rν+1F)

s+1,j
one finds that the

regular values of the main triangle amplitudes (1) after calculating nonzero traces have the
followimg representation (here ν = 1 and ω = −1):

(RνI)µαβ(···) (m1,m2,m3, k) = (2π)4δ(k)C(···)(g)
∫

Σ2

dµ(α)
∆2

×
{
εµαβτk2τ (RνI1)

(···) (m,α, k) + εµαβτk3τ (RνI2)
(···) (m,α, k)

+εµαστk2σk3τ (RνI3)β(m,α, k) + εµβστk2σk3τ (RνI4)α(m,α, k)
}
,

(16)

where integrands (RνIl)(···)(m,α, k), etc., and constants C(···)(g) are given as follows:

(RνI1)
(···) :=−

[
±m2m3

α2 + α3

∆
+ (m3 ∓m2)m1

α1

∆
+ µ1

α1

∆

]
(RνF)10

+
[
k2

2

α1(α2 + α3)
∆2

− k2
3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI2)
(···) :=

[
±m2m1

α2 + α1

∆
+ (m1 ∓m2)m3

α3

∆
+ µ3

α3

∆

]
(RνF)10

+
[
k2

2

α1(α2 + α3)
∆2

− k2
3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI3)
β :=− 2

[
kβ

2

α1α3

∆2
+ kβ

3

α3(α2 + α1)
∆2

]
(RνF)30 ,

(RνI4)
α :=2

[
kα

2

α1(α2 + α3)
∆2

+ kα
3

α1α3

∆2

]
(RνF)30 , µl := (m2

l − iεl),

(17)
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C(AAA)(g) := ε(g)C(AV V )(g), C(AV V )(g) := ε(g) tr (Ig)
(
π2ip

)
/(2π)4. (18)

The basic functions (RνF)sj , along with the determining numbers νsj , λsj , are defined as:

(RνF)sj :=M ω+j
ε Z

1+νsj
ε Γ(λsj)/Γ(2 + νsj) 2F1(1, λsj ; 2 + νsj ; Zε),

νsj := [(ν − s)/2] + j, λsj := 1 + νsj − ω − j, ω := n/2− 3.
(19)

In Eqs.(16)–(17), the notation (· · ·) means (AVV) or (AAA). Hereafter the upper signs in (±)
or (∓) correspond to the AVV-amplitudes while the lower ones to the AAA-amplitudes. The
relation (15) and its chiral (ml = 0, ∀ l) form are obeyed at the regular level as well.

8. The first and second amplitudes in the first lines of Eqs.(9) take the form:



k1µ(RνI)µαβ(···)(m, k)

k2α(RνI)µαβ(···)(m, k)

k3β(RνI)µαβ(···)(m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τ

(
Rν+1D

[2,3]
1

)(:..)

εµβστk2σk3τ

(
Rν+1D

[2,3]
2

)(.:.)

εµαστk2σk3τ

(
Rν+1D

[2,3]
3

)(..:)


 , (20)

(
Rν+1D

[2,3]
l

)(···)
(m, k) :=

∫
Σ2

dµ(α)
∆2

(
Rν+1D[2,3]

l

)(···)
(m,α, k), l = 1, 2, 3, (21)

(
Rν+1D[2,3]

1

)(:..)
(m,α, k) :=

[
(m3 +m1)m

(:..)
20 + i

(
ε1
α1

∆
+ ε3

α3

∆

)] (
Rν+1F)

20
,

(
Rν+1D[2,3]

2

)(.:.)
(m,α, k) :=

[
(m1 ∓m2)m

(.:.)
20 − i

(
ε1
α1

∆
+ ε2

α2

∆

)] (
Rν+1F)

20
,

(
Rν+1D[2,3]

3

)(..:)
(m,α, k) :=

[
(m2 ∓m3)m

(..:)
20 + i

(
ε2
α2

∆
+ ε3

α3

∆

)] (
Rν+1F)

20
,

(22)

m
(:..)
20 (m,α) := −( m1α1 ±m2α2 +m3α3)∆−1,

m
(.:.)
20 (m,α) := −(−m1α1 ±m2α2 +m3α3)∆−1,

m
(..:)
20 (m,α) := −(±m1α1 +m2α2 ∓m3α3)∆−1.

(23)

The notations: (: ..) := (ȦVV) or (ȦAA), (. : .) := (AV̇V) or (AȦA), (.. :) := (AVV̇) or (AAȦ)
are used in Eqs.(20)–(23) and further on.

9. The first and second amplitudes in the second lines of Eqs.(9) are as follows:

[ (
Rν+1P1

)αβ(:..) (m, k)(
Rν+1P3

)αβ(:..) (m, k)

]
= (2π)4δ(k)C(···)(g)εαβστk2σk3τ


 −

(
Rν+1P

[2,3]
1

)
−

(
Rν+1P

[2,3]
3

)

 ,

[ (
Rν+1P2

)µβ(.:.) (m, k)(
Rν+1P1

)µβ(.:.) (m, k)

]
= (2π)4δ(k)C(···)(g)εµβστk2σk3τ


 ∓

(
Rν+1P

[2,3]
2

)
(
Rν+1P

[2,3]
1

)

 ,

[ (
Rν+1P3

)µα(..:) (m, k)(
Rν+1P2

)µα(..:) (m, k)

]
= (2π)4δ(k)C(···)(g)εµαστk2σk3τ


 ±

(
Rν+1P

[2,3]
3

)
−

(
Rν+1P

[2,3]
2

)

 .

(24)
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The
(
Rν+1P

[2,3]
l

)
(m, k) in Eqs.(24) are almost the same as the

(
Rν+1P

[2,3]
lε

)
(m, k) in Eq.(12) in

which the (m2
l − iεl) must be replaced by the m2

l in the braces. Notice that Eq.(12) is the only
nontrivial primitive DRI, ∀ l = 1, 2, 3, in the AVV- and AAA-cases, n = 4. Taking into account
the vanishing r.h.s. of Eq.(12), one obtains the important result:

(
Rν+1P

[2,3]
l

)
(m, k) =

∫
Σ2

dµ(α)
∆2

iεl
αl

∆
(
Rν+1F)

20
, l = 1, 2, 3. (25)

Due to properties of the hypergeometric function 2F1 it follows (for l = 1, 2, 3) that

(
Rν+1P

[2,3]
l

)
(m, k) =

{
0, if (εs → 0, ms �= 0 or ms = m → 0, ∀ s);
1/6, if (ms → 0, εs = ε → 0, ∀ s). (26)

10. The third amplitudes in the second lines of Eqs.(9) calculated by the renormalization
index ν + 1 = 2 are as follows:


(
Rν+1I

)αβ(:..) (m, k)(
Rν+1I

)µβ(.:.) (m, k)(
Rν+1I

)µα(..:) (m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τ

(
Rν+1I [2,3]

)(:..)

εµβστk2σk3τ

(
Rν+1I [2,3]

)(.:.)

εµαστk2σk3τ

(
Rν+1I [2,3]

)(..:)


 , (27)

where(
Rν+1I [2,3]

)(:..)
(m, k) :=

∫
Σ2

dµ(α)
∆2

m
(:..)
20 (m,α)

(
Rν+1F)

20
, etc., (28)

and the quantities m(:..)
20 (m,α), etc., are defined in Eq.(23).

11. As a result the regular analogs of the CWI’s (9) take the form:

(
Rν+1D

[2,3]
1

)(:..)
=

(
Rν+1P

[2,3]
1

)
+

(
Rν+1P

[2,3]
3

)
+ (m3 +m1)

(
Rν+1I [2,3]

)(:..)
,(

Rν+1D
[2,3]
2

)(.:.)
= −

(
Rν+1P

[2,3]
2

)
−

(
Rν+1P

[2,3]
1

)
+ (m1 ∓m2)

(
Rν+1I [2,3]

)(.:.)
,(

Rν+1D
[2,3]
3

)(..:)
=

(
Rν+1P

[2,3]
3

)
+

(
Rν+1P

[2,3]
2

)
+ (m2 ∓m3)

(
Rν+1I [2,3]

)(..:)
.

(29)

Limiting values of quantities in Eqs.(29) depend strongly on the limit employed.
12. Let us first consider a nonchiral case. Here, due to Eqs.(25)–(26), the r.h.s. of Eqs.(24)

and terms in Eqs.(20)–(22) containing εl are zero for εl → 0, l = 1, 2, 3. The quantum corrections
(anomalous contributions) to the CWI’s appear as


aαβ(:..)(m, k)

aµβ(.:.)(m, k)

aµα(..:)(m, k)


 = (2π)4δ(k)C(···)(g)



εαβστk2σk3τa

(:..)(m1,m2,m3)

εµβστk2σk3τa
(.:.)(m1,m2,m3)

εµαστk2σk3τa
(..:)(m1,m2,m3)


 , (30)

where the mass functions a(...)(m1,m2,m3) have the integral representation:

a(:..)(m1,m2,m3) :=
∫

Σ2

dµ(α)
∆2

m
(:..)
20 (m,α)

[
(Rν+1F)20 − (RνF)20

]
, etc., (31)

[
(Rν+1F)20 − (RνF)20

]
= −M−1

ε , as for n = 4, ν20 = −1, λ20 = 1, ω = −1;
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for a nonchiral nondegenerate case they are expressed in terms of the Appel hypergeometric
functions F1 of two variables (e.g., x := m1/m2, y := m3/m2 if m2 �= 0) [6, 7]:

a(:..)(m1,m2,m3) =
y + x

6

[
xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
± F1

(
1, 1, 1; 4; 1− x2, 1− y2

)
+ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
,

a(.:.)(m1,m2,m3) =
x∓ 1
6

[
−xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
± F1

(
1, 1, 1; 4; 1− x2, 1− y2

)
+ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
,

a(..:)(m1,m2,m3) =
1∓ y

6

[
±xF1

(
1, 2, 1; 4; 1− x2, 1− y2

)
+ F1

(
1, 1, 1; 4; 1− x2, 1− y2

) ∓ yF1

(
1, 1, 2; 4; 1− x2, 1− y2

)]
.

(32)

This confirms the Frampton’s conjecture [8] about a possibility of a mass dependence of the
axial-vector anomaly. But the nature of such a dependence revealed here is strongly different
from the Frampton’s one. Actually it is closely tied with a mass spectrum of fermions and with
flavor current structures producing non-conserved vector currents. The Frampton’s mechanism
appeals to prorerties of the dimensional regularization.
For the degenerate nonchiral case (m1 = m2 = m3 ≡ m �= 0), the Eqs.(32) display the famous

mass-independent Adler–Bell–Jackiw result [1, 2]:

a(ȦV V )(m,m,m) = 1, a(AV̇ V )(m,m,m) = a(AV V̇ )(m,m,m) = 0,

a(ȦAA)(m,m,m) = −a(AȦA)(m,m,m) = a(AAȦ)(m,m,m) = 1/3,
(33)

about the axial-vector anomaly (trivial QC’s to the CWI’s in our terminology).
13. Now we turn to the chiral behaviour. Let us consider two ways leading to the chiral

state in renormalized amplitudes at hand: (i) the (ε,m)-limit, when first εl → 0 and then
ml = m → 0, l = 1, 2, 3; (ii) the (m, ε)-limit, when first ml → 0 and then εl = ε → 0, l = 1, 2, 3.
In the (ε,m)-limit, all the amplitudes for AVV- and AAA-cases inherit the behaviour of those in
the degenerate nonchiral case considered in [6]; the QC’s to CWI’s are the same as in Eqs.(33).
In the (m, ε)-limit all amplitudes for the AVV- and AAA-cases coincide with each other (apart
from the factor ε(g) = (−1)q of course). Here the QC’s to CWI’s are caused by the nonzero
contributions of the amplitudes

(
Rν+1P

[2,3]
l

)(···)
(m, k). The results are summarized in Table 1.

Thus, the chiral limit (m → 0) and the chiral case (m = 0) are equivalent for the AAA-
amplitude and differ for the AVV-amplitude. This reflects the different kind of discrete sym-
metries (DS) of these amplitudes for m �= 0 and m = 0. The AAA-amplitude has the DS of
equilaterial triangle both for m �= 0 and for m = 0, in contrast to the AVV-amplitude having
the DS of isosceles triangle for m �= 0 which at m = 0 enlarges abruptly to the DS of equilaterial
triangle.

14. For the complex Clifford algebra Cl(g)C, the matrix γ∗ in Eq.(2) may be always redefined
as γ∗ := i(1−ε(g))/2γ1γ2 · · · γn and, hence, γ2∗ = Ig. Therefore, from the Table 1 it follows that
the QC’s to “left-handed” WI’s are zero in the chiral case. This may give some insight into why
just the left-handed neutrino exists in Nature. This also requires a revision of the conventional
viewpoint about an impact of anomalies on the renormalizability of unified field theories in which
gauge fields are coupled to left-handed fermions.
The presence of a mass spectrum of constituent fermions in general QC’s (see Eqs.(30)–(32))

increases the predictive power of formulas (which involves the axial-vector anomaly) widely
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used in the low energy phenomenological physics, e.g., for describing the elementary particle
decays [1, 2].

Table 1. The chiral behaviour of amplitudes appearing in the regular analogs of the CWI’s (29) for
AVV- and AAA-cases, n = 4; here

(
Rν+1P

[2,3]
0

)
≡

(
Rν+1P

[2,3]
3

)
.

Feynman amplitudes (ȦVV) (AV̇V) (AVV̇) (ȦAA) (AȦA) (AAȦ)

(ε,m)−lim ≡ chiral limit:(
Rν+1D

[2,3]
i

)(···)
(m, k) = 1 0 0 1/3 −1/3 1/3

= (−1)i−1
[(
Rν+1P

[2,3]
i

)(···)
(m, k)+

+
(
Rν+1P

[2,3]
i−1

)(···)
(m, k)

]
+

0 0 0 0 0 0

+


 (m3 +m1)
(m1 ∓m2)
(m2 ∓m3)


 (Rν+1I [2,3])(···)(m, k) 1 0 0 1/3 −1/3 1/3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(m, ε)−lim ≡ chiral case:(
Rν+1D

[2,3]
i

)(···)
(m, k) = 1/3 −1/3 1/3 1/3 −1/3 1/3

= (−1)i−1
[(
Rν+1P

[2,3]
i

)(···)
(m, k)+

+
(
Rν+1P

[2,3]
i−1

)(···)
(m, k)

]
+

1/3 −1/3 1/3 1/3 −1/3 1/3

+


 (m3 +m1)
(m1 ∓m2)
(m2 ∓m3)


(Rν+1I [2,3])(···)(m, k) 0 0 0 0 0 0
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