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The main features of a model of genetic code based on the crystal basis of Uq→0(sl(2)⊕sl(2))
is presented. The experimentally observed correlation between the values of the codon usage
in quartets and sextets fits naturally in the model.

1 Introduction

Let us, briefly, remind how the DNA rules the synthesis of proteins, which constitute the most
abundant organic substances in living matter systems. The DNA macromolecule is made of two
linear chains of nucleotides wrapped in a double helix structure. Each nucleotide is characterized
by one of the four elementary bases: adenine (A) and guanine (G) deriving from purine, and
cytosine (C) and thymine (T) coming from pyrimidine. The DNA is localized in the nucleus of the
cell and the transmission of the genetic information in the cytoplasm is achieved , schematically
speaking, by the ribonucleic acid or RNA. This operation is called the transcription, the A, G,
C, T bases in the DNA being respectively associated in RNA to the U, C, G, A bases, U denoting
the uracile base. The correspondence law between triples of nucleotides, called codons, in the
desoxyribonucleic acid (DNA) sequence and the amino-acids is called the genetic code. As a
codon is an ordered sequence of three bases (e.g. AAG, AGA, etc.), obviously there are 43 = 64
and different codons. Except the three following triples UAA, UAG and UGA, each of the 61
others is related through a ribosome to an amino-acid (a.a). In the universal eukariotic code,
which constitutes the so called universal genetic code, the correspondence is given in Table 1.
Thus the chain of nucleotides in the RNA – and also in the DNA – can also be viewed as a
sequence of triples, each corresponding to aa a.a., except the three above mentioned codons.
These last codons are called Nonsense or Stop codons, and their role is to stop the biosynthesis.

One can distinguish 20 different amino-acids: Alanine (Ala), Arginine (Arg), Asparagine
(Asn), Aspartic acid (Asp), Cysteine (Cys), Glutamine (Gln), Glutamic acid (Glu), Glycine
(Gly), Histidine (His), Isoleucine (Ile), Leucine (Leu), Lysine (Lys), Methionine (Met), Pheny-
lalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophane (Trp), Tyrosine (Tyr),
Valine (Val). It follows that the different codons are associated to the same a.a., i.e. the genetic
code is degenerated.

For the eukariotic code (see Table 1), the codons are organized in the following pattern of
multiplets, each multiplet orresponding to a specific amino-acid:
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1. 3 sextets: Arg, Leu, Ser

2. 5 quadruplets: Ala, Gly, Pro, Thr, Val

3. 2 triplets: Ile, Stop

4. 9 doublets: Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr

5. 2 singlets: Met, Trp

It is natural, but not at all trivial, to ask if symmetry consideration can explain the existence
of such an intriguing degenerate pattern. In our approach [1, 2] we consider the 4 nucleotides as
elementary constituents of the codons. Actually, this approach mimicks the group theoretical
classification of baryons made out from three quarks in elementary particles physics, the building
blocks being here the A, C, G, T/U nucleotides. The main and essential difference stands in
the property of a codon to be an ordered set of three nucleotides, which is not the case for a
baryon. For example, there are three different codons made of the A, A, U nucleotides, namely
AAU, AUA and UAA, while the proton appears as a weighted combination of the two u quarks
and one d quark, that is |p〉 ∼ |uud〉 + |udu〉 + |duu〉. Constructing such pure states is made
possible in the framework of the crystal bases, which can be defined in the limit q → 0 of the
deformation Uq(G) of any (semi)-simple classical Lie algebra G.

2 The model

Introducing in Uq→0(G) the operators ẽi and f̃i (i = 1, . . . , rank G), whose action on the elements
of Uq(G)-module is well-defined in the limit q → 0, a particular kind of basis in a Uq(G)-module
can be defined [3]. Such a basis is called a crystal basis and carries the property to undergo in
a specially simple way the action of the ẽi and f̃i operators: as an example, for any couple of
vectors u, v in the crystal basis B, one gets u = ẽiv if and only if v = f̃iu. More interesting for
our purpose is the property that, in the crystal basis, the basis vectors of the tensor product of
two irreducible representations are pure states, [3]. Let us emphasize once more the motivation
for our choice of the crystal basis. It is an observed fact that in the codons the order of the
nucleotides is of fundamental importance (e.g. CCU → Pro, CUC → Leu, UCC → Ser). We
want to consider the codons as composite states of the (elementary) nucleotides, but this surely
cannot be done in the framework of Lie (super)algebras. Indeed in the Lie theory the composite
states, obtained by the tensor product of the fundamental irreducible rpresentations, are linear
combinations of the elementary states, with symmetry properties determined by the tensor
product (i.e. for sl(n) by the structure of the corresponding Young tableau). The crystal basis
on the contrary provides us with the mathematical structure to build composite states as pure
states, characterized by the order of the constituents. In order to dispose of such a basis, we
need to consider the limit q → 0. Note that in this limit we do not deal anymore with a Lie
algebra either with an universal deformed enveloping algebra.

We consider the four nucleotides as basic states of the (1
2 ,

1
2) representation of the Uq(sl(2)⊕

sl(2)) quantum enveloping algebra in the limit q → 0. A triplet of nucleotides will then be
obtained by constructing the tensor product of three such four dimensional representations.
The algebra G = su(2) ⊕ su(2)) appears the most natural for our purpose. First of all, it is
“reasonable” to represent the four nucleotides in the fundamental representation of G. Moreover,
the complementary rule in the DNA–RNA transcription may suggest to assign a quantum number
with opposite values to the couples (A,T/U) and (C,G). The distinction between the purine bases
(A,G) and the pyrimidine ones (C,T/U) can be algebraically represented in an analogous way.
Thus considering the representation

(
1
2 ,

1
2

)
of the group SU(2) × SU(2) and denoting ± the



Crystal Basis Model of the Genetic Code: Structure and Consequences 483

basis vector corresponding to the eigenvalues ±1
2 of the J3 generator in any of the two su(2)

corresponding algebras, we will assume the following “biological” spin structure:

su(2)H
C ≡ (+,+) ←→ U ≡ (−,+)
su(2)V � � su(2)V

G ≡ (+,−) ←→ A ≡ (−,−)
su(2)H

(1)

the subscripts H (:= horizontal) and V (:= vertical) being just added to specify the group
actions.

To represent a codon, we will have to perform the tensor product of three
(

1
2 ,

1
2

)
representa-

tions of Uq→0(sl(2)⊕ sl(2)). We get, using the Kashiwara theorem [3], the following tables

(
3
2 ,

3
2

) ≡




CCC UCC UUC UUU
GCC ACC AUC AUU
GGC AGC AAC AAU
GGG AGG AAG AAA




(
3
2 ,

1
2

)1 ≡
(

CCG UCG UUG UUA
GCG ACG AUG AUA

)

(
3
2 ,

1
2

)2 ≡
(

CGC UGC UAC UAU
CGG UGG UAG UAA

)

(
1
2 ,

3
2

)1 ≡




CCU UCU
GCU ACU
GGU AGU
GGA AGA


 (

1
2 ,

3
2

)2 ≡




CUC CUU
GUC GUU
GAC GAU
GAG GAA




(
1
2 ,

1
2

)1 ≡
(

CCA UCA
GCA ACA

) (
1
2 ,

1
2

)2 ≡
(

CGU UGU
CGA UGA

)

(
1
2 ,

1
2

)3 ≡
(

CUG CUA
GUG GUA

) (
1
2 ,

1
2

)4 ≡
(

CAC CAU
CAG CAA

)

3 The Reading (or Ribosome) operator R
Our model does not gather codons associated to one particular a.a. in the same irreducible
multiplet. However, it is possible to construct an operator R out of the algebra Uq→0(sl(2) ⊕
sl(2)), acting on the codons, that will describe the Evarious genetic codes in the following way:

Two codons have the same eigenvalue under R if and only if they are associated to the same
amino-acid. This operator R will be called the reading operator. It is possible to construct
a R for the various genetic codes. Here we limit orselves to present in detail only the Reading
operator for the Eukaryotic code

REC = 4
3c1CH + 4

3c2CV − 4c1 PH JH,3 − 4c2 PV JV,3 + (−8c1 PD + (8c1 + 12c2)PS)JV,3

+ (−4c1 + 14c2) PAG

(
1
2 − J

(3)
V,3

)

+
[
12c2 PAU + (6c1 + 6c2) PUG

](
1
2 − J

(3)
V,3

)(
1
2 − J

(3)
H,3

)
,

(2)
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where
• the operators Jα,3 (α = H,V ) are the third components of the total spin generators of the
algebra Uq→0(sl(2)⊕ sl(2));

• the operator Cα is a Casimir operator of Uq→0(sl(2)) in the crystal basis. It commutes
with Jα± and Jα,3 (where Jα± are the generators with a well-defined behaviour for q → 0)
and its eigenvalues on any vector basis of an irreducible representation of highest weight J
is J(J + 1), that is the same as the undeformed standard second degree Casimir operator
of sl(2). Its explicit expression is

Cα = (Jα,3)2 + 1
2

∑
n∈Z+

n∑
k=0

(Jα−)n−k(Jα+)n(Jα−)k; (3)

• PH , PV , PD, PS , PAG, PAU and PUG are projectors operators given by:

PH = Jd
H+ J

d
H− and PV = Jd

V + J
d
V −, (4)

PD =
(
1− Jd

V + J
d
V −

) (
Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

)
+

(
1− Jd

H+ J
d
H−

) (
1− Jd

V + J
d
V −

(
1− Jd

H− J
d
H+

))
,

(5)

PS =
(
Jd

H− J
d
H+

) [(
Jd

H+ J
d
H−

) (
1− Jd

V + J
d
V −

)
+

(
Jd

V + J
d
V −

) (
Jd

V − J
d
V +

) (
1− Jd

H+ J
d
H−

)]
,

(6)

PAG =
(
Jd

H+ J
d
H−)(J

d
H− J

d
H+

) (
1− Jd

V + J
d
V −

) (
Jd

V − J
d
V +

)
, (7)

PAU =
(
1− Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

) (
Jd

V + J
d
V −

) (
Jd

V − J
d
V +

)
, (8)

PUG =
(
Jd

H+ J
d
H−

) (
Jd

H− J
d
H+

) (
1− Jd

V + J
d
V −

) (
1− Jd

V − J
d
V +

)
. (9)

We get the following eigenvalues of the reading operators for the amino-acids (after a rescaling,
setting c ≡ c1/c2):

a.a. value of R a.a. value of R a.a. value of R
Ala −c+ 3 Gly −c+ 5 Pro −c− 1

Arg −c+ 1 His −3c+ 1 Ser 3c− 1

Asn 9c+ 5 Ile 5c+ 9 Thr 3c+ 3

Asp 5c+ 5 Leu c− 1 Trp 3c− 5

Cys 3c+ 7 Lys 17c+ 5 Tyr c+ 1

Gln 5c+ 1 Met 5c− 3 Val c+ 3

Glu 13c+ 5 Phe −7c− 1 Ter 9c+ 1

(10)

Remark that the reading operators R(c) can be used for any real value of c, except a finite
set of rational values confering the same eigenvalue to codons relative to two different amino-
acids. Moreover from our algebra it is possible to construct a hamiltonian which gives a very
satisfactory fit of the 16 values of the free energy released in the folding of RNA [1].
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codon a.a. JH JV codon a.a. JH JV

CCC Pro 3/2 3/2 UCC Ser 3/2 3/2
CCU Pro (1/2 3/2)1 UCU Ser (1/2 3/2)1

CCG Pro (3/2 1/2)1 UCG Ser (3/2 1/2)1

CCA Pro (1/2 1/2)1 UCA Ser (1/2 1/2)1

CUC Leu (1/2 3/2)2 UUC Phe 3/2 3/2
CUU Leu (1/2 3/2)2 UUU Phe 3/2 3/2
CUG Leu (1/2 1/2)3 UUG Leu (3/2 1/2)1

CUA Leu (1/2 1/2)3 UUA Leu (3/2 1/2)1

CGC Arg (3/2 1/2)2 UGC Cys (3/2 1/2)2

CGU Arg (1/2 1/2)2 UGU Cys (1/2 1/2)2

CGG Arg (3/2 1/2)2 UGG Trp (3/2 1/2)2

CGA Arg (1/2 1/2)2 UGA Ter (1/2 1/2)2

CAC His (1/2 1/2)4 UAC Tyr (3/2 1/2)2

CAU His (1/2 1/2)4 UAU Tyr (3/2 1/2)2

CAG Gln (1/2 1/2)4 UAG Ter (3/2 1/2)2

CAA Gln (1/2 1/2)4 UAA Ter (3/2 1/2)2

GCC Ala 3/2 3/2 ACC Thr 3/2 3/2
GCU Ala (1/2 3/2)1 ACU Thr (1/2 3/2)1

GCG Ala (3/2 1/2)1 ACG Thr (3/2 1/2)1

GCA Ala (1/2 1/2)1 ACA Thr (1/2 1/2)1

GUC Val (1/2 3/2)2 AUC Ile 3/2 3/2
GUU Val (1/2 3/2)2 AUU Ile 3/2 3/2
GUG Val (1/2 1/2)3 AUG Met (3/2 1/2)1

GUA Val (1/2 1/2)3 AUA Ile (3/2 1/2)1

GGC Gly 3/2 3/2 AGC Ser 3/2 3/2
GGU Gly (1/2 3/2)1 AGU Ser (1/2 3/2)1

GGG Gly 3/2 3/2 AGG Arg 3/2 3/2
GGA Gly (1/2 3/2)1 AGA Arg (1/2 3/2)1

GAC Asp (1/2 3/2)2 AAC Asn 3/2 3/2
GAU Asp (1/2 3/2)2 AAU Asn 3/2 3/2
GAG Glu (1/2 3/2)2 AAG Lys 3/2 3/2
GAA Glu (1/2 3/2)2 AAA Lys 3/2 3/2

Table 1: The eukariotic code. The upper label denotes different IR.

Biological organism Type number of sequences number of codons

1 Homo sapiens v 14 529 7 168 914
2 Saccharomyces cerevisiae f 11 771 5 691 597
3 Caenorhabditis elegans i 12 638 5 514 021
4 Rattus norvegicus v 4 430 2 135 734
5 Arabidopsis Thaliana p 3 533 1 497 366
6 Drosophila melanogaster i 2 625 1 443 176
7 Schizosaccharomyces pombe f 2 289 1 093 794
8 Gallus gallus v 1 454 701 782
9 Xenopus laevis v 1 255 551 494

10 Bos taurus v 1 217 528 790
11 Oryctolagus cuniculus v 674 335 049
12 Sus scrofa v 589 238 579
13 Zea mays p 603 222 493

Table 2: v) Vertebrates – i) Invertebrata – p) Plants – f) Fungi
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Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,36 2,05 2,26 2,52 0,23 0,16 0,53 1,00

Saccharomyces c. 3,44 2,64 2,22 2,19 1,10 1,28 1,73 1,83

Caenorhabditis e. 3,17 2,78 2,48 1,88 0,74 0,69 2,82 7,80

Rattus Norveg. 2,45 2,18 2,34 2,34 0,22 0,17 0,62 1,04

Arabidopsis Thal. 1,93 1,97 2,03 1,95 0,53 0,96 1,29 2,45

Drosophila mel. 0,78 0,89 0,75 0,41 0,21 0,18 0,96 4,02

Schizosaccharomyces 2,74 2,94 2,12 2,25 1,49 1,39 2,63 3,66

Gallus gallus 1,82 1,92 1,97 1,90 0,25 0,14 0,51 1,02

Xenopus laevis 4,09 4,32 4,04 3,39 0,48 0,32 1,00 1,70

Bos taurus 1,88 1,62 1,77 2,03 0,19 0,13 0,51 0,95

Oryctolagus cun. 1,51 1,49 1,31 1,50 0,15 0,10 0,45 0,88

Sus scrofa 1,59 1,59 1,50 1,62 0,16 0,12 0,45 0,89

Zea mays 0,87 0,69 0,83 0,98 0,19 0,24 0,39 0,85

Table 3: Branching ratio BAG

Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,45 2,44 1,96 3,22 0,36 0,30 0,41 0,66

Saccharomyces c. 2,57 3,44 2,54 2,75 2,06 1,17 3,73 4,00

Caenorhabditis e. 1,07 3,14 2,38 1,58 1,85 1,97 2,78 2,67

Rattus Norveg. 2,67 2,84 1,99 3,28 0,32 0,28 0,48 0,71

Arabidopsis Thal. 2,21 3,34 2,46 2,78 1,53 2,48 2,06 2,30

Drosophila mel. 0,40 1,03 0,63 0,37 0,38 0,22 1,12 3,13

Schizosaccharomyces 4,75 5,70 3,52 3,85 3,58 4,08 5,48 5,18

Gallus gallus 1,72 2,24 1,62 2,32 0,42 0,27 0,57 0,66

Xenopus laevis 3,63 4,68 3,57 4,80 0,73 0,59 1,12 1,06

Bos taurus 1,96 2,10 1,52 2,72 0,32 0,26 0,38 0,65

Oryctolagus cun. 1,63 1,82 1,18 2,03 0,28 0,21 0,34 0,53

Sus scrofa 1,72 2,10 1,43 2,42 0,27 0,23 0,36 0,59

Zea mays 0,78 1,00 0,94 1,08 0,54 0,59 0,67 1,06

Table 4: Branching ratio BUG

Species Pro Ala Thr Ser Val Leu Arg Gly

Homo sapiens 2,90 3,82 3,13 3,99 0,51 0,49 0,96 1,41

Saccharomyces c. 1,29 2,06 1,58 1,66 1,09 0,51 1,49 1,62

Caenorhabditis e. 0,49 1,65 1,25 0,93 0,98 1,29 1,22 1,43

Rattus Norveg. 2,93 4,12 3,25 4,20 0,54 0,50 1,00 1,47

Arabidopsis Thal. 0,66 1,24 1,45 1,25 0,74 1,65 0,80 0,90

Drosophila mel. 1,12 2,52 1,59 1,17 0,54 0,36 2,38 6,53

Schizosaccharomyces 1,80 2,23 1,67 1,51 1,35 1,18 2,08 1,99

Gallus gallus 2,29 2,73 2,33 3,03 0,50 0,43 1,25 1,29

Xenopus laevis 2,85 4,02 3,38 4,09 0,58 0,48 1,14 1,17

Bos taurus 2,70 3,76 2,84 3,76 0,53 0,48 1,00 1,46

Oryctolagus cun. 2,58 3,83 2,51 3,70 0,54 0,48 1,18 1,55

Sus scrofa 2,58 3,94 2,95 3,75 0,56 0,50 1,05 1,56

Zea mays 0,90 1,48 1,79 1,70 0,80 0,98 1,75 2,22

Table 5: Branching ratio BCG
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4 Correlations of codon usage

In the following the labels X, Y , Z, V represent any of the 4 bases C, U , G, A. Let XY Z be
a codon in a given multiplet, say mi, encoding an a.a., say Ai. We define the probability of
usage of the codon XY Z as the ratio between the frequency of usage nZ of the codon XY Z
in the biosynthesis of Ai and the total number N of synthetized Ai, i.e. as the relative codon
frequency, in the limit of very large N . The frequency rate of usage of a codon in a multiplet is
connected to its probability of usage P (XY Z → a.a.). We define the branching ratio BZV as

BZV =
P (XY Z → Ai)
P (XY V → Ai)

, (11)

where XY V is another codon belonging to the same multiplet mi. It sounds reasonable to argue
that in the limit of very large number of codons, for a fixed biological organism and amino-acid,
the branching ratio depends essentially on the properties of the codon. In our model this means
that in this limit BZV is a function, depending on the type of the multiplet, on the quantum
numbers of the codons XY Z and XY V , i.e. on the labels Jα, J3

α, and on an other set of quantum
labels leaving out the degeneracy on Jα; in Table 1 different irreducible representations with the
same values of Jα are distinguished by an upper label. Moreover we assume that BZV , in the
limit above specified, depends only on the irreducible representation (IR) of the codons, i.e.:

BZV = FZV (b.o.; IR(XY Z); IR(XY V )), (12)

where we have explicitly denoted by b.o. the dependence on the biological species. Let us point
out that the branching ratio has a meaning only if the codons XY Z and XY U are in the same
multiplet, i.e. if they code the same amino-acid.

In the following, we consider the quartets and the quartet sub-parts of the sextets, i.e. the
4 codons which differ only for the codon in third position. There are five quartets and three
sextets in the eukariotic code: that will allow a rather detailed analysis. We recall that the
5 amino-acids coded by the quartets are Pro, Ala, Thr, Gly ,Val and the 3 amino-acids coded
by the sextets are Leu, Arg, Ser. There are, for the quartets, 6 branching ratios, of which only
3 are independent. We choose as fundamental ones the ratios BAG, BCG and BUG. It happens
that we can define several functions BZV , considering ratios of probability of codons differing
for the first two nucleotides XY , i.e.

BZV = FZV (b.o.; IR(XY Z); IR(XY V )),

B′
ZV = FZV (b.o.; IR(X ′Y ′Z); IR(X ′Y ′V )).

(13)

Then if the codon XY Z (XY V ) and X ′Y ′Z (X ′Y ′V ) are respectively in the same irreducible
representation, it follows that

BZV = B′
ZV . (14)

The analysis was performed on a set of data retrieved (May 1999) from the data bank of
“Codon usage tabulated from GenBank” [4]. In particular in [5] we analyzed the data set with
more than 64.000 codons and we found 34 biological species (neglecting 3 biological species
belonging to protozoo, bacteries and mushrooms). This has to be compared with the result
of [2] where such a correlation has been remarked for 12 biological species belonging only to the
vertebrate series. Here we present th results only for the subset of 13 species with more than
200.000 codons, see Table 2.

In Table 3, 4 and 5 the BAG, BUG and BCG are reported for the 13 amino-acids coded by
the quartets and sextets showing:
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• a clear correlation between the four amino-acids Pro, Ala, Thr and Ser. From Table 1
we see that for these amino-acids the irreducible representation involved in the numerator
of the branching ratios (see (11)) is always the same: (1/2, 1/2)1 for BAG, (1/2, 3/2)1

for BUG, (3/2, 3/2) for BCG, while the irreducible representation in the denominator is
(3/2, 1/2)1 for the whole set.

• a clear correlation between the two amino-acids Val and Leu. From Table 1 we see that
also for these two amino-acids the irreducible representation in the numerator of (11) is the
same: (1/2, 1/2)3 for BAG, (1/2, 3/2)2 for BUG, (1/2, 3/2)2 for BCG, and the irreducible
representation in the denominator is (1/2, 1/2)3.

• no correlation of the Arg and also of the Gly with the others amino-acids, in agreement
with the irreducible representation assignment of Table 1.

5 Conclusion

The model we propose is based on symmetry principles. The symmetry algebra Uq→0(sl(2) ⊕
sl(2)) that we have chosen has two main characteristics. First it encodes the stereochemical
property of a base, and also reflects the complementarity rule, by confering quantum numbers
to each nucleotide. Secondly, it admits representation spaces or crystal bases in which an
ordered sequence of nucleotides or codon can be suitably characterized. Let us add that it
is a remarkable property of a quantum algebra in the limit q → 0 to admit representations,
obtained from the tensorial product of basic ones, in which each state appears as a unique
sequence of ordered basic elements. In this framework, the correspondence codon/amino-acid is
realized by the operator Rc, constructed out of the symmetry algebra, and acting on codons: the
eigenvalues provided by Rc on two codons will be the same or different following the two codons
are associated to the same or to two different amino-acids. The model does not necessarily
assign the codons in a multiplet (in particular the quartets, sextets and triplet) to the same
irreducible representation. This feature is relevant as it may explain the different codon usage
between codons encoding the same a.a.. Indeed, as we have shown in this paper, it fits very well
with our model the observed fact that for any biological organism, in the limit of large number of
biosynthetized amino-acids, the ratios BAG, BUG and BCG for, Pro, Ala, Thr, Ser, in one side,
and Val, Leu, in other side, are very close. Let us remark that obviously these ratios depend on
the biological organism and we are unable to make any prevision on their values, but only that
their values should be correlated.
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