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A. DUVIRYAK

Institute for Condensed Matter Physics, 1 Svientsitskyj Street, 290011, Lviv, Ukraine
E-mail: duviryak@omega.icmp.lviv.ua

Classical description of relativistic pointlike particle with intrinsic degrees of freedom such
as isospin or colour is proposed. It is based on the Lagrangian of general form defined on
the tangent bundle over a principal fibre bundle. It is shown that the dynamics splits into
the external dynamics which describes the interaction of particle with gauge field in terms
of Wong equations, and the internal dynamics which results in a spatial motion of particle
via integrals of motion only. A relevant Hamiltonian description is built too.

1 Introduction

Wong equations of motion of classical pointlike relativistic particle with isospin or colour [1] per-
mit various Lagrangian and Hamiltonian formulations. Two of them [2, 3] known to the author
are based on geometric notions brought from gauge field theories. Namely, the configuration
space of particle is a principal fibre bundle with the structure group being the gauge group;
the interaction of particle with an external gauge field is introduced via the connection on this
bundle. The only difference between two approaches consists in the choice of Lagrangian func-
tion. That proposed in [2] is linear in gauge potentials (as in classical electrodynamics) while
the nonlinear Lagrangian [3, 2] arises naturally within the Kaluza–Klein theory. Nevertheless,
both of them lead to the same Wong equations.
In the present paper, starting from the mentioned above geometrical treatment of the kine-

matics of relativistic particle with isospin or colour (Section 2), we construct in Section 3 the
Lagrangian of a fairy general form. In particular cases this Lagrangian reduces to those of
Refs. [2, 3]. The generalization is not trivial since it leads to two types of dynamics, according
to what variables are used for the description of intrinsic degrees of freedom. The external
dynamics is described by the Wong equations which include gauge potentials, but the form of
which is indifferent to the choice of Lagrangian. On the contrary, the internal dynamics is gov-
erned by the particular choice of Lagrangian function while gauge potentials completely fall out
of this dynamics. This fact becomes more transparent within the framework of the appropriate
Hamiltonian formalism developed in Section 4. In Section 5 we sum up our results and discuss
the perspectives of quantization.

2 Kinematics on a principal fibre bundle

Following Refs. [2, 3] we take for a configuration space of relativistic particle with isospin or colour
the principal fibre bundle P over Minkowski space M with structure group G and projection
π : P → M (see Ref. [4] for these notions). A particle trajectory γ : R → P; τ �→ p(τ) ∈ P is
parameterized by evolution parameter τ . A state of particle is determined by (p, ṗ) ∈ TP .
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In this paper we are not interested in the global structure of P, and use its local coordina-
tization: P � p = (x, g) = (xµ, gi), µ = 0, 3, i = 1,dimG, where x = π(p) ∈ U ⊂ M (U is an
open subset of M), g = ϕ(p) ∈ G, and ϕ : P → G defines the choice of gauge. Respectively,
ṗ = (ẋ, ġ), where ẋ ∈ TxM and ġ ∈ TgG. We call (x, ẋ) and (g , ġ) the space and the intrinsic
(local) variables of particle respectively.
Let the principal fibre bundle P be endowed with a connection defined by 1-form ω on P

which takes values in Lie algebra G of G. Locally it can be represented as follows [4]:

ω = Adg−1π∗(Aµ(x)dxµ) + g−1dg ≡ g−1 (π∗(Aµ(x)dxµ)) g + g−1dg , (1)

where π∗ is the pull back mapping onto P, Ad denotes the adjoint representation of G in G, and
G-valued functions Aµ(x) are gauge potentials. Under a right action of G defined in P by

Rh : p �→ p′ ≡ Rh (x, g) = (x, gh), h ∈ G, (2)

the connection form transforms via a pull back mapping R∗
h and is equivariant, i.e., R∗

hω =
Adh−1ω, h ∈ G.
A gauge transformation arises in a geometrical treatment as a bundle automorphism defined

by

Φh (x) : p �→ p′ ≡ Φh (x)(x, g) = (x, h(x)g), h(x) ∈ G. (3)

It induces the transformation of the connection form defined by the inverse of the pull back
mapping (actually, a push forward mapping), ω → ω′ = [Φh−1

(x)
]∗ω, so that the value of the

connection form on each vector field is gauge-invariant by definition. The transformed form ω′

is also expressed by eqs.(1), but with new potentials

A ′
µ(x) = h(x)Aµ(x)h−1(x) + h(x)∂µ h−1(x). (4)

The Minkowski metrics η ≡ ηµνdx
µ ⊗ dxν , ‖ηµν‖ = diag (+,−,−,−) is defined on base

space M. It is invariant under the Poincaré group acting in M. Being pulled back by π∗ onto P
it becomes also right- and gauge-invariant, but appears degenerate.
Here we suppose that the Lie algebra G of structure group G is endowed with non-degenerate

Ad-invariant metrics 〈·, ·〉. The example is the Killing–Cartan metrics in the case of semi-simple
group. In terms of this metrics, the connection form, and the Minkowski metrics one can
construct a nondegenerate metrics on the bundle P [3],

Ξ = π∗η − a2〈ω,ω〉 (5)

(a is a constant), which is right- and gauge-invariant but not Poincaré-invariant (the latter is
broken by ω). In the case of bundle over a curved base space the Minkowski metrics on the
right-hand side (r.h.s.) of eq.(5) is replaced by the Riemanian one. In this form the metrics Ξ
arises in the Kaluza–Klein theory [5] which allows to unify the description of gravitational and
Yang–Mills fields.

3 Lagrangian dynamics of particle with isospin or colour

The dynamical description of the relativistic particle with isospin or colour should, at least,
satisfy the following conditions:
i) gauge invariance;
ii) invariance under an arbitrary change of evolution parameter;
iii) Poincaré invariance provided gauge potentials vanish.
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These requrements can be embodied in the action I =
∫

dτL(p, ṗ) with the following La-

grangian

L = |ẋ|F (w), (6)

where w ≡ ω(ṗ)/|ẋ|, |ẋ| ≡ √
ηµν ẋµẋν =

√
π∗η(ṗ, ṗ), and F : G → R is an arbitrary function.

We note that the quantities |ẋ|, ω(ṗ), and thus the variable w and the Lagrangian (6) are
gauge-invariant.
In order to calculate the variation δI of the action I it is convenient to use, instead of intrinsic

velocity ġ and variation δg , the following variables: v ≡ ġ g−1 and δg ≡ δg g−1. They take
values in Lie algebra G of group G. Then the argument w of F can be presented in the form

w = Adg−1(v + Aµẋ
µ)/|ẋ|. (7)

Using the formal technique (see Ref. [6] for rigorous substantiation)

δg−1 = −g−1δg g−1,

δv = δ( ġ g−1) = δġ g−1 + ġδg−1 =
d

dτ
δg − [v , δg ],

δ(Adg−1 V) = δ(g−1V g) = Adg−1(δV + [V , δg ])

(8)

etc., where [·, ·] are Lie brackets in G and V is an arbitrary G-valued quantity, we obtain the
following Euler–Lagrange equations:

ṗµ = q · (∂µAν)ẋν , (9)

q̇ = ad∗A ·ẋ q (10)

with

pµ ≡ ∂L

∂ẋµ
=

(
F − ∂F

∂w
· w

)
ẋµ

|ẋ| + q · Aµ, (11)

q ≡ ∂L

∂v
= Ad∗g−1

∂F

∂w
, (12)

where pµ are spatial momentum variables, and q is an intrinsic momentum-type variable which
takes values in co-algebra G∗. The linear operators ad∗ and Ad∗ define co-adjoint representations
of G and G respectively, dot “ · ” denotes a contraction.
First of all we show that the function

M(w) ≡ F − ∂F

∂w
· w (13)

is an integral of motion. For this purpose let us introduce the following G∗-valued variable:

s ≡ ∂F

∂w
= Ad∗g q . (14)

In contrast to q , it is gauge-invariant. Taking into account the equations (14) and (10) we
obtain after a bit calculation the equation:

ṡ = ad∗|ẋ|w s . (15)

Then Ṁ = − ṡ · w = −s · [w , w ]|ẋ| ≡ 0 q.e.d.
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Using this fact and (10) in (9) yields the equations of spatial motion

M
d

dτ

ẋµ

|ẋ| = q · Fµν ẋ
ν , (16)

where Fµν ≡ ∂µAν −∂ν Aµ+[Aµ, Aν ]. Equations (16) together with the equation (10) or (15)
of intrinsic motion determine the particle dynamics on a principal fibre bundle.
Now we suppose the existence in Lie algebra G of non-degenerate metrics 〈·, ·〉. It allows to

identify G∗ and G. In particular, for co-vector q ∈ G∗ we introduce the corresponding vector
q ∈ G, such that q = 〈q , ·〉. Then the equations of motion (16) and (10) take the form

M
d

dτ

ẋµ

|ẋ| = 〈q , Fµν〉ẋν , (17)

q̇ = [q , Aµ]ẋµ. (18)

Besides, if this metrics is Ad-invariant, the quantity 〈q , q〉 is an integral of motion.
At this stage we have obtained the well-known Wong equations (17)–(18) which describe the

dynamics of a relativistic particle with massM and isospin or colour q . Despite that we started
with the Lagrangian (6) of a fairy general form, this arbitrariness is obscured in the Wong
equations. The reason resides in definitions of M and q which are, in general, complicated
functions on TP. This feature is better understood by analyzing equations (16) and (10) which
are very similar to the Wong equations but do not involve the metrics in G.
In general, the set of eqs.(16) and (10) is of the second order with respect to configuration

variables x and g . In this regard it is quite equivalent to the set of eqs.(16) and (15). On the
other hand, the equations (16) and (10) form a self-contained set in terms of variables x and q .
They involve explicitly potentials of external gauge field, but their form is indifferent to a choice
of Lagrangian.
The equation (15) is the closed first-order equation with respect to w or, if eq.(14) is invert-

ible, with respect to s (the quantity |ẋ| is not essential because of a parametric invariance of
dynamics; we can put, for instance, |ẋ| = 1). In contrast to the set (16), (10), the equation (15)
is determined by a choice of the Lagrangian, but, in terms of w or s , it does not include gauge
potentials.
Hence, the dynamics of isospin particle splits into the external dynamics described by the

equations (16), (10) in terms of variables x and q , and the internal dynamics determined by
the equation (15) in terms of w or s . The only coupling of these realizations of dynamics is
provided via integrals of motion, namely, the particle mass M and (if Ad-invariant metrics is
involved) the isospin module |q | ≡ √〈q , q〉 = |s |.
In the following examples we show that the general description of isospin particle includes,

as particular cases, results known in the literature. Besides, we demonstrate some new features
concerning the internal dynamics.

1. Linear Lagrangian. Electrodynamics. The simplest choice of Lagrangian (6) leading
to non-trivial intrinsic dynamics corresponds to the following function F (w):

F (w) = m+ k · w , (19)

where m ∈ R and k ∈ G∗ are constants. Up to notation it coincides with the Lagrangian
proposed by Balachandran et al. in Ref. [2]. In this case the isospin q = Ad∗g−1 k is purely
configuration variable (it does not depend on velocities) and the equation (10) is truly the first-
order Euler–Lagrange equation. Besides, M and s are constants, i.e., M = m, s = k , thus the
internal dynamics completely degenerates.
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The Lagrangian (6), (19) is linear with respect to gauge potentials Aµ. In the case of one-
parametric gauge group U(1) it reduces to that of electrodynamics. Indeed, in this case we have
g = exp(iθ), v = iθ̇, Aµ = iAµ. Choosing k = −ie, where e is the charge of electron, one can
present the Lagrangian in the form:

L = m|ẋ|+ eAµẋ
µ + eθ̇. (20)

The third term on r.h.s. of (20) is a total derivative and thus it can be omitted. Hence, intrinsic
variables disappear in this Lagrangian, and the latter takes the standard form.
The similar situation occurs when considering an arbitrary Abelian gauge group.
2. Right-invariant Lagrangian. Kaluza–Klein theory. The following choice of the

function F (w):

F (w) = f(|w |), |w | ≡
√
〈w , w〉 = |v + Aµẋ

µ|/|ẋ|, (21)

where f : R → R is an arbitrary function of |w |, corresponds to Lagrangian which is invariant
under the right action of G. Following the Noether theorem there exist corresponding integrals of
motion. In the present case they form G∗-valued co-vector s defined by eq.(14) or, equivalently,
G-valued vector

s = |w |−1f ′(|w |)w , (22)

where f ′(|w |) ≡ d f/d |w |. We note that the integrals of motion s and M(w) are not indepen-
dent. Indeed, if f ′(|w |) is not constant, the massM can be presented as a function of |s | = |q |.
Otherwise both these quantities are constants. Thus the mass M and the isospin module |q |
are completely determined by the external dynamics.
The right-invariant Lagrangian of special kind arises naturally in the framework of Kaluza–

Klein theory [5]. It has the following form [3, 2]:

L = m
√
Ξ(ṗ, ṗ), (23)

where the metrics Ξ on a principle bundle P is introduced by eq.(5). In our notations this
Lagrangian corresponds to the choice:

f(|w |) = m
√
1− a2|w |2. (24)

This function determines the following relation between M and |q |:
M(|q |) =

√
m2 + |q |2/a2. (25)

3. Isospin top. In the above two examples the internal dynamics does not affect the
external dynamics. Here we consider a contrary example. Let

F (w) = f(ν), ν ≡
√
〈w , T w〉, (26)

where T is a self-adjoint (in the metrics 〈·, ·〉) linear operator. In this case we have
s = ν−1f ′(ν)T w , M = f(ν)− νf ′(ν). (27)

If the function f(ν) is not linear, the quantity ν turns out to be an integral of motion which
is independent of |q |. Then using the parameterization |ẋ| = 1 one can reduce eq.(15) to the
following equation of internal motion:

T ẇ = [T w , w ]. (28)

This is nothing but the compact form of Euler equations (i.e., the equations of motion of a free
top) generalized to the case of arbitrary group [7]. A solution of this equation is necessary for
evaluation of the observable mass of particle.
The relation between the external dynamics and the internal one becomes more transparent

within the Hamiltonian formalism which we consider in the next section.
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4 Transition to Hamiltonian description

The Lagrangian description on the configuration space P enables a natural transition to the
Hamiltonian formalism with constraints [8] on the cotangent bundle T∗P over P. Locally, T∗P �
T∗U × T∗G and, in turn, T∗G � G × G∗. The latter isomorphism is established by right or left
action of group G on T∗G (see, for instance, [9]). It is implicitly meant in our notation. Namely,
we coordinatize T∗G by variables (g , q) or (g , s).
Let us introduce basis vectors e i ∈ G satisfying the Lie-bracket relations [e i, e j ] = ck

ij ek,
where ck

ij are the structure constant of G, and basis co-vectors e i ∈ G∗ such that e j · e i = δj
i .

Then the standard symplectic structure on the cotangent bundle T∗P over the manifold P can be
expressed in terms of local coordinates xµ, pν , gi and qj ≡ q · e j by the following Poisson-bracket
relations:

{xµ, pν} = δµ
ν , {qi, qj} = ck

ijqk, {gi, qj} = ζi
j(g) (29)

(other brackets are equal to zero), where ζj
i (g) are components of right-invariant vector fields

on G. Equivalently, we can use variables sj ≡ s · e j instead of qj . Then the Poisson-bracket
relations take the form:

{xµ, pν} = δµ
ν , {si, sj} = −ck

ijsk, {gi, sj} = ξi
j(g), (30)

where ξj
i (g) are the components of left-invariant vector fields on G.

Once the Poisson brackets are defined, we can use in calculations both sets of variables. In
particular, taking into account the relation s = Ad∗g q we obtain:

{qi, sj} = 0. (31)

The transition from the Lagrangian description to the Hamiltonian one lies through the
Legendre transformation defined by eqs.(11) and (12) or (14). It is degenerate and leads to
vanishing canonical Hamiltonian, due to parametrical invariance. Instead, the dynamics is
determined by constraints.
In order to obtain constraints explicitly let us consider the relations (13) and (14). They

present, in fact, the Legendre mapping w �→ s and thus allow to consider the mass M as a
function of s only. Then eq.(11) reduces to

Πµ ≡ pµ − q · Aµ =M(s)ẋµ/|ẋ| (32)

which yields immediately the mass-shell constraint:

φ ≡ Π2 −M2(s) = 0. (33)

There are no more constraints if

det
∥∥∥∥∂2F (w)
∂wi∂wj

∥∥∥∥ �= 0. (34)

Otherwise, eq.(14) leads to additional constraints of the following general structure:

χr(s) = 0, r = 1, κ ≤ dimG (35)

which together with the mass-shell constraint (33) form the set of primary constraints. Hence,
the Dirac Hamiltonian is HD = λ0φ+λrχr, where λ0, λr are Lagrange multipliers. It is evident
from eqs.(33), (35) and (29), (30), (31) that secondary constraints (should they exist) are of the
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same general structure as in eq.(35). At the final stage of analysis the mass-shell constraint can be
considered as the first-class one. This is provided as soon the mass squared M2(s) is conserved.
If it is not, there exists another integral of motion M̃2(s) such that M̃2(s)|χ=0 =M2(s). Then
the first-class mass-shell constraint has the form (33) but with the function M̃2(s) instead of
M2(s).
The total set of constraints is gauge-invariant. This follows from the transformation properties

of gauge potentials (4) and variables:

xµ′ = xµ, pµ
′ = pµ − q · (h−1(x)∂µ h(x)

)
, q ′ = Ad∗

h−1
(x)

q , s ′ = s . (36)

In particular, the variables Πµ defined in eq.(32) are gauge-invariant.
At this stage the splitting of particle dynamics into the external and internal ones becomes

obvious. Indeed, the Hamiltonian equations

(ẋ, ṗ, q̇) = {(x, p, q), HD} ≈ λ0{(x, p, q),Π2}, (37)

where ≈ is Dirac’s symbol of weak equality, are closed with respect to variables (x, p, q). They
describe the external dynamics and can be reduced to the equations (16) and (10) by eliminating
the variables pµ and the multiplier λ0. The equation

ṡ = {s , HD} ≈ −λ0{s ,M2(s)}+ λr{s , χr(s)} (38)

is closed in terms of s and can be reduced to the equation (15) of the internal dynamics. We
note that the group variable g falls out of the equations (37) and (38) which is due to the
structure of Poisson-bracket relations (29), (30), (31) and constraints (33), (35). Thus in the
present formulation of isospin particle dynamics this variable can be considered as redundant
unobservable quantity.
The further treatment of Hamiltonian dynamics, i.e., the classification of constrains as first-

and second-class ones etc., demands a consideration of some specific examples.

5 Conclusions

In this paper we consider the formulation of classical dynamics of the relativistic particle in an
external Yang–Mills field. We have deduced the Wong equations from the Lagrangian of rather
general form defined on the tangent bundle over principle fibre bundle. Besides, we have shown
that this Lagrangian leads to some internal particle dynamics. The only quantities coupling this
dynamics with the Wong equations are the massM and isospin (or colour) module |q |, intrinsic
characteristics of particle. In the present description they are integrals of internal motion.
The physical treatment of internal dynamics should become better understood within an

appropriate quantum-mechanical description. It can be constructed on the base of Hamilto-
nian particle dynamics proposed in Section 4. Here we only suggest some features of such a
description.
Following the procedure of canonical quantization one replaces dynamical variables x, p, q , s

etc. by operators x̂, p̂, q̂ , ŝ , and Poisson brackets by commutators. Let us suppose that the
classical dynamics is determined by the only mass-shell constraint (33). Its quantum analogue
determines physical states of the system. Eigenvalues q and M of operators | q̂ |2 = | ŝ |2 and
M2( ŝ) which commute with mass-shell constraint and with one another can be treated as the
isospin (or colour) and the rest mass of particle. In the case of right-invariant dynamics (as in
Kaluza–Klein theory) M is unambiguous function of q. In the general case, the spectrum of
M2( ŝ) can consist of few levelsMqn which correspond to the same value of q. Thus it is tempting
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to relate the quantum number n with a flavour or generation. Of course, this supposition is by
no means substantiated and needs a following elaboration. It may suggest a phenomenological
quantum description of relativistic particles with intrinsic degrees of freedom type of isospin,
colour, flavour etc.
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