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We aim to give useful integral criteria for smooth flows to be globally conjugate when their
infinitesimal generators are close to each other. We study and use the Möller wave operator
which is familiar in quantum mechanics. Theorems on smooth global straightening out of
nowhere zero vector fields and on smooth global linearization are given. The stability of
trajectories at perturbations and properties of the adjoint operators are studied.

1 Preliminaries

The problem of conjugacy of differentiable flows is equally the problem of equivalence of complete
vector fields or, as well, the problem of equivalence of differentiable dynamical systems. A part
of the latter is the question of normal forms for a system of autonomous differential equations
at a singular point.

The so far results, started by Poincaré and Siegel in the real analytic case, to those by Stern-
berg in the C∞ setting, have been concentrated on the linearization of dynamical systems. All
they have local character.

We wish to present a global treatment of the problem. If one also insist to work in the C∞ set-
ting, the Fréchet space calculus and relevant techniques seem to be adequate. In the noncompact
case we consider manifolds which are countable at infinity and are endowed with a Riemannian
metric. In Rn, having fixed a globally Lipschitz vector field X, perturbations X + Z are per-
formed only by vector fields Z which are globally bounded together with all derivatives. Such
vector fields are globally Lipschitz and consequently they are complete.

Let D be the induced Riemannian covariant derivative operator. ‖DkX‖ will mean the
operator norm of the k-th covariant derivative of X as a multilinear map on (TM)k valued
in the tangent bundle TM . When M = Rn it denotes the usual operator norm of the k-th
derivative of vector function X.

For a differentiable map f on M , Tf will mean the induced linear tangent map defined
on TM . A diffeomorphism f of M induces the adjoint linear operator

f∗X = (Tf.X) ◦ f−1

on the Lie algebra X of all C∞ vector fields on M .
Since the smoothness is a local property, and since the boundedness with respect to the time t

and the convergence of the considered improper time-integrals will be required to be uniform
in x only on compact subsets of M , we may perform calculations in Rn. Eventually, we may
glue the limits over different local charts. Therefore we assume M = Rn throughout the paper,
except the following basic definition

Definition 1. Let X be a smooth, globally Lipschitz vector field on a manifold M . Let E be a
subspace of X (M) equiped with a nondecreasing countable system of supremum seminorms ‖·‖k,
k ≥ 0, related to the Riemannian norm ‖ · ‖.
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We shall say that the adjoint flow (φt)∗ decays on E (to infinite order) in a set Ω ⊂ M , if for
every integer k ≥ 0 there is lk ≥ k and a continuous function νk(t, x) > 0 defined on (0,∞)×Ω
such that for any vector field Z ∈ E it holds

‖DkφZ(x)‖ ≤ νk(t, x)‖Z‖lk (1)

and
∫ ∞

0
νk(t, x)dt (2)

converges uniformly with respect to x on compact subsets of Ω.
Alternatively, (φt)∗ in (1) can be replaced by φ∗

t := (φ−t)∗, depending on the asymptotic
behavior of the flow φt.

In particular φ decays exponentially if νk(t, x) ≤ e−cktMk(‖x‖) for some ck > 0 and a positive
continuous function Mk.

Example 1. Let Ω = Rn and E = {Z ∈ X∞(Rn); Z ∈ �n}, where � is the Schwartz space of
all functions on Rn which are fast falling together with all derivatives. The norms in �n are

‖Z‖r = max
i+k≤r

sup
x∈Rn

(1 + ‖x‖2)i/2‖DkZ(x)‖.

where ‖ · ‖ is the Euclidean norm. Take X = v(const), ‖v‖ = 1. Then φt = exp tv = id+ tv and
φZ(x) = Z(x− tv). We have

‖Dk(φZ)(x)‖ ≤ 1
1 + ‖x− tv‖2

‖Z‖k+2. (3)

Hence lk = k + 2 and

νk(t, x) =
1

1 + a(x) + (t− 〈x, v〉)2 for a(x) = ‖x‖2 − 〈x, v〉2 ≥ 0, (4)

where 〈x, v〉 means the scalar product. The convergence of (2) on compact sets is evident.
Thus φ decays on E but not exponentially.

Example 2. Let Ω = Rn and let C∞
b = C∞

b (Rn, Rn) be the space of vector fields in Rn with
globally bounded derivatives

E = {Z ∈ C∞
b (Rn, Rn), ‖Z(x)‖ = o(‖x‖) as x → 0}.

We equip E with the standard operator norms in the spaces of bounded symmetric multilinear
mappings.

Take X(x) = −cx with c > 0. Then φt(x) = e−ctx, φ∗
tZ(x) = ectZ(e−ctx) and

‖Dkφ∗
tZ(x)‖ = e(1−k)ct‖(DkZ)(e−ctx)‖ ≤ e(1−k)ct‖DkZ‖ ≤ e(1−k)‖Z‖k

for t > 0, x ∈ M and k ≥ 2.
For k = 0, 1 we have ‖φ∗

tZ(x)‖ ≤ e−ct‖x‖2‖Z‖2 and DφZ(x)‖ ≤ e−ct‖x‖‖Z‖2. The integ-
rals (2) are convergent for all k ≥ 0 uniformly for x in any ball {‖x‖ ≤ r}.
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2 Estimates of perturbations

The purpose of this section is to study the question of whether the property of decaying is
preserved under small perturbations of X. We assume M = Rn. Let Z ∈ E and let φ decay
on Z in Rn. We consider the perturbed vector field X + Z. As both the X, Z are globally
Lipschitz, the flow ψt = exp t(X + Z) is defined for all t ∈ R.

Lemma 1 (On orbital stability at perturbation). Suppose that ‖Z‖ < ∞ and for some
L ≥ 0, r > 0 and all x, y ∈ Rn such that ‖x− y‖ ≥ r we have

〈x− y,X(x)−X(y)〉 ≤ −L‖x− y‖2 (5)

If L > 0 then

‖φt(x)− ψt(x)‖ ≤ r1 = max{L−1‖Z‖, r} (6)

for all t ≥ 0 and x ∈ Rn.
If X = v �= 0 is a constant vector field, and Z is fast falling to order 2 at infinity with small

‖Z‖, then
‖φt(x)− ψt(x)‖ ≤ C (t ≥ 0) (7)

on compact sets (where C is constant).
For X = v and Z ∈ C1 with ‖Z‖ < ∞ one gets the (sharp) estimate

‖φt(x)− ψt(x)‖ ≤ ‖Z‖t. (8)

Proof. For the solutions of the Cauchy problems

x′ = X(x), y′ = X(y) + Z(y), x(0) = y(0)

the standard computation yields

1
2

(‖x− y‖2
)′ = 〈x− y, x′ − y′〉 = 〈x− y,X(x)−X(y)〉 − 〈x− y, Z(y)〉,

hence(‖x(t)− y(t)‖2
)′ ≤ 2(‖Z‖ − L‖x(t)− y(t)‖)‖x(t)− y(t)‖.

For L > 0 this is possible only if ‖x(t)− y(t)‖ ≤ r1, which translates into (6).
Now assume X(x) = v �= 0. Then it is easy to see that ‖x + tv − ψt(x)‖ ≤ ‖Z‖t. Thus for

small ‖Z‖ we have ‖ψt(x)‖ ≥ |‖x‖ − bt| for some b > 0. But on the other hand we have for
X = v

ψt(x)− (x+ tv) =
∫ t

o
Z(ψs(x))ds (9)

and (cf. Example 1)∫ ∞

o
‖Z(ψs(x))‖ds ≤ ‖Z‖2

∫ ∞

o

1
1 + (‖x‖ − bt)2

dt ≤ C < ∞

on compact sets. Therefore each trajectory t → ψt(x) has globally a finite distance from that of
φt(x) uniformly in x on compact sets. In the last case the estimate (8) follows directly from (9).
In particular, for Z = w constant, (8) is equality.

Thus we see that the falling at infinity of Z is essential for the global proximity of the
perturbation flow.
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Remark. The assumption that both X and Z in Lemma 1 are globally Lipschitz can be relaxed.
As we see from the proof, in all the cases considered in the Lemma, if X is complete then ψt(x)
can not be unbounded in finite time. Thus it can be defined over R+ (i.e., the vector field X+Z
is positively semicomplete).

As a byproduct we obtain the following

Proposition 1. If a vector field X in Rn satisfies condition (5) with L > 0, X(xo) �= 0, then
it is positively semicomplete and for any fixed xo and x in Rn and all t ≥ 0

‖φt(x)− xo‖ ≤ max{L−1‖X(xo)‖, r}.
Moreover, if X(xo) = 0 and r = 0 then

‖φt(x)− xo‖ ≤ ‖x− xo‖e−Lt.

Proof. This time, for solutions of equation x′ = X(x), we have

1
2

(‖x− xo‖2
)′ = 〈x− xo, X(x)−X(xo)〉+ 〈x− xo, X(xo)〉.

Further arguments are analogous as in the proof of Lemma 1 or routine.

Definition 2. We shall say that the adjoint flow φ Cm-decays on a subspace E if it decays
on E and the functions νk(t, x) in (1) do not depend on x for 0 ≤ k ≤ m, so that ‖DkφZ(x)‖ ≤
νk(t)‖Z‖lk for all x, and νk(t) is integrable over R+.

We say that φ decays C∞ on E if it decays Cm for all integers m ≥ 0.

This definition will apply also for the flow φ∗
t (generated by −X).

Lemma 2. Suppose that φ generated by X decays on E and one of the following conditions is
satisfied.

(A.1) The vector field X fullfils the hypothesis (5) with L > 0, or
(A.2) X = v (const), or
(A.3) φ Co-decays on E.
Then also the adjoint flow ∂, where ψt = exp t(X+Z), decays on E provided Z is sufficiently

small in the seminorm ‖·‖l1. Moreover, if X fulfills (A.1) then so does X+Z, and if φ C1-decays
on E then ∂ decays Co on E.

A corresponding result is true for φ∗
t .

Proof. Put ft = φt ◦ ψ−t. Since Tφt.X = X ◦ φt, we get by differentiating in t

f ′
t = −(Tφt.Z) ◦ ψ−t = −(φZ) ◦ ft, fo = id, (10)

we can integrate (10) to obtain

ft = id−
∫ t

o
(φs) ∗ Z ◦ fsds. (11)

Now we aim to show that on compact subsets ft − id and all its derivatives Tn(ft − id) are
bounded uniformly in t ∈ (0,∞).

First, suppose that X satisfies (A.1) or (A.2). By substituting ψ−1
t (x) in place of (x) in (6)

or (7) we get ‖ft(x)− x‖ ≤ C for all t ≥ 0 uniformly for x in compact sets.
Similar result can be obtained when the condition (A.3) is satisfied. In fact, consider equation

x′ = F (t, x), where F (t, x) = −φZ(x). Putting u = ‖x‖ we have

u
du

dt
= xTF (t, x) ≤ ‖x‖‖φZ(x)‖ ≤ ν0(t)u‖Z‖l0 .
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Hence

u(t)− u(0) ≤
(∫ t

0
ν(s)ds

)
‖Z‖l0 ,

where the integral is bounded as t → ∞. Therefore u(t)− u(0) remains bounded over R+. For
x(t) = ft it gives that ‖ft(x)‖ − ‖x‖ is bounded for t ∈ R+. By the principle of the integral
continuity of solutions it also remains bounded when x runs over a compact set.

Next we are going to prove the boundedness of the first derivative Tft. For this we differen-
tiate (11) and take estimates

‖Tft(x)‖ ≤ 1 +
∫ t

o
‖D(φs)∗Z(fs(x))‖‖Tfs(x)‖ds ≤

∫ t

o
ν1(s, fs(x))‖Z‖l1‖Tfs(x)‖ds.

Using the Bellman’s lemma, we get

‖Tft(x)‖ ≤ exp
(∫ t

o
ν1(s, fs(x))‖Z‖l1ds

)
= eB‖Z‖l1 < ∞,

where we put B =
∫ ∞
o ν1(s, fs(x))ds. The integral is convergent since ‖fs(x)‖ differs from ‖x‖

by a constant, so they may be placed in the same compact set for all s ≥ 0.
In particular, if φ decays C1 on E then ν1 does not depend on x and then Tft(x) is bounded

globally for all t ≥ 0 and x ∈ M .
Now, assuming that Tn−1ft is bounded for n − 1 ≥ 1, we wish to show this for Tnft. We

make use of the standard formulae for higher order derivatives of composition maps. We have

Dn(φZ ◦ ft)(x)) = (DφZ)(ft(x)).Tnft(x) +Rn(t, x), (12)

where

Rn(t, x) =
n∑

k=2

∑
j1+···+jk=n

Ck,j1,...,jk
Dk(φZ)(ft(x)){T j1ft(x), . . . , T jkft(x)}

with j1, . . . , jk ≥ 1. Passing to the estimates we have

‖Dn(φZ(ft(x))‖ ≤ ‖DφZ‖‖Tnft(x)‖+ ‖Rn(t, x)‖,
where

‖Rn(t, x)‖ ≤ C
n∑

k=2

∑
j1+···+jk=n

νk(t, ft(x))‖Z‖lk‖T j1ft(x)‖ · · · ‖T jkft(x)‖

with 1 ≤ j1, . . . , jk ≤ n− 1. All this and (11) yields for the derivatives of order n ≥ 2

‖Tnft‖ ≤
∫ t

o
‖Rn(s)‖ds+ ‖Z‖l1

∫ t

o
ν1(s, fs(x))‖Tnft‖ds.

Again by Bellman’s inequality

‖Tnft‖ ≤
(∫ t

o
‖Rn(s, x)‖ds

)
· exp

(
‖Z‖l1

∫ t

o
ν1(s, fs(x))ds

)
< ∞

uniformly for t ≥ 0. Thus ‖Tnft(x)‖∞ is finite for n ≥ 1.
Now, by the definition of ft we have ψt = f−1

t ◦φt. Put gt = f−1
t . Then clearly ‖gt(x)‖−‖x‖

is also uniformly bounded in t ≥ 0. We wish to prove that gt − id has all x-derivatives unformly
bounded in t.

From (11) it follows

‖Tft − I‖ ≤
∫ t

o
‖D(φs)∗Z‖‖Tfs‖ds. (13)
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Put δ = ‖Z‖l1 . Then, by (12), ‖Tft‖ ≤ eBδ for t > 0. Now the estimate (13) can be written

‖Tft − I‖ ≤ BδeBδ.

For δ sufficiently small, and B being independent of Z, we shall have ‖Tft − I‖ < ε < 1. But if
‖Tft(x)− I‖ < ε then

‖Tgt(ft(x))‖ = ‖Tft(x)−1‖ ≤ 1
1− ε

< ∞
for all t > 0, uniformly in x in any compact set.

Now, since ft ◦ gt = id, the uniform boundedness of higher order derivatives of gt follows
recurently from the relations

Tngt(x) = −Tgt(x)
n∑

k=2

∑
j1+···+jk=n

Ck,j1,...,jk
T kft(gt(x))

{
T j1gt(x), . . . , T jkgt(x)

}
,

where j1, . . . , jk ≤ n− 1, and hence the estimate

‖Tngt‖ ≤ C
n∑

k=2

∑
j1+···+jk=n

‖T kft‖T j1gt‖ · · · ‖T jkgt‖ < ∞.

Having gt − id uniformly bounded in t to infinite order, we deduce easily that for any smooth
vector field Y with bounded derivatives it holds

‖Dn(gt)∗Y (x)‖ ≤ C
∑
k≤n

‖DkY ‖ (n ≥ 0)

for some constant C > 0 depending on n and independent of x in compact sets.
From ψt = gt ◦ φt it follows ∂Z = (gt)∗(φZ). In the above inequality we replace Y by φZ,

which decays on Z. Consequently, (ψt)∗ decays on Z.
Finally, suppose that X satifies condition (5) with L > 0. Then for X +Z we have whenever

‖x− y‖ > r

〈x− y, (X + Z)(x)− (X + Z)(y)〉
≤ −L‖x− y‖2 + ‖x− y‖||Z(x)− Z(y)‖ ≤ (−L+K)‖x− y‖2,

where K is the global Lipschitz constant of Z. If ‖Z‖l1 is small then so is K and −L+K < 0,
as required.

In the case where φ decays C1 on E, then Tft(x) and hence also Tgt(x) are bounded globally
in t and x. Therefore we have

‖∂Z(x)‖ = ‖(gt)∗(φt)∗Z(x)‖ ≤ C‖(φt)∗Z‖ ≤ Cνo(t)‖Z‖l1

for all x. This completes the proof of the Lemma.

3 Conjugacy of flows

Lemma 3. Let X, Z be Ck complete vector fields on a smooth manifold M . Suppose that the
integrals

f = id−
∫ ∞

0
(T exp tX).Z ◦ exp(−t(X + Z))dt (14)

converges to class Ck (k ≥ 1) and

g = id−
∫ ∞

0
(T exp t(X + Z)).Z ◦ exp(−tX)dt (15)

converges to class C1, both uniformly on compact subsets of M .
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Then f and g are Ck diffeomorphisms of M , g = f−1, and

f∗(X + Z) = X.

Note that the assumptions are satisfied if φt fulfills the hypothesis of Lemma 2 and Z is suffi-
ciently small.

Proof. In the proof we use the Möller wave operator [1] which is known in quantum mechanics.
Put as before φt = exp tX and ψt = exp t(X + Z). The idea is that if the diffeomorphisms
φt ◦ ψ−t have the limit

lim
t→∞φt ◦ ψ−t = f (wave operator) (16)

and f is invertible then f−1 ◦φt ◦f = ψt. This is so because from (16) it follows φt ◦f ◦ψ−t = f .
We introduce the integral formulae for the wave operator in order to simplify the proof of its

existence. For this again define

ft = φt ◦ ψ−t and gt = ψt ◦ φ−t = f−1
t . (17)

Hence

f ′
t = −(Tφt.Z) ◦ ψ−t, g′t = −(Tψt.Z) ◦ φ−t. (18)

The existence of both the limits f = lim
t→∞ ft and g = lim

t→∞ gt ensures the invertibility of f .

Thus, we can integrate (18) in the interval [0, t] and pass to limit as t → ∞. It results in
ψt = f−1 ◦ φt ◦ f , so the flows are conjugate by f . From this, by differentiating in t, we get
(f−1)∗X = X + Z or equivalently f∗(X + Z) = X. It is well known that if f is Ck and has a
C1 inverse, then its inverse is Ck. So, g is also Ck.

Remark. Alternatevaly, by reversing time, we may look for the wave operator of the form
f = lim

t→∞φ−tψt which satisfies φ−t ◦ f ◦ ψt = f . It can be calculated from the integral formulae

f = id+
∫ ∞

o
(T exp(−tX)).Z ◦ exp t(X + Z)dt,

g = id+
∫ ∞

o
(T exp−t(X + Z)).Z ◦ exp tXdt.

If the integrals converge then g = f−1 and f∗(X + Z) = X. This version may be used if the
asymptotic behavior of exp(−tX) is more suitable than that of exp(tX).

Definition 3. Let the subspace E ⊂ C∞
b (Rn, Rn) be closed in the standard supremum norms

‖ · ‖k (k ≥ 0). Let X be a globally Lipschitz vector field such that the X-flow φt leaves E
invariant, i.e., (φt)∗E ⊂ E for any t ∈ R. We say that E has a hyperbolic structure for φt if
there is a continuous splitting E = E1+E2, such that E2 is exp(X+E1) invariant, (φt)∗ fulfills
the hypothesis (A.1) or (A.3) of Lemma 2 on E1 and so does φ∗

t on E2.

Note that we do not assume any invariance of subspaces Ei individually.

Lemma 4. Suppose that E has a hyperbolic structure for the X-flow. Let Z = Z1 + Z2, where
Zi are sufficiently small. Then X + Z is C∞ conjugate to X.

Proof. By Lemma 3 for X and Z1, there is a diffeomorphism f such that f∗X = X +Z1. Since
φ∗

t fulfills (A.1) or (A.3) on E2, for small Z1 also (exp t(X + Z1))∗ fulfills (A.1) or (A.3) on E2.
Therefore, for small Z2 there exists a diffeomorphism h such that h∗(X+Z1) = (X+Z1)+Z2 =
X + Z. This completes the proof.
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4 Main results

With the notations of preceding sections the integrals (14) and (15) can be written in the form

f = id−
∫ ∞

0
φZ ◦ ftdt and g = id−

∫ ∞

0
(ψt)∗Z ◦ gtdt

with ft = φt ◦ ψ−t and gt = f−1
t .

Accordingly, we express the alternative formulae (14) and (15) by putting −t in place of t.
Now we can apply the results of previous sections and Examples 1, 2 to prove the convergence

of the integrals and of all their x-derivatives. This will result in the following theorems.

Theorem 1 (On conjugacy of perturbations). Let X ∈ X (Rn) be a globally Lipschitz vector
field and let E be a linear space of vector fields on Rn. Suppose that the adjoint flow generated
by X decays on E with respect to a collection of seminorms {‖ · ‖k, k ∈ N}. Assume also that
one of the conditions (A.1) to (A.3) is satisfied.

Then there is a neighborhood U = {Z ∈ E; ‖Z‖l1 < δ} such that for every Z ∈ U there exists
a C∞ diffeomorphism f of M which conjugate X to X + Z, that is f∗X = X + Z.

Theorem 2 (Global straightening out theorem). Let X be a non-zero constant vector field
on Rn. There is a δ > 0 such that for every fast falling vector field Z on Rn with ‖Z‖3 < δ the
vector fields X and X + Z are C∞ conjugate on Rn.

Thus, any sufficiently small perturbation (as above) of X = ∂
∂x1

can be transformed globally
to ∂

∂x1
by a C∞ change of coordinates.

Theorem 3. Let X(x) = −cx, c > 0, x ∈ Rn, and let Z be a vector field with globally bounded
derivatives and satisfying ‖Z(x)‖ = o(‖x‖) as x → 0. Then the perturbed vector field X + Z is
C∞ conjugate to X in Rn.

This theorem can be easily generalized to the case where X = Ax with negative real parts
of the eigenvalues of the matrix A and without the familiar resonance relations. Thus the
Sternberg [2] local linearization theorem for contractions can be given a global version.

Moreover, applying Lemma 4, we may also obtain the globalization of the Sternberg’s lin-
earization theorem for arbitrary hyperbolic point with no resonance. This will be subject to
another article.
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