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In previous work, Doebner and I introduced a group of nonlinear gauge transformations for
quantum mechanics, acting in a certain family of nonlinear Schrödinger equations. Here the
idea for a further generalization is presented briefly. It makes possible the treatment of the
logarithmic amplitude and the phase of the wave function on an equal footing, suggesting a
more radical reinterpretation of these variables in linear and nonlinear quantum theory.

1 Background

Motivated by our desire to interpret a certain class of nonrelativistic current algebra repre-
sentations as descriptive of quantum mechanical systems, H.-D. Doebner and I proposed a
parameterized family of nonlinear Schrödinger equations (NLSEs) whose solutions would sat-
isfy the appropriate equation of continuity [1, 2, 3]. It was then logically necessary to extend
the usual gauge group for quantum mechanics to include transformations that could act non-
linearly [4, 5]. Writing the complex-valued wave function ψ(x, t), describing a single spinless
particle in a pure state, as ψ = R(x, t) exp[iS(x, t)], where the amplitude R and the phase S are
real, these nonlinear gauge trasnformations act by

R ′ = R, S ′ = ΛS + γ lnR+ θ, (1.1)

where Λ is a smooth, real-valued, nonzero function of t, γ is a smooth, real-valued function of t,
and θ is a smooth, real-valued function of x and t. The transformations (1.1) map members of
our family of NLSEs into each other, and have other desirable properties. In particular, they
extend naturally to act on a hierarchy of N -particle wave functions ψN (x1, . . . ,xN , t), defined
on the (positional) configuration space, in a way that is strictly local and satisfies a separation
condition for product states [6].

The justification for considering them to be gauge transformations is as follows. For all of
the nonlinear quantum theories under discussion, we interpret ρ = |ψ|2 = R2 as the probability
density in configuration space. We adopt as a working hypothesis the view (taken by many
theorists) that all measurements in ordinary quantum mechanics can be regarded as a sequence
of positional measurements, made at different times, where external fields exerting forces may
be imposed on the system between measurements [7, 8]. Then for any wave function ψ obeying
a Schrödinger equation (linear or nonlinear) in our family, the wave function ψ ′ transformed
by (1.1) obeys a transformed Schrödinger equation, still in the family, with gauge-transformed
external fields; while the outcomes of all physical measurements remain invariant.

To be explicit, with

ρ = ψψ, ĵ =
1
2i

[ψ∇ψ − (∇ψ)ψ], (1.2)



Generalized Gauge Invariants for Certain Nonlinear Schrödinger Equations 441

define the real, homogeneous nonlinear functionals

R1 =
∇ · ĵ
ρ

, R2 =
∇2ρ

ρ
, R3 =

ĵ 2

ρ2
, R4 =

ĵ · ∇ρ

ρ2
, R5 =

(∇ρ)2

ρ2
, (1.3)

and consider the following family of one-particle NLSEs (where for mathematical convenience
both sides have been divided by ψ):

i
ψ̇

ψ
= i


 2∑

j=1

νjRj [ψ] +
∇ · (A(x, t)ρ)

ρ




+


 5∑

j=1

µjRj [ψ] + U(x, t) +
∇ · (A1(x, t)ρ)

ρ
+

A2(x, t) · ĵ
ρ

+ α1 ln ρ+ α2S


 .

(1.4)

Here the coefficients νj (j = 1, 2), µj (j = 1, . . . , 5), and αj (j = 1, 2) are smooth, real-
valued functions of t; U is an external real-valued, time-dependent scalar field; and A, A1

and A2 are distinct, external real-valued, time-dependent vector fields. Using the fact that
∇2ψ/ψ = iR1[ψ] + (1/2)R2[ψ]−R3[ψ]− (1/4)R5[ψ], it is straightforward that Eq.(1.4) reduces
to the usual, time-dependent linear Schrödinger equation

i�ψ̇ =
[−i�∇− (e/c)A(x, t)]2

2m
ψ + eΦ(x, t)ψ (1.5)

with external electromagnetic potentials A, Φ, when

ν1 = − �

2m
, ν2 = 0, A =

e

2mc
A,

µ1 = 0, µ2 = − �

4m
, µ3 =

�

2m
, µ4 = 0, µ5 =

�

8m
,

U =
e

�
Φ+

e2

2m�c2
A2, A1 = 0, A2 = − e

mc
A, α1 = α2 = 0.

(1.6)

Eq.(1.4) generalizes the class of nonlinear equations that Doebner and I first derived, to include
external electromagnetic potentials, two additional external vector fields that can act nonlinearly
(one of which was studied some time ago by Haag and Bannier [9]), and terms of the type
proposed by Kostin [10] and by Bialynicki–Birula and Micielski [11]. An exploration of the
relation of some of these terms with the separation property was begun in joint work with
Svetlichny [12]. Though obtained on fundamental grounds, Eq.(1.4) contains as special cases a
remarkable variety of independently-proposed nonlinear terms [13–19].

Since Re [ψ̇/ψ] = (1/2)[ρ̇/ρ], we see from inspection of the imaginary part of the right-hand
side of (1.4) that ρ̇ is the divergence of a vector field. As long as this falls off sufficiently rapidly
at infinity, we have that (d/dt)

∫
ρ(x, t) dx is zero – thus the interpretation of ρ as a conserved

probability density makes sense.
When the gauge transformations (1.1) is applied, we have

ρ ′ = ψ ′ψ ′ = ρ,

ĵ ′ =
1
2i

[ψ ′∇ψ ′ − (∇ψ ′)ψ ′] = Λĵ+
γ

2
∇ρ+ ρ∇θ.

(1.7)

Thus ρ is gauge-invariant, while ĵ is not. Furthermore, if ψ satisfies an equation in the family
defined by (1.4), then ψ ′ satisfies a transformed equation, with gauge-transformed coefficients
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ν ′
j , µ ′

j , α ′
j , and external fields A ′, U ′, A ′

j that can be expressed in terms of the unprimed
quantities. We have a gauge-invariant current (see below), and gauge-invariant expressions for
the usual, observable electric and magnetic fields. We also have formulas for independent gauge-
invariant combinations of the coefficients νj , µj , and αj , and the external vector fields. Here
“gauge invariant” refers to the group of nonlinear transformations specified by (1.1). Naturally
it is the gauge-invariant quantitities that must encode the physical content of a quantum theory
described by one of equations in our family. Details of these transformations, and discussions of
the gauge-invariant combinations, are published elsewhere.

2 Generalization of the Gauge Group

Next I shall describe and justify the idea for further generalization of this framework. It begins
with the observation that the combination

j gi = ν1ĵ+ ν2∇ρ+ ρA (2.1)

is invariant under the transformation (1.1), so that J = −2j gi is a gauge-invariant current
obeying ρ̇ = −∇ · J. This means that our original working hypothesis, that all observations
could be expressed as a succession of positional measurements at different times – i.e., in terms of
ρ(x, t) – together with the imposition of external physical fields, may be unnecessarily stringent.
Measurement procedures that detect J(x, t), whether or not they can be expressed exclusively in
terms of ρ and external fields, are equally compatible with (i.e., invariant under) the nonlinear
gauge transformations (1.1).

Note also that unlike the formula for ρ, the expression for J involving (2.1) depends explicitly
on two of the coefficients and one of the fields in Eq.(1.4). Indeed, there is no a priori reason
why the expression for ρ could not also depend on these quantities. The important properties
of the functions ρ and J are that they are invariant under the action of the group of nonlinear
gauge transformations, that ρ is positive definite, and that they are related by an equation of
continuity. Thus we might entertain the possibility of replacing the equation ρ = |ψ|2 by a more
general expression, that would have to be gauge invariant and reduce to ρ = |ψ|2 in the case of
the linear Schrödinger equation.

Now in standard, linear nonrelativistic quantum mechanics, the amplitude R and phase S
of the wave function describing a pure state have very different status. The former is gauge
invariant, and considered as physically observable; the latter is gauge dependent, and not ob-
servable. Likewise in the nonlinear quantum mechanics discussed in the previous section, R
is manifestly gauge invariant, while S is not. When one reflects on this asymmetry, it seems
increasingly extraordinary that we write a Schrödinger equation (linear or nonlinear) for the
time-evolution by relating the gauge fields S, U and A to the physical field R, via the complex
combination R exp [iS]. Why should we not be able to couple gauge fields to gauge fields, and
correspondingly, physical fields to physical fields? The purpose of this paper is to suggest a way
to do just that, using a natural generalization of the nonlinearity Doebner and I proposed. The
analysis applies even when the underlying physics is that of linear quantum mechanics!

If we return to Eqs.(1.1)–(1.4), we see that everything can be written very naturally in terms
of the variables lnR and S. In particular, setting T = lnR, Eq.(1.1) becomes(

S ′

T ′

)
=

(
Λ γ
0 1

) (
S
T

)
+

(
θ
0

)
, (2.2)

where Λ and γ depend on t and θ depends on x and t. The condition Λ �= 0 is just the requirement
that the determinant of the matrix be nonvanishing. If we like, we can also write ln ρ = 2T so
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that ∇ρ/ρ = 2∇T , and ĵ/ρ = ∇S. Then we can re-express the nonlinear functionals in (1.3) in
terms of ∇2S, ∇2T , (∇S)2, ∇S · ∇T , and (∇T )2; for example, R1 = ∇2S + 2∇S · ∇T , while
R3 = (∇S)2. Since ψ̇/ψ is just Ṫ + iṠ, Eq.(1.4) becomes a pair of coupled partial differential
equations for S and T . These logarithmic variables are familiar from earlier hydrodynamical
and stochastic versions of quantum theory [20, 21].

It is time to take the leap. Eq.(2.2) practically cries out to be generalized to affine transfor-
mations modeled on the general linear group GL(2,R):

(
S ′

T ′

)
=

(
Λ γ
λ κ

) (
S
T

)
+

(
θ
φ

)
, (2.3)

where Λ, γ, λ and κ are smooth, real-valued functions of t, and θ, φ are smooth, real-valued
functions of x and t. This is essentially equivalent to complexifying the coefficients in (1.1). We
can permit Λ = 0, but require that ∆ = κΛ− λγ �= 0.

Immediately it is evident that the family of NLSEs must also be generalized for it to remain
invariant under (2.3). The necessary (and natural) generalization is to introduce into the imag-
inary part of the right-hand side the terms ν3R3, ν4R4 and ν5R5, as well as external scalar and
vector fields, so that there is symmetry between the real and imaginary parts. Thus

i
ψ̇

ψ
= iṪ − Ṡ = i


 5∑

j=1

νjRj [ψ] + T (x, t) + ∇ · (A(x, t)ρ)
ρ

+
D(x, t) · ĵ

ρ
+ δ1 ln ρ+ δ2S




+


 5∑

j=1

µjRj [ψ] + U(x, t) +
∇ · (A1(x, t)ρ)

ρ
+

A2(x, t) · ĵ
ρ

+ α1 ln ρ+ α2S


 ,

(2.4)

where T is a new external scalar field, and D a new external vector field. Note that the heat
equation and other interesting equations of mathematical physics fall within this family; as well
as the linear Schrödinger equation, with ν3 = ν4 = ν5 = δ1 = δ2 = 0, T = 0, D = 0, and the
other values as in Eq.(1.6). Some equations with soliton-like solutions are also included [22].

As with the smaller family of nonlinear equations (1.4) and the smaller group of nonlinear
gauge transformations (1.1), if ψ solves an equation within the class (2.4), then the wave function
transformed under (2.3), ψ ′ = R ′ exp iS ′ with R ′ = lnT ′, solves another equation in the same
class, but with transformed coefficients and transformed external fields. The question now is
whether we can identify appropriate invariants under the group of transformations (2.3), in terms
of which all the quantum observables can be expressed. If so, we are justified in considering R (or,
alternatively, T ) and S both as gauge fields, obeying one or another NLSE from the class (2.4),
and deriving the physical fields from them as invariants under the enlarged nonlinear gauge
group. We will have succeeded in treating S and lnR on an equal footing. It will even be
possible to entertain quantum mechanics in a (nonlinear) gauge where lnR and S have been
exchanged.

3 Generalized Gauge Invariants

From this point on, it is more convenient to work using the variables S and T . Consider then
the coupled pair of general second-order quadratic partial differential equations,

Ṡ = a1∇2S + a2∇2T + a3(∇S)2 + a4∇S · ∇T + a5(∇T )2

+a6S + a7T + u0 + u1 · ∇S + u2 · ∇T,
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Ṫ = b1∇2S + b2∇2T + b3(∇S)2 + b4∇S · ∇T + b5(∇T )2

+b6S + b7T + v0 + v1 · ∇S + v2 · ∇T,
(3.1)

where the relation between (3.1) and (2.4) is given by

a1 = −µ1, a2 = −2µ2, a3 = −µ3, a4 = −2µ1 − 2µ4, a5 = −4µ2 − 4µ5,

a6 = −α2, a7 = −2α1, u0 = −U −∇ · A1, u1 = −A2, u2 = −2A1,

b1 = ν1, b2 = 2ν2, b3 = ν3, b4 = 2ν1 + 2ν4, b5 = 4ν2 + 4ν5,

b6 = δ2, b7 = 2δ1, v0 = T +∇ · A, v1 = D, v2 = 2A.

(3.2)

Now the coefficients aj , bj obey the following transformation laws under (2.3), with the
determinant ∆ = κΛ− λγ:



a ′

1

a ′
2

b ′1
b ′2


 = ∆−1




κΛ −λΛ κγ −λγ
−γΛ Λ2 −γ2 γΛ
κλ λ2 κ2 −κλ
−λγ λΛ −κγ κΛ






a1

a2

b1
b2


 , (3.3)




a ′
3

a ′
4

a ′
5

b ′3
b ′4
b ′5



= ∆−2M




a3

a4

a5

b3
b4
b5



, (3.4)

where

M =




κ2Λ −κλΛ λ2Λ κ2γ −κλγ λ2γ
−2κγΛ Λ(κΛ + λγ) −2λΛ2 −2κγ2 γ(κΛ + λγ) −2λγΛ
γ2Λ −γΛ2 Λ3 γ3 −γ2Λ γΛ2

κ2λ −κλ2 λ3 κ3 −κ2λ κλ2

−2κλγ λ(κΛ + λγ) −2λ2Λ −2κ2γ κ(κΛ + λγ) −2κλΛ
λγ2 −λγΛ −λΛ2 κγ2 −κγΛ κΛ2



,

and 

a ′

6

a ′
7

b ′6
b ′7


 = ∆−1




κΛ −λΛ κγ −λγ
−γΛ Λ2 −γ2 γΛ
κλ λ2 κ2 −κλ
−λγ λΛ −κγ κΛ






a6

a7

b6
b7


 +∆−1



κΛ̇− λγ̇
Λγ̇ − γΛ̇
κλ̇− λκ̇
Λκ̇− γλ̇


 . (3.5)

For brevity we omit the transformation laws for the external fields.
The final task for this paper is to suggest invariant combinations of S and T . For simplicity,

we consider only the matrix part of the transformation (2.3), i.e., we take θ = φ = 0. First
suppose that X and Y obey

(
X ′

Y ′

)
=

(
Λ γ
λ κ

) (
X
Y

)
= A

(
X
Y

)
, (3.6)

and c1, c2 are coefficients. Then c1X + c2Y is invariant under A if and only if [c1 c2]A−1 =
[c ′1 c ′2]. But one can verify from (3.4) that with d1 = 2a3 + b4 and d2 = a4 + 2b5, we have



Generalized Gauge Invariants for Certain Nonlinear Schrödinger Equations 445

[d1 d2]A−1 = [d ′
1 d

′
2]. Hence d1S + d2T can serve as one of the desired invariant combinations.

Next let L1 = a1S + a2T and L2 = b1S + b2T . We have(
L ′

1

L ′
2

)
=

(
Λ γ
λ κ

) (
L1

L2

)
= A

(
L1

L2

)
. (3.7)

Therefore d1L1+d2L2 is also an invariant. In fact, we can consider d1(σL1+τS)+d2(σL2+τT )
as a general linear combination of the invariants we have found, where σ and τ are fully invariant
combination of the coefficients. For example, it is straightforward to verify that a1+b2 and a1b2−
a2b1, which were earlier identified as gauge invariants for (2.2), are also invariants under (2.3).
In short the desired invariant combinations of S and T exist, and we even have some flexibility
in our choice: we can choose combinations that reduce to the usual formulas in the case of the
linear Schrödinger equation!

This permits us to obtain a positive definite, gauge-invariant probability density and gauge-
invariant current. Finally, a large subfamily of the equations (2.4) have solutions for which the
gauge-invariant density and current obey a continuity equation. Details of these results are to
be presented elsewhere.

4 Conclusion

Consideration of nonlinear gauge transformations modeled on the general linear group GL(2,R)
leads to a beautiful, apparently unremarked symmetry or duality between the phase and the log-
arithm of the amplitude in quantum mechanics. Both can be treated as gauge fields, suggesting
the possibility of a fundamental reappraisal of the meaning of the wave function (and of gauge
transformation). In particular, the linear Schrödinger equation is embedded in a natural class of
nonlinear time-evolution equations, invariant as a class under nonlinear gauge transformations,
extending (necessarily) the family that I proposed earlier in joint work with H.-D. Doebner.
Formulas for gauge-invariant probability density and flux exist that apply across the whole class
of nonlinear equations. The usual expressions for these quantities, along with the Schrd̈inger
equation, are recovered for linearizable theories in a particular gauge.
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