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The problem of supplying nontrivial models of local covariant and obeying the spectral con-
dition quantum theories of extended objects is discussed. In particular, it was demonstrated
that starting from sufficiently regular generalized random fields the construction of the cor-
responding quantum dynamics describing extended objects is possible. Several particular
examples of such generalized random fields are presented.

1 Introduction

The importance of nonlocal, gauge invariant functionals was firstly recognized in local quantum
field theories of gauge type [28]. In such theories the compatibility of standard positivity,
locality and covariance is hard to achieve if at all, see e.g. [26, 25]. The restrictions of the
allowed set of observables to the set of gauge invariant observables and the arising space of
states seem to be correct choice of subspace of physical states. Also the role played by certain
nonlocal order parameters in studying the phase structure (the complicated vacuum structure)
of gauge quantum field theories must to be pointed out [4, 6, 23, 27, 29]. The still continued
attempts [14] to formulate local, covariant and positive quantum theories of extended objects like
strings, membranes, etc. also justify the importance of searching new mathematical techniques
for constructing nontrivial models of this type. Let us recall also that the recent attempts to
formulate quantum gravity in terms of loop variables seem to be very attractive idea [2]. Finally
let us mention the application of the loop variables in the topological quantum field theories to
the classical problems of geometry [3].

An interesting approach to the construction physically reasonable models of extended objects
was proposed in [23] in the context of quantum field theories of gauge type. The approach
presented in [23] can be called the Euclidean approach and is of axiomatic type. However there
are not too many nontrivial models obeying the system of axioms proposed in [23]. To our
best knowledge the Wilson loop Schwinger functions in the continuum limit of QCD2, and
in the free QEDd are the only examples discussed explicitely in the literature [23], see also
[18, 22]. It is the main aim of the present contribution to provide some new examples of theories
obeying the proposed axiomatic scheme of [23] and to outline a general constructive approach
for constructing models of this sort from the generalized random fields.

2 The Fröhlich–Osterwalder–Seiler axiomatic approach

Let Ck(d) be a variety of k-dimensional piecewise C1 cycles in the space Rd, i.e. elements Γ of
Ck(d), a k-dimensional boundaryless piecewise C1 compact submanifolds of the d-dimensional
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Euclidean space Rd. The allowed topologies τ on Ck(d) are such that only small C∞ local
deformations are allowed and they define a basis of neighborhoods of a given Γ ∈ Ck(d), in
particular local continuous but not differentiable deformations δΓ of Γ send δΓ far from Γ. The
allowed topologies (as above) on the variety Ck(d) can be prescribed explicitly in the metric form
(an example in the case of loops is provided in [23]).

From now on we shall assume that τ is an allowed topology on Ck(d).
A system S = {Sn}n≥0 of functionals, where each Sn is jointly τ -continuous functional on

the space (Ck(d), τ)×n
# , where (Γ1, . . . ,Γn) ∈ Ck(d)×n

# iff Γi ∩ Γj = ∅ for i 	= j, is called k-cycles
Schwinger functional iff it fulfills the following conditions:

FOS0-1 Let Γai
i , i = 1, . . . , n be a translation of Γi ∈ Ck(d) by the vector ai ∈ Rd and

let δ(Γa1
1 , . . . ,Γan

n ) = infi,j{dist(Γai
1 ,Γ

aj

j )}. If δ(Γa1
1 , . . . ,Γan

n ) > 0, then there exist
constants Kn, cn, p such that:

|Sn(Γa1
1 , . . . ,Γan

n )| ≤ Kn exp cnδ−p.

FOS0-2 Let

δt(Γ1,Γ2) = inf
{
|t1 − t2|; t1 :

∨
(t1,x1) ∈ Γ1, t2 :

∨
(t2,x2) ∈ Γ2

}

be a temporal distance between Γ1 and Γ2. Then there exist constants KΓi,ε (depend-
ing on Γi and ε > 0) such that:

|Sn(Γ1, . . . ,Γn)| ≤ KΓ1,ε · · · · ·KΓn,ε

providing δt(Γi,Γj) ≥ ε, i, j = 1, . . . , n.

FOS1 For any n ≥ 1, any ensemble {Γ1, . . . ,Γn} ⊂ Ck(d)×n
# and any permutation π ∈ sn (≡

the symmetric group):

Sn(Γ1, . . . ,Γn) = Sn(Γπ(1), . . . ,Γπ(n)).

FOS2 For any Euclidean motion (a,Λ) ∈ T � O(d) (where O(d) stands for the orthogonal
group, T are translations and � means the standard semidirect product) and any
ensemble Γ1, . . . ,Γn ∈ Ck(d) we have:

Sn(Γ1, . . . ,Γn) = Sn

(
Γ(a,Λ)

1 , . . . ,Γ(a,Λ)
n

)
,

where Γ(a,Λ) =
{
Λ−1(x− a) | x ∈ Γ

}
.

FOS3 Reflection Positivity. Let V+(−) be a subset of Ck(d) ≡
⋃

n≥0 Ck(d)×n
# consisting of

the ensembles of families of nonintersecting cycles

(
∅,Γ1,

(
Γ2

1,Γ
2
2

)
, . . . , (Γn

1 , . . . ,Γ
n
n) , . . .

)
that are supported in Rd

+(−) = {(t,x) ∈ Rd | t > 0(< 0)}. Let Θ be a natural
involution from V+ onto V−. Then for any

Γ ≡
(
∅,Γ1,

(
Γ2

1,Γ
2
2

)
, . . . , (Γn

1 , . . . ,Γ
n
n) , . . .

)
∈ V+
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we have

S(ΓΘΓ) =
∑
l,m

clcmSl+m(Γl
1, . . . ,Γ

l
l,ΘΓ

m
1 , . . . ,ΘΓ

m
m) ≥ 0

and for any c = (c0, c1, . . .) (finite sequence of complex numbers).

FOS4 For any n = k + l, k, l > 0 and |a| → ∞

lim
|a|→∞

Sn(Γ1, . . . ,Γk,Γ′a
1, . . . ,Γ

′a
l ) = Sk(Γ1, . . . ,Γk)Sl(Γ′

1, . . . ,Γ′
l).

It was demonstrated (originally for the case of 1-cycles but the arguments are easily extend-
able to the case of k-cycles with 1 ≤ k ≤ d−1) in [23] that certain real time quantum dynamical
system can be reconstructed from any system of Schwinger functions obeying FOS0-FOS4.

Theorem 2.1 Let S be a system of k-cycles Schwinger functions on (Ck(d), τ). Then there
exists: a separable Hilbert space H, a continuous unitary representation of the universal covering
group of the proper orthochronous Poincaré group P↑

+(d) obeying a spectral condition (i.e. the
joint spectrum of the generators of translations is included in the closed forward light cone).
Moreover there exists a unique vector Ω ∈ H(S) which is invariant under the action of P↑

+(d).

In particular, with any time-ordered ensemble of k-cycles {Γ1, . . . ,Γn} and such that
infi,j{dt(Γi,Γj)} > 0 one can associate (in a unique manner) a system of holomorphic func-
tionals W(Γ1,...,Γn)(z1, . . . , zn) in the tubular region

Tn =
{
(z1, . . . , zn) ∈ Cdn | �m(zi − zi−1) ∈ V d

+

}
,

where V d
+ = {x ∈ Rd | x ·x > 0, x0 > 0} (where x ·x = (x0)2−x2 means Minkowski space scalar

product) and such that
(i) restriction of Wn

(Γ1,...,Γn)(z1, . . . , zn) to the “Euclidean” piece of the boundary ∂ETn of Tn
defined as:

∂ETn =
{
z ∈ Cnd | �z0

i = 0,�mzi = 0,�mz0
i < �mz0

i+1

}

is equal to Sn(Γ1, . . . ,Γn), i.e.

Wn
(Γ1,...,Γn)

((
ia0

1,a1

)
, . . . ,

(
ia0

n,an
))

= Sn

(
Γ(

ia0
1,a1)

1 , . . . ,Γ(
ia0

n,an)
n

)
;

(ii) for any collection (Γ1, . . . ,Γn) of k-cycles located in space-like hyperplanes there exists

lim
zl=xl+iηl→0

ηl−ηl−1∈V d
+

Wn
(Γ1,...,Γn)(z1, . . . , zn) =Wn

(Γ1,...,Γn)(x1, . . . , xn)

in the space of ultradistributions of Jaffe type and with the corresponding indicator func-
tion compatible with the singularity behaviour of FOS0–FOS1.

The boundary ultradistributions Wn
(Γ1,...,Γn)(x1, . . . , xn) are called k-cycles Wightman ultra-

distributions corresponding to Schwinger functional S. The problem of formulating conditions
on the system of W of Wightman ultradistributions that lead to k-cycles Schwinger functions S
obeying FOS0-FOS4 still seems to be open.
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3 The scalar models

Let µλ be an infinite-volume limit of the so called P (Φ)2 interaction [13, 24], where λ > 0 refers
to the major coupling constant. The case λ = 0 corresponds to the Nelson free field measure, i.e.
µ0 stands for the centered Gaussian measure on the space of (real valued) tempered distributions
S ′(R2) defined by

µ0(exp(i(ϕ, f))) ≡ exp
{
−1
2
‖f‖2

−1

}
, (1)

where ‖f‖2−1 = (−� + 1)−1(f ⊗ f), S0 ≡ (−� + 1)−1 being a principial Green function of the
operator (−�+1). Let Γ be a Jordan type curve which is assumed to be sufficiently smooth (see
below). We would like first to give a rigorous mathematical meaning to the (formal) expression∮
Γ ϕ. For this goal we use a theory of Lions–Magenes traces of distributions [20] together with
some arguments from [1].

Lemma 3.1 Let Γ be a Jordan type 1-cycle in R2. If the generalized random field µλ on S ′(R2)
obeys the estimate

µλ(ϕ2(f)) ≤ c−1‖f‖2
−1 + cp‖S0 ∗ f‖Lp + c1‖S0 ∗ f‖L1 , (2)

where p ∈ [2,∞) and c−1, cp, c1 are some nonnegative constants then for µλ a.e. ϕ ∈ S ′(R2)
there exists a trace of ϕ on Γ in the Lions–Magenes sense, denoted as ϕ|Γ and moreover ϕ|Γ ∈⋂

α>0H−α(Γ), where H−α(Γ) are negative-order Sobolev spaces on Γ (defined as in [20]).

Using the fact that χΓ(≡ the characteristic function of Γ) belongs to
⋂

α>0H+α(Γ) (as being
a constant function) it follows easily by dualization that for any µ obeying the estimate (2) we
can define 〈χΓ, ϕ〉 and this number is defined to be

∮
Γ ϕ. Proceeding in this way we can define

for any collection {Γ1, . . . ,Γn} a measurable and defined µ a.e. function

L∗
Γ1,...,Γn

(ϕ) ≡
n∏

j=1

e
i
∮
Γj

ϕ
.

This is an almost sure version of the result on the existence of random loop function for models
of Euclidean Quantum Field Theory obeying (2).

However, due to the problem of exceptional sets the above a.e. result is not sufficient and
certain computable Lp version of the random loop functions has to be given.

Proposition 3.2 Let µ be generalized random field on S ′(R2) obeying the following estimate:

|µ(ϕ2(f))| ≤ c‖f‖2
−1 (3)

for any f with compact support. Let (χε)ε>0 be any smooth mollifier i.e. 0 ≤ χε ∈ C∞
0 (R2) for

any ε > 0,
∫
χε(x)d2x = 1 and limε↓0 χε = δ (≡ Dirac delta) in the sense of weak convergence.

Let {Γ1, . . . ,Γn} be any ensemble of nonintersecting loops of Jordan type.
Then for any p ≥ 1 the unique limit

lim
ε↓0

Lµ
ε (Γ1, . . . ,Γn)(ϕ) ≡

n∏
j=1

e
i
∮
Γj

ϕε ≡ Lµ(Γ1, . . . ,Γn)(ϕ)

exists in Lp(dµ) sense.
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Thus, defining the loop Schwinger functions

Sµ(Γ1, . . . ,Γn) =
∫
S′(R2)

Lµ(Γ1, . . . ,Γn)(ϕ)dµ(ϕ)

for any generalized random field µ obeying (3), we can expect that they are good candidates for
nontrivial models obeying the systems of axioms proposed in Section 2.

Theorem 3.3 Let µ be a Euclidean homogeneous generalized random field obeying the esti-
mate (3). Then the corresponding system of loop Schwinger functions Sµ obeys the system of
FOS0–FOS2 axioms with the possible exception of reflection positivity. If moreover µ is a re-
flection positive random field then the corresponding loop Schwinger functions obey the reflection
positivity axiom too.

It is well known that many of the constructed two-dimensional scalar models of Euclidean
Quantum Field Theory [13, 24] obey the estimates like (2) with the values of p as indicated
in (2) and it is known that the following estimates are valid (see e.g. Lemma 2.1 in [1]):

c−1‖f‖2
−1 + cp‖S0 ∗ f‖Lp + c1‖S0 ∗ f‖L1 ≤ c‖f‖2

−1

for any f with compact support and some c > 0.
A similar theorem is valid for the case of renormalized φ4

3 theory [24] and 2-cycles of Jordan
type in R3. The proof being similar to that above.

However, the weak point of these examples is that the corresponding quantum systems re-
produce the basic quantum field theoretical structures.

Theorem 3.4 Let (cHµλ ; cΩµλ ; cUµλ
t ) be a quantum dynamical system obtained from the P (ϕ)2

loop Schwinger functions and let (Hµλ ; Ωλ;Uµλ
t ) be the corresponding quantum dynamical system

obtained from the point (field theoretical) Schwinger functions [13, 24]. Then there exists a
unitary map J :

J : cHµ
λ → Hµ

λ

such that J : cΩµλ → Ωλ and J−1Uλ
t J = cUλ

t .

For a complete proof see [12].

4 Regular, covariant, generalized random fields

Let (A0,A) be a generalized random field indexed by S(Rd) ⊗Rd, where d ≥ 2 and A stands
for the space components of A according to the decomposition

Rd =
{
(x0,x) | x0 ∈ R, x ∈ Rd−1

}
.

Let us denote by µ the corresponding law of A, i.e. the probability, Borel, cylindric measure
on S ′(Rd) ⊗ Rd. Here S ′(Rd) stands for the space of tempered distributions. A field A is
called vector field iff for any pair (a,Λ), where a ∈ Rd, Λ ∈ SO(d) the following equality

(A, f(a,Λ)) ∼= (A, f) in law holds, where f(a,Λ)(x) =
d−1∑
j=0

Λj
ifj(Λ

−1(x − a)). A vector field A is

called reflection invariant iff (A, rf) ∼= (A, f) (in law), where (rf)0(x0,x) = −f0(−x0,x) and
(rf)i(x0,x) = f i(−x0,x) for i = 1, . . . , d−1. Let us recall that a vector field A which is Markoff
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and reflection invariant is reflection positive. The main question addressed in this section is now
to find sufficient conditions on the field A that enable us to define a family of loop Schwinger
functions obeying the system of axioms FOS0–FOS4. Let ω ∈ C∞

0 (Rd) be a non-negative
function with support in the unit ball {x : ‖x‖ ≤ 1} and such that

∫
ω(x)dx = 1. Then the we

define ωN (x) = Ndω(Nx) and we note that lim
N→∞

ωN (x) = δ(x). For any loop Γ, parametrized

by γ(t), t ∈ [0, 1], we define the following family of test functions from C∞
0 (Rd)⊗Rd:

∆N
Γ,k(x) =

∮
Γ
ωN (x− y)dyk =

∫ 1

0
ωN (γ(t)− x)γ̇k(t)dt.

For a given ensemble {Γ1, . . . ,Γn} of loops we define the sequence of functionals

NL(Γ1, . . . ,Γn)(A) =
n∏
l=1

exp{i〈∆N
Γl
, A〉)}

and the corresponding Schwinger functions

NS(Γ1, . . . ,Γn) = ENL(Γ1, . . . ,Γn)(A).

Theorem 4.1 Let A be a vector, reflection positive generalized random field on the space S ′(Rd)
⊗Rd, d ≥ 2 and let {Gij(x− y)} be a two-point Schwinger function of A. Assume that for any
loop Γ ∈ Cg1(Rd) the following integrals∮

Γ

∮
Γ
|Gii(x− y)|dxidyi (4)

and for all i = 0, . . . , d − 1 do exist. Then, there exists a system of loop Schwinger functions
{Sn} on

⋃
n≥0

Cg1(Rd)×n obeying the system of axioms FOS0–FOS3, where Cg1 means globally

C1-curves.

In particular, the assumptions of Theorem 4.1 are valid for the 2-dimensional versions of
Abelian, free QED. In higher dimensions we should expect some infinite renormalizations
connected to the divergence of the integrals (4) see e.g. [18, 22]. A suitable version of Theorem 4.1
to handle this case can also be formulated [12].

Proof of Theorem 4.1. Using

E
∣∣∣NL(Γ)(A)− N ′L(Γ)(A)

∣∣∣ ≤ E ∣∣∣〈∆N
Γ −∆N ′

Γ , A〉
∣∣∣ ≤ {E ∣∣∣〈∆N

Γ −∆N ′
Γ , A〉

∣∣∣2}
1
2

,

but

E
∣∣∣〈∆N

Γ −∆N ′
Γ , A〉

∣∣∣2 =∑
i,j

Gij

(
∆N

Γ,i −∆N ′
Γ,i,∆

N
Γ,j −∆N ′

Γ,j

)
,

where Gij(x, y) = EAi(x)Aj(y). We see that the problem of L1(dµ)-convergence of functionals
NL(Γ) is reduced to the question of existence of lim

N→∞
Gii

(
∆N

Γ,i,∆
N
Γ,i

)
. For this

∣∣∣∣Gij

((
∆N

Γ −∆N ′
Γ

)
i
,
(
∆N

Γ −∆N ′
Γ

)
j

)∣∣∣∣ =
∣∣∣∣EAi

(
∆N

Γ −∆N ′
Γ

)
i
Aj

(
∆N

Γ −∆N ′
Γ

)
j

∣∣∣∣
≤
{
E〈Ai,

(
∆N

Γ,i −∆N ′
Γ,i

)
〉2
} 1

2
{
E〈Aj ,

(
∆N

Γ,j −∆N ′
Γ,j

)
〉2
} 1

2
.
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Thus, we need to prove that lim
N→∞

Gii

(
∆N

Γ,i,∆
N
Γi

)
exists for all i and then

lim
N→∞

Gii

(
∆N

Γ,i,∆
N
Γi

)
= lim

N→∞

∫
R4

dx

∫
R4

dyGii(x− y)

∫ ∫
[0,1]×2

ωN (γ(t1)− x)γ̇i(t1)ωN (γ(t2)− y)γ̇i(t2)dt1dt2

formally is equal to:∮
Γ

∮
Γ
Gii(x− y)dxidyi =

∫ 1

0
dt1

∫ 1

0
dt2Gii(γ(t1)− γ(t2))γ̇i(t1)γ̇i(t2)

so we need to justify only the change of limit operation lim
N→∞

with integral but this is allowed

by the Lebesgue dominated convergence theorem.

5 Some solvable interacting models

A large class of covariant, Markovian generalized random fields can be obtained as a solution of
systems of covariant partial differential stochastic equations [7, 9, 10, 11].

For this let (τ, τ ′) be a pair of real representations of the special orthogonal transformation
group SO(d), where d is the dimension of the Euclidean space-time. We assume that dimension
of τ (resp. τ ′) is equal to nτ (resp. nτ ′) and we denote the natural lifting of τ to the space
S(Rd) ⊗Rnτ (resp. S(Rd) ⊗Rnτ ′ ) as Tτ (resp. Tτ ′). A first order differential operator D =

3∑
µ=0

Bµ∂µ+M, where Bµ,M ∈Hom(Rnτ ,Rnτ ′ ) is called (τ, τ ′)-covariant operator iff the following

diagram

S ′(Rd)⊗Rdim τ D−→ S ′(Rd)⊗Rdim τ ′

Tτ

� �Tτ ′
S ′(Rd)⊗Rdim τ D−→ S ′(Rd)⊗Rdim τ ′

(5)

commutes. The complete list of such operators for the case d = 2, 3, 4 is well known for any pair
(τ, τ ′). See, e.g. [8, 19, 11, 21].

Let α = (α0, . . . , αd−1) be any multiindex of length d, i.e. αµ ∈ N ∩ {0}, µ = 0, . . . , d − 1
and let |α| = α0 + · · · + αd−1. We denote by IK(d) (for a given integer K > 0) the set of all
multiidices α as above and such that |α| ≤ K and let CK(d) be a cardinality of the set IK(d).
For a given α, let Dα = ∂α0+···+αd−1

∂x
α0
0 ···∂xαd−1

d−1

.

Let us consider the operator D defined as

(Djl
α ) ≡

∑
β∈IK(d)

Ejl
αβD

β (6)

for α, β ∈ IK(d), j, l = 1, . . . , N , where Ejl
αβ are some real numbers. The endomorphism E of

the space RNCK(d) corresponding to Ejl
αβ in the canonical basis of RNCK(d) will be useful in

the following. For f ∈ S(Rd)⊗RN the operator D corresponding to (6) is given by (D)jα(x) =∑
l

(D)jlαf l(x), so D maps S(Rd) ⊗ RN into S(Rd) ⊗ RNCK(d). We fix a pair (DG,DP ) of

operators defined as above.
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A noise corresponding to the pair (DG,DP ) (a general noise of order K) is defined as a
generalized random field ν on the space S(Rd) ⊗RN the characteristic functional Γν of which
is given by the product:

Γν(f) = ΠG
ν (f)Π

P
ν (f), (7)

where the characteristic functional (of Gaussian part of ν) ΠG
ν is defined

ΠG
ν (f) = exp

{
−1
2

∫
Rd

〈DGf,ADGf〉(x)dx
}
, (8)

where A ∈End(RNCK(d)), A ≥ 0, and the characteristic functional (of the Poisson part of ν)
ΠP
ν is explicitly displayed as:

ΠP
ν (f) = exp

{
−
∫
Rd

ΨP (DP f(x))dx
}
, (9)

where

ΨP (y) = −
∫
RNCK \{0}

[
ei〈Λ,y〉 − 1− i〈Λ, y〉

]
dL(Λ) (10)

or

ΨP (y) = −
∫
RNCK \{0}

[
ei〈Λ,y〉 − 1

]
dL(Λ) (11)

for some Borel measure dL on the space RNCK\{0} with all finite moments.
It is easy to observe that a given noise ν on the space S ′(Rd) ⊗Rnτ is Tτ -covariant iff the

following covariance conditions are fulfilled(
τT ⊗ γ

)
(g)B

(
τ ⊗ γT

)
(g) = B, (12)

dL(ET
P )

−1(τ ⊗ γ)(g)(Λ) = dL(ET
P )

−1(Λ), (13)

where B ≡ ET
GAEG, dL(ET

P )
−1 is the transport of the Levy measure dL by the endomorphism

ET
P and finally γ is an orthogonal representation of the group SO(d) in the space RCK(d) defined

explicitly as:

γαβ(g) =
∑
Πµν

d−1∏
µ,ν=1

g
Πµν
µν , (14)

where the sum
∑
Πµν

runs over all matrices (Πµν)d−1
µ,ν=0 built from the elements of {1, . . . ,K} and

chosen in such a way that αµ =
d−1∑
ν=0

Πνµ, βµ =
d−1∑
ν=0

Πµν for α, β ∈ IK(d).

The interesting class of non-Gaussian covariant generalized (Markovian) in a suitable sense,
see e.g. [17, 15], random fields is obtained as a solution of covariant SPDE’s of the type

Dϕ = η, (15)

where D is some (τ, τ ′)-covariant operator which obeys certain additional conditions for the
existence of not too singular Green function (from the infrared divergencies point of view, see
[11, 21] for details), η is a noise of order K which is assumed to be Tτ ′-covariant noise.
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It was proven in [9, 10, 11, 21] that under these conditions the solutions of the equation (15)
do exist in certain sense and give rise to a new Tτ -covariant, generalized Markovian random
fields, the moments of which can be analytically continued to Minkowski space-time yielding a
system of covariant Wightman distributions obeying the spectral conditions (in the weak form)
and the quantum field theoretical locality principle as well (see [7, 11] for details).

We would like to address here the question whether with solutions of (15) obtained in [9, 10,
11] one can associate systems of k-loop Schwinger functions onRd that might be good candidates
for explicit models obeying FOS0-FOS2. The important question on the existence of the
reflection positive solutions of equations of the type (15) being still unsolved in general, presses
the necessity to develop a weaker scheme for obtaining results on the real-time dynamics of
extended objects from the corresponding Euclidean data of the spirit as in the general indefinite
metric quantum field theory [16].

The following localization property of the noise ν is crucial for the existence of the almost
sure version of the corresponding k-cycles Schwinger functionals.

Proposition 5.1 Let Γ(Rd) be the space of locally finite configurations of the space Rd and let
% be a Poisson noise with the characteristics (DP , Ep). Then, the set

η ∈ D′(Rd)⊗RN | η =
N∑
k=1

∑
α∈IK(d)

∞∑
δk,α=1

(−1)|α|Dαδxδk,α
⊗
(
ET
PΛδk,α

)k
α


 . (16)

As a corollary we obtain

Theorem 5.2 Let ϕ be a solution of (15) in the sense explained in [7, 9, 11] and let us assume
that the underlying Green function GD of the operator DT has a decay at least as 1

|x|d+ε if
|x| → ∞ and such that τ contains the appropriate subrepresentation corresponding to k-skew
symmetric tensor. Then, for any fixed configuration (Γ1, . . . ,Γn) of k-cycles on Rd, there exists
a measureable functional defined:

S ′(Rd)⊗Rnτ % ϕ −→
n∏
l=1

ei
∮
Γl

ϕ|
τ(k) , (17)

where φτ (k) is the corresponding stochastic differential k-form which is perfectly well defined for
µϕ-a.e. ϕ ∈ S ′(Rd)⊗Rnτ .

By simple argumentation, the existence of the unique measurable, defined µϕ-a.e. maps

S ′(Rd)⊗Rnτ × Ck(d)×n % (ϕ, (Γ1, . . . ,Γn)) −→
n∏
l=1

ei
∮
Γl

ϕ|
τ(k)

can be proven.
The computable, i.e. L1-version of the above result is provided by the following theorem.

Theorem 5.3 Let D, τ (k) be as in the previous theorem. We impose the following estimates on
the behaviour of the Green function G|τ (k) and its first deriviatives:

|G|τ (k) |(x) ≤
c

|x|p for 0 < |x| < 1 and 0 < p < 4,

|G|τ (k) |(x) ≤
c

|x|p for 1 < |x| and 0 < p,

∣∣∣∣ ∂

∂xµ
G

∣∣∣∣
τ (k)

|(x) ≤ d

|x|q for 1 < |x|, µ = 0, 1, 2, 3 and 0 < q
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and the estimates on the behaviour of the characteristic function ψ (negative defined function,
see e.g. [5]) of the noise η.

|ψ(y)| ≤M |y|1+η for |y| < 1 and (−1 + 4
q
, 1].

In the case of k-cycles, if we demand the estimate

|ψ(y)| ≤M |y|1+η for 1 < |y| with η ∈
(
−1,−1 + 4− k

p

)
∩ (−1, 1]

then for any collection
{
Γ(k)

1 , . . . ,Γ(k)
n

}
of k-cycles there exists a Cauchy sequence of functionals{

N Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)}+∞
N=1

⊂ Lp(S ′(R4)⊗Rnτ , µϕ) for all p ∈ [1,+∞).

Let Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
denote the limit of that sequence treated as an element in the space

L1(S ′(R4)⊗Rnτ , µϕ) (p = 1) and let us define

Sn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
=
∫
S′(R4)⊗Rnτ

Ŝn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
(T )µϕ(T ).

If, in addition, the condition η ∈
(
−1 + 4

p , 1
]
is fulfilled then

Sn
(
Γ(k)

1 , . . . ,Γ(k)
n

)
= exp

{
−
∫
R4

ψ

(
n∑
l=1

G
Γ

(k)
l

|τ (k)(x)

)
d4x

}
,

where we introduced the auxiliary function

GΓ(k) |τ (k)(x) =
{ ∫

Γ(k) G|τ (k)(Ω− x)dΩ for x 	∈ Γ(k)

0 for x ∈ Γ(k)

with integration in the sense of k-forms.

The proof of the above results follows the chain of arguments as presented in our earlier
paper [11], where the case of the Wilson loops is discussed. All the details can be found in [21].

Theorem 5.4 Let D, η, τ (k) be as in Theorem 5.3. Then the correspondinig k-loop Schwinger
functionals:

S(Γ1, . . . ,Γn) =
∫
S′(Rd)⊗Rnτ

n∏
l=1

ei
∮
Γl

ϕ|
τ(k)dµ(ϕ) (18)

obey the axioms FOS0–FOS2 and also FOS4.

The important problem to reconstruct the corresponding quantum, real-time dynamics from
the data contained in the k-loop Schwinger functionals and the existence of the corresponding
Wightman functions is left to another publication [12].
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