
Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 68–72.

New Evolution Completely Integrable System
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We present a detailed algebraic investigation of the evolution system ut = u3 + u1 v1 +
δ u1 + u v2/2, vt = u2 that was obtained in the recent paper by two of the authors. We
present the zero curvature representation, the infinite sequences of the conserved densities
and Lie–Bäcklund symmetries for the system under consideration. We also found the Noether
operator, the Hamiltonian form, and the inverse Noether operator. The one-soliton solution
is also obtained.

In our previous paper [1] we presented the classification of evolution systems satisfying the
necessary conditions of integrability. This classification was obtained with the help of the con-
served canonical densities approach. Here we present more detailed investigation of one of that
systems

ut = u3 + u1 v1 − δ u1 +
1
2
u v2, vt = u2. (1)

Here ui = (∂iu/∂xi), ut = (∂u/∂t). We found the zero curvature representation, the infinite
sequences of the conserved densities and Lie–Bäcklund symmetries for system (1). We also found
the Noether operator Θ and the inverse Noether operator J . The operator Θ is implectic and
provides the Hamiltonian form of system (1) and the product ΘJ = Λ is the recursion operator
for system (1). The one-soliton solution was also obtained.

1. To find the linear system realizing the zero curvature representation

Ψx = U Ψ, Ψt = V Ψ (2)

we assumed that U = U(u0, v0). Then we solved the compatibility equation for system (2)

Ut − Vx + [U, V ] = 0, (3)

where [U, V ] is the commutator, and obtained the matrices U and V in the following form

U = A1 +A2 u+A3 v +A4 v
2,

V = A2 u2 + 1/2A2 u v1 +A5 u1 + 1/2 v A2 u1 + 1/8 v2A2 u

+1/2u2A7 + uA6 + 1/2u v A5 − δ uA2 +A8,

(4)

where Ai are constant unknown matrices satisfying the following commutation relations:

[A4, A7 ] = 0, [A3, A5 ] = 0, [A2, A8 ] + [A1, A6 ] = δ A5, [A1, A8 ] = 0,
[A2, A7 ] = 0, [A3, A7 ] = −4A4 −A7, [A3, A8 ] = 0, [A4, A8 ] = 0,
[A4, A6 ] = −1/8A5, [A3, A6 ] = −1/2A6 + δ/2A2, [A1, A2 ] = A5,

[A1, A7 ] + 2 [A2, A6 ] = −2A3, [A2, A4 ] = 0, [A1, A5 ] = A6,

[A2, A5 ] = A7, [A2, A3 ] = −1/2A2, [A3, A5 ] = 0, [A4, A5 ] = −1/8A2.

This table of commutators is obviously not closed, and the first problem is to obtain all com-
mutators [Ai, Aj ]. Following ideas of Wahlquist and Estabrook [2] we consider the unknown
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commutators as new elements of Lie algebra. For example, we set [A1, A6 ] = A9 and so on.
Then using the Jacobi identity we found some commutation relations for the new elements Ai.
But in general case this process is infinite. To make it finite we assume a linear dependence
between the elements Ai. It is important that system (1) satisfies sufficiently many conditions
of the integrability and representation (3) exists. Therefore if one introduces sufficiently many
new elements Ai then the linear constraint provides the closed nontrivial algebra. To close the
presented algebra we were forced to consider 19-dimensional Lie algebra. But when we obtained
the complete table of the commutators we found a 4-dimensional ideal I. We set the elements
of the ideal to be zeros and obtained the 15-dimensional Lie algebra. This new algebra is iso-
morphic to the factor algebra with respect to ideal I and is simple. We cannot write here the
final table of the commutators because it consists of 105 equations.

To construct the representation of the obtained simple algebra we found the Cartan–Weyl
basis and the Dynkin diagram for it. It was the diagram of sl(4) algebra. Hence the minimal
dimension of a representation of the algebra is 4. The final result takes the following form

U =




−v
2

1
2

0 0

δ − v2

4
0 0

1
2

2u
3

0 0 0

4µ δ − v2

4
−2u

v

2



, V =




0 0 −u
2

0

u2

3
0 −u1 − u v

2
0

f

3
−u1

3
− u v

6
−µ u

6

0
u2

3
−f 0




, (5)

where µ is the spectral parameter and

f = 2u2 + u v1 + v u1 + 1/4 v2 u− δ u.

2. To check whether the obtained zero curvature representation is nontrivial we constructed
from the matrix U the sequence of the conserved densities following to J.M. Alberty, T. Koikawa
and R. Sasaki’s algorithm [3]. Let c be a constant vector and (c, ψ) be the Euclidean scalar
product. Setting ϕ = ψ/(c, ψ) one can obtain from system (2) the following nonlinear system

ϕx = U ϕ− ϕ (cUϕ), ϕt = V ϕ− ϕ (c V ϕ). (6)

It is easy to check that the following continuity equation

(cUϕ)t = (c V ϕ)x

follows from equation (3). Hence the function

ρ = (cUϕ) (7)

is the generating function for conserved densities of system (1). Setting

c = (0, 0, 1, 0),

ϕ1 =
∞∑
i=1

fi k
i, ϕ2 =

∞∑
i=1

gi k
i, ϕ4 =

∞∑
i=1

hi k
i, k = 1/(4µ),
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we obtained from (6) the following recursion formulas

gi = 2Dfi + v fi +
4
3
u

i−1∑
j=1

fj fi−j ,

hi = 2Dgi +
(
1
2
v2 − 2 δ

)
fi +

4
3
u

i−1∑
j=1

fj gi−j ,

fi+1 = Dhi +
(
1
4
v2 − δ

)
gi − 1

2
v hi +

2
3
u

i−1∑
j=1

fj hi−j ,

(8)

where D = ∂/∂x, f1 = 2u and i > 0. Formula (7) is reduced now to the form

ρ =
2
3

∞∑
i=1

ρi k
i, ρi = u fi, (9)

and provides an infinite sequence of conserved densities ρi. It is obvious that the conserved
densities provided by equations (8) are local. It can be easily verified that some first even
densities are trivial, but the odd densities are nontrivial. Hence the presented zero curvature
representation is nontrivial. The first two nontrivial densities take the following form

ρ1 = u2,

ρ3 = u2
3 + u3 (u v2 + 2u1 v1) + 2δ u2

2 +
1
4
u2 v2

2

+uu2 v1

(
δ − 1

2
v1

)
+

(
δ2 +

7
3
u2 +

1
2
v2
1 − δ v1

)
u2

1 +
1
3
u4 (δ − v1).

The subsequent densities are very cumbersome and we do not give them here. Let us note
that system (1) possesses other conserved densities, that are not expressed by formula (9). For
example, the function

ρ =
1
4
v2

2 − δ v12 +
1
3
v1

3 + 3u1
2 − 2 v1 u2

is a conserved density as well.
3. Let us denote by K the vector field that determines system (1), that is, K = {u3+u1 v1−

δ u1 + 1/2u v2, u2}. And let K ′ be the Fréchet derivative of K and K ′+ be the adjoint of the
operator K ′. It is well known (see [4, 5] or [6], for instance) that the equation

(Dt −K ′)σ = 0,

is the determining equation for the Lie–Bäcklund symmetries σ of system (1). And the gradients
of conserved densities (γα = Eα ρ ≡ {δ ρ/δ u, δ ρ/δ v}) satisfy the equation

(Dt +K ′+) γ = 0.

In the papers [7] and [8] two following operators were introduced. An operator Θ satisfying the
equation

(Dt −K ′)Θ = Θ(Dt +K ′+), (10)
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maps the set of the gradients of the conserved densities Γ into the set of the Lie–Bäcklund
symmetries Σ. It is called the Noether operator. And an operator J satisfying the equation

(Dt +K ′+)J = J (Dt −K ′), (11)

provides the inverse map Σ → Γ. It is called the inverse Noether operator. An elementary
computation shows that the operator Λ = ΘJ is the recursion one. That is, Λ solves the
equation

[Dt −K ′, Λ ] = 0. (12)

We found the operators Θ and J for system (1) in the following form:

Θ =



D3 + (v1 + δ)D +

1
2
v2 −4

3
u− 2

3
u1D

−1

4
3
u− 2

3
D−1 u1 −4

3
D − 2

3
(D−1 v1 + v1D−1) +

4
3
δ D−1


 ,

J =




36D3 + wD + 18 v2 + 32uD−1 u 20uD2 + 30u1D + 8uw + 12u2

−20uD2 − 10u1D − 8uw − 2u2 D5 + 5wD3 +
15
2
v2D

2 + pD + q


 ,

where p = 4w2 + 9/2 v3 − 2u2, q = 4 v2w+ v4 − 8uu1, w = v1 − δ. It may be checked that the
operator Θ is implectic . Hence it yields the Hamiltonian form of system (1):

(
ut

vt

)
= ΘEH, H =

1
2
u2 =

1
2
ρ1,

where E is the Euler operator. The Noether operator Θ generates an infinite sequence of Lie–
Bäcklund symmetries

σn = ΘE ρn, n ≥ 0, ρ0 = 1; σ0 =
(
c1 u1

c1 v1 + c2

)
, σ1 = K, . . .

These symmetries can be constructed by means of the recursion operator Λ. One can easily
see that the differential part of Λ has order 6. Therefore Λσ0 is the 7th-order symmetry. But
system (1) possesses the lower order symmetries σ0, σ1 and σ2:

σu
2 = u5 + 5/3u3 v1 + 5/2u2 v2 + 5/9u0 v4 + 35/18u1 v3 + 5/9 v1 u0 v2

+5/18u0 δ v2 + 5/9u1 v
2
1 + 5/9u1 δ v1 − 5/9 δ2 u1 + 10/9u2

0 u1,

σv
2 = −1/9 v5 + 20/9u0 u2 + 5/9u2

1 − 5/9 v1 v3 + 5/9 δ v3 + 10/9 v1 u2
0

+5/9u2
0 δ − 5/12 v2

2 + 5/9 v2
1 δ − 5/27 v3

1.

Hence, we have the triple sequence of symmetries: σ3n = Λn σ0, σ3n+1 = ΛnK, σ3n+2 = Λnσ2.
So, system (1) possesses the nontrivial zero curvature representation and is exactly solvable.

We present the one-soliton solution of system (1):

u =
k2

√
3

cosh(k x+ k3 t)
, v = 3 k tanh(k x+ k3 t) + δ x.

Here are the plots of this solution for t = 0, k = 2 and two values of δ:
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δ = 0 δ = − 1
2

v(x, 0)

u(x, 0)

v(x, 0)

u(x, 0)

x x

Fig. 1, 2. Soliton solution of system (1).

It is obvious that the u-curve has the typical soliton form and the v-curve has the kink form.
The plots of the function v have two asymptotics v = δ x± 3 k.

In conclusion we note that system (1) can be reduced to the following single equation

vtt =
∂

∂x

[
vtxx − 3

4
v2
tx

vt
+ vt vx + δ vt

]

that is integrable of course.
All calculations were performed with the help of an IBM computer and the JET package

presented in the separate paper.

References
[1] Kulemin I.V. and Meshkov A.G., To the classification of the integrable systems in 1 + 1 dimensions, Proc. of

Second International Conference “Symmetry in Nonlinear Mathematical Physics”, 1997, V.1, 115–121.

[2] Wahlquist H.D. and Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math. Phys.,
1975, V.16, 1–7.

[3] Alberty J.M., Koikawa T. and Sasaki R., Canonical structure of soliton equations, Physica D, 1982, V.5, N 1,
43–74.

[4] Ibragimov N.H., Transformation Groups in Mathematical Physics, Moscow, Nauka, 1983.

[5] Olver P.J., Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986.

[6] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N.H. Ibragimov, London, Tokyo, CRC
Press, 1994, 1995, etc.

[7] Fokas A.S. and Fuchssteiner B., Lett. Nuovo Cimento, 1980, V.28, 299.

[8] Fuchssteiner B. and Fokas A.S., Physica D, 1981, V.4, 47.


