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Exact Solutions of the Inhomogeneous Problems

for Polyparabolic Operator
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Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine

The theorem establishing the correctness of the inhomogeneous problem for polyparabolic
equation with righ-hand side belonging to set of bounded functions in Rn is proved. Exact
formulas for constants of evaluations for potentials with the these densities are represented;
exact solutions for particular cases are obtained.

We consider inhomogeneous problem for a linear partial differential equation

Tm+1u ≡
m+1∑
j=0

(−1)j
(
m+ 1
j

)
∂m−j+1

∂tm−j+1
∇2ju(t,x) = f(t,x), (1)

where t ∈ R1
+, x ∈ Rn (n ∈ N), ∇2 is the Laplace operator, f(t,x) ∈ L1

loc(R
1+n),

(
m+1

j

)
are

binomial coefficients.
In the case m = 0 this equation is transformed to the classical heat transfer equation. Let us

introduce an arbitrary exact solution for equation Tm+1u = 0, which is defined at a domain of
space Rn+1, the polycaloric function [1, 2], which takes the form

u(t,x) = u0(t,x) + tu1(t,x) + · · ·+ tmum(t,x), (2)

where uk(t,x) are solutions of the equation Tu = 0. We find by induction

Tm+1(tku) =
m+1∑
j=0

j!
(
m+ 1
j

)(
k

j

)
tk−jTm−j+1u. (3)

The fundamental solution for operator Tm+1 from space D′(R1+n) is [3]

Em,n(t,x) =
θ(t)tm−n/2

(2
√
π)nm!

e−
|x|2
4t . (4)

It is positive, vanishing for t < 0, infinitely differentiable for (t,x) 	= 0 and has additional
properties∫

Rn

Em,n(t,x) dnx =
tm

m!
, (5)

∂k

∂tk
Em,n(+0,x) = 0 (0 ≤ k ≤ m− 1),

∂m

∂tm
Em,n(+0,x) = 1. (6)

From Em,n ∈ L1
loc(R

1+n) the solution of the problem (1) can be written as convolution [4]

u(t,x) = Em,n(t,x) ∗ f(t,x), (7)
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which define a polycaloric potential with density f(t,x). Then u ∈ L1
loc(R

1+n), if

h(t,x) = [Em,n(t,x) ∗ |f(t,x)|] ∈ L1
loc(R

1+n). (8)

The following theorem gives one of density classes with convolution (7). For simplification we
do not write further indices m and n.

Let us denote a class of functions vanishing for t < 0 and bounded in the sphere 0 ≤ t ≤ t0:
|f | ≤ Af = sup |f(τ, ξ)| (0 ≤ τ ≤ t , ξ ∈ Rn) as K0.

Theorem. If f(t,x) ∈ K0, a polycaloric potential U(t,x) of m-th order is in K0, can be written
in the form (7) and satisfies the following estimates:

|U | ≤ Af
tm+1

(m+ 1)!
, (9)

∣∣∣∣∂kU

∂tk

∣∣∣∣ ≤ Afa
(k)
m,nt

m−k+1, (10)

∣∣∇2pU
∣∣ ≤ Afb

(p)
m,nt

m−p+1, (11)

Here a(k)
m,n and b(p)

m,n are positive constants, and initial conditions are

U(+0,x) = 0, (12)

∂kU

∂tk

∣∣∣∣∣
t=+0

= 0 (1 ≤ k ≤ m), ∇2pU |t=+0 = 0 (1 ≤ p ≤ m), (13)

T sU(+0,x) = 0 (1 ≤ s ≤ m). (14)

Proof. Under Fubini theorem from (5) we get

h(t,x) ≤ Af
tm+1

(m+ 1)!
.

As |U | ≤ h, since U = 0 for t < 0, estimate (9) is satisfied and thus U ∈ K0.
Using the formula of convolution differentation with respect to t and property (6), for t > 0

we come to

∂kU

∂tk
=

t∫
0

∫
Rn

f(τ, ξ)
∂k

∂tk
E(t− τ,x − ξ) dnξ dτ.

Then ∣∣∣∣∂kU

∂tk

∣∣∣∣ ≤ Af

∫
Rn

∂k−1

∂tk−1
E(t, ξ) dnξ. (15)

Further

∂k−1E
∂tk−1

=
1

(2
√
π)nm!

k−1∑
l=0

(
k − 1
l

)
dk−l−1tm−n/2

dtk−l−1

∂l

∂tl
e−

|ξ|2
4t ,
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and

dk−l−1tm−n/2

dtk−l−1
=

Γ
(
m− n

2 + 1
)

Γ
(
m− n

2 − k + l + 2
) tm−n

2
−k+l−1,

∂l

∂tl
e−

|ξ|2
4t = t−le−

|ξ|2
4t

l−1∑
j=0

(−1)j(l − 1) . . . (l − j)
(
l

j

) ( |ξ|2
4t

)l−j

,

follows term in (15)

∫
Rn

∂k−1

∂tk−1
E(t, ξ) dnξ =

tm−n
2
+k+1

(2
√
π)nm!

k−1∑
l=0

(
k − 1
l

)
Γ

(
m− n

2 + 1
)

Γ
(
m− n

2 − k + l + 2
)

×
l−1∑
j=0

(−1)j(l − 1)(l − 2) . . . (l − j)
(
l

j

) ∫
Rn

( |ξ|2
4t

)l−j

e−
|ξ|2
4t dnξ.

Here Γ(z) is the Gamma function [5].
But inserting∫

Rn

|ξ|2l−2je−
|ξ|2
4t dnξ

=
2π

n
2

Γ
(

n
2

) ∞∫
0

ρ2(l−j)+n−1e−
ρ2

4t dρ =
(2
√
π)n

Γ
(

n
2

) 22l−2jΓ
(
l − j +

n

2

)
tl−j+n

2 ,

(16)

into (15) yields estimate (10), where a constant a(k)
m,n depends on the order of polycaloric poten-

tial, order of its derivative with respect to time, dimension of space and is calculated exactly:

a(k)
m,n =

Γ
(
m− n

2 + 1
)

m!Γ
(

n
2

) k−1∑
l=1

l−1∑
j=0

(
k−1

l

) ((
l
j

))2
Γ

(
l − j + n

2

)
(l − j)j!

lΓ
(
m− n

2 − k + l + 2
) .

Following the usual procedure for finding estimates let us consider operator

∇2pU = ∇2p[E(t,x) ∗ f(t,x)] = f(t,x) ∗ ∇2pE(t,x).
Since f ∈ K0, then

∣∣∇2pU
∣∣ ≤ Af

t∫
0

∫
Rn

∇2pE(τ,x) dnx dτ =
Af

(2
√
π)nm!

t∫
0

τm−n/2

∫
Rn

∇2pe−
|x|2
4τ dnx dτ. (17)

We can easily prove that

∇2pe−
|x|2
4τ = 2−2pe−

|x|2
4τ

p∑
j=0

(−1)j(2j)!
(
2p
2j

)
j! τ2p−j

|x|2p−2j ,

hence in (17)
∫
Rn

∇2pe−
|x|2
4τ dnx = 2−2p

p∑
j=0

(−1)j(2j)!
(
2p
2j

)
j! τ2p−j

∫
Rn

|x|2p−2je−
|x|2
4τ dnx. (18)
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Here the integral in the right hand side exists and is calculated according to the formula (16).
Inserting the result of calculation into inequality (17), we obtain final result (11). Here a constant
b
(p)
m,n can be written in the form:

b(p)
m,n =

(2p)!
(m− p+ 1)m! Γ

(
n
2

) p∑
j=0

Γ
(
p− j + n

2

)
22j(2p− 2j)!

.

So we proved the estimates (9)–(11). Hence the polycaloric potential satisfies conditions (12)
and (13), and the initial condition (14) follows from previous formula (3).

From Theorem we can apply the results for equation (1) with inhomogeneous initial conditions
corresponding conditions (14):

T ku(+0,x) = ϕk(x) (1 ≤ k ≤ m).

We look for exact solutions of problem (1) in the form corresponding (7):

u(t,x) =
1

(2
√
π)nm!

t∫
0

τm−n/2e−
|x|2
4τ dτ

∫
Rn

f(t− τ, ξ)e−
|ξ|2−2(x·ξ)

4τ dnξ. (19)

Namely, we consider cases of the general formula (19). If f = f(t, |x|), then for n ≥ 2 from (19)
we obtain

u(t, r) =
1

2n−1
√
π Γ

(
n−1

2

)
t∫

0

τm−n/2e−
|r|2
4τ dτ

×
∞∫
0

ρn−1e−
ρ2

4τ f(t− τ, ρ)dρ

π∫
0

e
rρ
2τ

cos ϕ sinn−2 ϕdϕ,

where r2 = x2
1 + x2

2 + · · ·+ x2
n. Since for ν > 0

π∫
0

e±z cos ϕ sin2ν ϕdϕ =
√
π Γ

(
ν +

1
2

) (
2
z

)ν

Iν(z),

then for n ≥ 2

u(t, r) =
1

2r
n
2
−1m!

t∫
0

τm−1e−
|r|2
4τ dτ

∞∫
0

ρ
n
2 e−

ρ2

4τ In
2
−1

(rρ
2τ

)
f(t− τ, ρ) dρ. (20)

Here Iν(z) is the Bessel function [5].
The degenerate case n = 1 has the following solution

u(t,x) =
1

2
√
πm!

t∫
0

τm− 1
2 e−

x2

4τ dτ

∞∫
−∞

e−
ξ2−2xξ

4τ f(t− τ, ξ) dξ. (21)

If the dimension of space is odd, then the integral with respect to ρ in (16) yields the integral
from elementary functions. Namely, since for n = 3

I 1
2
(z) =

√
2
πz

shz,
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solution (20) is

u(t, r) =
1√
πm! r

t∫
0

τm− 1
2 e−

r2

4τ dτ

∞∫
0

ρ2e−
ρ2

4τ sh
(rρ
2τ

)
f(t− τ, ρ) dρ. (22)

Separately, we consider the case when f(t,x) is a finite function in Rn. If

f(t,x) = Aω(t)F (|x|) θ(R2 − |x|2) (A,R = const > 0, n ≥ 2).

then for same density from (20) we obtain

u(t, r) =
1

2r
n
2
−1m!

t∫
0

τm−1e−
r2

4τ ω(t− τ) dτ

R∫
0

ρ
n
2 e−

ρ2

4τ In
2
−1

(rρ
2τ

)
F (ρ) dρ.

Let us consider n = 1 and f(t,x) = Aθ(t)θ(R− |x|). From (21) we get solution in the form

u(t,x) =
A

2m!

t∫
0

τm

[
erf

(
R+ x
2
√
τ

)
+ erf

(
R− x
2
√
τ

)]
dτ, (23)

where erf(z) is the probabilistic integral [5]. Then using

t∫
0

τmerf
(

z

2
√
τ

)
dτ = 2

(z
2

)2m+2
∞∫

z
2
√

t

ξ−2m−3erf(ξ) dξ,

and the formula [3]

∞∫
ξ

ξ−2m−3erf(ξ) dξ =
1

2(m+ 1)

{
(−1)m+1√π
Γ

(
m+ 3

2

) erfc(ξ)

+ξ−2m−2

[
erf(ξ)− 1

π
e−ξ2

m+1∑
k=1

(−1)k
Γ

(
m− k + 3

2

)
Γ

(
m+ 3

2

) ξ2k+1

]}
,

we obtain exact solution from (23)

u(t,x) =
Atm

2(m+ 1)!

[
Φm

(
R+ x
2
√
t

)
+Φm

(
R− x
2
√
t

)]
, (24)

where

Φm(z) = erf(z) +
(−1)m+1√π
Γ

(
m+ 3

2

) z2m+2erfc(z)− 1
π
e−z2

m+1∑
k=1

(−1)k
Γ

(
m− k + 3

2

)
Γ

(
m+ 3

2

) z2k+1.

We can verify easily that reduced exact solutions of problem (1) for density from K0 satisfied
proved above theorem.

Thus we can apply the results for a problem

sinTu = F (t,x). (25)
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Using the expansion of left side in series and generalizing (2) and (3), we can write the
fundamental solution of operator sinT from space D′(R1+n) in the form of expansion into series

Sn(t,x) =
∞∑

m=0

(−1)mEm,n(t,x)
(2m+ 1)!

=
θ(t)e−

|x|2
4t

(2
√
π)n

∞∑
m=0

(−1)mt2m−n/2

(2m)!(2m+ 1)!
=
θ(t)e−

|x|2
4t t−n/2−1

(2
√
π)n

t∫
0

ber2
√
τ dτ.

(26)

This expansion is absolutely convergent for t > 0 and has the following properties:∫
Rn

Sn(t,x) dnx =
∞∑

m=0

(−1)mt2m

(2m)!(2m+ 1)!
,

∂k

∂tk
Sn(+0,x) = 0 (k = 2p− 1),

∂k

∂tk
Sn(+0,x) =

(−1)p

(2p+ 1)!
(k = 2p).

Then we obtain a solution of problems (25) for f(t,x) ∈ K0 in the form of convolution

u(t,x) = Sn(t,x) ∗ f(t,x), (27)

that has form similarly to (20) and (21) for n ≥ 2

u(t, r) =
1

2r
n
2
−1

∞∑
m=0

(−1)m

(2m)!(2m+ 1)!

t∫
0

τ2m−1e−
|r|2
4τ dτ

×
∞∫
0

ρ
n
2 e−

ρ2

4τ In
2
−1

(rρ
2τ

)
f(t− τ, ρ) dρ,

(28)

and for n = 1

u(t,x) =
∞∑

m=0

(−1)m

2
√
π(2m)!(2m+ 1)!

t∫
0

τ2m− 1
2 e−

x2

4τ dτ

∞∫
−∞

e−
ξ2−2xξ

4τ f(t− τ, ξ) dξ. (29)

If n = 1 and f(t,x) = Aθ(t)θ(R− |x|), we find the exact solution of problem (25)

u(t,x) =
∞∑

m=0

(−1)mAt2m

2((2m+ 1)!)2

[
Φ2m

(
R+ x
2
√
t

)
+Φ2m

(
R− x
2
√
t

)]
. (30)
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